diff --git a/en_US.ISO8859-1/books/handbook/x11/chapter.sgml b/en_US.ISO8859-1/books/handbook/x11/chapter.sgml index f141f3563a..7c535b9c7d 100644 --- a/en_US.ISO8859-1/books/handbook/x11/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/x11/chapter.sgml @@ -1,1660 +1,1660 @@ The X Window System Synopsis FreeBSD uses &xfree86; to provide users with a powerful graphical user interface. &xfree86; is an open-source implementation of the X Window System. This chapter will cover installation and configuration of &xfree86; on a FreeBSD system. For more information on &xfree86; and video hardware that it supports, check the &xfree86; web site. After reading this chapter, you will know: The various components of the X Window System, and how they interoperate. How to install and configure &xfree86;. How to install and use different window managers. How to use &truetype; fonts in &xfree86;. How to set up your system for graphical logins (XDM). Before reading this chapter, you should: Know how to install additional third-party software (). Understanding X Using X for the first time can be somewhat of a shock to someone familiar with other graphical environments, such as µsoft.windows; or &macos;. It is not necessary to understand all of the details of various X components and how they interact; however, some basic knowledge makes it possible to take advantage of X's strengths. Why X? X is not the first window system written for &unix;, but it is the most popular. X's original development team had worked on another window system before writing X. That system's name was W (for Window). X is just the next letter in the Roman alphabet. X can be called X, X Window System, X11, and other terms. Calling X11 X Windows can offend some people; see &man.X.7; for a bit more insight on this. The X Client/Server Model X was designed from the beginning to be network-centric, and adopts a client-server model. In the X model, the X server runs on the computer that has the keyboard, monitor, and mouse attached. The server is responsible for managing the display, handling input from the keyboard and mouse, and so on. Each X application (such as XTerm, or &netscape;) is a client. A client sends messages to the server such as Please draw a window at these coordinates, and the server sends back messages such as The user just clicked on the OK button. If there is only one computer involved, such as in a home or small office environment, the X server and the X clients will be running on the same computer. However, it is perfectly possible to run the X server on a less powerful desktop computer, and run X applications (the clients) on, say, the powerful and expensive machine that serves the office. In this scenario the communication between the X client and server takes place over the network. This confuses some people, because the X terminology is exactly backward to what they expect. They expect the X server to be the big powerful machine down the hall, and the X client to be the machine on their desk. Remember that the X server is the machine with the monitor and keyboard, and the X clients are the programs that display the windows. There is nothing in the protocol that forces the client and server machines to be running the same operating system, or even to be running on the same type of computer. It is certainly possible to run an X server on µsoft.windows; or Apple's &macos;, and there are various free and commercial applications available that do exactly that. The X server that ships with FreeBSD is called &xfree86;, and is available for free, under a license very similar to the FreeBSD license. Commercial X servers for FreeBSD are also available. The Window Manager The X design philosophy is much like the &unix; design philosophy, tools, not policy. This means that X does not try to dictate how a task is to be accomplished. Instead, tools are provided to the user, and it is the user's responsibility to decide how to use those tools. This philosophy extends to X not dictating what windows should look like on screen, how to move them around with the mouse, what keystrokes should be used to move between windows (i.e., Alt Tab , in the case of µsoft.windows;), what the title bars on each window should look like, whether or not they have close buttons on them, and so on. Instead, X delegates this responsibility to an application called a Window Manager. There are dozens of window managers available for X: AfterStep, Blackbox, ctwm, Enlightenment, fvwm, Sawfish, twm, Window Maker, and more. Each of these window managers provides a different look and feel; some of them support virtual desktops; some of them allow customized keystrokes to manage the desktop; some have a Start button or similar device; some are themeable, allowing a complete change of look-and-feel by applying a new theme. These window managers, and many more, are available in the x11-wm category of the Ports Collection. In addition, the KDE and GNOME desktop environments both have their own window managers which integrate with the desktop. Each window manager also has a different configuration mechanism; some expect configuration file written by hand, others feature GUI tools for most of the configuration tasks; at least one (sawfish) has a