diff --git a/en_US.ISO8859-1/articles/committers-guide/article.sgml b/en_US.ISO8859-1/articles/committers-guide/article.sgml index 4ac3b2632a..759de3f96e 100644 --- a/en_US.ISO8859-1/articles/committers-guide/article.sgml +++ b/en_US.ISO8859-1/articles/committers-guide/article.sgml @@ -1,2566 +1,2566 @@ %man; %freebsd; %authors; %teams; %mailing-lists; ]>
Committer Guide The FreeBSD Documentation Project $FreeBSD$ 1999 2000 2001 The FreeBSD Documentation Project This document provides information for the FreeBSD committer community. All new committers should read this document before they start, and existing committers are strongly encouraged to review it from time to time. Administrative Details Main Repository Host freefall.FreeBSD.org Login Methods &man.ssh.1; Main CVSROOT /home/ncvs Main CVS Repository Meisters &a.peter; and &a.markm;, as well as &a.joe; and &a.asami; for ports/ Mailing List &a.developers;, &a.committers; Noteworthy CVS Tags RELENG_3 (3.x-STABLE), RELENG_4 (4.x-STABLE), HEAD (-CURRENT) It is required that you use &man.ssh.1; or &man.telnet.1; with Kerberos 5 to connect to the repository hosts. These are generally more secure than plain &man.telnet.1; or &man.rlogin.1; since credential negotiation will always be encrypted. All traffic is encrypted by default with &man.ssh.1;. With utilities like &man.ssh-agent.1; and &man.scp.1; also available, &man.ssh.1; is also far more convenient. If you do not know anything about &man.ssh.1;, please see . Commit Bit Types The FreeBSD CVS repository has a number of components which, when combined, support the basic operating system source, documentation, third party application ports infrastructure, and various maintained utilities. When FreeBSD commit bits are allocated, the areas of the tree where the bit may be used are specified. Generally, the areas associated with a bit reflect who authorized the allocation of the commit bit. Additional areas of authority may be added at a later date: when this occurs, the committer should follow normal commit bit allocation procedures for that area of the tree, seeking approval from the appropriate entity and possibly getting a mentor for that area for some period of time. Committer Type Responsible Tree Components src core@ src/, doc/ subject to appropriate review doc nik@ doc/, src/ documentation ports portmgr@ ports/ Commit bits allocated prior to the development of the notion of areas of authority may be appropriate for use in many parts of the tree. However, common sense dictates that a committer who has not previously worked in an area of the tree seek review prior to committing, seek approval from the appropriate responsible party, and/or work with a mentor. Since the rules regarding code maintenance differ by area of the tree, this is as much for the benefit of the committer working in an area of less familiarity as it is for others working on the tree. Committers are encouraged to seek review for their work as part of the normal development process, regardless of the area of the tree where the work is occuring. CVS Operations It is assumed that you are already familiar with the basic operation of CVS. The CVS Repository Meisters (Peter Wemm and John Polstra) are the owners of the CVS repository and are responsible for any and all direct modification of it for the purposes of cleanup or fixing some grievous abuse of CVS by a committer. No one else should attempt to touch the repository directly. Should you cause some repository accident, say a bad cvs import or tag operation, do not attempt to fix it yourself! Mail or call John or Peter immediately and report the problem to one of them instead. The only ones allowed to directly fiddle the repository bits are the repomeisters. Satoshi Asami is also a repomeister for the ports/ portion of the tree. CVS operations are usually done by logging into freefall, making sure the CVSROOT environment variable is set to /home/ncvs, and then doing the appropriate check-out/check-in operations. If you wish to add something which is wholly new (like contrib-ified sources, etc), a script called easy-import is also provided for making the process easier. It automatically adds the new module entry, does the appropriate thing with cvs import, etc. – just run it without arguments and it will prompt you for everything it needs to know. Note that when you use CVS on freefall, you should set your umask to 2, as well as setting the CVSUMASK environment variable to 2. This ensures that any new files created by cvs add will have the correct permissions. If you add a file or directory and discover that the file in the repository has incorrect permissions (specifically, all files in the repository should be group writable by group ncvs), contact one of the repository meisters as described below. If you are familiar with remote CVS and consider yourself pretty studly with CVS in general, you can also do CVS operations directly from your own machine and local working sources. Just remember to set CVS_RSH to ssh so that you are using a relatively secure and reliable transport. If you have no idea what any of the above even means, on the other hand, then please stick with logging into freefall and applying your diffs with &man.patch.1;. If you need to use CVS add and delete operations in a manner that is effectively a mv operation, then a repository copy is in order rather than your CVS add and delete. In a repository copy, a CVS Meister will copy the file(s) to their new name and/or location and let you know when it is done. The purpose of a repository copy is to preserve file change history, or logs. We in the FreeBSD Project greatly value the change history CVS gives to the project. CVS reference information, tutorials, and FAQs can also be found at: http://www.cvshome.org/docs/, and the information in Karl Fogel's chapters from Open Source Development with CVS are also very useful. &a.des; also supplied the following mini primer for CVS. Check out a module with the co or checkout command. &prompt.user; cvs checkout shazam This checks out a copy of the shazam module. If there is no shazam module in the modules file, it looks for a top-level directory named shazam instead. Useful <command>cvs checkout</command> options Do not create empty directories Check out a single level, no subdirectories Check out revision, branch or tag rev Check out the sources as they were on date date
Practical FreeBSD examples: Check out the miscfs module, which corresponds to src/sys/miscfs: &prompt.user; cvs co miscfs You now have a directory named miscfs with subdirectories CVS, deadfs, devfs, and so on. One of these (linprocfs) is empty. Check out the same files, but with full path: &prompt.user; cvs co src/sys/miscfs You now have a directory named src, with subdirectories CVS and sys. src/sys has subdirectories CVS and miscfs, etc. Check out the same files, but prunes empty directories: &prompt.user; cvs co -P miscfs You now have a directory named miscfs with subdirectories CVS, deadfs, devfs... but note that there is no linprocfs subdirectory, because there are no files in it. Check out the directory miscfs, but none of the subdirectories: &prompt.root; cvs co -l miscfs You now have a directory named miscfs with just one subdirectory named CVS. Check out the miscfs module as it is in the 4.x branch: &prompt.user; cvs co -rRELENG_4 miscfs You can modify the sources and commit along this branch. Check out the miscfs module as it was in 3.4-RELEASE. &prompt.user; cvs co -rRELENG_3_4_0_RELEASE miscfs You will not be able to commit modifications, since RELENG_3_4_0_RELEASE is a point in time, not a branch. Check out the miscfs module as it was on Jan 15 2000. &prompt.user; cvs co -D'01/15/2000' miscfs You will not be able to commit modifications. Check out the miscfs module as it was one week ago. &prompt.user; cvs co -D'last week' miscfs You will not be able to commit modifications. Note that cvs stores metadata in subdirectories named CVS. Arguments to and are sticky, which means cvs will remember them later, e.g. when you do a cvs update.
Check the status of checked-out files with the status command. &prompt.user; cvs status shazam This displays the status of the shazam file or of every file in the shazam directory. For every file, the status is given as one of: Up-to-date File is up-to-date and unmodified. Needs Patch File is unmodified, but there is a newer revision in the repository. Locally Modified File is up-to-date, but modified. Needs Merge File is modified, and there is a newer revision in the repository. File had conflicts on merge There were conflicts the last time this file was updated, and they have not been resolved yet. You will also see the local revision and date, the revision number of the newest applicable version (newest applicable because if you have a sticky date, tag or branch, it may not be the actual newest revision), and any sticky tags, dates or options. Once you have checked something out, update it with the update command. &prompt.user; cvs update shazam This updates the shazam file or the contents of the shazam directory to the latest version along the branch you checked out. If you checked out a point in time, does nothing unless the tags have moved in the repository or some other weird stuff is going on. Useful options, in addition to those listed above for checkout: Check out any additional missing directories. Update to head of main branch. More magic (see below). If you checked out a module with or , running cvs update with a different or argument or with will select a new branch, revision or date. The option clears all sticky tags, dates or revisions whereas and set new ones. Theoretically, specifying HEAD as argument to will give you the same result as , but that is just theory. The option is useful if: somebody has added subdirectories to the module you have checked out after you checked it out. you checked out with , and later change your mind and want to check out the subdirectories as well. you deleted some subdirectories and want to check them all back out. Watch the output of the cvs update with care. The letter in front of each file name indicates what was done with it: U The file was updated with no trouble. P The file was updated with no trouble (you will only see this when working against a remote repo). M The file had been modified, and was merged with no conflicts. C The file had been modified, and was merged with conflicts. Merging is what happens if you check out a copy of some source code, modify it, then someone else commits a change, and you run cvs update. CVS notices that you have made local changes, and tries to merge your changes with the changes between the version you originally checked out and the one you updated to. If the changes are to separate portions of the file, it will almost always work fine (though the result might not be syntactically or semantically correct). CVS will print an M in front of every locally modified file even if there is no newer version in the repository, so cvs update is handy for getting a summary of what you have changed locally. If you get a C, then your changes conflicted with the changes in the repository (the changes were to the same lines, or neighboring lines, or you changed the local file so much that cvs can not figure out how to apply the repository's changes). You will have to go through the file manually and resolve the conflicts; they will be marked with rows of <, = and > signs. For every conflict, there will be a marker line with seven < signs and the name of the file, followed by a chunk of what your local file contained, followed by a separator line with seven = signs, followed by the corresponding chunk in the repository version, followed by a marker line with seven > signs and the revision number you updated to. The option is slightly voodoo. It updates the local file to the specified revision as if you used , but it does not change the recorded revision number or branch of the local file. It is not really useful except when used twice, in which case it will merge the changes between the two specified versions into the working copy. For instance, say you commit a change to shazam/shazam.c in &os.current; and later want to MFC it. The change you want to MFC was revision 1.15: Check out the &os.stable; version of the shazam module: &prompt.user; cvs co -rRELENG_4 shazam Apply the changes between rev 1.14 and 1.15: &prompt.user; cvs update -j1.14 -j1.15 shazam/shazam.c You will almost certainly get a conflict because - of the $Id: article.sgml,v 1.106 2002-03-27 12:40:02 murray Exp $ (or in FreeBSD's case, + of the $Id: article.sgml,v 1.107 2002-04-07 23:52:25 keramida Exp $ (or in FreeBSD's case, $FreeBSD$) lines, so you will have to edit the file to resolve the conflict (remove the marker lines and - the second $Id: article.sgml,v 1.106 2002-03-27 12:40:02 murray Exp $ line, leaving the original - $Id: article.sgml,v 1.106 2002-03-27 12:40:02 murray Exp $ line intact). + the second $Id: article.sgml,v 1.107 2002-04-07 23:52:25 keramida Exp $ line, leaving the original + $Id: article.sgml,v 1.107 2002-04-07 23:52:25 keramida Exp $ line intact). View differences between the local version and the repository version with the diff command. &prompt.user; cvs diff shazam shows you every modification you have made to the shazam file or module. Useful <command>cvs diff</command> options Uses the unified diff format. Shows missing or added files.
You always want to use , since unified diffs are much easier to read than almost any other diff format (in some circumstances, context diffs may be better, but they are much bulkier). A unified diff consists of a series of hunks. Each hunk begins with a line that starts with two @ signs and specifies where in the file the differences are and how many lines they span. This is followed by a number of lines; some (preceded by a blank) are context; some (preceded by a - sign) are outtakes and some (preceded by a +) are additions. You can also diff against a different version than the one you checked out by specifying a version with or as in checkout or update, or even view the diffs between two arbitrary versions (with no regard for what you have locally) by specifying two versions with or .
View log entries with the log command. &prompt.user; cvs log shazam If shazam is a file, this will print a header with information about this file, such as where in the repository this file is stored, which revision is the HEAD for this file, what branches this file is in, and any tags that are valid for this file. Then, for each revision of this file, a log message is printed. This includes the date and time of the commit, who did the commit, how many lines were added and/or deleted, and finally the log message that the committer who did the change wrote. If shazam is a directory, then the log information described above is printed for each file in the directory in turn. Unless you give the to log, the log for all subdirectories of shazam is printed too, in a recursive manner. Use the log command to view the history of one or more files, as it is stored in the CVS repository. You can even use it to view the log message of a specific revision, if you add the to the log command: &prompt.user; cvs log -r1.2 shazam This will print only the log message for revision 1.2 of file shazam if it is a file, or the log message for revision 1.2 of each file under shazam if it is a directory. See who did what with the annotate command. This command shows you each line of the specified file or files, along with which user most recently changed that line. &prompt.user; cvs annotate shazam Add new files with the add command. Create the file, cvs add it, then cvs commit it. Similarly, you can add new directories by creating them and then cvs adding them. Note that you do not need to commit directories. Remove obsolete files with the remove command. Remove the file, then cvs rm it, then cvs commit it. Commit with the commit or checkin command. Useful <command>cvs commit</command> options Force a commit of an unmodified file. Specify a commit message on the command line rather than invoking an editor.
Use the option if you realize that you left out important information from the commit message. Good commit messages are important. They tell others why you did the changes you did, not just right here and now, but months or years from now when someone wonders why some seemingly illogical or inefficient piece of code snuck into your source file. It is also an invaluable aid to deciding which changes to MFC and which not to MFC. Commit messages should be clear, concise and provide a reasonable summary to give an indication of what was changed and why. Commit messages should provide enough information to enable a third party to decide if the change is relevant to them and if they need to read the change itself. Avoid committing several unrelated changes in one go. It makes merging difficult, and also makes it harder to determine which change is the culprit if a bug crops up. Avoid committing style or whitespace fixes and functionality fixes in one go. It makes merging difficult, and also makes it harder to understand just what functional changes were made. Avoid committing changes to multiple files in one go with a generic, vague message. Instead, commit each file (or small groups of files) with tailored commit messages. Before committing, always: verify which branch you are committing to, using cvs status. review your diffs, using cvs diff Also, ALWAYS specify which files to commit explicitly on the command line, so you do not accidentally commit other files than the ones you intended - cvs commit with no arguments will commit every modification in your current working directory and every subdirectory.
Additional tips and tricks: You can place commonly used options in your ~/.cvsrc, like this: cvs -z3 diff -Nu update -Pd checkout -P This example says: always use compression level 3 when talking to a remote server. This is a life-saver when working over a slow connection. always use the (show added or removed files) and (unified diff format) options to &man.diff.1;. always use the (prune empty directories) and (check out new directories) options when updating. always use the (prune empty directories) option when checking out. Use Eivind Eklund's cdiff script to view unidiffs. It is a wrapper for &man.less.1; that adds ANSI color codes to make hunk headers, outtakes and additions stand out; context and garbage are unmodified. It also expands tabs properly (tabs often look wrong in diffs because of the extra character in front of each line). http://people.FreeBSD.org/~eivind/cdiff Simply use it instead of &man.more.1; or &man.less.1;: &prompt.user; cvs diff -Nu shazam | cdiff Alternatively some editors like &man.vim.1; (ports/editors/vim5) have color support and when used as a pager with color syntax highlighting switched on will highlight many types of file, including diffs, patches, and cvs/rcs logs. &prompt.user; echo "syn on" >> ~/.vimrc &prompt.user; cvs diff -Nu shazam | vim - &prompt.user; cvs log shazam | vim - CVS is old, arcane, crufty and buggy, and sometimes exhibits non-deterministic behavior which some claim as proof that it is actually merely the Newtonian manifestation of a sentient transdimensional entity. It is not humanly possible to know its every quirk inside out, so do not be afraid to ask the resident AI (&a.cvs;) for help when you screw up. Do not leave the cvs commit command in commit message editing mode for too long (more than 2-3 minutes). It locks the directory you are working with and will prevent other developers from committing into the same directory. If you have to type a long commit message, type it before executing cvs commit, and insert it into the commit message.