configuration file written in a dialect of the Lisp language. Focus Policy Another feature the window manager is responsible for is the mouse focus policy. Every windowing system needs some means of choosing a window to be actively receiving keystrokes, and should visibly indicate which window is active as well. A familiar focus policy is called click-to-focus. This is the model utilized by µsoft.windows;, in which a window becomes active upon receiving a mouse click. X does not support any particular focus policy. Instead, the window manager controls which window has the focus at any one time. Different window managers will support different focus methods. All of them support click to focus, and the majority of them support several others. The most popular focus policies are: focus-follows-mouse The window that is under the mouse pointer is the window that has the focus. This may not necessarily be the window that is on top of all the other windows. The focus is changed by pointing at another window, there is no need to click in it as well. sloppy-focus This policy is a small extension to focus-follows-mouse. With focus-follows-mouse, if the mouse is moved over the root window (or background) then no window has the focus, and keystrokes are simply lost. With sloppy-focus, focus is only changed when the cursor enters a new window, and not when exiting the current window. click-to-focus The active window is selected by mouse click. The window may then be raised, and appear in front of all other windows. All keystrokes will now be directed to this window, even if the cursor is moved to another window. Many window managers support other policies, as well as variations on these. Be sure to consult the documentation for the window manager itself. Widgets The X approach of providing tools and not policy extends to the widgets that seen on screen in each application. Widget is a term for all the items in the user interface that can be clicked or manipulated in some way; buttons, check boxes, radio buttons, icons, lists, and so on. µsoft.windows; calls these controls. µsoft.windows; and Apple's &macos; both have a very rigid widget policy. Application developers are supposed to ensure that their applications share a common look and feel. With X, it was not considered sensible to mandate a particular graphical style, or set of widgets to adhere to. As a result, do not expect X applications to have a common look and feel. There are several popular widget sets and variations, including the original Athena widget set from MIT, &motif; (on which the widget set in µsoft.windows; was modeled, all bevelled edges and three shades of grey), OpenLook, and others. Most newer X applications today will use a modern-looking widget set, either Qt, used by KDE, or GTK, used by the GNOME project. In this respect, there is some convergence in look-and-feel of the &unix; desktop, which certainly makes things easier for the novice user. Installing &xfree86; Before installing &xfree86;, decide on which version to run. &xfree86; 3.X is a maintenance branch of &xfree86; development. It is very stable, and it supports a huge number of graphics cards. However, no new development is being done on the software. &xfree86; 4.X is a complete redesign of the system with many new features such as better support for fonts and anti-aliasing. Unfortunately this new architecture requires that the video drivers be rewritten, and some of the older cards that were supported in 3.X are not yet supported in 4.X. As all new developments and support for new graphics cards are done on that branch, &xfree86; 4.X is now the default version of the X Window System on FreeBSD. The FreeBSD setup program offers users the opportunity to install and configure &xfree86; 4.X during installation (covered in ). To install and run &xfree86; 3.X, wait until after the base FreeBSD system is installed, and then install &xfree86;. For example, to build and install &xfree86; 3.X from the ports collection: &prompt.root; cd /usr/ports/x11/XFree86 &prompt.root; make all install clean Alternatively, either version of &xfree86; can be installed directly from the FreeBSD binaries provided on the &xfree86; web site. A binary package to use with &man.pkg.add.1; tool is also available for &xfree86; 4.X. When the remote fetching feature of &man.pkg.add.1; is used, the version number of the package must be removed. &man.pkg.add.1; will automatically fetch the latest version of the application. So to fetch and install the package of &xfree86; 4.X, simply type: &prompt.root; pkg_add -r XFree86 You can also use the ports collection to install &xfree86; 4.X, for that you simply need to type the following commands: &prompt.root; cd /usr/ports/x11/XFree86-4 &prompt.root; make install clean The examples above will install the complete &xfree86; distribution including the servers, clients, fonts etc. Separate packages and ports for different parts of &xfree86; 4.X are also available. The rest of this chapter will explain how to configure &xfree86;, and how to set up a productive desktop environment. Christopher Shumway Contributed by &xfree86; Configuration XFree86 4.X XFree86 Before Starting Before configuration of &xfree86; 4.X, the following information about the