Conventions and Traditions As a new committer there are a number of things you should do first. Add yourself to the Developers section of the Contributors List and remove yourself from the Additional Contributors section. This is a relatively easy task, but remains a good first test of your CVS skills. Add an entry for yourself to www/en/news/news.xml. Look for the other entries that look like A new committer and follow the format. If you have a PGP or GnuPG key, you may want to add it to doc/en_US.ISO8859-1/books/handbook/pgpkeys. &a.des; has written a shell script to make this extremely simple. See the README file for more information. Some people add an entry for themselves to ports/astro/xearth/files/freebsd.committers.markers. Some people add an entry for themselves to src/usr.bin/calendar/calendars/calendar.freebsd. Introduce yourself to the other committers, otherwise no one will have any idea who you are or what you are working on. You do not have to write a comprehensive biography, just write a paragraph or two about who you are and what you plan to be working on as a committer in FreeBSD. Email this to the &a.developers; and you will be on your way! Log into hub.FreeBSD.org and create a /var/forward/user (where user is your username) file containing the e-mail address where you want mail addressed to yourusername@FreeBSD.org to be forwarded. This includes all of the commit messages as well as any other mail addressed to the &a.committers; and &a.developers;. Really large mailboxes which have taken up permanent residence on hub often get accidently truncated without warning, so forward it or read it and you will not lose it. All new committers also have a mentor assigned to them for the first few months. Your mentor is more or less responsible for explaining anything which is confusing to you and is also responsible for your actions during this initial period. If you make a bogus commit, it is only going to embarrass your mentor and you should probably make it a policy to pass at least your first few commits by your mentor before committing it to the repository. All commits should go to &os.current; first before being merged to &os.stable;. No major new features or high-risk modifications should be made to the &os.stable; branch. Developer Relations If you are working directly on your own code or on code which is already well established as your responsibility, then there is probably little need to check with other committers before jumping in with a commit. If you see a bug in an area of the system which is clearly orphaned (and there are a few such areas, to our shame), the same applies. If, however, you are about to modify something which is clearly being actively maintained by someone else (and it is only by watching the cvs-committers mailing list that you can really get a feel for just what is and is not) then consider sending the change to them instead, just as you would have before becoming a committer. For ports, you should contact the listed MAINTAINER in the Makefile. For other parts of the repository, if you are unsure who the active maintainer might be, it may help to scan the output of cvs log to see who has committed changes in the past. &a.fenner; has written a nice shell script that can help determine who the active maintainer might be. It lists each person who has committed to a given file along with the number of commits each person has made. It can be found on freefall at ~fenner/bin/whodid. If your queries go unanswered or the committer otherwise indicates a lack of proprietary interest in the area affected, go ahead and commit it. If you are unsure about a commit for any reason at all, have it reviewed by -hackers before committing. Better to have it flamed then and there rather than when it is part of the CVS repository. If you do happen to commit something which results in controversy erupting, you may also wish to consider backing the change out again until the matter is settled. Remember – with CVS we can always change it back. GNATS The FreeBSD Project utilizes GNATS for tracking bugs and change requests. Be sure that if you commit a fix or suggestion found in a GNATS PR, you use edit-pr pr-number on freefall to close it. It is also considered nice if you take time to close any PRs associated with your commits, if appropriate. You can also make use of &man.send-pr.1; yourself for proposing any change which you feel should probably be made, pending a more extensive peer-review first. You can find out more about GNATS at: http://www.cs.utah.edu/csinfo/texinfo/gnats/gnats.html http://www.FreeBSD.org/support.html http://www.FreeBSD.org/send-pr.html &man.send-pr.1; You can run a local copy of GNATS, and then integrate the FreeBSD GNATS tree in to it using CVSup. Then you can run GNATS commands locally, or use other interfaces, such as tkgnats. This lets you query the PR database without needing to be connected to the Internet. Using a local GNATS tree If you are not already downloading the GNATS tree, add this line to your supfile, and re-sup. Note that since GNATS is not under CVS control it has no tag, so if you are adding it to your existing supfile it should appear before any tag= entry as these remain active once set. gnats release=current prefix=/usr This will place the FreeBSD GNATS tree in /usr/gnats. You can use a refuse file to control which categories to receive. For example, to only receive docs PRs, put this line in /usr/local/etc/cvsup/sup/refuse The precise path depends on the *default base setting in your supfile. . gnats/[a-ce-z]* The rest of these examples assume you have only supped the docs category. Adjust them as necessary, depending on the categories you are synching. Install the GNATS port from ports/databases/gnats. This will place the various GNATS directories under $PREFIX/share/gnats. Symlink the GNATS directories you are supping under the version of GNATS you have installed. &prompt.root; cd /usr/local/share/gnats/gnats-db &prompt.root; ln -s /usr/gnats/docs Repeat as necessary, depending on how many GNATS categories you are synching. Update the GNATS categories file with these categories. The file is $PREFIX/share/gnats/gnats-db/gnats-adm/categories. # This category is mandatory pending:Category for faulty PRs:gnats-admin: # # FreeBSD categories # docs:Documentation Bug:nik: Run $PREFIX/libexec/gnats/gen-index to recreate the GNATS index. The output has to be redirected to $PREFIX/share/gnats/gnats-db/gnats-adm/index. You can do this periodically from &man.cron.8;, or run &man.cvsup.1; from a shell script that does this as well. &prompt.root; /usr/local/libexec/gnats/gen-index \ > /usr/local/share/gnats/gnats-db/gnats-adm/index Test the configuration by querying the PR database. This command shows open docs PRs. &prompt.root; query-pr -c docs -s open Other interfaces, like ports/databases/tkgnats should also work nicely. Pick a PR and close it. This procedure only works to allow you to view and query the PRs locally. To edit or close them you will still have to log in to freefall and do it from there. Who's Who Besides Peter Wemm and John Polstra, the repository meisters, there are other FreeBSD project members whom you will probably get to know in your role as a committer. Briefly, and by no means all-inclusively, these are: &a.jhb; John is the manager of the SMPng Project, and has authority over the architectural design and implementation of the move to fine-grained kernel threading and locking. He's also the editor of the SMPng Architecture Document. If you're working on fine-grained SMP and locking, please coordinate with John. You can learn more about the SMPng Project on its home page: http://www.FreeBSD.org/smp/ &a.jake;, &a.tmm; Jake and Thomas are the maintainers of the sparc64 hardware port. &a.nik; Nik oversees the Doc. Project. As well as writing documentation he put together the infrastructure under doc/share/mk and the stylesheets and related code under doc/share/sgml. If you have got questions about these you are encouraged to send them via the &a.doc;. Committers interested in contributing to the documentation should familiarise themselves with the Documentation Project Primer. &a.ru; Ruslan is Mister &man.mdoc.7;. If you are writing a man page and need some advice on the structure, or the markup, ask Ruslan. &a.bde; Bruce is the Style Police-Meister. When you do a commit that could have been done better, Bruce will be there to tell you. Be thankful that someone is. Bruce is also very knowledgeable on the various standards applicable to FreeBSD. &a.gallatin; &a.mjacob; &a.dfr; &a.obrien; These are the primary developers and overseers of the DEC Alpha AXP platform. &a.dg; David is the overseer of the VM system. If you have a VM system change in mind, coordinate it with David. &a.murray; &a.steve; &a.rwatson; &a.jhb; These are the members of the &a.re;. This team is responsible for setting release deadlines and controlling the release process. During code freezes, the release engineers have final authority on all changes to the system for whichever branch is pending release status. If there is something you want merged from &os.current; to &os.stable; (whatever values those may have at any given time), these are the people to talk to about it. &a.bmah; Bruce is keeper of the release documentation (src/release/doc/*). If you commit a change that you think is worthy of mention in the release notes, please make sure Bruce knows about it. Better still, send him a patch with your suggested commentary. &a.obrien; David is the unofficial src/contrib-Meister. If you have something significant you would like to do there, you should probably coordinate it with David first. Please consult him before importing into src/contrib if you have never done this before in the FreeBSD CVS repository. Also if you need to commit to something you do not maintain in src/contrib and it is unclear who the maintainer / point of contact is. (It is also not a bad idea to consult David if you need to make a non-import commit to something you maintain in src/contrib and you are new to how FreeBSD does things.) &a.benno; Benno is the official maintainer of the PowerPC port. &a.brian; Official maintainer of /usr/sbin/ppp. &a.nectar; Jacques is the FreeBSD Security Officer and oversees the Security Officer Team. &a.wollman; If you need advice on obscure network internals or are not sure of some potential change to the networking subsystem you have in mind, Garrett is someone to talk to. Garrett is also very knowledgeable on the various standards applicable to FreeBSD. &a.committers; cvs-committers is the entity that CVS uses to send you all your commit messages. You should never send email directly to this list. You should only send replies to this list when they are short and are directly related to a commit. &a.developers; developers is all committers. This list was created to be a forum for the committers community issues. Examples are Core voting, announcements, etc... developers@FreeBSD.org is not intended as a place for code reviews or a replacement for the &a.arch; or the &a.audit;. In fact using it as such hurts the FreeBSD Project as it gives a sense of a closed list where general decisions affecting all of the FreeBSD using community are made without being open. Last, but not least never, never ever, email developers@FreeBSD.org and CC:/BCC: another FreeBSD list. Never, ever email another FreeBSD email list and CC:/BCC: developers@FreeBSD.org. Doing so can greatly diminish the benefits of this list. SSH Quick-Start Guide If you are using FreeBSD 4.0 or later, OpenSSH is included in the base system. If you are using an earlier release, update and install one of the SSH ports. In general, you will probably want to get OpenSSH from the port in /usr/ports/security/openssh. You may also wish to check out the original ssh1 in /usr/ports/security/ssh, but make certain you pay attention to its license. Note that both of these ports cannot be installed at the same time. If you do not wish to type your password in every time you use &man.ssh.1;, and you use RSA keys to authenticate, &man.ssh-agent.1; is there for your convenience. If you want to use &man.ssh-agent.1;, make sure that you run it before running other applications. X users, for example, usually do this from their .xsession or .xinitrc file. See &man.ssh-agent.1; for details. Generate a key pair using &man.ssh-keygen.1;. The key pair will wind up in the $HOME/.ssh directory. Send your public key ($HOME/.ssh/identity.pub) to the person setting you up as a committer so it can be put into your authorized_keys file in your home directory on freefall (i.e. $HOME/.ssh/authorized_keys). Now you should be able to use &man.ssh-add.1; for authentication once per session. This will prompt you for your private key's pass phrase, and then store it in your authentication agent (&man.ssh-agent.1;). If you no longer wish to have your key stored in the agent, issuing ssh-add -d will remove it. Test by doing something such as ssh freefall.FreeBSD.org ls /usr. For more information, see /usr/ports/security/openssh, &man.ssh.1;, &man.ssh-add.1;, &man.ssh-agent.1;, &man.ssh-keygen.1;, and &man.scp.1;. The FreeBSD Committers' Big List of Rules Respect other committers. Respect other contributors. Discuss any significant change before committing. Respect existing maintainers (if listed in the MAINTAINER field in Makefile or in the MAINTAINER file in the top-level directory). Never touch the repository directly. Ask a Repomeister. Any disputed change must be backed out pending resolution of the dispute if requested by a maintainer. Security related changes may override a maintainer's wishes at the Security Officer's discretion. Changes go to &os.current; before &os.stable; unless specifically permitted by the release engineer or unless they are not applicable to &os.current;. Any non-trivial or non-urgent change which is applicable should also be allowed to sit in &os.current; for at least 3 days before merging so that it can be given sufficient testing. The release engineer has the same authority over the &os.stable; branch as outlined for the maintainer in rule #6. Do not fight in public with other committers; it looks bad. If you must strongly disagree about something, do so only in private. Respect all code freezes and read the committers mailing list in a timely manner so you know when a code freeze is in effect. When in doubt on any procedure, ask first! Test your changes before committing them. Do not commit to anything under the src/contrib, src/crypto, and src/sys/contrib trees without explicit approval from the respective maintainer(s). As noted, breaking some of these rules can be grounds for suspension or, upon repeated offense, permanent removal of commit privileges. Three or more members of core acting in unison, have the power to temporarily suspend commit privileges until -core as a whole has the chance to review the issue. In case of an emergency (a committer doing damage to the repository), a temporary suspension may also be done by the repository meisters or any other member of core who may happen to be awake at the time. Only core as a whole has the authority to suspend commit privileges for any significant length of time or to remove them permanently, the latter generally only being done after consultation with committers. This rule does not exist to set core up as a bunch of cruel dictators who can dispose of committers as casually as empty soda cans, but to give the project a kind of safety fuse. If someone is seriously out of control, it is important to be able to deal with this immediately rather than be paralyzed by debate. In all cases, a committer whose privileges are suspended or revoked is entitled to a hearing, the total duration of the suspension being determined at that time. A committer whose privileges are suspended may also request a review of the decision after 30 days and every 30 days thereafter (unless the total suspension period is less than 30 days). A committer whose privileges have been revoked entirely may request a review after a period of 6 months have elapsed. This review policy is strictly informal and, in all cases, core reserves the right to either act on or disregard requests for review if they feel their original decision to be the right one. In all other aspects of project operation, core is a subset of committers and is bound by the same rules. Just because someone is in core does not mean that they have special dispensation to step outside of any of the lines painted here; core's special powers only kick in when it acts as a group, not on an individual basis. As individuals, we are all committers first and core second. Details Respect other committers. This means that you need to treat other committers as the peer-group developers that they are. Despite our occasional attempts to prove the contrary, one does not get into committers by being stupid and nothing rankles more than being treated that way by one of your peers. Whether we always feel respect for one another or not (and everyone has off days), we still have to treat other committers with respect at all times or the whole team structure rapidly breaks down. Being able to work together long term is this project's greatest asset, one far more important than any set of changes to the code, and turning arguments about code into issues that affect our long-term ability to work harmoniously together is just not worth the trade-off by any conceivable stretch of the imagination. To comply with this rule, do not send email when you are angry or otherwise behave in a manner which is likely to strike others as needlessly confrontational. First calm down, then think about how to communicate in the most effective fashion for convincing the other person(s) that your side of the argument is correct, do not just blow off some steam so you can feel better in the short term at the cost of a long-term flame war. Not only is this very bad energy economics, but repeated displays of public aggression which impair our ability to work well together will be dealt with severely by the project leadership and may result in suspension or termination of your commit privileges. That is never an option which the project's leadership enjoys in the slightest, but unity comes first. No amount of code or good advice is worth trading that away. Respect other contributors. You were not always a committer. At one time you were a contributor. Remember that at all times. Remember what it was like trying to get help and attention. Do not forget that your work as a contributor was very important to you. Remember what it was like. Do not discourage, belittle, or demean contributors. Treat them with respect. They are our committers in waiting. They are every bit as important to the project as committers. Their contributions are as valid and as important as your own. After all, you made many contributions before you became a committer. Always remember that. Consider the points raised under and apply them also to contributors. Discuss any significant change before committing. The CVS repository is not where changes should be initially submitted for correctness or argued over, that should happen first in the mailing lists and then committed only once something resembling consensus has been reached. This does not mean that you have to ask permission before correcting every obvious syntax error or man page misspelling, simply that you should try to develop a feel for when a proposed change is not quite such a no-brainer and requires some feedback first. People really do not mind sweeping changes if the result is something clearly better than what they had before, they just do not like being surprised by those changes. The very best way of making sure that you are on the right track is to have your code reviewed by one or more other committers. When in doubt, ask for review! Respect existing maintainers if listed. Many parts of FreeBSD are not owned in the sense that any specific individual will jump up and yell if you commit a change to their area, but it still pays to check first. One convention we use is to put a maintainer line in the Makefile for any package or subtree which is being actively maintained by one or more people; see http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/developers-handbook/policies.html for documentation on this. Where sections of code have several maintainers, commits to affected areas by one maintainer need to be reviewed by at least one other maintainer. In cases where the maintainer-ship of something is not clear, you can also look at the CVS logs for the file(s) in question and see if someone has been working recently or predominantly in that area. Other areas of FreeBSD fall under the control of someone who manages an overall category of FreeBSD evolution, such as internationalization or networking. See http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributors/staff-who.html for more information on this. Never touch the repository directly. Ask a Repomeister. This is pretty clear - you are not allowed to make direct modifications to the CVS repository, period. In case of difficulty, ask one of the repository meisters by sending mail to the &a.cvs; and simply wait for them to fix the problem and get back to you. Do not attempt to fix the problem yourself! If you are thinking about putting down a tag or doing a new import of code on a vendor branch, you might also find it useful to ask for advice first. A lot of people get this wrong the first few times and the consequences are expensive in terms of files touched and angry CVSup/CTM folks who are suddenly getting a lot of changes sent over unnecessarily. Any disputed change must be backed out pending resolution of the dispute if requested by a maintainer. Security related changes may override a maintainer's wishes at the Security Officer's discretion. This may be hard to swallow in times of conflict (when each side is convinced that they are in the right, of course) but CVS makes it unnecessary to have an ongoing dispute raging when it is far easier to simply reverse the disputed change, get everyone calmed down again and then - try and figure out how best to proceed. If the change + try to figure out what is the best way to proceed. If the change turns out to be the best thing after all, it can be easily brought back. If it turns out not to be, then the users did not have to live with the bogus change in the tree while everyone was busily debating its merits. People very very rarely call for back-outs in the repository since discussion generally exposes bad or controversial changes before the commit even happens, but on such rare occasions the back-out should be done without argument so that we can get immediately on to the topic of figuring out whether it was bogus or not. Changes go to &os.current; before &os.stable; unless specifically permitted by the release engineer or unless they are not applicable to &os.current;. Any non-trivial or non-urgent change which is applicable should also be allowed to sit in &os.current; for at least 3 days before merging so that it can be given sufficient testing. The release engineer has the same authority over the &os.stable; branch as outlined in rule #6. This is another do not argue about it issue since it is the release engineer who is ultimately responsible (and gets beaten up) if a change turns out to be bad. Please respect this and give the release engineer your full cooperation when it comes to the &os.stable; branch. The management of &os.stable; may frequently seem to be overly conservative to the casual observer, but also bear in mind the fact that conservatism is supposed to be the hallmark of &os.stable; and different rules apply there than in &os.current;. There is also really no point in having &os.current; be a testing ground if changes are merged over to &os.stable; immediately. Changes need a chance to be tested by the &os.current; developers, so allow some time to elapse before merging unless the &os.stable; fix is critical, time sensitive or so obvious as to make further testing unnecessary (spelling fixes to man pages, obvious bug/typo fixes, etc.) In other words, apply common sense. Do not fight in public with other committers; it looks bad. If you must strongly disagree about something, do so only in private. This project has a public image to uphold and that image is very important to all of us, especially if we are to continue to attract new members. There will be occasions when, despite everyone's very best attempts at self-control, tempers are lost and angry words are - exchanged, and the best we can do is try and minimize the + exchanged. The best thing that can be done in such cases is to minimize the effects of this until everyone has cooled back down. That means that you should not air your angry words in public and you should not forward private correspondence to public mailing lists or aliases. What people say one-to-one is often much less sugar-coated than what they would say in public, and such communications therefore have no place there - they only serve to inflame an already bad situation. If the person sending you a flame-o-gram at least had the grace to send it privately, then have the grace to keep it private yourself. If you feel you are being unfairly treated by another developer, and it is causing you anguish, bring the matter up with core rather than taking it public. We will do our best to play peace makers and get things back to sanity. In cases where the dispute involves a change to the codebase and the participants do not appear to be reaching an amicable agreement, core may appoint a mutually-agreeable 3rd party to resolve the dispute. All parties involved must then agree to be bound by the decision reached by this 3rd party. Respect all code freezes and read the committers mailing list on a timely basis so you know when they are. Committing changes during a code freeze is a really big mistake and committers are expected to keep up-to-date on what is going on before jumping in after a long absence and committing 10 megabytes worth of accumulated stuff. People who abuse this on a regular basis will have their commit privileges suspended until they get back from the FreeBSD Happy Reeducation Camp we run in Greenland. When in doubt on any procedure, ask first! Many mistakes are made because someone is in a hurry and just assumes they know the right way of doing something. If you have not done it before, chances are good that you do not actually know the way we do things and really need to ask first or you are going to completely embarrass yourself in public. There is no shame in asking how in the heck do I do this? We already know you are an intelligent person; otherwise, you would not be a committer. Test your changes before committing them. This may sound obvious, but if it really were so obvious then we probably would not see so many cases of people clearly not doing this. If your changes are to the kernel, make sure you can still compile both GENERIC and LINT. If your changes are anywhere else, make sure you can still make world. If your changes are to a branch, make sure your testing occurs with a machine which is running that code. If you have a change which also may break another architecture, be sure and test on all supported architectures. Currently, this is only the x86 and the Alpha so it is pretty easy to do. If you need to test on the AXP, your account on beast.FreeBSD.org will let you compile and test Alpha binaries/kernels/etc. As other architectures are added to the FreeBSD supported platforms list, the appropriate shared testing resources will be made available. Do not commit to anything under the src/contrib, src/crypto, and src/sys/contrib trees without explicit approval from the respective maintainer(s). The trees mentioned above are for contributed software usually imported onto a vendor branch. Committing something there, even if it does not take the file off the vendor branch, may cause unnecessary headaches for those responsible for maintaining that particular piece of software. Thus, unless you have explicit approval from the maintainer (or you are the maintainer), do not commit there! Please note that this does not mean you should not try to improve the software in question; you are still more than welcome to do so. Ideally, you should submit your patches to the vendor. If your changes are FreeBSD-specific, talk to the maintainer; they may be willing to apply them locally. But whatever you do, do not commit there by yourself! Contact the &a.core; if you wish to take up maintainership of an unmaintained part of the tree. Other Suggestions When committing documentation changes, use a spell checker before committing. :) For all SGML docs, you should also verify that your formatting directives are correct by running make lint. For all on-line manual pages, run manck (from ports) over the man page to verify all of the cross references and file references are correct and that the man page has all of the appropriate MLINKs installed. Do not mix style fixes with new functionality. A style fix is any change which does not modify the functionality of the code. Mixing the changes obfuscates the functionality change when using cvs diff, which can hide any new bugs. Do not include whitespace changes with content changes in commits to doc/ or www/. The extra clutter in the diffs makes the translators' job much more difficult. Instead, make any style or whitespace changes in separate commits that are clearly labeled as such in the commit message. Deprecating Features When it is necessary to remove functionality from software in the base system the following guidelines should be followed whenever possible: Mention is made in the manual page and possibly the release notes that the option, utility, or interface is deprecated. Use of the deprecated feature generates a warning. The option, utility, or interface is preserved until the next major (point zero) release. The option, utility, or interface is removed and no longer documented. It is now obsolete. It is also generally a good idea to note its removal in the release notes. Ports Specific FAQ Adding a New Port How do I add a new port? First, please read the section about repository copy. The easiest way to add a new port is to use the addport script on freefall. It will add a port from the directory you specify, determining the category automatically from the port Makefile. It will also add an entry to the CVSROOT/modules file and the port's category Makefile. It was written by &a.mharo; and &a.will;, but Will is the current maintainer so please send questions/patches about addport to him. Any other things I need to know when I add a new port? Check the port, preferably to make sure it compiles and packages correctly. This is the recommended sequence: &prompt.root; make install &prompt.root; make package &prompt.root; make deinstall &prompt.root; pkg_add package you built above &prompt.root; make deinstall &prompt.root; make reinstall &prompt.root; make package The Porters Handbook contains more detailed instructions. Use &man.portlint.1; to check the syntax of the port. You do not necessarily have to eliminate all warnings but make sure you have fixed the simple ones. If the port came from a submitter who has not contributed to the project before, add that person's name to the Additional Contributors section of the FreeBSD Contributors List. Close the PR if the port came in as a PR. To close a PR, just do edit-pr PR# on freefall and change the state from open to closed. You will be asked to enter a log message and then you are done. Repository Copies When do we need a repository copy? When you want to add a port that is related to any port that is already in the tree in a separate directory, please send mail to the ports manager asking about it. Here related means it is a different version or a slightly modified version. Examples are print/ghostscript* (different versions) and x11-wm/windowmaker* (English-only and internationalized version). Another example is when a port is moved from one subdirectory to another, or when you want to change the name of a directory because the author(s) renamed their software even though it is a descendant of a port already in a tree. When do we not need a repository copy? When there is no history to preserve. If a port is added into a wrong category and is moved immediately, it suffices to simply cvs remove the old one and addport the new one. What do I need to do? Send mail to the ports manager, who will do a copy from the old location/name to the new location/name. You will then get a notice, at which point you are expected to perform the following: cvs remove the old port (if necessary) Adjust the parent (category) Makefile Update CVSROOT/modules If other ports depend on the updated port, change their Makefiles' dependency lines If the port changed categories, modify the CATEGORIES line of the port's Makefile accordingly Ports Freeze What is a ports freeze? Before a release, it is necessary to restrict commits to the ports tree for a short period of time while the packages and the release itself are being built. This is to ensure consistency among the various parts of the release, and is called the ports freeze. How long is a ports freeze? Usually an hour or two. What does it mean to me? During the ports freeze, you are not allowed to commit anything to the tree without explicit approval from the ports manager. Explicit approval here means either of the following: You asked the ports manager and got a reply saying, Go ahead and commit it. The ports manager sent a mail to you or the mailing lists during the ports freeze pointing out that the port is broken and has to be fixed. Note that you do not have implicit permission to fix a port during the freeze just because it is broken. How do I know when the ports freeze starts? The ports manager will send out warning messages to the &a.ports; and &a.committers; announcing the start of the impending release, usually two or three weeks in advance. The exact starting time will not be determined until a few days before the actual release. This is because the ports freeze has to be synchronized with the release, and it is usually not known until then when exactly the release will be rolled. When the freeze starts, there will be another announcement to the &a.committers;, of course. How do I know when the ports freeze ends? A few hours after the release, the ports manager will send out a mail to the &a.ports; and &a.committers; announcing the end of the ports freeze. Note that the release being cut does not automatically end the freeze. We have to make sure there will not be any last minute snafus that result in an immediate re-rolling of the release. Miscellaneous Questions How do I know if my port is building correctly or not? First, go check http://bento.FreeBSD.org/~asami/errorlogs/. There you will find error logs from the latest package building runs on 3-stable, 4-stable and 5-current. However, just because the port does not show up there does not mean it is building correctly. (One of the dependencies may have failed, for instance.) Here are the relevant directories on bento, so feel free to dig around. /a/asami/portbuild/3/errors error logs from latest 3-stable run /logs all logs from latest 3-stable run /packages packages from latest 3-stable run /bak/errors error logs from last complete 3-stable run /bak/logs all logs from last complete 3-stable run /bak/packages packages from last complete 3-stable run /4/errors error logs from latest 4-stable run /logs all logs from latest 4-stable run /packages packages from latest 4-stable run /bak/errors error logs from last complete 4-stable run /bak/logs all logs from last complete 4-stable run /bak/packages packages from last complete 4-stable run /5/errors error logs from latest 5-current run /logs all logs from latest 5-current run /packages packages from latest 5-current run /bak/errors error logs from last complete 5-current run /bak/logs all logs from last complete 5-current run /bak/packages packages from last complete 5-current run Basically, if the port shows up in packages, or it is in logs but not in errors, it built fine. (The errors directories are what you get from the web page.) I added a new port. Do I need to add it to the INDEX? No. The ports manager will regenerate the INDEX and commit it every few days. Are there any other files I am not allowed to touch? Any file directly under ports/, or any file under a subdirectory that starts with an uppercase letter (Mk/, Tools/, etc.). In particular, the ports manager is very protective of ports/Mk/bsd.port*.mk so do not commit changes to those files unless you want to face his wra(i)th. Perks of the Job Unfortunately, there aren't many perks involved with being a committer. Recognition as a competent software engineer is probably the only thing that will be of benefit in the long run. However, there are at least some perks: Direct access to cvsup-master As a committer, you may apply to &a.jdp; for direct access to cvsup-master.FreeBSD.org, providing the public key output from cvpasswd yourusername@FreeBSD.org cvsup-master.FreeBSD.org. Access to cvsup-master should not be over-used as it is a busy machine. A Free DVD Subscription FreeBSD Services Limited offer a free DVD subscription to FreeBSD committers. To take advantage of this offer, go to www.freebsd-services.com and fill out their customer form, making sure that you tick the FreeBSD Committer and free subscription check-boxes. A message will be sent to your FreeBSD.org email address asking for confirmation. Just reply to the mail, quoting the message and updating the Membership Valid field with a Y. You can confirm that the reply was sent successfully by logging in to their site and checking that your Current Status is set to Associated. In addition to the free subscription, committers are also entitled to a 10% discount on all products on the site. A Free 4-CD Set Subscription FreeBSD Mall, Inc. offers a free subscription of the official 4-CD set to all FreeBSD committers. Information about how to obtain your free CD is mailed to developers@FreeBSD.org following each major release. Miscellaneous Questions Why are trivial or cosmetic changes to files on a vendor branch a bad idea? From now on, every new vendor release of that file will need to have patches merged in by hand. From now on, every new vendor release of that file will need to have patches verified by hand. The option does not work very well. Ask &a.obrien; for horror stories. How do I add a new file to a CVS branch? To add a file onto a branch, simply checkout or update to the branch you want to add to and then add the file using cvs add as you normally would. For example, if you wanted to MFC the file src/sys/alpha/include/smp.h from HEAD to RELENG_4 and it does not exist in RELENG_4 yet, you would use the following steps: MFC'ing a New File &prompt.user; cd sys/alpha/include &prompt.user; cvs update -rRELENG_4 cvs update: Updating . U clockvar.h U console.h ... &prompt.user; cvs update -kk -Ap smp.h > smp.h =================================================================== Checking out smp.h RCS: /usr/cvs/src/sys/alpha/include/smp.h,v VERS: 1.1 *************** &prompt.user; cvs add smp.h cvs add: scheduling file `smp.h' for addition on branch `RELENG_4' cvs add: use 'cvs commit' to add this file permanently &prompt.user; cvs commit What meta information should I include in a commit message? As well as including an informative message with each commit you may need to include some additional information as well. This information consists of one or more lines containing the the key word or phrase, a colon, tabs for formatting, and then the additional information. The key words or phrases are: PR: The problem report (if any) which is affected (typically, by being closed) by this commit. Submitted by: The name and e-mail address of the person that submitted the fix. Reviewed by: The name and e-mail address of the person or people that reviewed the change. If a patch was submitted to a mailing list for review, and the review was favourable, then just include the list name. Approved by: The name and e-mail address of the person or people that approved the change. It is customary to get prior approval for a commit if it is to an area of the tree to which you do not usually commit. In addition, during the run up to a new release all commits must be approved by the release engineer. If these are your first commits then you should have passed them past your mentor first for approval, and you should list your mentor. Obtained from: The name of the project (if any) from which the code was obtained. MFC after: If you wish to receive an e-mail reminder to MFC at a later date, specify the number of days, weeks, or months after which an MFC is planned. Commit log for a commit based on a PR You want to commit a change based on a PR submitted by John Smith containing a patch. The end of the commit message should look something like this. ... PR: foo/12345 Submitted by: John Smith <John.Smith@example.com> Commit log for a commit needing review You want to change the virtual memory system. You have posted patches to the appropriate mailing list (in this case, freebsd-arch) and the changes have been approved. ... Reviewed by: -arch Commit log for a commit needing approval You want to commit a change to a section of the tree with a MAINTAINER assigned. You have collaborated with the listed MAINTAINER, who has told you to go ahead and commit. ... Approved by: abc Where abc is the account name of the person who approved. Commit log for a commit bringing in code from OpenBSD You want to commit some code based on work done in the OpenBSD project. ... Obtained from: OpenBSD Commit log for a change to &os.current; with a planned commit to &os.stable; to follow at a later date. You want to commit some code which will be merged from &os.current; into the &os.stable; branch after two weeks. ... MFC after: 2 weeks Where 2 is the number of days, weeks, or months after which an MFC is planned. The weeks option may be day, days, week, weeks, month, months, or may be left off (in which case, days will be assumed). In some cases you may need to combine some of these. Consider the situation where a user has submitted a PR containing code from the NetBSD project. You are looking at the PR, but it is not an area of the tree you normally work in, so you have decided to get the change reviewed by the arch mailing list. Since the change is complex, you opt to MFC after one month to allow adequate testing. The extra information to include in the commit would look something like PR: foo/54321 Submitted by: John Smith <John.Smith@example.com> Reviewed by: -arch Obtained from: NetBSD MFC after: 1 month How do I access people.FreeBSD.org to put up personal or project information? people.FreeBSD.org is the same as freefall.FreeBSD.org. Just create a public_html directory. Anything you place in that directory will automatically be visible under people.FreeBSD.org.
diff --git a/en_US.ISO8859-1/articles/contributing/article.sgml b/en_US.ISO8859-1/articles/contributing/article.sgml index 8c4b280b79..43e7cfc4e5 100644 --- a/en_US.ISO8859-1/articles/contributing/article.sgml +++ b/en_US.ISO8859-1/articles/contributing/article.sgml @@ -1,504 +1,504 @@ %man; %freebsd; %newsgroups; %authors; %mailing-lists; ]>
Contributing to FreeBSD $FreeBSD$ This article describes the different ways in which an individual or organization may contribute to the FreeBSD Project. Jordan Hubbard Contributed by contributing So you want to contribute to FreeBSD? That is great! FreeBSD relies on the contributions of its user base to survive. Your contributions are not only appreciated, they are vital to FreeBSD's continued growth. Contrary to what some people might have you believe, you do not need to be a hot-shot programmer or a close personal friend of the FreeBSD core team to have your contributions accepted. A large and growing number of international contributors, of greatly varying ages and areas of technical expertise, develop FreeBSD. There is always more work to be done than there are people available to do it, and more help is always appreciated. The FreeBSD project is responsible for an entire operating system environment, rather than just a kernel or a few scattered utilities. As such, our TODO lists span a very wide range of tasks: from documentation, beta testing and presentation, to the system installer and highly specialized types of kernel development. People of any skill level, in almost any area, can almost certainly help the project. Commercial entities engaged in FreeBSD-related enterprises are also encouraged to contact us. Do you need a special extension to make your product work? You will find us receptive to your requests, given that they are not too outlandish. Are you working on a value-added product? Please let us know! We may be able to work cooperatively on some aspect of it. The free software world is challenging many existing assumptions about how software is developed, sold, and maintained, and we urge you to at least give it a second look. What Is Needed The following list of tasks and sub-projects represents something of an amalgam of the various core team TODO lists and user requests we have collected over the last couple of months. Where possible, tasks have been ranked by degree of urgency. If you are interested in working on one of the tasks you see here, send mail to the coordinator listed by clicking on their names. If no coordinator has been appointed, maybe you would like to volunteer? Ongoing Tasks Most of the tasks listed in the next sections require either a considerable investment of time or an in-depth knowledge of the FreeBSD kernel (or both). However, there are also many useful tasks which are suitable for weekend hackers, or people without programming skills. If you run FreeBSD-current and have a good Internet connection, there is a machine current.FreeBSD.org which builds a full - release once a day — every now and again, try and install + release once a day—every now and again, try to install the latest release from it and report any failures in the process. Read the freebsd-bugs mailing list. There might be a problem you can comment constructively on or with patches you can test. Or you could even try to fix one of the problems yourself. Read through the FAQ and Handbook periodically. If anything is badly explained, out of date or even just completely wrong, let us know. Even better, send us a fix (SGML is not difficult to learn, but there is no objection to ASCII submissions). Help translate FreeBSD documentation into your native language (if not already available) — just send an email to &a.doc; asking if anyone is working on it. Note that you are not committing yourself to translating every single FreeBSD document by doing this — in fact, the documentation most in need of translation is the installation instructions. Read the freebsd-questions mailing list and &ng.misc; occasionally (or even regularly). It can be very satisfying to share your expertise and help people solve their problems; sometimes you may even learn something new yourself! These forums can also be a source of ideas for things to work on. If you know of any bug fixes which have been successfully applied to -current but have not been merged into -stable after a decent interval (normally a couple of weeks), send the committer a polite reminder. Move contributed software to src/contrib in the source tree. Make sure code in src/contrib is up to date. Build the source tree (or just part of it) with extra warnings enabled and clean up the warnings. Fix warnings for ports which do deprecated things like using gets() or including malloc.h. If you have contributed any ports, send your patches back to the original author (this will make your life easier when they bring out the next version) Suggest further tasks for this list! Work through the PR Database problem reports database The FreeBSD PR list shows all the current active problem reports and requests for enhancement that have been submitted by FreeBSD users. Look through the open PRs, and see if anything there takes your interest. Some of these might be very simple tasks, that just need an extra pair of eyes to look over them and confirm that the fix in the PR is a good one. Others might be much more complex. Start with the PRs that have not been assigned to anyone else, but if one them is assigned to someone else, but it looks like something you can handle, email the person it is assigned to and ask if you can work on it—they might already have a patch ready to be tested, or further ideas that you can discuss with them. How to Contribute Contributions to the system generally fall into one or more of the following 6 categories: Bug Reports and General Commentary An idea or suggestion of general technical interest should be mailed to the &a.hackers;. Likewise, people with an interest in such things (and a tolerance for a high volume of mail!) may subscribe to the hackers mailing list by sending mail to &a.majordomo;. See The FreeBSD Handbook for more information about this and other mailing lists. If you find a bug or are submitting a specific change, please report it using the &man.send-pr.1; program or its WEB-based equivalent. Try to fill-in each field of the bug report. Unless they exceed 65KB, include any patches directly in the report. If the patch is suitable to be applied to the source tree put [PATCH] in the synopsis of the report. When including patches, do not use cut-and-paste because cut-and-paste turns tabs into spaces and makes them unusable. Consider compressing patches and using &man.uuencode.1; if they exceed 20KB. Upload very large submissions to ftp.FreeBSD.org:/pub/FreeBSD/incoming/. After filing a report, you should receive confirmation along with a tracking number. Keep this tracking number so that you can update us with details about the problem by sending mail to bug-followup@FreeBSD.org. Use the number as the message subject, e.g. "Re: kern/3377". Additional information for any bug report should be submitted this way. If you do not receive confirmation in a timely fashion (3 days to a week, depending on your email connection) or are, for some reason, unable to use the &man.send-pr.1; command, then you may ask someone to file it for you by sending mail to the &a.bugs;. See also this article on how to write good problem reports. Changes to the Documentation documentation submissions Changes to the documentation are overseen by the &a.doc;. Send submissions and changes (even small ones are welcome!) using send-pr as described in Bug Reports and General Commentary. Changes to Existing Source Code FreeBSD-current An addition or change to the existing source code is a somewhat trickier affair and depends a lot on how far out of date you are with the current state of the core FreeBSD development. There is a special on-going release of FreeBSD known as FreeBSD-current which is made available in a variety of ways for the convenience of developers working actively on the system. See The FreeBSD Handbook for more information about getting and using FreeBSD-current. Working from older sources unfortunately means that your changes may sometimes be too obsolete or too divergent for easy re-integration into FreeBSD. Chances of this can be minimized somewhat by subscribing to the &a.announce; and the &a.current; lists, where discussions on the current state of the system take place. Assuming that you can manage to secure fairly up-to-date sources to base your changes on, the next step is to produce a set of diffs to send to the FreeBSD maintainers. This is done with the &man.diff.1; command, with the context diff form being preferred. For example: diff &prompt.user; diff -c oldfile newfile or &prompt.user; diff -c -r olddir newdir would generate such a set of context diffs for the given source file or directory hierarchy. See the man page for &man.diff.1; for more details. Once you have a set of diffs (which you may test with the &man.patch.1; command), you should submit them for inclusion with FreeBSD. Use the &man.send-pr.1; program as described in Bug Reports and General Commentary. Do not just send the diffs to the &a.hackers; or they will get lost! We greatly appreciate your submission (this is a volunteer project!); because we are busy, we may not be able to address it immediately, but it will remain in the PR database until we do. Indicate your submission by including [PATCH] in the synopsis of the report. uuencode If you feel it appropriate (e.g. you have added, deleted, or renamed files), bundle your changes into a tar file and run the &man.uuencode.1; program on it. Shar archives are also welcome. If your change is of a potentially sensitive nature, e.g. you are unsure of copyright issues governing its further distribution or you are simply not ready to release it without a tighter review first, then you should send it to &a.core; directly rather than submitting it with &man.send-pr.1;. The core mailing list reaches a much smaller group of people who do much of the day-to-day work on FreeBSD. Note that this group is also very busy and so you should only send mail to them where it is truly necessary. Please refer to &man.intro.9; and &man.style.9; style for some information on coding style. We would appreciate it if you were at least aware of this information before submitting code. New Code or Major Value-Added Packages In the case of a significant contribution of a large body work, or the addition of an important new feature to FreeBSD, it becomes almost always necessary to either send changes as uuencoded tar files or upload them to a web or FTP site for other people to access. If you do not have access to a web or FTP site, ask on an appropriate FreeBSD mailing list for someone to host the changes for you. When working with large amounts of code, the touchy subject of copyrights also invariably comes up. Acceptable copyrights for code included in FreeBSD are: BSD copyright The BSD copyright. This copyright is most preferred due to its no strings attached nature and general attractiveness to commercial enterprises. Far from discouraging such commercial use, the FreeBSD Project actively encourages such participation by commercial interests who might eventually be inclined to invest something of their own into FreeBSD. GPLGNU General Public License GNU General Public License The GNU General Public License, or GPL. This license is not quite as popular with us due to the amount of extra effort demanded of anyone using the code for commercial purposes, but given the sheer quantity of GPL'd code we currently require (compiler, assembler, text formatter, etc) it would be silly to refuse additional contributions under this license. Code under the GPL also goes into a different part of the tree, that being /sys/gnu or /usr/src/gnu, and is therefore easily identifiable to anyone for whom the GPL presents a problem. Contributions coming under any other type of copyright must be carefully reviewed before their inclusion into FreeBSD will be considered. Contributions for which particularly restrictive commercial copyrights apply are generally rejected, though the authors are always encouraged to make such changes available through their own channels. To place a BSD-style copyright on your work, include the following text at the very beginning of every source code file you wish to protect, replacing the text between the %% with the appropriate information. Copyright (c) %%proper_years_here%% %%your_name_here%%, %%your_state%% %%your_zip%%. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer as the first lines of this file unmodified. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY %%your_name_here%% ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL %%your_name_here%% BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. $Id$ For your convenience, a copy of this text can be found in /usr/share/examples/etc/bsd-style-copyright. Money, Hardware or Internet Access We are always very happy to accept donations to further the cause of the FreeBSD Project and, in a volunteer effort like ours, a little can go a long way! Donations of hardware are also very important to expanding our list of supported peripherals since we generally lack the funds to buy such items ourselves. <anchor id="donations">Donating Funds The FreeBSD Foundation is a non-profit, tax-exempt foundation established to further the goals of the FreeBSD Project. As a 501(c)3 entity, the Foundation is generally exempt from US federal income tax as well as Colorado State income tax. Donations to a tax-exempt entity are often deductible from taxable federal income. Donations may be sent in check form to:
The FreeBSD Foundation 7321 Brockway Dr. Boulder, CO 80303 USA
The FreeBSD Foundation is now able to accept donations through the web with PayPal. To place a donation, please visit the Foundation web site. More information about the FreeBSD Foundation can be found in The FreeBSD Foundation -- an Introduction. To contact the Foundation by email, write to bod@FreeBSDFoundation.org.
Donating Hardware donations Donations of hardware in any of the 3 following categories are also gladly accepted by the FreeBSD Project: General purpose hardware such as disk drives, memory or complete systems should be sent to the FreeBSD, Inc. address listed in the donating funds section. Hardware for which ongoing compliance testing is desired. We are currently trying to put together a testing lab of all components that FreeBSD supports so that proper regression testing can be done with each new release. We are still lacking many important pieces (network cards, motherboards, etc) and if you would like to make such a donation, please contact &a.dg; for information on which items are still required. Hardware currently unsupported by FreeBSD for which you would like to see such support added. Please contact the &a.core; before sending such items as we will need to find a developer willing to take on the task before we can accept delivery of new hardware. Donating Internet Access We can always use new mirror sites for FTP, WWW or cvsup. If you would like to be such a mirror, please contact the &a.hubs; for more information.
diff --git a/en_US.ISO8859-1/articles/cvs-freebsd/article.sgml b/en_US.ISO8859-1/articles/cvs-freebsd/article.sgml index 025e710839..a1214db840 100644 --- a/en_US.ISO8859-1/articles/cvs-freebsd/article.sgml +++ b/en_US.ISO8859-1/articles/cvs-freebsd/article.sgml @@ -1,658 +1,658 @@ %man; ]>
Setting up a CVS repository - the FreeBSD way Stijn Hoop
stijn@win.tue.nl
2001 Stijn Hoop - $Date: 2002-04-05 08:16:31 $ + $Date: 2002-04-07 23:52:32 $ $FreeBSD$ This article describes the steps I took to setup a CVS repository that uses the same scripts the FreeBSD project uses in their setup. This has several advantages over a stock CVS setup, including more granular access control to the source tree and generation of readable email of every commit.