target system is needed: Monitor specifications Video Adapter chipset Video Adapter memory horizontal scan rate vertical scan rate The specifications for the monitor are used by &xfree86; to determine the resolution and refresh rate to run at. These specifications can usually be obtained from the documentation that came with the monitor or from the manufacturer's website. There are two ranges of numbers that are needed, the horizontal scan rate and the vertical synchronization rate. The video adapter's chipset defines what driver module &xfree86; uses to talk to the graphics hardware. With most chipsets, this can be automatically determined, but it is still useful to know in case the automatic detection does not work correctly. Video memory on the graphic adapter determines the resolution and color depth which the system can run at. This is important to know so the user knows the limitations of the system. Configuring &xfree86; 4.X Configuration of &xfree86; 4.X is a multi-step process. The first step is to build an initial configuration file with the option to &xfree86;. As the super user, simply run: &prompt.root; XFree86 -configure This will generate a skeleton &xfree86; configuration file in the /root directory called XF86Config.new (in fact the directory used is the one covered by the environment variable $HOME, and it will depend from the way you got the superuser rights). The &xfree86; program will attempt to probe the graphics hardware on the system and will write a configuration file to load the proper drivers for the detected hardware on the target system. The next step is to test the existing configuration to verify that &xfree86; can work with the graphics hardware on the target system. To perform this task, the user needs to run: &prompt.root; XFree86 -xf86config XF86Config.new If a black and grey grid and an X mouse cursor appear, the configuration was successful. To exit the test, just press Ctrl Alt Backspace simultaneously. If the mouse does not work, be sure the device has been configured. See in the &os; install chapter. XFree86 4 Tuning Next, tune the XF86Config.new configuration file to taste. Open the file in a text editor such as &man.emacs.1; or &man.ee.1;. First, add the frequencies for the target system's monitor. These are usually expressed as a horizontal and vertical synchronization rate. These values are added to the XF86Config.new file under the "Monitor" section: Section "Monitor" Identifier "Monitor0" VendorName "Monitor Vendor" ModelName "Monitor Model" HorizSync 30-107 VertRefresh 48-120 EndSection The HorizSync and VertRefresh keywords may not exist in the configuration file. If they do not, they need to be added, with the correct horizontal synchronization rate placed after the Horizsync keyword and the vertical synchronization rate after the VertRefresh keyword. In the example above the target monitor's rates were entered. X allows DPMS (Energy Star) features to be used with capable monitors. The &man.xset.1; program controls the time-outs and can force standby, suspend, or off modes. If you wish to enable DPMS features for your monitor, you must add the following line to the monitor section: Option "DPMS" XF86Config While the XF86Config.new configuration file is still open in an editor, select the default resolution and color depth desired. This is defined in the "Screen" section: Section "Screen" Identifier "Screen0" Device "Card0" Monitor "Monitor0" DefaultDepth 24 SubSection "Display" Depth 24 Modes "1024x768" EndSubSection EndSection The DefaultDepth keyword describes the color depth to run at by default. This can be overridden with the -bpp command line switch to &man.XFree86.1;. The Modes keyword describes the resolution to run at for the given color depth. Note that only VESA standard modes are supported as defined by the target system's graphics hardware. In the example above, the default color depth is twenty-four bits per pixel. At this color depth, the accepted resolution is one thousand twenty-four pixels by seven hundred and sixty-eight pixels. Finally, write the configuration file and test it using the test mode given above. If all is well, the configuration file needs to be installed in a common location where &man.XFree86.1; can find it. This is typically /etc/X11/XF86Config or /usr/X11R6/etc/X11/XF86Config. &prompt.root; cp XF86Config.new /etc/X11/XF86Config Once the configuration file has been placed in a common location, configuration is complete. In order to start &xfree86; 4.X with &man.startx.1;, install the x11/wrapper port. &xfree86; 4.X can also be started with &man.xdm.1;. There is also a graphical tool for configuration, &man.xf86cfg.1;, that comes with the &xfree86; 4.X distribution. It allows to interactively define your configuration by choosing the appropiate drivers and settings. This program can be used under console as well, just use the command xf86cfg -textmode. For more details, refer to the &man.xf86cfg.1; manual page. Advanced Configuration Topics Configuration with &intel; i810 Graphics Chipsets Intel i810 graphic chipset Configuration with &intel; i810 integrated chipsets requires the agpgart AGP programming interface for &xfree86; to drive the card. The &man.agp.4; driver is in the GENERIC kernel