Introduction Most of the open source software projects use CVS as their source code control system. While CVS is pretty good at this, it has its share of flaws and weaknesses. One of these is that sharing a source tree with other developers can quickly lead to a system administration nightmare, especially if one wishes to protect parts of the tree from general access. FreeBSD is one of the projects using CVS. It also has a large base of developers located around the world. They developed some scripts to make management of the repository easier. Recently, these scripts were revisited and normalized by Joseph Karthauser to make it easier to reuse them in other projects. This article describes one method of using the new scripts. To make the most use of the information in this article, you need to be familiar with the basic method of operation of CVS. First setup It might be best to first perform this procedure with an empty test repository, to make sure you understand all consequences. As always, make sure you have recent, readable backups! Initializing the repository The first thing to do when setting up a new repository is to tell CVS to initialize it: &prompt.user; cvs -d path-to-repository init This tells CVS to create the CVSROOT administrative directory, where all the customization takes place. The repository group Now we will create the group which will own the repository. All committers need to be in this group, so that they can write to the repository. We will assume the FreeBSD default of ncvs for this group. &prompt.root; pw groupadd ncvs Next, you should &man.chown.8; the directory to the user and group you just added: &prompt.root; chown -R :ncvs path-to-your-repository This ensures that no one can write to the repository without proper group permissions. Getting the sources Now you need to obtain the CVSROOT directory from the FreeBSD repository. This is most easily done by checking it out from a FreeBSD anonymous CVS mirror. See the relevant chapter in the handbook for more information. Let us assume that the sources are stored in CVSROOT-freebsd in the current directory. Copying the FreeBSD scripts Next, we will copy the FreeBSD CVSROOT sources into your own repository. If you are accustomed to - CVS, it might occur to you to try and + CVS, you might be thinking that you can just import the scripts, in an attempt to make synchronizing with later versions easier. However, it turns out that CVS has a deficiency in this area: when importing sources into the CVSROOT directory, it will not update the needed administrative files. In order to make it recognize those, you will need to checkin each file after importing them, losing the value of cvs import. Therefore, the recommended method is to simply copy over the scripts. It does not matter if the above paragraph did not make sense to you—the end result is the same. Simply check out your CVSROOT and copy the FreeBSD files over your local (untouched) copies: &prompt.user; cvs -d path-to-your-repository checkout CVSROOT &prompt.user; cd CVSROOT &prompt.user; cp ../CVSROOT-freebsd/* . &prompt.user; cvs add * Note that you will probably get a few warnings about some directories not being copied; this is normal, you don't need those. The scripts Now you have in your working directory an exact copy of the scripts that the FreeBSD project itself uses for their repository. A summary of what each file is used for is included below. access - this file is not used in the default setup. It is used in the FreeBSD project specific setup, where it controls access to the repository. You can remove this file if you do not wish to use this setup. avail - this file controls access to the repository. In this, you can specify groups of people that are allowed access to the repository, as well as disallow commits on a per-directory basis. You should tailor it to contain the groups and directories that will be in your repository. cfg.pm - this file parses your configuration, and provides the default configuration. You should not make changes to this file. Instead, put your configuration changes in cfg_local.pm. cfg_local.pm - this file contains all configurable parameters of the system. You should configure all sorts of settings here, such as where commit mail is send, on what hosts people can commit, and others. More information on this below. checkoutlist - this files lists all files under control of CVS in this directory. You should edit this to remove some FreeBSD specific files. commit_prep.pl - this script performs various pre-commit checks, based on whether you enabled them in your cfg_local.pm. You should not have to touch this. commitcheck - this script is invoked directly from CVS. It first checks if the committer has access to the specified part of the tree, and then runs commit_prep.pl for the various pre-commit checks. If those are OK, CVS will allow the commit to proceed. You should not have to touch this file. commitinfo - this file is used by CVS to determine which script to run before a commit. You should not have to touch this file. config - the configuration file for this repository. You should change this as needed, but most administrators can probably leave the defaults. More information on the options that can be set here can be found in the CVS manual. cvs_acls.pl - this script determines the committers identity, and whether he/she is allowed access to the tree. It does this based on the avail file. You should not have to touch this file. cvsignore - this file specifies files that CVS should not checkin in the repository. You can edit this as you wish. More information about this file is available in the CVS manual. cvswrappers - this file is used by CVS to enable or disable keyword expansion, or whether a file should be considered binary. You can edit this as you wish. More information about this file is available in the CVS manual. edithook - this file is not used any more, but kept for historic reasons. You should not have to touch this file. editinfo - CVS uses this file for editor overrides. FreeBSD does not use this functionality, as parsing the log message is done in the verifymsg and logcheck files. You should not have to touch this file. exclude - this file lists regular expressions that are used to determine files which cannot contain a revision header. In the FreeBSD setup, all files under revision control need to have a revision header (like $FreeBSD$). All filenames that match one of the lines in this file are exempted from this check. You should add expressions to this file as you checkin files that cannot have a revision header. For the purpose of installing the scripts, it may be best to exclude CVSROOT/ from header checks. log_accum.pl - this is a script that takes the log message as provided by the logcheck script, and appends it to a log file in the repository for backup purposes. It also handles mailing out a message to an email address you provide (in cfg_local.pm). You should not have to touch this file. logcheck - this file parses the commit log message that committers provide, and attempts to sanitize it somewhat. This script depends on a local FreeBSD hack of CVS: this version reads the log message back in after this script has modified it. The stock version of CVS apparently does not, which would make this script useless. loginfo - this file is used by CVS to control where log information is sent. You should not have to touch this file. modules - this file retains its traditional meaning in CVS. You should remove the FreeBSD modules from the stock version. You can edit this as you wish. More information about this file is available in the CVS manual. notify - this file is used by CVS in case someone sets a watch on a file. It is not used in the FreeBSD repository. You can edit this as you wish. More information about this file is available in the CVS manual. options - this file is specific to the FreeBSD version of CVS. It contains the keyword to expand in revision headers. You should alter this to match the keyword you specified in cfg_local.pm (if you use that feature, which is FreeBSD specific for now). rcsinfo - this file maps directories in the repository to template files. By default, FreeBSD uses one template for the whole repository. You can add others to this file if you wish. rcstemplate - this file is the actual template committers will see when they make a checkin. You should edit this to describe the various extra parameters you defined in cfg_local.pm. tagcheck - this files controls access to tagging in the repository. The stock FreeBSD version disallows tags with names of RELENG*, because of the release engineering process. You should edit this file as desired. taginfo - this file maps tag operations on repository directories to access control scripts. You should not have to touch this file. unwrap - this script is needed to automatically unwrap binary files (see cvswrappers) on checkout. It is not used in the current FreeBSD setup. You should not have to touch this file. verifymsg - this file maps repository directories to post processor scripts of log messages. You should not have to touch this file. wrap - this script is needed to automatically wrap binary files (see cvswrappers) on checkin. It is not used in the current FreeBSD setup. You should not have to touch this file. Customizing the scripts The next step is to setup the scripts so that they work in your environment. You should go over all files in the directory and make your customizations. In particular, you might want to do edit the following files: If you do not wish to use the FreeBSD specific features of the scripts, you can safely remove the access file: &prompt.user; cvs rm -f access Edit avail to contain the various repository directories in which you want to control access. Make sure you retain the avail||CVSROOT line, otherwise you will lock yourself out in the next step. The other thing you can add in this file are committer groups. By default, FreeBSD uses the access file to list all its committers in, but you can use any file you wish. You can also add groups if you want (the syntax is specified at the top of cvs_acls.pl). Edit cfg_local.pm to contain the options you want. In particular, you should take a look at the following configurable items: %TEMPLATE_HEADERS - these get processed by the log scripts, and inserted below the commit mail if present and non-empty in the commit message. You can probably remove the PR and MFC after entries. And of course you can add your own. $MAIL_BRANCH_HDR - if you want to insert a header into each commit mail describing the branch on which the commit was made, define this to match your setup. Or leave it empty if you don't want such a header. @COMMIT_HOSTS - define this to be a list of hosts on which people can commit. $MAILADDRS - set this to the admin or list address that should receive commit mail. @LOG_FILE_MAP - change this array as you wish - each regexp is matched on the directory of the commit, and the commit log message gets stored in the commitlogs subdirectory in the filename mentioned. $COMMITCHECK_EXTRA - if you do not want to use the FreeBSD specific access checks, you should remove the definition of $COMMITCHECK_EXTRA from this file. Changing the $IDHEADER parameter is only guaranteed to work on FreeBSD platforms; it depends on FreeBSD specific modifications to CVS. You can check cfg.pm to see which other options can be changed, but the above is a reasonable subset. Edit exclude to remove the FreeBSD specific entries (such as all lines beginning with ^ports/ etc.). Furthermore, comment out the lines beginning with ^CVSROOT/, and add one line with only ^CVSROOT/ on it. After the wrapper is installed, you can add your header to the files in the CVSROOT directory and restore these lines, but for now they will only be in the way when you try to commit later on. Edit modules, and delete all FreeBSD stuff. Add your own modules if you wish. This step is only necessary if you specified a value for $IDHEADER in cfg_local.pm (which only works using a FreeBSD modified CVS). Edit options to match the tag you specified in cfg_local.pm. A global search and replace of FreeBSD with your tag should suffice. Edit rcstemplate to contain the same keywords as specified in cfg_local.pm. Optionally remove the FreeBSD checks from tagcheck. You can simply add exit 0 to the top of the file to disable all checks on tagging. The last thing to do before you are finished, is to make sure the commitlogs can be stored. By default these are stored in the repository, in the commitlogs subdirectory of the CVSROOT directory. This directory needs to be created, so do the following: &prompt.user; mkdir commitlogs &prompt.user; cvs add commitlogs Now, after careful review, you should commit your changes. Be sure that you have granted yourself access to the CVSROOT directory in your avail before you do this, because otherwise you will lock yourself out. So make sure everything is as you intend, and then do the following: &prompt.user; cvs commit -m '- Initial FreeBSD scripts commit' Testing the setup You are ready for the first test: a forced commit to the avail file, to make sure everything works as expected. &prompt.user; cvs commit -f -m 'Forced commit to test the new CVSROOT scripts' avail If everything works, congratulations! You now have a working setup of the FreeBSD scripts for your repository. If CVS still complains about something, go back and recheck if all of the above steps have been performed correctly. FreeBSD specific setup The FreeBSD project itself uses a slightly different setup, which also uses files from the freebsd subdirectory of the FreeBSD CVSROOT. The project uses this because of the large number of committers, which all would have to be in the same group. So, a simple wrapper was written which ensures that people have the correct credentials to commit, and then sets the group id to that of the repository. If your repository also needs this, the steps to set this up are documented below. But first an overview of the files involved. Files used in the FreeBSD setup access - this file controls access information. You should edit this file to include all members of your project. freebsd/commitmail.pl - this file is not used any more, but kept for historic reasons. You should not have to touch this file. freebsd/cvswrap.c - this is the source to the CVS wrapper that you will need to install to make all access checks actually work. More information on this below. You should edit the paths in the ACCESS and REALCVS macros to match your setup. freebsd/mailsend.c - this file is needed by the FreeBSD setup of the mailing lists. You should not have to touch this file. The procedure Edit the access file to contain only your username. Edit cvswrap.c to contain the correct path for your setup. This is defined in a macro named ACCESS. You should also change the location of the real cvs binary if it is not appropriate to your situation. The stock cvswrap.c expects to be a replacement for the systemwide cvs command, which will be moved to /usr/bin/ncvs. My copy of cvswrap.c has this: #define ACCESS "/local/cvsroot/CVSROOT/access" #define REALCVS "/usr/bin/ncvs" Next up is installing the wrapper to ensure you become the correct group when committing. The sources for this live in cvswrap.c in your CVSROOT. Compile the sources that you edited to include the correct paths: &prompt.user; cc -o cvs cvswrap.c And then install them (you have to be root for this step): &prompt.root; mv /usr/bin/cvs /usr/bin/ncvs &prompt.root; mv cvs /usr/bin/cvs &prompt.root; chown root:ncvs /usr/bin/cvs /usr/bin/ncvs &prompt.root; chmod o-rx /usr/bin/ncvs &prompt.root; chmod u-w,g+s /usr/bin/cvs This installs the wrapper as the default cvs command, making sure that anyone who wants to use the repository has to have the correct access levels. You can now remove everyone from your repository group. All access control is done by your wrapper, and this wrapper will set the correct group for access. Testing the setup Your wrapper should now be setup. You can of course test this by making a forced commit to the access file: &prompt.user; cvs commit -f -m 'Forced commit to test the new CVSROOT scripts' access Again, if this fails, check to see whether all of the above steps have been executed correctly.
diff --git a/en_US.ISO8859-1/articles/filtering-bridges/article.sgml b/en_US.ISO8859-1/articles/filtering-bridges/article.sgml index f864e45e1d..171bc08a42 100644 --- a/en_US.ISO8859-1/articles/filtering-bridges/article.sgml +++ b/en_US.ISO8859-1/articles/filtering-bridges/article.sgml @@ -1,385 +1,385 @@ %man; ]>
Filtering Bridges Alex Dupre
sysadmin@alexdupre.com
$FreeBSD$ Often it is useful to divide one physical network (like an Ethernet) into two separate segments without having to create subnets, and use a router to link them together. The device that connects the two networks in this way is called a bridge. A FreeBSD system with two network interfaces is enough in order to act as a bridge. A bridge works by scanning the addresses of MAC level (Ethernet addresses) of the devices connected to each of its network interfaces and then forwarding the traffic between the two networks only if the source and the destination are on different segments. Under many points of view a brigde is similar to an Ethernet switch with only two ports.
Why use a filtering bridge? More and more frequently, thanks to the lowering costs of broad band Internet connections (xDSL) and also because of the reduction of available IPv4 addresses, many companies are connected to the Internet 24 hours on 24 and with few (sometimes not even a power of 2) IP addresses. In these situations it is often desirable to have a firewall that filters incoming and outgoing traffic from and towards Internet, but a packet filtering solution based on router may not be applicable, either due to subnetting issues, the router is owned by the connectivity supplier (ISP), or because it doesn't support such functionalities. In these scenarios the use of a filtering bridge is highly advised. A bridge-based firewall can be configured and inserted between the xDSL router and your Ethernet hub/switch without any IP numbering issues. How to Install Adding bridge functionalities to a FreeBSD system is not difficult. Since 4.5 release it is possible to load such functionalities as modules instead of having to rebuild the kernel, simplifying the procedure a great deal. In the following subsections I will explain both installation ways. Do not follow both instructions: a procedure excludes the other one. Select the best choice according to your needs and abilities. Before going on, be sure to have at least two Ethernet cards that support the promiscuous mode for both reception and transmission, since they must be able to send Ethernet packets with any address, not just their own. Moreover, to have a good throughput, the cards should be PCI bus mastering cards. The best choices are still the Intel EtherExpress Pro, followed by the 3Com 3c9xx series. To simplify the firewall configuration it may be useful to have two cards of different manufacturers (using different drivers) in order to distinguish clearly which interface is connected to the router and which to the inner network. Kernel Configuration So you have decided to use the older but well tested installation method. To begin, you have to add the following rows to your kernel configuration file: options BRIDGE options IPFIREWALL options IPFIREWALL_VERBOSE The first line is to compile the bridge support, the second one is the firewall and the third one is the logging functions of the firewall. Now it is necessary to build and install the new kernel. You may find detailed instructions in the Building and Installing a Custom Kernel section of the FreeBSD Handbook. Modules Loading If you have choosen to use the new and simpler installation method, the only thing to do now is add the following row to /boot/loader.conf: bridge_load="YES" In this way, during the system startup, the bridge.ko module will be loaded together with the kernel. It is not required to add a similar row for the ipfw.ko module, since it will be loaded automatically after the execution of the steps in the following section. Final Preperation Before rebooting in order to load the new kernel or the required modules (according to the previously choosen installation method), you have to make some changes to the /etc/rc.conf configuration file. The default rule of the firewall is to reject all IP packets. Initially we'll set up an 'open' firewall, in order to verify its operation without any issue related to packet filtering (in case you are going to execute this procedure remotely, such configuration will avoid you to remain isolated from the network). Put these lines in /etc/rc.conf: firewall_enable="YES" firewall_type="open" firewall_quiet="YES" firewall_logging="YES" The first row will enable the firewall (and will load the module ipfw.ko if it is not compiled in the kernel), the second one to set up it in 'open' mode (as explained in /etc/rc.firewall), the third one to not show rules loading and the fourth one to enable logging support. About the configuration of the network interfaces, the most used way is to assign an IP to only one of the network cards, but the bridge will work equally even if both interfaces or none has a configured IP. In the last case (IP-less) the bridge machine will be still more hidden, as inaccessible from the network: to configure it, you have to login from console or through a third network interface separated from the bridge. Sometimes, during the system startup, some programs require network access, say for domain resolution: in this case it is necessary to assign an IP to the external interface (the one connected to Internet, where DNS server resides), since the bridge will be activated at the end of the startup procedure. It means that the fxp0 interface (in our case) must be mentioned in the ifconfig section of the /etc/rc.conf file, while the xl0 is not. Assigning an IP to both the network cards does not make much sense, unless, during the start procedure, applications should access to services on both Ethernet segments. There is another important thing to know. When running IP over Ethernet, there are actually two Ethernet protocols in use: one is IP, the other is ARP. ARP does the conversion of the IP address of a host into its Ethernet address (MAC layer). In order to allow the communication between two hosts separated by the bridge, it is necessary that the bridge will forward ARP packets. Such protocol is not included in the IP layer, since it exists only with IP over Ethernet. The FreeBSD firewall filters exclusively on the IP layer and therefore all non-IP packets (ARP included) will be forwarded without being filtered, even if the firewall is configured to not permit anything. Now it's time to reboot the system and use it as before: there will be some new messages about the bridge and the firewall, but the bridge will not be activated and the firewall, being in 'open' mode, will not avoid any operations. - If there are any problems, you should try and sort them out now + If there are any problems, you should sort them out now before proceeding. Enabling the Bridge At this point, to enable the bridge, you have to execute the following commands (having the shrewdness to replace the names of the two network interfaces fxp0 and xl0 with your own ones): &prompt.root; sysctl net.link.ether.bridge_cfg=fxp0:0,xl0:0 &prompt.root; sysctl net.link.ether.bridge_ipfw=1 &prompt.root; sysctl net.link.ether.bridge=1 The first row specifies which interfaces should be activated by the bridge, the second one will enable the firewall on the bridge and finally the third one will enable the bridge. At this point you should be able to insert the machine between two sets of hosts without compromising any communication abilities between them. If so, the next step is to add the net.link.ether.[blah]=[blah] portions of these rows to the /etc/sysctl.conf file, in order to have them execute at startup. Configuring The Firewall Now it is time to create your own file with custom firewall rules, in order to secure the inside network. There will be some complication in doing this because not all of the firewall functionalities are available on bridged packets. Furthermore, there is a difference between the packets that are in the process of being forwarded and packets that are being received by the local machine. In general, incoming packets are run through the firewall only once, not twice as is normally the case; in fact they are filtered only upon receipt, so rules that use 'out' or 'xmit' will never match. Personally, I use 'in via' which is an older syntax, but one that has a sense when you read it. Another limitation is that you are restricted to use only 'pass' or 'drop' commands for packets filtered by a bridge. Sophisticated things like 'divert', 'forward' or 'reject' are not available. Such options can still be used, but only on traffic to or from the bridge machine itself (if it has an IP address). New in FreeBSD 4.0, is the concept of stateful filtering. This is a big improvement for UDP traffic, which typically is a request going out, followed shortly thereafter by a response with the exact same set of IP addresses and port numbers (but with source and destination reversed, of course). For firewalls that have no statekeeping, there is almost no way to deal with this sort of traffic as a single session. But with a firewall that can "remember" an outgoing UDP packet and, for the next few minutes, allow a response, handling UDP services is trivial. The following example shows how to do it. It's possible to do the same thing with TCP packets. This allows you to avoid some denial of service attacks and other nasty tricks, but it also typically makes your state table grow quickly in size. Let's look at an example setup. Note first that at the top of /etc/rc.firewall there are already standard rules for the loopback interface lo0, so we shouldn't have to care for them anymore. Custom rules should be put in a separate file (say /etc/rc.firewall.local) and loaded at system startup, by modifying the row of /etc/rc.conf where we defined the 'open' firewall: firewall_type="/etc/rc.firewall.local" You have to specify the full path, otherwise it will not be loaded with the risk to remain isolated from the network. For our example imagine to have the fxp0 interface connected towards the outside (Internet) and the xl0 towards the inside (LAN). The bridge machine has the IP 1.2.3.4 (it is not possible that your ISP can give you a class A address like this, but for our example it is good). # Things that we have kept state on before get to go through in a hurry add check-state # Throw away RFC 1918 networks add drop all from 10.0.0.0/8 to any in via fxp0 add drop all from 172.16.0.0/12 to any in via fxp0 add drop all from 192.68.0.0/16 to any in via fxp0 # Allow the bridge machine to say anything it wants # (if the machine is IP-less don't include these rows) add pass tcp from 1.2.3.4 to any setup keep-state add pass udp from 1.2.3.4 to any keep-state add pass ip from 1.2.3.4 to any # Allow the inside hosts to say anything they want add pass tcp from any to any in via xl0 setup keep-state add pass udp from any to any in via xl0 keep-state add pass ip from any to any in via xl0 # TCP section # Allow SSH add pass tcp from any to any 22 in via fxp0 setup keep-state # Allow SMTP only towards the mail server add pass tcp from any to relay 25 in via fxp0 setup keep-state # Allow zone transfers only by the slave name server [dns2.nic.it] add pass tcp from 193.205.245.8 to ns 53 in via fxp0 setup keep-state # Pass ident probes. It's better than waiting for them to timeout add pass tcp from any to any 113 in via fxp0 setup keep-state # Pass the "quarantine" range add pass tcp from any to any 49152-65535 in via fxp0 setup keep-state # UDP section # Allow DNS only towards the name server add pass udp from any to ns 53 in via fxp0 keep-state # Pass the "quarantine" range add pass udp from any to any 49152-65535 in via fxp0 keep-state # ICMP section # Pass 'ping' add pass icmp from any to any icmptypes 8 keep-state # Pass error messages generated by 'traceroute' add pass icmp from any to any icmptypes 3 add pass icmp from any to any icmptypes 11 # Everything else is suspect add drop log all from any to any Those of you who have set up firewalls before may notice some things missing. In particular, there are no anti-spoofing rules, in fact we did not add: add deny all from 1.2.3.4/8 to any in via fxp0 That is, drop packets that are coming in from the outside claiming to be from our network. This is something that you would commonly do to - be sure that someone does not try and evade the packet filter, by + be sure that someone does not try to evade the packet filter, by generating nefarious packets that look like they are from the inside. The problem with that is that there is at least one host on the outside interface that you do not want to ignore: the router. But usually, the ISP anti-spoofs at their router, so we do not need to bother that much. The last rule seems to be an exact duplicate of the default rule, that is, do not let anything pass that is not specifically allowed. But there is a difference: all suspected traffic will be logged. There are two rules for passing SMTP and DNS traffic towards the mail server and the name server, if you have them. Obviously the whole rule set should be flavored to personal taste, this is only a specific example (rule format is described accurately in the &man.ipfw.8; man page). Note that in order for 'relay' and 'ns' to work, name service lookups must work before the bridge is enabled. This is an example of making sure that you set the IP on the correct network card. Alternatively it is possible to specify the IP address instead of the host name (required if the machine is IP-less). People that are used to setting up firewalls are probably also used to either having a 'reset' or a 'forward' rule for ident packets (TCP port 113). Unfortunately, this is not an applicable option with the bridge, so the best thing is to simply pass them to their destination. As long as that destination machine is not running an ident daemon, this is relatively harmless. The alternative is dropping connections on port 113, which creates some problems with services like IRC (the ident probe must timeout). The only other thing that is a little weird that you may have noticed is that there is a rule to let the bridge machine speak, and another for internal hosts. Remember that this is because the two sets of traffic will take different paths through the kernel and into the packet filter. The inside net will go through the bridge, while the local machine will use the normal IP stack to speak. Thus the two rules to handle the different cases. The 'in via fxp0' rules work for both paths. In general, if you use 'in via' rules throughout the filter, you will need to make an exception for locally generated packets, because they did not come in via any of our interfaces. Contributors Many parts of this article have been taken, updated and adapted from an old text about bridging, edited by Nick Sayer. A pair of inspirations are due to an introduction on bridging by Steve Peterson. A big thanks to Luigi Rizzo for the implementation of the bridge code in FreeBSD and for the time he has dedicated to me answering all of my related questions. A thanks goes out also to Tom Rhodes who looked over my job of translation from Italian (the original language of this article) into English.