since releases 4.8-RELEASE and 5.0-RELEASE. On prior releases, you will have to add the following line: device agp in your kernel configuration file and rebuild a new kernel. Instead, you may want to load the agp.ko kernel module automatically with the &man.loader.8; at boot time. For that, simply add this line to /boot/loader.conf: agp_load="YES" Next, if you are running FreeBSD 4.X or earlier, a device node needs to be created for the programming interface. To create the AGP device node, run &man.MAKEDEV.8; in the /dev directory: &prompt.root; cd /dev &prompt.root; sh MAKEDEV agpgart FreeBSD 5.X or later will use &man.devfs.5; to allocate device nodes transparently, therefore the &man.MAKEDEV.8; step is not required. This will allow configuration of the hardware as any other graphics board. Note on systems without the &man.agp.4; driver compiled in the kernel, trying to load the module with &man.kldload.8; will not work. This driver has to be in the kernel at boot time through being compiled in or using /boot/loader.conf. If you are using &xfree86; 4.1.0 (or later) and messages about unresolved symbols like fbPictureInit appear, try adding the following line after Driver "i810" in the &xfree86; configuration file: Option "NoDDC" Murray Stokely Contributed by Using Fonts in &xfree86; Type1 Fonts The default fonts that ship with &xfree86; are less than ideal for typical desktop publishing applications. Large presentation fonts show up jagged and unprofessional looking, and small fonts in &netscape; are almost completely unintelligible. However, there are several free, high quality Type1 (&postscript;) fonts available which can be readily used with &xfree86;, either version 3.X or version 4.X. For instance, the URW font collection (x11-fonts/urwfonts) includes high quality versions of standard type1 fonts (Times Roman, Helvetica, Palatino and others). The Freefonts collection (x11-fonts/freefonts) includes many more fonts, but most of them are intended for use in graphics software such as the Gimp, and are not complete enough to serve as screen fonts. In addition, &xfree86; can be configured to use &truetype; fonts with a minimum of effort: see the section on &truetype; fonts later. To install the above Type1 font collections from the ports collection, run the following commands: &prompt.root; cd /usr/ports/x11-fonts/urwfonts &prompt.root; make install clean And likewise with the freefont or other collections. To tell the X server that these fonts exist, add an appropriate line to the XF86Config file (in /etc/ for &xfree86; version 3, or in /etc/X11/ for version 4), which reads: FontPath "/usr/X11R6/lib/X11/fonts/URW/" Alternatively, at the command line in the X session run: &prompt.user; xset fp+ /usr/X11R6/lib/X11/fonts/URW &prompt.user; xset fp rehash This will work but will be lost when the X session is closed, unless it is added to the startup file (~/.xinitrc for a normal startx session, or ~/.xsession when logging in through a graphical login manager like XDM). A third way is to use the new XftConfig file: see the section on anti-aliasing. &truetype; Fonts TrueType Fonts fonts TrueType &xfree86; 4.X has built in support for rendering &truetype; fonts. There are two different modules that can enable this functionality. The freetype module is used in this example because it is more consistent with the other font rendering back-ends. To enable the freetype module just add the following line to the "Module" section of the /etc/X11/XF86Config file. Load "freetype" For &xfree86; 3.3.X, a separate &truetype; font server is needed. Xfstt is commonly used for this purpose. To install Xfstt, simply install the port x11-servers/Xfstt. Now make a directory for the &truetype; fonts (for example, /usr/X11R6/lib/X11/fonts/TrueType) and copy all of the &truetype; fonts into this directory. Keep in mind that &truetype; fonts cannot be directly taken from a &macintosh;; they must be in &unix;/DOS/&windows; format for use by &xfree86;. Once the files have been copied into this directory, use ttmkfdir to create a fonts.dir file, so that the X font renderer knows that these new files have been installed. ttmkfdir is available from the FreeBSD Ports Collection as x11-fonts/ttmkfdir. &prompt.root; cd /usr/X11R6/lib/X11/fonts/TrueType &prompt.root; ttmkfdir > fonts.dir Now add the &truetype; directory to the font path. This is just the same as described above for Type1 fonts, that is, use &prompt.user; xset fp+ /usr/X11R6/lib/X11/fonts/TrueType &prompt.user; xset fp rehash or add a line to the XF86Config file. That's it. Now &netscape;, Gimp, &staroffice;, and all of the other X applications should now recognize the installed &truetype; fonts. Extremely small fonts (as with text in a high resolution display on a web page) and extremely large fonts (within &staroffice;) will look much better now. Joe Marcus Clarke Updated for &xfree86; 4.3 by Anti-Aliased Fonts anti-aliased fonts fonts anti-aliased Anti-aliasing has been available in &xfree86; since 4.0.2. However, font configuration was cumbersome before the introduction of &xfree86; 4.3.0. Starting in version 4.3.0, all fonts in /usr/X11R6/lib/X11/fonts/ and ~/.fonts/ are automatically made available for anti-aliasing to Xft-aware applications. Not