diff --git a/en_US.ISO8859-1/books/developers-handbook/policies/chapter.sgml b/en_US.ISO8859-1/books/developers-handbook/policies/chapter.sgml index be2d2ba82c..2b0f5e2f2d 100644 --- a/en_US.ISO8859-1/books/developers-handbook/policies/chapter.sgml +++ b/en_US.ISO8859-1/books/developers-handbook/policies/chapter.sgml @@ -1,399 +1,399 @@ Source Tree Guidelines and Policies Contributed by &a.phk;. This chapter documents various guidelines and policies in force for the FreeBSD source tree. <makevar>MAINTAINER</makevar> on Makefiles ports maintainer June 1996. If a particular portion of the FreeBSD distribution is being maintained by a person or group of persons, they can communicate this fact to the world by adding a MAINTAINER= email-addresses line to the Makefiles covering this portion of the source tree. The semantics of this are as follows: The maintainer owns and is responsible for that code. This means that he is responsible for fixing bugs and answering problem reports pertaining to that piece of the code, and in the case of contributed software, for tracking new versions, as appropriate. Changes to directories which have a maintainer defined shall be sent to the maintainer for review before being committed. Only if the maintainer does not respond for an unacceptable period of time, to several emails, will it be acceptable to commit changes without review - by the maintainer. However, it is suggested that you try and have the + by the maintainer. However, it is suggested that you try to have the changes reviewed by someone else if at all possible. It is of course not acceptable to add a person or group as maintainer unless they agree to assume this duty. On the other hand it does not have to be a committer and it can easily be a group of people. Contributed Software contributed software Contributed by &a.phk; and &a.obrien;. June 1996. Some parts of the FreeBSD distribution consist of software that is actively being maintained outside the FreeBSD project. For historical reasons, we call this contributed software. Some examples are perl, gcc and patch. Over the last couple of years, various methods have been used in dealing with this type of software and all have some number of advantages and drawbacks. No clear winner has emerged. Since this is the case, after some debate one of these methods has been selected as the official method and will be required for future imports of software of this kind. Furthermore, it is strongly suggested that existing contributed software converge on this model over time, as it has significant advantages over the old method, including the ability to easily obtain diffs relative to the official versions of the source by everyone (even without cvs access). This will make it significantly easier to return changes to the primary developers of the contributed software. Ultimately, however, it comes down to the people actually doing the work. If using this model is particularly unsuited to the package being dealt with, exceptions to these rules may be granted only with the approval of the core team and with the general consensus of the other developers. The ability to maintain the package in the future will be a key issue in the decisions. Because of some unfortunate design limitations with the RCS file format and CVS's use of vendor branches, minor, trivial and/or cosmetic changes are strongly discouraged on files that are still tracking the vendor branch. Spelling fixes are explicitly included here under the cosmetic category and are to be avoided for files with revision 1.1.x.x. The repository bloat impact from a single character change can be rather dramatic. The Tcl embedded programming language will be used as example of how this model works: src/contrib/tcl contains the source as distributed by the maintainers of this package. Parts that are entirely not applicable for FreeBSD can be removed. In the case of Tcl, the mac, win and compat subdirectories were eliminated before the import. src/lib/libtcl contains only a "bmake style" Makefile that uses the standard bsd.lib.mk makefile rules to produce the library and install the documentation. src/usr.bin/tclsh contains only a bmake style Makefile which will produce and install the tclsh program and its associated man-pages using the standard bsd.prog.mk rules. src/tools/tools/tcl_bmake contains a couple of shell-scripts that can be of help when the tcl software needs updating. These are not part of the built or installed software. The important thing here is that the src/contrib/tcl directory is created according to the rules: it is supposed to contain the sources as distributed (on a proper CVS vendor-branch and without RCS keyword expansion) with as few FreeBSD-specific changes as possible. The 'easy-import' tool on freefall will assist in doing the import, but if there are any doubts on how to go about it, it is imperative that you ask first and not blunder ahead and hope it works out. CVS is not forgiving of import accidents and a fair amount of effort is required to back out major mistakes. Because of the previously mentioned design limitations with CVS's vendor branches, it is required that official patches from the vendor be applied to the original distributed sources and the result re-imported onto the vendor branch again. Official patches should never be patched into the FreeBSD checked out version and committed, as this destroys the vendor branch coherency and makes importing future versions rather difficult as there will be conflicts. Since many packages contain files that are meant for compatibility with other architectures and environments that FreeBSD, it is permissible to remove parts of the distribution tree that are of no interest to FreeBSD in order to save space. Files containing copyright notices and release-note kind of information applicable to the remaining files shall not be removed. If it seems easier, the bmake Makefiles can be produced from the dist tree automatically by some utility, something which would hopefully make it even easier to upgrade to a new version. If this is done, be sure to check in such utilities (as necessary) in the src/tools directory along with the port itself so that it is available to future maintainers. In the src/contrib/tcl level directory, a file called FREEBSD-upgrade should be added and it should state things like: Which files have been left out. Where the original distribution was obtained from and/or the official master site. Where to send patches back to the original authors. Perhaps an overview of the FreeBSD-specific changes that have been made. However, please do not import FREEBSD-upgrade with the contributed source. Rather you should cvs add FREEBSD-upgrade ; cvs ci after the initial import. Example wording from src/contrib/cpio is below: This directory contains virgin sources of the original distribution files on a "vendor" branch. Do not, under any circumstances, attempt to upgrade the files in this directory via patches and a cvs commit. New versions or official-patch versions must be imported. Please remember to import with "-ko" to prevent CVS from corrupting any vendor RCS Ids. For the import of GNU cpio 2.4.2, the following files were removed: INSTALL cpio.info mkdir.c Makefile.in cpio.texi mkinstalldirs To upgrade to a newer version of cpio, when it is available: 1. Unpack the new version into an empty directory. [Do not make ANY changes to the files.] 2. Remove the files listed above and any others that don't apply to FreeBSD. 3. Use the command: cvs import -ko -m 'Virgin import of GNU cpio v<version>' \ src/contrib/cpio GNU cpio_<version> For example, to do the import of version 2.4.2, I typed: cvs import -ko -m 'Virgin import of GNU v2.4.2' \ src/contrib/cpio GNU cpio_2_4_2 4. Follow the instructions printed out in step 3 to resolve any conflicts between local FreeBSD changes and the newer version. Do not, under any circumstances, deviate from this procedure. To make local changes to cpio, simply patch and commit to the main branch (aka HEAD). Never make local changes on the GNU branch. All local changes should be submitted to "cpio@gnu.ai.mit.edu" for inclusion in the next vendor release. obrien@FreeBSD.org - 30 March 1997 Encumbered Files It might occasionally be necessary to include an encumbered file in the FreeBSD source tree. For example, if a device requires a small piece of binary code to be loaded to it before the device will operate, and we do not have the source to that code, then the binary file is said to be encumbered. The following policies apply to including encumbered files in the FreeBSD source tree. Any file which is interpreted or executed by the system CPU(s) and not in source format is encumbered. Any file with a license more restrictive than BSD or GNU is encumbered. A file which contains downloadable binary data for use by the hardware is not encumbered, unless (1) or (2) apply to it. It must be stored in an architecture neutral ASCII format (file2c or uuencoding is recommended). Any encumbered file requires specific approval from the Core team before it is added to the CVS repository. Encumbered files go in src/contrib or src/sys/contrib. The entire module should be kept together. There is no point in splitting it, unless there is code-sharing with non-encumbered code. Object files are named arch/filename.o.uu>. Kernel files: Should always be referenced in conf/files.* (for build simplicity). Should always be in LINT, but the Core team decides per case if it should be commented out or not. The Core team can, of course, change their minds later on. The Release Engineer decides whether or not it goes in to the release. User-land files: core team The Core team decides if the code should be part of make world. release engineer The Release Engineer decides if it goes in to the release. Shared Libraries Contributed by &a.asami;, &a.peter;, and &a.obrien; 9 December 1996. If you are adding shared library support to a port or other piece of software that does not have one, the version numbers should follow these rules. Generally, the resulting numbers will have nothing to do with the release version of the software. The three principles of shared library building are: Start from 1.0 If there is a change that is backwards compatible, bump minor number (note that ELF systems ignore the minor number) If there is an incompatible change, bump major number For instance, added functions and bugfixes result in the minor version number being bumped, while deleted functions, changed function call syntax, etc. will force the major version number to change. Stick to version numbers of the form major.minor (x.y). Our a.out dynamic linker does not handle version numbers of the form x.y.z well. Any version number after the y (i.e. the third digit) is totally ignored when comparing shared lib version numbers to decide which library to link with. Given two shared libraries that differ only in the micro revision, ld.so will link with the higher one. That is, if you link with libfoo.so.3.3.3, the linker only records 3.3 in the headers, and will link with anything starting with libfoo.so.3.(anything >= 3).(highest available). ld.so will always use the highest minor revision. For instance, it will use libc.so.2.2 in preference to libc.so.2.0, even if the program was initially linked with libc.so.2.0. In addition, our ELF dynamic linker does not handle minor version numbers at all. However, one should still specify a major and minor version number as our Makefiles do the right thing based on the type of system. For non-port libraries, it is also our policy to change the shared library version number only once between releases. In addition, it is our policy to change the major shared library version number only once between major OS releases (i.e. from 3.0 to 4.0). When you make a change to a system library that requires the version number to be bumped, check the Makefile's commit logs. It is the responsibility of the committer to ensure that the first such change since the release will result in the shared library version number in the Makefile to be updated, and any subsequent changes will not. diff --git a/en_US.ISO8859-1/books/faq/book.sgml b/en_US.ISO8859-1/books/faq/book.sgml index 03dbf4ed90..5b822f7431 100644 --- a/en_US.ISO8859-1/books/faq/book.sgml +++ b/en_US.ISO8859-1/books/faq/book.sgml @@ -1,12375 +1,12381 @@ %man; %freebsd; %authors; %teams; %bookinfo; %mailing-lists; ]> Frequently Asked Questions for FreeBSD 2.X, 3.X and 4.X The FreeBSD Documentation Project $FreeBSD$ 1995 1996 1997 1998 1999 2000 2001 2002 The FreeBSD Documentation Project &bookinfo.legalnotice; This is the FAQ for FreeBSD versions 2.X, 3.X, and 4.X. All entries are assumed to be relevant to FreeBSD 2.0.5 and later, unless otherwise noted. Any entries with a <XXX> are under construction. If you are interested in helping with this project, send email to the &a.doc;. The latest version of this document is always available from the FreeBSD World Wide Web server. It may also be downloaded as one large HTML file with HTTP or as plain text, postscript, PDF, etc. from the FreeBSD FTP server. You may also want to Search the FAQ. Introduction Welcome to the FreeBSD 2.X-4.X FAQ! As is usual with Usenet FAQs, this document aims to cover the most frequently asked questions concerning the FreeBSD operating system (and of course answer them!). Although originally intended to reduce bandwidth and avoid the same old questions being asked over and over again, FAQs have become recognized as valuable information resources. Every effort has been made to make this FAQ as informative as possible; if you have any suggestions as to how it may be improved, please feel free to mail them to the &a.faq;. What is FreeBSD? Briefly, FreeBSD is a UN*X-like operating system for the i386 and Alpha/AXP platforms based on U.C. Berkeley's 4.4BSD-Lite release, with some 4.4BSD-Lite2 enhancements. It is also based indirectly on William Jolitz's port of U.C. Berkeley's Net/2 to the i386, known as 386BSD, though very little of the 386BSD code remains. A fuller description of what FreeBSD is and how it can work for you may be found on the FreeBSD home page. FreeBSD is used by companies, Internet Service Providers, researchers, computer professionals, students and home users all over the world in their work, education and recreation. See some of them in the FreeBSD Gallery. For more detailed information on FreeBSD, please see the FreeBSD Handbook. What is the goal of the FreeBSD Project? The goal of the FreeBSD Project is to provide software that may be used for any purpose and without strings attached. Many of us have a significant investment in the code (and project) and would certainly not mind a little financial compensation now and then, but we are definitely not prepared to insist on it. We believe that our first and foremost mission is to provide code to any and all comers, and for whatever purpose, so that the code gets the widest possible use and provides the widest possible benefit. This is, we believe, one of the most fundamental goals of Free Software and one that we enthusiastically support. That code in our source tree which falls under the GNU General Public License (GPL) or GNU Library General Public License (LGPL) comes with slightly more strings attached, though at least on the side of enforced access rather than the usual opposite. Due to the additional complexities that can evolve in the commercial use of GPL software, we do, however, endeavor to replace such software with submissions under the more relaxed FreeBSD copyright whenever possible. Does the FreeBSD license have any restrictions? Yes. Those restrictions do not control how you use the code, merely how you treat the FreeBSD Project itself. If you have serious license concerns, read the actual license. For the simply curious, the license can be summarized like this. Do not claim that you wrote this. Do not sue us if it breaks. Can FreeBSD replace my current operating system? For most people, yes. But this question is not quite that cut-and-dried. Most people do not actually use an operating system. They use applications. The applications are what really use the operating system. FreeBSD is designed to provide a robust and full-featured environment for applications. It supports a wide variety of web browsers, office suites, email readers, graphics programs, programming environments, network servers, and just about everything else you might want. Most of these applications can be managed through the Ports Collection. If you need to use an application that is only available on one operating system, you simply cannot replace that operating system. Chances are there is a very similar application on FreeBSD, however. If you want a solid office or Internet server, a reliable workstation, or just the ability to do your job without interruptions, FreeBSD will almost certainly do everything you need. Many computer users across the world, including both novices and experienced UNIX administrators, use FreeBSD as their only desktop operating system. If you are migrating to FreeBSD from some other UNIX environment, you already know most of what you need to. If your background is in graphic-driven operating systems such as Windows and older versions of Mac OS, expect to invest additional time learning the UNIX way of doing things. This FAQ and the FreeBSD Handbook are excellent places to start. Why is it called FreeBSD? It may be used free of charge, even by commercial users. Full source for the operating system is freely available, and the minimum possible restrictions have been placed upon its use, distribution and incorporation into other work (commercial or non-commercial). Anyone who has an improvement or bug fix is free to submit their code and have it added to the source tree (subject to one or two obvious provisions). It is worth pointing out that the word free is being used in two ways here, one meaning at no cost, the other meaning you can do whatever you like. Apart from one or two things you cannot do with the FreeBSD code, for example pretending you wrote it, you really can do whatever you like with it. What is the latest version of FreeBSD? Version &rel.current; is the latest RELEASE version; it was released in &rel.current.date;. This is also the latest STABLE version. Briefly, -STABLE is aimed at the ISP, corporate user, or any user who wants stability and a low change count over the wizzy new features of the latest -CURRENT snapshot. Releases can come from either branch, but -CURRENT should only be used if you are prepared for its increased volatility (relative to -STABLE, that is). Releases are made every few months. While many people stay more up-to-date with the FreeBSD sources (see the questions on FreeBSD-CURRENT and FreeBSD-STABLE) than that, doing so is more of a commitment, as the sources are a moving target. What is FreeBSD-CURRENT? FreeBSD-CURRENT is the development version of the operating system, which will in due course become 5.0-RELEASE. As such, it is really only of interest to developers working on the system and die-hard hobbyists. See the relevant section in the handbook for details on running -CURRENT. If you are not familiar with the operating system or are not capable of identifying the difference between a real problem and a temporary problem, you should not use FreeBSD-CURRENT. This branch sometimes evolves quite quickly and can be un-buildable for a number of days at a time. People that use FreeBSD-CURRENT are expected to be able to analyze any problems and only report them if they are deemed to be mistakes rather than glitches. Questions such as make world produces some error about groups on the -CURRENT mailing list may be treated with contempt. Every day, snapshot releases are made based on the current state of the -CURRENT and -STABLE branches. Nowadays, distributions of the occasional snapshot are now being made available. The goals behind each snapshot release are: To test the latest version of the installation software. To give people who would like to run -CURRENT or -STABLE but who do not have the time or bandwidth to follow it on a day-to-day basis an easy way of bootstrapping it onto their systems. To preserve a fixed reference point for the code in question, just in case we break something really badly later. (Although CVS normally prevents anything horrible like this happening :) To ensure that any new features in need of testing have the greatest possible number of potential testers. No claims are made that any -CURRENT snapshot can be considered production quality for any purpose. If you want to run a stable and fully tested system, you will have to stick to full releases, or use the -STABLE snapshots. Snapshot releases are directly available from ftp://current.FreeBSD.org/pub/FreeBSD/ for 5.0-CURRENT and releng4.FreeBSD.org for 4-STABLE snapshots. 3-STABLE snapshots are not being produced at the time of this writing (May 2000). Snapshots are generated, on the average, once a day for all actively developed branches. What is the FreeBSD-STABLE concept? Back when FreeBSD 2.0.5 was released, we decided to branch FreeBSD development into two parts. One branch was named -STABLE, with the intention that only well-tested bug fixes and small incremental enhancements would be made to it (for Internet Service Providers and other commercial enterprises for whom sudden shifts or experimental features are quite undesirable). The other branch was -CURRENT, which essentially has been one unbroken line leading towards 5.0-RELEASE (and beyond) since 2.0 was released. If a little ASCII art would help, this is how it looks: 2.0 | | | [2.1-STABLE] *BRANCH* 2.0.5 -> 2.1 -> 2.1.5 -> 2.1.6 -> 2.1.7.1 [2.1-STABLE ends] | (Mar 1997) | | | [2.2-STABLE] *BRANCH* 2.2.1 -> 2.2.2-RELEASE -> 2.2.5 -> 2.2.6 -> 2.2.7 -> 2.2.8 [end] | (Mar 1997) (Oct 97) (Apr 98) (Jul 98) (Dec 98) | | 3.0-SNAPs (started Q1 1997) | | 3.0-RELEASE (Oct 1998) | | [3.0-STABLE] *BRANCH* 3.1-RELEASE (Feb 1999) -> 3.2 -> 3.3 -> 3.4 -> 3.5 -> 3.5.1 | (May 1999) (Sep 1999) (Dec 1999) (June 2000) (July 2000) | | [4.0-STABLE] *BRANCH* 4.0 (Mar 2000) -> 4.1 -> 4.1.1 -> 4.2 -> 4.3 -> 4.4 -> ... future 4.x releases ... | | (July 2000) (Sep 2000) (Nov 2000) \|/ + [5.0-CURRENT continues] The 2.2-STABLE branch was retired with the release of 2.2.8. The 3-STABLE branch has ended with the release of 3.5.1, the final 3.X release. The only changes made to either of these branches will be, for the most part, security-related bug fixes. 