all applications are Xft-aware yet, but many have received Xft support. Examples of Xft-aware applications include Qt 2.3 and higher (the toolkit for the KDE desktop), Gtk+ 2.0 and higher (the toolkit for the GNOME desktop), and Mozilla 1.2 and higher. In order to control which fonts are anti-aliased, or to configure anti-aliasing properties, create (or edit, if it already exists) the file /usr/X11R6/etc/fonts/local.conf. Several advanced features of the Xft font system can be tuned using this file; this section describes only some simple possibilities. For more details, please see &man.fonts-conf.5;. XML This file must be in XML format. Pay careful attention to case, and make sure all tags are properly closed. The file begins with the usual XML header followed by a DOCTYPE definition, and then the <fontconfig> tag: <?xml version="1.0"?> <!DOCTYPE fontconfig SYSTEM "fonts.dtd"> <fontconfig> As previously stated, all fonts in /usr/X11R6/lib/X11/fonts/ as well as ~/.fonts/ are already made available to Xft-aware applications. If you wish to add another directory outside of these two directory trees, add a line similar to the following to /usr/X11R6/etc/fonts/local.conf: <dir>/path/to/my/fonts</dir> After adding new fonts, and especially new font directories, you should run the following command to rebuild the font caches: &prompt.root; fc-cache -f Anti-aliasing makes borders slightly fuzzy, which makes very small text more readable and removes staircases from large text, but can cause eyestrain if applied to normal text. To exclude point sizes smaller than 14 point from anti-aliasing, include these lines: <match target="font"> <test name="size" compare="less"> <double>14</double> </test> <edit name="antialias" mode="assign"> <bool>false</bool> </edit> </match> fonts spacing Spacing for some monospaced fonts may also be inappropriate with anti-aliasing. This seems to be an issue with KDE, in particular. One possible fix for this is to force the spacing for such fonts to be 100. Add the following lines: <match target="pattern" name="family"> <test qual="any" name="family"> <string>fixed</string> </test> <edit name="family" mode="assign"> <string>mono</string> </edit> </match> <match target="pattern" name="family"> <test qual="any" name="family"> <string>console</string> </test> <edit name="family" mode="assign"> <string>mono</string> </edit> </match> (this aliases the other common names for fixed fonts as "mono"), and then add: <match target="pattern" name="family"> <test qual="any" name="family"> <string>mono</string> </test> <edit name="spacing" mode="assign"> <int>100</int> </edit> </match> Certain fonts, such as Helvetica, may have a problem when anti-aliased. Usually this manifests itself as a font that seems cut in half vertically. At worst, it may cause applications such as Mozilla to crash. To avoid this, consider adding the following to local.conf: <match target="pattern" name="family"> <test qual="any" name="family"> <string>Helvetica</string> </test> <edit name="family" mode="assign"> <string>sans-serif</string> </edit> </match> Once you have finished editing local.conf make sure you end the file with the </fontconfig> tag. Not doing this will cause your changes to be ignored. The default font set that comes with &xfree86; is not very desirable when it comes to anti-aliasing. A much better set of default fonts can be found in the x11-fonts/bitstream-vera port. This port will install a /usr/X11R6/etc/fonts/local.conf file if one does not exist already. If the file does exist, the port will create a /usr/X11R6/etc/fonts/local.conf-vera file. Merge the contents of this file into /usr/X11R6/etc/fonts/local.conf, and the Bitstream fonts will automatically replace the default &xfree86; Serif, Sans Serif, and Monospaced fonts. Finally, users can add their own settings via their personal .fonts.conf files. To do this, each user should simply create a ~/.fonts.conf. This file must also be in XML format. LCD screen Fonts LCD screen One last point: with an LCD screen, sub-pixel sampling may be desired. This basically treats the (horizontally separated) red, green and blue components separately to improve the horizontal resolution; the results can be dramatic. To enable this, add the line somewhere in the local.conf file: <match target="font"> <test qual="all" name="rgba"> <const>unknown</const> </test> <edit name="rgba" mode="assign"> <const>rgb</const> </edit> </match> Depending on the sort of display, rgb may need to be changed to bgr, vrgb or vbgr: experiment and see which works best. Mozilla web browsers Mozilla Mozilla Anti-aliasing should be enabled the next time the X server is started. However, programs must know how to take advantage of it. At present, the Qt toolkit does, so the entire KDE environment can use anti-aliased fonts (see on KDE for details). Gtk+ and GNOME can also be made to use anti-aliasing via the Font capplet (see for details). By default, Mozilla 1.2 and greater will automatically use anti-aliasing. To disable this, rebuild Mozilla with the -DWITHOUT_XFT flag. Seth Kingsley Contributed by The X Display Manager Overview X Display Manager The X Display Manager (XDM) is an optional part of the X Window System that is used for login session