4-STABLE is the actively developed -STABLE branch. The latest release on the 4-STABLE is &rel.current;-RELEASE, which was released in &rel.current.date;. The 5-CURRENT branch is slowly progressing toward 5.0-RELEASE and beyond. See What is FreeBSD-CURRENT? for more information on this branch. When are FreeBSD releases made? As a general principle, the FreeBSD core team only release a new version of FreeBSD when they believe that there are sufficient new features and/or bug fixes to justify one, and are satisfied that these new developments have been tested sufficiently to avoid compromising the stability of the release. Release dates are generally announced well in advance, so that the people working on the system know when their projects need to be finished and tested. Many users regard this caution as one of the best things about FreeBSD, although waiting for all the latest goodies to reach -STABLE can be a little frustrating. Releases are made about every 4 months on average. For people who need or want a little more excitement, binary snapshots are made every day as discussed above. Who is responsible for FreeBSD? The key decisions concerning the FreeBSD project, such as the overall direction of the project and who is allowed to add code to the source tree, are made by a core team of 9 people. There is a much larger team of more than 200 committers who are authorized to make changes directly to the FreeBSD source tree. However, most non-trivial changes are discussed in advance in the mailing lists, and there are no restrictions on who may take part in the discussion. Where can I get FreeBSD? Every significant release of FreeBSD is available via anonymous FTP from the FreeBSD FTP site: For the current 3.X-STABLE release, 3.5.1-RELEASE, see the 3.5.1-RELEASE directory. The current 4-STABLE release, &rel.current;-RELEASE can be found in the &rel.current;-RELEASE directory. 4.X snapshots are usually made once a day. 5.0 Snapshot releases are made once a day for the -CURRENT branch, these being of service purely to bleeding-edge testers and developers. Information about obtaining FreeBSD on CD, DVD, and other media can be found in the Handbook. How do I access the Problem Report database? The Problem Report database of all user change requests may be queried (or submitted to) by using our web-based PR submission and query interfaces. The &man.send-pr.1; command can also be used to submit problem reports and change requests via electronic mail. Before submitting a problem report, please read Writing FreeBSD Problem Reports, an article on how to write good problem reports. How do I become a FreeBSD Web mirror? There are multiple ways to mirror the Web pages. You can retrieve the formatted files from a FreeBSD CVSup server using the application net/cvsup. The file /usr/share/examples/cvsup/www-supfile contains an example CVSup configuration file for web mirrors. You can download the web site source code from any FreeBSD FTP server using your favorite ftp mirror tool. Keep in mind that you have to build these sources before publishing them. Start mirroring at ftp://ftp.FreeBSD.org/pub/FreeBSD/FreeBSD-current/www. What other sources of information are there? Please check the Documentation list on the main FreeBSD web site. Documentation and Support What good books are there about FreeBSD? The project produces a wide range of documentation, available from this link: http://www.FreeBSD.org/docs.html. In addition, the Bibliography at the end of this FAQ, and the one in the Handbook reference other recommended books. Is the documentation available in other formats, such as plain text (ASCII), or Postscript? Yes. The documentation is available in a number of different formats and compression schemes on the FreeBSD FTP site, in the /pub/FreeBSD/doc/ directory. The documentation is categorized in a number of different ways. These include: The document's name, such as faq, or handbook. The document's language and encoding. These are based on the locale names you will find under /usr/share/locale on your FreeBSD system. The current languages and encodings that we have for documentation are as follows: Name Meaning en_US.ISO8859-1 US English de_DE.ISO8859-1 German es_ES.ISO8859-1 Spanish fr_FR.ISO8859-1 French ja_JP.eucJP Japanese (EUC encoding) ru_RU.KOI8-R Russian (KOI8-R encoding) zh_TW.Big5 Chinese (Big5 encoding) Some documents may not be available in all languages. The document's format. We produce the documentation in a - number of different output formats to try and make it as - flexible as possible. The current formats are; + number of different output formats. Each format has its own + advantages and disadvantages. Some formats are better suited + for online reading, while others are meant to be aesthetically + pleasing when printed on paper. Having the documentation + available in any of these formats ensures that our readers + will be able to read the parts they are interested in, either + on their monitor, or on paper after printing the documents. + The currently available formats are: Format Meaning html-split A collection of small, linked, HTML files. html One large HTML file containing the entire document pdb Palm Pilot database format, for use with the iSilo reader. pdf Adobe's Portable Document Format ps Postscript rtf Microsoft's Rich Text Format Page numbers are not automatically updated when loading this format in to Word. Press CTRLA, CTRLEND, F9 after loading the document, to update the page numbers. txt Plain text The compression and packaging scheme. There are three of these currently in use. Where the format is html-split, the files are bundled up using &man.tar.1;. The resulting .tar file is then compressed using the compression schemes detailed in the next point. All the other formats generate one file, called book.format (i.e., book.pdb, book.html, and so on). These files are then compressed using three compression schemes. Scheme Description zip The Zip format. If you want to uncompress this on FreeBSD you will need to install the archivers/unzip port first. gz The GNU Zip format. Use &man.gunzip.1; to uncompress these files, which is part of FreeBSD. bz2 The BZip2 format. Less widespread than the others, but generally gives smaller files. Install the archivers/bzip2 port to uncompress these files. So the Postscript version of the Handbook, compressed using BZip2 will be stored in a file called book.ps.bz2 in the handbook/ directory. The formatted documentation is also available as a FreeBSD package, of which more later. After choosing the format and compression mechanism that you want to download, you must then decide whether or not you want to download the document as a FreeBSD package. The advantage of downloading and installing the package is that the documentation can then be managed using the normal FreeBSD package management comments, such as &man.pkg.add.1; and &man.pkg.delete.1;. If you decide to download and install the package then you must know the filename to download. The documentation-as-packages files are stored in a directory called packages. Each package file looks like document-name.lang.encoding.format.tgz. For example, the FAQ, in English, formatted as PDF, is in the package called faq.en_US.ISO8859-1.pdf.tgz. Knowing this, you can use the following command to install the English PDF FAQ package. &prompt.root; pkg_add ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/packages/faq.en_US.ISO8859-1.pdf.tgz Having done that, you can use &man.pkg.info.1; to determine where the file has been installed. &prompt.root; pkg_info -f faq.en_US.ISO8859-1.pdf Information for faq.en_US.ISO8859-1.pdf: Packing list: Package name: faq.en_US.ISO8859-1.pdf CWD to /usr/share/doc/en_US.ISO8859-1/books/faq File: book.pdf CWD to . File: +COMMENT (ignored) File: +DESC (ignored) As you can see, book.pdf will have been installed in to /usr/share/doc/en_US.ISO8859-1/books/faq. If you do not want to use the packages then you will have to download the compressed files yourself, uncompress them, and then copy the appropriate documents in to place. For example, the split HTML version of the FAQ, compressed using &man.gzip.1;, can be found in the doc/en_US.ISO8859-1/books/faq/book.html-split.tar.gz file. To download and uncompress that file you would have to do this. &prompt.root; fetch ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/en_US.ISO8859-1/books/faq/book.html-split.tar.gz &prompt.root; gzip -d book.html-split.tar.gz &prompt.root; tar xvf book.html-split.tar You will be left with a collection of .html files. The main one is called index.html, which will contain the table of contents, introductory material, and links to the other parts of the document. You can then copy or move these to their final location as necessary. Where do I find info on the FreeBSD mailing lists? You can find full information in the Handbook entry on mailing-lists. Where do I find the FreeBSD Y2K info? You can find full information in the FreeBSD Y2K page. What FreeBSD news groups are available? You can find full information in the Handbook entry on newsgroups. Are there FreeBSD IRC (Internet Relay Chat) channels? Yes, most major IRC networks host a FreeBSD chat channel: Channel #FreeBSD on EFNet is a FreeBSD forum, but do not go there for tech - support or to try and get folks there to help you avoid + support or try to get folks there to help you avoid the pain of reading man pages or doing your own research. It is a chat channel, first and foremost, and topics there are just as likely to involve sex, sports or nuclear weapons as they are FreeBSD. You Have Been Warned! Available at server irc.chat.org. Channel #FreeBSDhelp on EFNet is a channel dedicated to helping FreeBSD users. They are much more sympathetic to questions then #FreeBSD is. Channel #FreeBSD on DALNET is available at irc.dal.net in the US and irc.eu.dal.net in Europe. Channel #FreeBSD on UNDERNET is available at us.undernet.org in the US and eu.undernet.org in Europe. Since it is a help channel, be prepared to read the documents you are referred to. Channel #FreeBSD on HybNet. This channel is a help channel. A list of servers can be found on the HybNet web site. Each of these channels are distinct and are not connected to each other. Their chat styles also differ, so you may need to try each to find one suited to your chat style. As with all types of IRC traffic, if you are easily offended or cannot deal with lots of young people (and more than a few older ones) doing the verbal equivalent of jello wrestling, do not even bother with it. Where can I get commercial FreeBSD training and support? DaemonNews provides commercial training and support for FreeBSD. More information can be found at their BSD Mall site. The FreeBSD Mall provides commercial FreeBSD support. You can get more information at their web site. Any other organizations providing training and support should contact the project in order to be listed here. Nik Clayton
nik@FreeBSD.org
Installation Which file do I download to get FreeBSD? Prior to release 3.1, you only needed one floppy image to install FreeBSD, namely floppies/boot.flp. However, since release 3.1 the Project has added out-of-the-box support for a wide variety of hardware, which takes up more space. For 3.x and later you need two floppy images: floppies/kernel.flp and floppies/mfsroot.flp. These images need to be copied onto floppies by tools like fdimage or &man.dd.1;. If you need to download the distributions yourself (for a DOS filesystem install, for instance), below are some recommendations for distributions to grab: bin/ manpages/ compat*/ doc/ src/ssys.* Full instructions on this procedure and a little bit more about installation issues in general can be found in the Handbook entry on installing FreeBSD. What do I do if the floppy images does not fit on a single floppy? A 3.5 inch (1.44MB) floppy can accommodate 1474560 bytes of data. The boot image is exactly 1474560 bytes in size. Common mistakes when preparing the boot floppy are: Not downloading the floppy image in binary mode when using FTP. Some FTP clients default their transfer mode to ascii and attempt to change any end-of-line characters received to match the conventions used by the client's system. This will almost invariably corrupt the boot image. Check the size of the downloaded boot image: if it is not exactly that on the server, then the download process is suspect. To workaround: type binary at the FTP command prompt after getting connected to the server and before starting the download of the image. Using the DOS copy command (or equivalent GUI tool) to transfer the boot image to floppy. Programs like copy will not work as the boot image has been created to be booted into directly. The image has the complete content of the floppy, track for track, and is not meant to be placed on the floppy as a regular file. You have to transfer it to the floppy raw, using the low-level tools (e.g. fdimage or rawrite) described in the installation guide to FreeBSD. Where are the instructions for installing FreeBSD? Installation instructions can be found in the Handbook entry on installing FreeBSD. What do I need in order to run FreeBSD? You will need a 386 or better PC, with 5 MB or more of RAM and at least 60 MB of hard disk space. It can run with a low end MDA graphics card but to run X11R6, a VGA or better video card is needed. See also I have only 4 MB of RAM. Can I install FreeBSD? FreeBSD 2.1.7 was the last version of FreeBSD that could be installed on a 4MB system. FreeBSD 2.2 and later needs at least 5MB to install on a new system. All versions of FreeBSD will run in 4MB of RAM, they just cannot run the installation program in 4MB. You can add extra memory for the install process, if you like, and then after the system is up and running, go back to 4MB. Or you could swap your disk into a system which has >4MB, install onto the disk and then swap it back. FreeBSD 2.1.7 will not install with 640 kB base + 3 MB extended memory. If your motherboard can remap some of the lost memory out of the 640kB to 1MB region, then you may still be able to get FreeBSD 2.1.7 up. Try to go into your BIOS setup and look for a remap option. Enable it. You may also have to disable ROM shadowing. It may be easier to get 4 more MB just for the install. Build a custom kernel with only the options you need and then remove the 4MB out. You can also install 2.0.5 and then upgrade your system to 2.1.7 with the upgrade option of the 2.1.7 installation program. After the installation, if you build a custom kernel, it will run in 4 MB. Someone has even successfully booted with 2 MB, although the system was almost unusable. How can I make my own custom install floppy? Currently there is no way to just make a custom install floppy. You have to cut a whole new release, which will include your install floppy. To make a custom release, follow the instructions in the Release Engineering article. Can I have more than one operating system on my PC? Have a look at the multi-OS page. Can Windows 95/98 co-exist with FreeBSD? Install Windows 95/98 first, after that FreeBSD. FreeBSD's boot manager will then manage to boot Win95/98 and FreeBSD. If you install Windows 95/98 second, it will boorishly overwrite your boot manager without even asking. If that happens, see the next section. Windows 95/98 killed my boot manager! How do I get it back? You can reinstall the boot manager FreeBSD comes with in one of three ways: Running DOS, go into the tools/ directory of your FreeBSD distribution and look for bootinst.exe. You run it like so: ...\TOOLS> bootinst.exe boot.bin and the boot manager will be reinstalled. Boot the FreeBSD boot floppy again and go to the Custom installation menu item. Choose Partition. Select the drive which used to contain your boot manager (likely the first one) and when you come to the partition editor for it, as the very first thing (e.g. do not make any changes) select (W)rite. This will ask for confirmation, say yes, and when you get the Boot Manager selection prompt, be sure to select Boot Manager. This will re-write the boot manager to disk. Now quit out of the installation menu and reboot off the hard disk as normal. Boot the FreeBSD boot floppy (or CDROM) and choose the Fixit menu item. Select either the Fixit floppy or CDROM #2 (the live file system option) as appropriate and enter the fixit shell. Then execute the following command: Fixit# fdisk -B -b /boot/boot0 bootdevice substituting bootdevice for your real boot device such as ad0 (first IDE disk), ad4 (first IDE disk on auxiliary controller), da0 (first SCSI disk), etc. My A, T, or X series IBM Thinkpad locks up when I first booted up my FreeBSD installation. How can I solve this? A bug in early revisions of IBM's BIOS on these machines mistakenly identifies the FreeBSD partition as a potential FAT suspend-to-disk partition. When the BIOS tries to parse the FreeBSD partition it hangs. According to IBMIn an e-mail from Keith Frechette kfrechet@us.ibm.com., the following model/BIOS release numbers incorporate the fix. Model BIOS revision T20 IYET49WW or later T21 KZET22WW or later A20p IVET62WW or later A20m IWET54WW or later A21p KYET27WW or later A21m KXET24WW or later A21e KUET30WW It has been reported that later IBM BIOS revisions may have reintroduced the bug. This message from Jacques Vidrine to the &a.mobile; describes a procedure which may work if your newer IBM laptop does not boot FreeBSD properly, and you can upgrade or downgrade the BIOS.. If you have an earlier BIOS, and upgrading is not an option a workaround is to install FreeBSD, change the partition ID FreeBSD uses, and install new boot blocks that can handle the different partition ID. First, you will need to restore the machine to a state where it can get through its self-test screen. Doing this requires powering up the machine without letting it find a FreeBSD partition on its primary disk. One way is to remove the hard disk and temporarily move it to an older ThinkPad (such as a ThinkPad 600) or a desktop PC with an appropriate conversion cable. Once it is there, you can delete the FreeBSD partition and move the hard disk back. The ThinkPad should now be in a bootable state again. With the machine functional again, you can use the workaround procedure described here to get a working FreeBSD installation. Download boot1 and boot2 from http://people.FreeBSD.org/~bmah/ThinkPad/. Put these files somewhere you will be able to retrieve them later. Install FreeBSD as normal on to the ThinkPad. Do not use Dangerously Dedicated mode. Do not reboot when the install has finished. Either switch to the Emergency Holographic Shell (ALT F4) or start a fixit shell. Use &man.fdisk.8; to change the FreeBSD partition ID from 165 to 166 (this is the type used by OpenBSD). Bring the boot1 and boot2 files to the local filesystem. Use &man.disklabel.8; to write boot1 and boot2 to your FreeBSD slice. &prompt.root; disklabel -B -b boot1 -s boot2 ad0sn n is the number of the slice where you installed FreeBSD. Reboot. At the boot prompt you will be given the option of booting OpenBSD. This will actually boot FreeBSD. Getting this to work in the case where you want to dual boot OpenBSD and FreeBSD on the same laptop is left as an exercise for the reader. Can I install on a disk with bad blocks? Prior to 3.0, FreeBSD included a utility known as bad144, which automatically remapped bad blocks. Because modern IDE drives perform this function themselves, bad144 has been removed from the FreeBSD source tree. If you wish to install FreeBSD 3.0 or later, we strongly suggest you purchase a newer disk drive. If you do not wish to do this, you must run FreeBSD 2.x. If you are seeing bad block errors with a modern IDE drive, chances are the drive is going to die very soon (the drive's internal remapping functions are no longer sufficient to fix the bad blocks, which means the disk is heavily corrupted); we suggest you buy a new hard drive. If you have a SCSI drive with bad blocks, see this answer. I have just upgraded from 3.X to 4.X, and my first boot failed with bad sector table not supported FreeBSD 3.X and earlier supported bad144, which automatically remapped bad blocks. FreeBSD 4.X and later do not support this, as modern IDE drives include this functionality. See this question for more information. To fix this after an upgrade, you need to physically place the drive in a working system and use &man.disklabel.8; as discussed in the following questions. How do I tell if a drive has bad144 information on it before I try to upgrade to FreeBSD 4.0 and it fails? Use &man.disklabel.8; for this. disklabel -r drive device will give you the contents of your disk label. Look for a flags field. If you see flags: badsect, this drive is using bad144. For example, the following drive has bad144 enabled.: &prompt.root; disklabel -r wd0 # /dev/rwd0c: type: ESDI disk: wd0s1 label: flags: badsect bytes/sector: 512 sectors/track: 63 How do I remove bad144 from my pre-4.X system so I can upgrade safely? Use disklabel -e -rwd0 to edit the disklabel in place. Just remove the word badsect from the flags field, save, and exit. The bad144 file will still take up some space on your drive, but the disk itself will be usable. We still recommend you purchase a new disk if you have a large number of bad blocks. Strange things happen when I boot the install floppy! What is happening? If you are seeing things like the machine grinding to a halt or spontaneously rebooting when you try to boot the install floppy, here are three questions to ask yourself:- Did you use a new, freshly-formatted, error-free floppy (preferably a brand-new one straight out of the box, as opposed to the magazine cover disk that has been lying under the bed for the last three years)? Did you download the floppy image in binary (or image) mode? (do not be embarrassed, even the best of us have accidentally downloaded a binary file in ASCII mode at least once!) If you are using Windows95 or Win98 did you run fdimage or rawrite in pure DOS mode? These operating systems can interfere with programs that write directly to hardware, which the disk creation program does; even running it inside a DOS shell in the GUI can cause this problem. There have also been reports of Netscape causing problems when downloading the boot floppy, so it is probably best to use a different FTP client if you can. I booted from my ATAPI CDROM, but the install program says no CDROM is found. Where did it go? The usual cause of this problem is a mis-configured CDROM drive. Many PCs now ship with the CDROM as the slave device on the secondary IDE controller, with no master device on that controller. This is illegal according to the ATAPI specification, but Windows plays fast and loose with the specification, and the BIOS ignores it when booting. This is why the BIOS was able to see the CDROM to boot from it, but why FreeBSD cannot see it to complete the install. Reconfigure your system so that the CDROM is either the master device