management. This is useful for several types of situations, including minimal X Terminals, desktops, and large network display servers. Since the X Window System is network and protocol independent, there are a wide variety of possible configurations for running X clients and servers on different machines connected by a network. XDM provides a graphical interface for choosing which display server to connect to, and entering authorization information such as a login and password combination. Think of XDM as providing the same functionality to the user as the &man.getty.8; utility (see for details). That is, it performs system logins to the display being connected to and then runs a session manager on behalf of the user (usually an X window manager). XDM then waits for this program to exit, signaling that the user is done and should be logged out of the display. At this point, XDM can display the login and display chooser screens for the next user to login. Using XDM The XDM daemon program is located in /usr/X11R6/bin/xdm. This program can be run at any time as root and it will start managing the X display on the local machine. If XDM is to be run every time the machine boots up, a convenient way to do this is by adding an entry to /etc/ttys. For more information about the format and usage of this file, see . There is a line in the default /etc/ttys file for running the XDM daemon on a virtual terminal: ttyv8 "/usr/X11R6/bin/xdm -nodaemon" xterm off secure By default this entry is disabled; in order to enable it change field 5 from off to on and restart &man.init.8; using the directions in . The first field, the name of the terminal this program will manage, is ttyv8. This means that XDM will start running on the 9th virtual terminal. Configuring XDM The XDM configuration directory is located in /usr/X11R6/lib/X11/xdm. In this directory there are several files used to change the behavior and appearance of XDM. Typically these files will be found: File Description Xaccess Client authorization ruleset. Xresources Default X resource values. Xservers List of remote and local displays to manage. Xsession Default session script for logins. Xsetup_* Script to launch applications before the login interface. xdm-config Global configuration for all displays running on this machine. xdm-errors Errors generated by the server program. xdm-pid The process ID of the currently running XDM. Also in this directory are a few scripts and programs used to set up the desktop when XDM is running. The purpose of each of these files will be briefly described. The exact syntax and usage of all of these files is described in &man.xdm.1;. The default configuration is a simple rectangular login window with the hostname of the machine displayed at the top in a large font and Login: and Password: prompts below. This is a good starting point for changing the look and feel of XDM screens. Xaccess The protocol for connecting to XDM controlled displays is called the X Display Manager Connection Protocol (XDMCP). This file is a ruleset for controlling XDMCP connections from remote machines. By default, it allows any client to connect, but that does not matter unless the xdm-config is changed to listen for remote connections. Xresources This is an application-defaults file for the display chooser and the login screens. This is where the appearance of the login program can be modified. The format is identical to the app-defaults file described in the &xfree86; documentation. Xservers This is a list of the remote displays the chooser should provide as choices. Xsession This is the default session script for XDM to run after a user has logged in. Normally each user will have a customized session script in ~/.xsession that overrides this script. Xsetup_* These will be run automatically before displaying the chooser or login interfaces. There is a script for each display being used, named Xsetup_ followed by the local display number (for instance Xsetup_0). Typically these scripts will run one or two programs in the background such as xconsole. xdm-config This contains settings in the form of app-defaults that are applicable to every display that this installation manages. xdm-errors This contains the output of the X servers that XDM is trying to run. If a display that XDM is trying to start hangs for some reason, this is a good place to look for error messages. These messages are also written to the user's ~/.xsession-errors file on a per-session basis. Running a Network Display Server In order for other clients to connect to the display server, edit the access control rules, and enable the connection listener. By default these are set to conservative values. To make XDM listen for connections, first comment out a line in the xdm-config file: ! SECURITY: do not listen for XDMCP or Chooser requests ! Comment out this line if you want to manage X terminals with xdm DisplayManager.requestPort: 0 and then restart XDM. Remember that comments in app-defaults files begin with a ! character, not the usual #. More strict access controls may be desired. Look at the example entries in Xaccess, and refer to the &man.xdm.1; manual page. Replacements for XDM Several replacements for the default XDM program exist. One of them, KDM (bundled