on the IDE controller it is attached to, or make sure that it is the slave on an IDE controller that also has a master device. Why can I not install from tape? If you are installing 2.1.7R from tape, you must create the tape using a tar blocksize of 10 (5120 bytes). The default tar blocksize is 20 (10240 bytes), and tapes created using this default size cannot be used to install 2.1.7R; with these tapes, you will get an error that complains about the record size being too big. Can I install on my laptop over PLIP (Parallel Line IP)? Yes. Use a standard Laplink cable. If necessary, you can check out the PLIP section of the Handbook for details on parallel port networking. If you are running FreeBSD 3.X or earlier, also look at the Mobile Computing page. Which geometry should I use for a disk drive? By the geometry of a disk, we mean the number of cylinders, heads and sectors/track on a disk. We will refer to this as C/H/S for convenience. This is how the PC's BIOS works out which area on a disk to read/write from. This causes a lot of confusion among new system administrators. First of all, the physical geometry of a SCSI drive is totally irrelevant, as FreeBSD works in term of disk blocks. In fact, there is no such thing as the physical geometry, as the sector density varies across the disk. What manufacturers claim is the physical geometry is usually the geometry that they have determined wastes the least space. For IDE disks, FreeBSD does work in terms of C/H/S, but all modern drives internally convert this into block references. All that matters is the logical geometry. This is the answer that the BIOS gets when it asks the drive what is your geometry? It then uses this geometry to access the disk. As FreeBSD uses the BIOS when booting, it is very important to get this right. In particular, if you have more than one operating system on a disk, they must all agree on the geometry. Otherwise you will have serious problems booting! For SCSI disks, the geometry to use depends on whether extended translation support is turned on in your controller (this is often referred to as support for DOS disks >1GB or something similar). If it is turned off, then use N cylinders, 64 heads and 32 sectors/track, where N is the capacity of the disk in MB. For example, a 2GB disk should pretend to have 2048 cylinders, 64 heads and 32 sectors/track. If it is turned on (it is often supplied this way to get around certain limitations in MSDOS) and the disk capacity is more than 1GB, use M cylinders, 63 sectors per track (not 64), and 255 heads, where 'M' is the disk capacity in MB divided by 7.844238 (!). So our example 2GB drive would have 261 cylinders, 63 sectors per track and 255 heads. If you are not sure about this, or FreeBSD fails to detect the geometry correctly during installation, the simplest way around this is usually to create a small DOS partition on the disk. The BIOS should then detect the correct geometry, and you can always remove the DOS partition in the partition editor if you do not want to keep it. You might want to leave it around for programming network cards and the like, however. Alternatively, there is a freely available utility distributed with FreeBSD called pfdisk.exe. You can find it in the tools subdirectory on the FreeBSD CDROM or on the various FreeBSD FTP sites. This program can be used to work out what geometry the other operating systems on the disk are using. You can then enter this geometry in the partition editor. Are there any restrictions on how I divide the disk up? Yes. You must make sure that your root partition is below 1024 cylinders so the BIOS can boot the kernel from it. (Note that this is a limitation in the PC's BIOS, not FreeBSD). For a SCSI drive, this will normally imply that the root partition will be in the first 1024MB (or in the first 4096MB if extended translation is turned on - see previous question). For IDE, the corresponding figure is 504MB. Is FreeBSD compatible with any disk managers? FreeBSD recognizes the Ontrack Disk Manager and makes allowances for it. Other disk managers are not supported. If you just want to use the disk with FreeBSD you do not need a disk manager. Just configure the disk for as much space as the BIOS can deal with (usually 504 megabytes), and FreeBSD should figure out how much space you really have. If you are using an old disk with an MFM controller, you may need to explicitly tell FreeBSD how many cylinders to use. If you want to use the disk with FreeBSD and another operating system, you may be able to do without a disk manager: just make sure the FreeBSD boot partition and the slice for the other operating system are in the first 1024 cylinders. If you are reasonably careful, a 20 megabyte boot partition should be plenty. When I boot FreeBSD I get Missing Operating System. What is happening? This is classically a case of FreeBSD and DOS or some other OS conflicting over their ideas of disk geometry. You will have to reinstall FreeBSD, but obeying the instructions given above will almost always get you going. Why can I not get past the boot manager's F? prompt? This is another symptom of the problem described in the preceding question. Your BIOS geometry and FreeBSD geometry settings do not agree! If your controller or BIOS supports cylinder translation (often marked as >1GB drive support), try toggling its setting and reinstalling FreeBSD. Do I need to install the complete sources? In general, no. However, we would strongly recommend that you install, at a minimum, the base source kit, which includes several of the files mentioned here, and the sys (kernel) source kit, which includes sources for the kernel. There is nothing in the system which requires the presence of the sources to operate, however, except for the kernel-configuration program &man.config.8;. With the exception of the kernel sources, our build structure is set up so that you can read-only mount the sources from elsewhere via NFS and still be able to make new binaries. (Because of the kernel-source restriction, we recommend that you not mount this on /usr/src directly, but rather in some other location with appropriate symbolic links to duplicate the top-level structure of the source tree.) Having the sources on-line and knowing how to build a system with them will make it much easier for you to upgrade to future releases of FreeBSD. To actually select a subset of the sources, use the Custom menu item when you are in the Distributions menu of the system installation tool. Do I need to build a kernel? Building a new kernel was originally pretty much a required step in a FreeBSD installation, but more recent releases have benefited from the introduction of a much friendlier kernel configuration tool. When at the FreeBSD boot prompt (boot:), use the flag and you will be dropped into a visual configuration screen which allows you to configure the kernel's settings for most common ISA cards. It is still recommended that you eventually build a new kernel containing just the drivers that you need, just to save a bit of RAM, but it is no longer a strict requirement for most systems. Should I use DES passwords, or MD5, and how do I specify which form my users receive? The default password format on FreeBSD is to use MD5-based passwords. These are believed to be more secure than the traditional Unix password format, which used a scheme based on the DES algorithm. DES passwords are still available if you need to share your password file with legacy operating systems which still use the less secure password format (they are available if you choose to install the crypto distribution in sysinstall, or by installing the crypto sources if building from source). Which password format to use for new passwords is controlled by the passwd_format login capability in /etc/login.conf, which takes values of either des (if available) or md5. See the &man.login.conf.5; manual page for more information about login capabilities. Why does the boot floppy start, but hang at the Probing Devices... screen? If you have a IDE Zip or Jaz drive installed, remove it and try again. The boot floppy can get confused by the drives. After the system is installed you can reconnect the drive. Hopefully this will be fixed in a later release. Why do I get a panic: can't mount root error when rebooting the system after installation? This error comes from confusion between the boot block's and the kernel's understanding of the disk devices. The error usually manifests on two-disk IDE systems, with the hard disks arranged as the master or single device on separate IDE controllers, with FreeBSD installed on the secondary IDE controller. The boot blocks think the system is installed on wd1 (the second BIOS disk) while the kernel assigns the first disk on the secondary controller device wd2. After the device probing, the kernel tries to mount what the boot blocks think is the boot disk, wd1, while it is really wd2, and fails. To fix the problem, do one of the following: For FreeBSD 3.3 and later, reboot the system and hit Enter at the Booting kernel in 10 seconds; hit [Enter] to interrupt prompt. This will drop you into the boot loader. Then type set root_disk_unit="disk_number" . disk_number will be 0 if FreeBSD is installed on the master drive on the first IDE controller, 1 if it is installed on the slave on the first IDE controller, 2 if it is installed on the master of the second IDE controller, and 3 if it is installed on the slave of the second IDE controller. Then type boot, and your system should boot correctly. To make this change permanent (ie so you do not have to do this every time you reboot or turn on your FreeBSD machine), put the line root_disk_unit="disk_number" in /boot/loader.conf.local . If using FreeBSD 3.2 or earlier, at the Boot: prompt, enter 1:wd(2,a)kernel and press Enter. If the system starts, then run the command echo "1:wd(2,a)kernel" > /boot.config to make it the default boot string. Move the FreeBSD disk onto the primary IDE controller, so the hard disks are consecutive. Rebuild your kernel, modify the wd configuration lines to read: controller wdc0 at isa? port "IO_WD1" bio irq 14 vector wdintr disk wd0 at wdc0 drive 0 # disk wd1 at wdc0 drive 1 # comment out this line controller wdc1 at isa? port "IO_WD2" bio irq 15 vector wdintr disk wd1 at wdc1 drive 0 # change from wd2 to wd1 disk wd2 at wdc1 drive 1 # change from wd3 to wd2 Install the new kernel. If you moved your disks and wish to restore the previous configuration, replace the disks in the desired configuration and reboot. Your system should boot successfully. What are the limits for memory? For memory, the limit is 4 gigabytes. This configuration has been tested, see wcarchive's configuration for more details. If you plan to install this much memory into a machine, you need to be careful. You will probably want to use ECC memory and to reduce capacitive loading use 9 chip memory modules versus 18 chip memory modules. What are the limits for ffs filesystems? For ffs filesystems, the maximum theoretical limit is 8 terabytes (2G blocks), or 16TB for the default block size of 8K. In practice, there is a soft limit of 1 terabyte, but with modifications filesystems with 4 terabytes are possible (and exist). The maximum size of a single ffs file is approximately 1G blocks (4TB) if the block size is 4K. Maximum file sizes fs block size 2.2.7-stable 3.0-current works should work 4K 4T-1 4T-1 4T-1 >4T 8K >32G 8T-1 >32G 32T-1 16K >128G 16T-1 >128G 32T-1 32K >512G 32T-1 >512G 64T-1 64K >2048G 64T-1 >2048G 128T-1
When the fs block size is 4K, triple indirect blocks work and everything should be limited by the maximum fs block number that can be represented using triple indirect blocks (approx. 1K^3 + 1K^2 + 1K), but everything is limited by a (wrong) limit of 1G-1 on fs block numbers. The limit on fs block numbers should be 2G-1. There are some bugs for fs block numbers near 2G-1, but such block numbers are unreachable when the fs block size is 4K. For block sizes of 8K and larger, everything should be limited by the 2G-1 limit on fs block numbers, but is actually limited by the 1G-1 limit on fs block numbers, except under -STABLE triple indirect blocks are unreachable, so the limit is the maximum fs block number that can be represented using double indirect blocks (approx. (blocksize/4)^2 + (blocksize/4)), and under -CURRENT exceeding this limit may cause problems. Using the correct limit of 2G-1 blocks does cause problems.
Why do I get an error message, archsw.readin.failed after compiling and booting a new kernel? You can boot by specifying the kernel directly at the second stage, pressing any key when the | shows up before loader is started. More specifically, you have upgraded the source for your kernel, and installed a new kernel builtin from them without making world. This is not supported. Make world. How do I upgrade from 3.X -> 4.X? We strongly recommend that you use binary snapshots to do this. 4-STABLE snapshots are available at ftp://releng4.FreeBSD.org/. Because of the many changes between 3.X and 4-STABLE, a direct upgrade from source will probably fail. A source upgrade can be done, but only in stages. First, upgrade to the latest 3-STABLE (RELENG_3). Then upgrade to 4.1.1-RELEASE (RELENG_4_1_1_RELEASE). Finally, upgrade to 4-STABLE (RELENG_4). If you wish to upgrade using source, please see the FreeBSD Handbook for more information. Upgrading via source is never recommended for new users, and upgrading from 3.X to 4.X is even less so; make sure you have read the instructions carefully before attempting to upgrade via source. What are these security profiles? A security profile is a set of configuration options that attempts to achieve the desired ratio of security to convenience by enabling and disabling certain programs and other settings. For full details, see the Security Profile section of the Handbook's post-install chapter.
Hardware compatibility Does FreeBSD support architectures other than the x86? Yes. FreeBSD currently runs on both Intel x86 and DEC (now Compaq) Alpha architectures. Interest has also been expressed in a port of FreeBSD to the SPARC architecture, join the &a.sparc; if you are interested in joining that project. Most recent additions to the list of upcoming platforms are IA-64 and PowerPC, join the &a.ia64; and/or the &a.ppc; for more information. For general discussion on new architectures, join the &a.platforms;. If your machine has a different architecture and you need something right now, we suggest you look at NetBSD or OpenBSD. I want to get a piece of hardware for my FreeBSD system. Which model/brand/type is best? This is discussed continually on the FreeBSD mailing lists. Since hardware changes so quickly, however, we expect this. We still strongly recommend that you read through the Hardware Notes and search the mailing list archives before asking about the latest and greatest hardware. Chances are a discussion about the type of hardware you are looking for took place just last week. If you are looking for a laptop, check the FreeBSD-mobile mailing list archives. Otherwise, you probably want the archives for FreeBSD-questions, or possibly a specific mailing list for a particular hardware type. What kind of hard drives does FreeBSD support? FreeBSD supports EIDE and SCSI drives (with a compatible controller; see the next section), and all drives using the original Western Digital interface (MFM, RLL, ESDI, and of course IDE). A few ESDI controllers that use proprietary interfaces may not work: stick to WD1002/3/6/7 interfaces and clones. Which SCSI controllers are supported? See the complete list in the current Hardware Notes. Which CDROM drives are supported by FreeBSD? Any SCSI drive connected to a supported controller is supported. The following proprietary CDROM interfaces are also supported: Mitsumi LU002 (8bit), LU005 (16bit) and FX001D (16bit 2x Speed). Sony CDU 31/33A Sound Blaster Non-SCSI CDROM Matsushita/Panasonic CDROM ATAPI compatible IDE CDROMs All non-SCSI cards are known to be extremely slow compared to SCSI drives, and some ATAPI CDROMs may not work. As of 2.2 the FreeBSD CDROM from the FreeBSD Mall supports booting directly from the CD. Which CD-RW drives are supported by FreeBSD? FreeBSD supports any ATAPI-compatible IDE CD-R or CD-RW drive. For FreeBSD versions 4.0 and later, see the man page for &man.burncd.8;. For earlier FreeBSD versions, see the examples in /usr/share/examples/atapi. FreeBSD also supports any SCSI CD-R or CD-RW drives. Install and use the cdrecord command from the ports or packages system, and make sure that you have the pass device compiled in your kernel. Does FreeBSD support ZIP drives? FreeBSD supports the SCSI ZIP drive out of the box, of course. The ZIP drive can only be set to run at SCSI target IDs 5 or 6, but if your SCSI host adapter's BIOS supports it you can even boot from it. It is not clear which host adapters support booting from targets other than 0 or 1, so you will have to consult your adapter's documentation if you would like to use this feature. ATAPI (IDE) Zip drives are supported in FreeBSD 2.2.6 and later releases. FreeBSD has contained support for Parallel Port Zip Drives since version 3.0. If you are using a sufficiently up to date version, then you should check that your kernel contains the scbus0, da0, ppbus0, and vp0 drivers (the GENERIC kernel contains everything except vp0). With all these drivers present, the Parallel Port drive should be available as /dev/da0s4. Disks can be mounted using mount /dev/da0s4 /mnt OR (for dos disks) mount_msdos /dev/da0s4 /mnt as appropriate. Also check out the FAQ on removable drives later in this chapter, and the note on formattingin the Administration chapter. Does FreeBSD support JAZ, EZ and other removable drives? Apart from the IDE version of the EZ drive, these are all SCSI devices, so they should all look like SCSI disks to FreeBSD, and the IDE EZ should look like an IDE drive. I am not sure how well FreeBSD supports changing the media out while running. You will of course need to dismount the drive before swapping media, and make sure that any external units are powered on when you boot the system so FreeBSD can see them. See this note on formatting. Which multi-port serial cards are supported by FreeBSD? There is a list of these in the Miscellaneous devices section of the handbook. Some unnamed clone cards have also been known to work, especially those that claim to be AST compatible. Check the &man.sio.4; man page to get more information on configuring such cards. Does FreeBSD support my USB keyboard? USB device support was added to FreeBSD 3.1. However, it is still in preliminary state and may not always work as of version 3.2. If you want to experiment with the USB keyboard support, follow the procedure described below. Use FreeBSD 3.2 or later. Add the following lines to your kernel configuration file, and rebuild the kernel. device uhci device ohci device usb device ukbd options KBD_INSTALL_CDEV In versions of FreeBSD before 4.0, use this instead: controller uhci0 controller ohci0 controller usb0 controller ukbd0 options KBD_INSTALL_CDEV Go to the /dev directory and create device nodes as follows: &prompt.root; cd /dev &prompt.root; ./MAKEDEV kbd0 kbd1 Edit /etc/rc.conf and add the following lines: usbd_enable="YES" usbd_flags="" After the system is rebooted, the AT keyboard becomes /dev/kbd0 and the USB keyboard becomes /dev/kbd1, if both are connected to the system. If there is the USB keyboard only, it will be /dev/ukbd0. If you want to use the USB keyboard in the console, you have to explicitly tell the console driver to use the existing USB keyboard. This can be done by running the following command as a part of system initialization. &prompt.root; kbdcontrol -k /dev/kbd1 < /dev/ttyv0 > /dev/null Note that if the USB keyboard is the only keyboard, it is accessed as /dev/kbd0, thus, the command should look like: &prompt.root; kbdcontrol -k /dev/kbd0 < /dev/ttyv0 > /dev/null /etc/rc.i386 is a good place to add the above command. Once this is done, the USB keyboard should work in the X environment as well without any special settings. Hot-plugging and unplugging of the USB keyboard may not work quite right yet. It is a good idea to connect the keyboard before you start the system and leave it connected until the system is shutdown to avoid troubles. See the &man.ukbd.4; man page for more information. I have an unusual bus mouse. How do I set it up? FreeBSD supports the bus mouse and the InPort bus mouse from such manufactures as Microsoft, Logitech and ATI. The bus device driver is compiled in the GENERIC kernel by default in FreeBSD versions 2.X, but not included in version 3.0 or later. If you are building a custom kernel with the bus mouse driver, make sure to add the following line to the kernel config file In FreeBSD 3.0 or before, add: device mse0 at isa? port 0x23c tty irq5 vector mseintr In FreeBSD 3.X, the line should be: device mse0 at isa? port 0x23c tty irq5 And in FreeBSD 4.X and later, the line should read: device mse0 at isa? port 0x23c irq5 Bus mice usually comes with dedicated interface cards. These cards may allow you to set the port address and the IRQ number other than shown above. Refer to the manual of your mouse and the &man.mse.4; man page for more information. How do I use my PS/2 (mouse port or keyboard) mouse? If you are running a post-2.2.5 version of FreeBSD, the necessary driver, psm, is included and enabled in the kernel. The kernel should detect your PS/2 mouse at boot time. If you are running a previous but relatively recent version of FreeBSD (2.1.x or better) then you can simply enable it in the kernel configuration menu at installation time, otherwise later with at the boot: prompt. It is disabled by default, so you will need to enable it explicitly. If you are running an older version of FreeBSD then you will have to add the following lines to your kernel configuration file and compile a new kernel. In FreeBSD 3.0 or earlier, the line should be: device psm0 at isa? port "IO_KBD" conflicts tty irq 12 vector psmintr In FreeBSD 3.1 or later, the line should be: device psm0 at isa? tty irq 12 In FreeBSD 4.0 or later, the line should be: device psm0 at atkbdc? irq 12 See the Handbook entry on configuring the kernel if you have no experience with building kernels. Once you have a kernel detecting psm0 correctly at boot time, make sure that an entry for psm0 exists in /dev. You can do this by typing: &prompt.root; cd /dev; sh MAKEDEV psm0 when logged in as root. Is it possible to make use of a mouse in any way outside the X Window system? If you are using the default console driver, syscons, you can use a mouse pointer in text consoles to cut & paste text. Run the