with KDE) is described later in this chapter. KDM offers many visual improvements and cosmetic frills, as well as the functionality to allow users to choose their window manager of choice at login time. Valentino Vaschetto Contributed by Desktop Environments This section describes the different desktop environments available for X on FreeBSD. A desktop environment can mean anything ranging from a simple window manager to a complete suite of desktop applications, such as KDE or GNOME. GNOME About GNOME GNOME GNOME is a user-friendly desktop environment that enables users to easily use and configure their computers. GNOME includes a panel (for starting applications and displaying status), a desktop (where data and applications can be placed), a set of standard desktop tools and applications, and a set of conventions that make it easy for applications to cooperate and be consistent with each other. Users of other operating systems or environments should feel right at home using the powerful graphics-driven environment that GNOME provides. More information regarding GNOME on FreeBSD can be found on the FreeBSD GNOME Project's web site. Installing GNOME The easiest way to install GNOME is through the Desktop Configuration menu during the FreeBSD installation process as described in of Chapter 2. It can also be easily installed from a package or the ports collection: To install the GNOME package from the network, simply type: &prompt.root; pkg_add -r gnome2 To build GNOME from source, use the ports tree: &prompt.root; cd /usr/ports/x11/gnome2 &prompt.root; make install clean Once GNOME is installed, the X server must be told to start GNOME instead of a default window manager. If a custom .xinitrc is already in place, simply replace the line that starts the current window manager with one that starts /usr/X11R6/bin/gnome-session instead. If nothing special has been done to configuration file, then it is enough to simply type: &prompt.user; echo "/usr/X11R6/bin/gnome-session" > ~/.xinitrc Next, type startx, and the GNOME desktop environment will be started. If a display manager, like XDM, is being used, this will not work. Instead, create an executable .xsession file with the same command in it. To do this, edit the file and replace the existing window manager command with /usr/X11R6/bin/gnome-session: &prompt.user; echo "#!/bin/sh" > ~/.xsession &prompt.user; echo "/usr/X11R6/bin/gnome-session" >> ~/.xsession &prompt.user; chmod +x ~/.xsession Another option is to configure the display manager to allow choosing the window manager at login time; the section on KDE details explains how to do this for kdm, the display manager of KDE. Anti-aliased Fonts with GNOME GNOME anti-aliased fonts Starting with version 4.0.2, &xfree86; supports anti-aliasing via its RENDER extension. Gtk+ 2.0 and greater (the toolkit used by GNOME) can make use of this functionality. Configuring anti-aliasing is described in . So, with up-to-date software, anti-aliasing is possible within the GNOME desktop. Just go to Applications Desktop Preferences Font, and select either Best shapes, Best contrast, or Subpixel smoothing (LCDs). For a Gtk+ application that is not part of the GNOME desktop, set the environment variable GDK_USE_XFT to 1 before launching the program. KDE KDE About KDE KDE is an easy to use contemporary desktop environment. Some of the things that KDE brings to the user are: A beautiful contemporary desktop A desktop exhibiting complete network transparency An integrated help system allowing for convenient, consistent access to help on the use of the KDE desktop and its applications Consistent look and feel of all KDE applications Standardized menu and toolbars, keybindings, color-schemes, etc. Internationalization: KDE is available in more than 40 languages Centralized consisted dialog driven desktop configuration A great number of useful KDE applications KDE has an office application suite based on KDE's KParts technology consisting of a spread-sheet, a presentation application, an organizer, a news client and more. KDE also comes with a web browser called Konqueror, which represents a solid competitor to other existing web browsers on &unix; systems. More information on KDE can be found on the KDE website. For FreeBSD specific informations and resources on KDE, consult the FreeBSD-KDE team's website. Installing KDE Just as with GNOME or any other desktop environment, the easiest way to install KDE is through the Desktop Configuration menu during the FreeBSD installation process as described in of Chapter 2. Once again, the software can be easily installed from a package or from the ports collection: To install the KDE package from the network, simply type: &prompt.root; pkg_add -r kde &man.pkg.add.1; will automatically fetch the latest version of the application. To build KDE from source, use the ports tree: &prompt.root; cd /usr/ports/x11/kde3 &prompt.root; make install clean After KDE has been installed, the X server must be told to launch this application instead of the default window manager. This is accomplished by editing the .xinitrc file: &prompt.user; echo "exec startkde" > ~/.xinitrc Now, whenever the X Window System is invoked with startx, KDE will be the desktop. If a display manager such as xdm is being used, the configuration is slightly different. Edit the .xsession file instead. Instructions for kdm are described later in this chapter. More Details on KDE Now that KDE is installed on the system, most things can be discovered through the help pages, or just by pointing and clicking at various menus. &windows; or &mac; users will feel quite at home. The best reference for KDE is the on-line documentation. KDE comes with its own web browser, Konqueror, dozens of useful applications, and extensive documentation. The remainder of this section discusses the technical items that are difficult to learn by random exploration. The KDE Display Manager KDE display manager An administrator of a multi-user system may wish to have a graphical login screen to welcome users. xdm can be used, as described earlier. However, KDE includes an alternative, kdm, which is designed to look more attractive and include more login-time options. In particular, users can easily choose (via a menu) which desktop environment (KDE, GNOME, or something else) to run after logging on. To begin with, run the KDE control panel, kcontrol, as root. It is generally considered unsafe to run the entire X environment as root. Instead, run the window manager as a normal user, open a terminal window (such as xterm or KDE's konsole), become root with su (the user must be in the wheel group in /etc/group for this), and then type kcontrol. Click on the icon on the left marked System, then on Login manager. On the right there are various configurable options, which the KDE manual will explain in greater detail. Click on sessions on the right. Click New type to add various window managers and desktop environments. These are just labels, so they can say KDE and GNOME rather than startkde or gnome-session. Include a label failsafe. Play with the other menus as well, they are mainly cosmetic and self-explanatory. When you are done, click on Apply at the bottom, and quit the control center. To make sure kdm understands what the labels (KDE, GNOME etc) mean, edit the files used by xdm. In KDE 2.2 this has changed: kdm now uses its own configuration files. Please see the KDE 2.2 documentation for details. In a terminal window, as root, edit the file /usr/X11R6/lib/X11/xdm/Xsession. There is a section in the middle like this: case $# in 1) case $1 in failsafe) exec xterm -geometry 80x24-0-0 ;; esac esac A few lines need to be added to this section. Assuming the labels from used were KDE and GNOME, use the following: case $# in 1) case $1 in kde) exec /usr/local/bin/startkde ;; GNOME) exec /usr/X11R6/bin/gnome-session ;; failsafe) exec xterm -geometry 80x24-0-0 ;; esac esac For the KDE login-time desktop background to be honored, the following line needs to be added to /usr/X11R6/lib/X11/xdm/Xsetup_0: /usr/local/bin/kdmdesktop Now, make sure kdm is listed in /etc/ttys to be started at the next bootup. To do this, simply follow the instructions from the previous section on xdm and replace references to the /usr/X11R6/bin/xdm program with /usr/local/bin/kdm. Anti-aliased Fonts KDE anti-aliased fonts Starting with version 4.0.2, &xfree86; supports anti-aliasing via its RENDER extension, and starting with version 2.3, Qt (the toolkit used by KDE) supports this extension. Configuring this is described in on antialiasing X11 fonts. So, with up-to-date software, anti-aliasing is possible on a KDE desktop. Just go to the KDE menu, go to Preferences Look and Feel Fonts, and click on the check box Use Anti-Aliasing for Fonts and Icons. For a Qt application which is not part of KDE, the environment variable QT_XFT needs to be set to true before starting the program. XFce About XFce XFce is a desktop environment based on the GTK toolkit used by GNOME, but is much more lightweight and meant for those who want a simple, efficient desktop which is nevertheless easy to use and configure. Visually, it looks very much like CDE, found on commercial &unix; systems. Some of XFce's features are: A simple, easy-to-handle desktop Fully configurable via mouse, with drag and drop, etc Main panel similar to CDE, with menus, applets and applications launchers Integrated window manager, file manager, sound manager, GNOME compliance module, and other things Themeable (since it uses GTK) Fast, light and efficient: ideal for older/slower machines or machines with memory limitations More information on XFce can be found on the XFce website. Installing XFce A binary package for XFce exists (at the time of writing). To install, simply type: - &prompt.root; pkg_add -r xfce + &prompt.root; pkg_add -r xfce4 Alternatively, to build from source, use the ports collection: - &prompt.root; cd /usr/ports/x11-wm/xfce + &prompt.root; cd /usr/ports/x11-wm/xfce4 &prompt.root; make install clean Now, tell the X server to launch XFce the next time X is started. Simply type this: &prompt.user; echo "/usr/X11R6/bin/startxfce" > ~/.xinitrc The next time X is started, XFce will be the desktop. As before, if a display manager like xdm is being used, create an .xsession, as described in the section on GNOME, but with the /usr/X11R6/bin/startxfce command; or, configure the display manager to allow choosing a desktop at login time, as explained in the section on kdm.