mouse daemon, moused, and turn on the mouse pointer in the virtual console: &prompt.root; moused -p /dev/xxxx -t yyyy &prompt.root; vidcontrol -m on Where xxxx is the mouse device name and yyyy is a protocol type for the mouse. See the &man.moused.8; man page for supported protocol types. You may wish to run the mouse daemon automatically when the system starts. In version 2.2.1, set the following variables in /etc/sysconfig. mousedtype="yyyy" mousedport="xxxx" mousedflags="" In versions 2.2.2 to 3.0, set the following variables in /etc/rc.conf. moused_type="yyyy" moused_port="xxxx" moused_flags="" In 3.1 and later, assuming you have a PS/2 mouse, all you need to is add moused_enable="YES" to /etc/rc.conf. In addition, if you would like to be able to use the mouse daemon on all virtual terminals instead of just console at boot-time, add the following to /etc/rc.conf. allscreens_flags="-m on" Staring from FreeBSD 2.2.6, the mouse daemon is capable of determining the correct protocol type automatically unless the mouse is a relatively old serial mouse model. Specify auto the protocol to invoke automatic detection. When the mouse daemon is running, access to the mouse needs to be coordinated between the mouse daemon and other programs such as the X Window. Refer to another section on this issue. How do I cut and paste text with mouse in the text console? Once you get the mouse daemon running (see previous section), hold down the button 1 (left button) and move the mouse to select a region of text. Then, press the button 2 (middle button) or the button 3 (right button) to paste it at the text cursor. In versions 2.2.6 and later, pressing the button 2 will paste the text. Pressing the button 3 will extend the selected region of text. If your mouse does not have the middle button, you may wish to emulate it or remap buttons using moused options. See the &man.moused.8; man page for details. Does FreeBSD support any USB mice? Preliminary USB device support was added to FreeBSD 3.1. It did not always work through early versions of 3.X. As of FreeBSD 4.0, USB devices should work out of the box. If you want to experiment with the USB mouse support under FreeBSD 3.X, follow the procedure described below. Use FreeBSD 3.2 or later. Add the following lines to your kernel configuration file, and rebuild the kernel. device uhci device ohci device usb device ums In versions of FreeBSD before 4.0, use this instead: controller uhci0 controller ohci0 controller usb0 device ums0 Go to the /dev directory and create a device node as follows: &prompt.root; cd /dev &prompt.root; ./MAKEDEV ums0 Edit /etc/rc.conf and add the following lines: moused_enable="YES" moused_type="auto" moused_port="/dev/ums0" moused_flags="" usbd_enable="YES" usbd_flags="" See the previous section for more detailed discussion on moused. In order to use the USB mouse in the X session, edit XF86Config. If you are using XFree86 3.3.2 or later, be sure to have the following lines in the Pointer section: Device "/dev/sysmouse" Protocol "Auto" If you are using earlier versions of XFree86, be sure to have the following lines in the Pointer section: Device "/dev/sysmouse" Protocol "SysMouse" Refer to another section on the mouse support in the X environment. Hot-plugging and unplugging of the USB mouse may not work quite right yet. It is a good idea connect the mouse before you start the system and leave it connected until the system is shutdown to avoid trouble. My mouse has a fancy wheel and buttons. Can I use them in FreeBSD? The answer is, unfortunately, It depends. These mice with additional features require specialized driver in most cases. Unless the mouse device driver or the user program has specific support for the mouse, it will act just like a standard two, or three button mouse. For the possible usage of wheels in the X Window environment, refer to that section. Why does my wheel-equipped PS/2 mouse cause my mouse cursor to jump around the screen? The PS/2 mouse driver psm in FreeBSD versions 3.2 or earlier has difficulty with some wheel mice, including Logitech model M-S48 and its OEM siblings. Apply the following patch to /sys/i386/isa/psm.c and rebuild the kernel. Index: psm.c =================================================================== RCS file: /src/CVS/src/sys/i386/isa/Attic/psm.c,v retrieving revision 1.60.2.1 retrieving revision 1.60.2.2 diff -u -r1.60.2.1 -r1.60.2.2 --- psm.c 1999/06/03 12:41:13 1.60.2.1 +++ psm.c 1999/07/12 13:40:52 1.60.2.2 @@ -959,14 +959,28 @@ sc->mode.packetsize = vendortype[i].packetsize; /* set mouse parameters */ +#if 0 + /* + * A version of Logitech FirstMouse+ won't report wheel movement, + * if SET_DEFAULTS is sent... Don't use this command. + * This fix was found by Takashi Nishida. + */ i = send_aux_command(sc->kbdc, PSMC_SET_DEFAULTS); if (verbose >= 2) printf("psm%d: SET_DEFAULTS return code:%04x\n", unit, i); +#endif if (sc->config & PSM_CONFIG_RESOLUTION) { sc->mode.resolution = set_mouse_resolution(sc->kbdc, - (sc->config & PSM_CONFIG_RESOLUTION) - 1); + (sc->config & PSM_CONFIG_RESOLUTION) - 1); + } else if (sc->mode.resolution >= 0) { + sc->mode.resolution + = set_mouse_resolution(sc->kbdc, sc->dflt_mode.resolution); + } + if (sc->mode.rate > 0) { + sc->mode.rate = set_mouse_sampling_rate(sc->kbdc, sc->dflt_mode.rate); } + set_mouse_scaling(sc->kbdc, 1); /* request a data packet and extract sync. bits */ if (get_mouse_status(sc->kbdc, stat, 1, 3) < 3) { Versions later than 3.2 should be all right. How do I use the mouse/trackball/touchpad on my laptop? Please refer to the answer to the previous question. Also check out the Mobile Computing page. What types of tape drives are supported? FreeBSD supports SCSI and QIC-36 (with a QIC-02 interface). This includes 8-mm (aka Exabyte) and DAT drives. Some of the early 8-mm drives are not quite compatible with SCSI-2, and may not work well with FreeBSD. Does FreeBSD support tape changers? FreeBSD 2.2 supports SCSI changers using the &man.ch.4; device and the &man.chio.1; command. The details of how you actually control the changer can be found in the &man.chio.1; man page. If you are not using AMANDA or some other product that already understands changers, remember that they only know how to move a tape from one point to another, so you need to keep track of which slot a tape is in, and which slot the tape currently in the drive needs to go back to. Which sound cards are supported by FreeBSD? FreeBSD supports the SoundBlaster, SoundBlaster Pro, SoundBlaster 16, Pro Audio Spectrum 16, AdLib and Gravis UltraSound sound cards. There is also limited support for MPU-401 and compatible MIDI cards. Cards conforming to the Microsoft Sound System specification are also supported through the pcm driver. This is only for sound! This driver does not support CDROMs, SCSI or joysticks on these cards, except for the SoundBlaster. The SoundBlaster SCSI interface and some non-SCSI CDROMs are supported, but you cannot boot off this device. Workarounds for no sound from es1370 with pcm driver? You can run the following command every time the machine booted up: &prompt.root; mixer pcm 100 vol 100 cd 100 Which network cards does FreeBSD support? See the Ethernet cards section of the handbook for a more complete list. I do not have a math co-processor - is that bad? This will only affect 386/486SX/486SLC owners - other machines will have one built into the CPU. In general this will not cause any problems, but there are circumstances where you will take a hit, either in performance or accuracy of the math emulation code (see the section on FP emulation). In particular, drawing arcs in X will be VERY slow. It is highly recommended that you buy a math co-processor; it is well worth it. Some math co-processors are better than others. It pains us to say it, but nobody ever got fired for buying Intel. Unless you are sure it works with FreeBSD, beware of clones. What other devices does FreeBSD support? See the Handbook for the list of other devices supported. Does FreeBSD support power management on my laptop? FreeBSD supports APM on certain machines. Please look in the LINT kernel config file, searching for the APM keyword. Further information can be found in &man.apm.4;. Why does my Micron system hang at boot time? Certain Micron motherboards have a non-conforming PCI BIOS implementation that causes grief when FreeBSD boots because PCI devices do not get configured at their reported addresses. Disable the Plug and Play Operating System flag in the BIOS to work around this problem. More information can be found at http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html#micron Why does FreeBSD not recognize my Adaptec SCSI controller card? The newer AIC789x series Adaptec chips are supported under the CAM SCSI framework which made its debut in 3.0. Patches against 2.2-STABLE are in ftp://ftp.FreeBSD.org/pub/FreeBSD/development/cam/. A CAM-enhanced boot floppy is available at http://people.FreeBSD.org/~abial/cam-boot/. In both cases read the README before beginning. Why is FreeBSD not finding my internal Plug & Play modem? You will need to add the modem's PnP ID to the PnP ID list in the serial driver. To enable Plug & Play support, compile a new kernel with controller pnp0 in the configuration file, then reboot the system. The kernel will print the PnP IDs of all the devices it finds. Copy the PnP ID from the modem to the table in /sys/i386/isa/sio.c, at about line 2777. Look for the string SUP1310 in the structure siopnp_ids[] to find the table. Build the kernel again, install, reboot, and your modem should be found. You may have to manually configure the PnP devices using the pnp command in the boot-time configuration with a command like pnp 1 0 enable os irq0 3 drq0 0 port0 0x2f8 to make the modem show. Does FreeBSD support software modems, such as Winmodems? FreeBSD supports many software modems via add-on software. The comms/ltmdm port adds support for modems based on the very popular Lucent LT chipset. The comms/mwavem port supports the modem in IBM Thinkpad 600 and 700 laptops. You cannot install FreeBSD via a software modem; this software must be installed after the OS is installed. How do I get the boot: prompt to show on the serial console? Build a kernel with options COMCONSOLE. Create /boot.config and place as the only text in the file. Unplug the keyboard from the system. See /usr/src/sys/i386/boot/biosboot/README.serial for information. Why does my 3Com PCI network card not work with my Micron computer? Certain Micron motherboards have a non-conforming PCI BIOS implementation that does not configure PCI devices at the addresses reported. This causes grief when FreeBSD boots. To work around this problem, disable the Plug and Play Operating System flag in the BIOS. More information on this problem is available at URL: http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html#micron Does FreeBSD support Symmetric Multiprocessing (SMP)? SMP is supported in 3.0-STABLE and later releases only. SMP is not enabled in the GENERIC kernel, so you will have to recompile your kernel to enable SMP. Take a look at /sys/i386/conf/LINT to figure out what options to put in your kernel config file. The boot floppy hangs on a system with an ASUS K7V motherboard. How do I fix this? Go in to the BIOS setup and disable the boot virus protection. Troubleshooting What do I do when I have bad blocks on my hard drive? With SCSI drives, the drive should be capable of re-mapping these automatically. However, many drives are shipped with this feature disabled, for some mysterious reason... To enable this, you will need to edit the first device page mode, which can be done on FreeBSD by giving the command (as root) &prompt.root; scsi -f /dev/rsd0c -m 1 -e -P 3 and changing the values of AWRE and ARRE from 0 to 1:- AWRE (Auto Write Reallocation Enbld): 1 ARRE (Auto Read Reallocation Enbld): 1 The following paragraphs were submitted by Ted Mittelstaedt tedm@toybox.placo.com: For IDE drives, any bad block is usually a sign of potential trouble. All modern IDE drives come with internal bad-block remapping turned on. All IDE hard drive manufacturers today offer extensive warranties and will replace drives with bad blocks on them. If you still want to attempt to rescue an IDE drive with bad blocks, you can attempt to download the IDE drive manufacturer's IDE diagnostic program, and run this against the drive. Sometimes these programs can be set to force the drive electronics to rescan the drive for bad blocks and lock them out. For ESDI, RLL and MFM drives, bad blocks are a normal part of the drive and are no sign of trouble, generally. With a PC, the disk drive controller card and BIOS handle the task of locking out bad sectors. This is fine for operating systems like DOS that use BIOS code to access the disk. However, FreeBSD's disk driver does not go through BIOS, therefore a mechanism, bad144, exists that replaces this functionality. bad144 only works with the wd driver (which means it is not supported in FreeBSD 4.0), it is NOT able to be used with SCSI. bad144 works by entering all bad sectors found into a special file. One caveat with bad144 - the bad block special file is placed on the last track of the disk. As this file may possibly contain a listing for a bad sector that would occur near the beginning of the disk, where the /kernel file might be located, it therefore must be accessible to the bootstrap program that uses BIOS calls to read the kernel file. This means that the disk with bad144 used on it must not exceed 1024 cylinders, 16 heads, and 63 sectors. This places an effective limit of 500MB on a disk that is mapped with bad144. To use bad144, simply set the Bad Block scanning to ON in the FreeBSD fdisk screen during the initial install. This works up through FreeBSD 2.2.7. The disk must have less than 1024 cylinders. It is generally recommended that the disk drive has been in operation for at least 4 hours prior to this to allow for thermal expansion and track wandering. If the disk has more than 1024 cylinders (such as a large ESDI drive) the ESDI controller uses a special translation mode to make it work under DOS. The wd driver understands about these translation modes, IF you enter the translated geometry with the set geometry command in fdisk. You must also NOT use the dangerously dedicated mode of creating the FreeBSD partition, as this ignores the geometry. Also, even though fdisk will use your overridden geometry, it still knows the true size of the disk, and will attempt to create a too large FreeBSD partition. If the disk geometry is changed to the translated geometry, the partition MUST be manually created with the number of blocks. A quick trick to use is to set up the large ESDI disk with the ESDI controller, boot it with a DOS disk and format it with a DOS partition. Then, boot the FreeBSD install and in the fdisk screen, read off and write down the blocksize and block numbers for the DOS partition. Then, reset the geometry to the same that DOS uses, delete the DOS partition, and create a cooperative FreeBSD partition using the blocksize you recorded earlier. Then, set the partition bootable and turn on bad block scanning. During the actual install, bad144 will run first, before any filesystems are created. (you can view this with an Alt-F2) If it has any trouble creating the badsector file, you have set too large a disk geometry - reboot the system and start all over again (including repartitioning and reformatting with DOS). If remapping is enabled and you are seeing bad blocks, consider replacing the drive. The bad blocks will only get worse as time goes on. Why does FreeBSD not recognize my Bustek 742a EISA SCSI controller? This info is specific to the 742a but may also cover other Buslogic cards. (Bustek = Buslogic) There are 2 general versions of the 742a card. They are hardware revisions A-G, and revisions H - onwards. The revision letter is located after the Assembly number on the edge of the card. The 742a has 2 ROM chips on it, one is the BIOS chip and the other is the Firmware chip. FreeBSD does not care what version of BIOS chip you have but it does care about what version of firmware chip. Buslogic will send upgrade ROMs out if you call their tech support dept. The BIOS and Firmware chips are shipped as a matched pair. You must have the most current Firmware ROM in your adapter card for your hardware revision. The REV A-G cards can only accept BIOS/Firmware sets up to 2.41/2.21. The REV H- up cards can accept the most current BIOS/Firmware sets of 4.70/3.37. The difference between the firmware sets is that the 3.37 firmware supports round robin The Buslogic cards also have a serial number on them. If you have a old hardware revision card you can call the Buslogic RMA department and give them the serial number and attempt to exchange the card for a newer hardware revision. If the card is young enough they will do so. FreeBSD 2.1 only supports Firmware revisions 2.21 onward. If you have a Firmware revision older than this your card will not be recognized as a Buslogic card. It may be recognized as an Adaptec 1540, however. The early Buslogic firmware contains an AHA1540 emulation mode. This is not a good thing for an EISA card, however. If you have an old hardware revision card and you obtain the 2.21 firmware for it, you will need to check the position of jumper W1 to B-C, the default is A-B. Why does FreeBSD not detect my HP Netserver's SCSI controller? This is basically a known problem. The EISA on-board SCSI controller in the HP Netserver machines occupies EISA slot number 11, so all the true EISA slots are in front of it. Alas, the address space for EISA slots >= 10 collides with the address space assigned to PCI, and FreeBSD's auto-configuration currently cannot handle this situation very well. So now, the best you can do is to pretend there is no address range clash :), by bumping the kernel option EISA_SLOTS to a value of 12. Configure and compile a kernel, as described in the Handbook entry on configuring the kernel. Of course, this does present you with a chicken-and-egg problem when installing on such a machine. In order to work around this problem, a special hack is available inside UserConfig. Do not use the visual interface, but the plain command-line interface there. Simply type eisa 12 quit at the prompt, and install your system as usual. While it is recommended you compile and install a custom kernel anyway. Hopefully, future versions will have a proper fix for this problem. You cannot use a dangerously dedicated disk with an HP Netserver. See this note for more info. What is going on with my CMD640 IDE controller? It is broken. It cannot handle commands on both channels simultaneously. There is a workaround available now and it is enabled automatically if your system uses this chip. For the details refer to the manual page of the disk driver (man 4 wd). If you are already running FreeBSD 2.2.1 or 2.2.2 with a CMD640 IDE controller and you want to use the second channel, build a new kernel with options "CMD640" enabled. This is the default for 2.2.5 and later. I keep seeing messages like ed1: timeout. What do these messages mean? This is usually caused by an interrupt conflict (e.g., two boards using the same IRQ). FreeBSD prior to 2.0.5R used to be tolerant of this, and the network driver would still function in the presence of IRQ conflicts. However, with 2.0.5R and later, IRQ conflicts are no longer tolerated. Boot with the -c option and change the ed0/de0/... entry to match your board. If you are using the BNC connector on your network card, you may also see device timeouts because of bad termination. To check this, attach a terminator directly to the NIC (with no cable) and see if the error messages go away. Some NE2000 compatible cards will give this error if there is no link on the UTP port or if the cable is disconnected. Why did my 3COM 3C509 card stop working for no apparent reason? This card has a bad habit of losing its configuration information. Refresh your card's settings with the DOS utility 3c5x9.exe. My parallel printer is ridiculously slow. What can I do? If the only problem is that the printer is terribly slow, try changing your printer port mode as discussed in the Printer Setup section of the Handbook. Why do my programs occasionally die with Signal 11 errors? Signal 11 errors are caused when your process has attempted to access memory which the operating system has not granted it access to. If something like this is happening at seemingly random intervals then you need to start investigating things very carefully. These problems can usually be attributed to either: If the problem is occurring only in a specific application that you are developing yourself it is probably a bug in your code. If it is a problem with part of the base FreeBSD system, it may also be buggy code, but more often than not these problems are found and fixed long before us general FAQ readers get to use these bits of code (that is what -current is for). In particular, a dead giveaway that this is not a FreeBSD bug is if you see the problem when you are compiling a program, but the activity that the compiler is carrying out changes each time. For example, suppose you are running make buildworld, and the compile fails while trying to compile ls.c in to ls.o. If you then run make buildworld again, and the compile fails in the same place then this is a broken build -- try updating your sources and try again. If the compile fails elsewhere then this is almost certainly hardware. What you should do: In the first case you can use a debugger e.g. gdb to find the point in the program which is attempting to access a bogus address and then fix it. In the second case you need to verify that it is not your hardware at fault. Common causes of this include: Your hard disks might be overheating: Check the fans in your case are still working, as your disk (and perhaps other hardware might be overheating). The processor running is overheating: This might be because the processor has been overclocked, or the fan on the processor might have died. In either case you need to ensure that you have hardware running at what it is specified to run at, at least while trying to solve this problem. i.e. Clock it back to the default settings. If you are overclocking then note that it is far cheaper to have a slow system than a fried system that needs replacing! Also the wider community is not often sympathetic to problems on overclocked systems, whether you believe it is safe or not. Dodgy memory: If you have multiple memory SIMMS/DIMMS installed then pull them all out and try running the machine with each SIMM or DIMM individually and narrow the problem down to either the problematic DIMM/SIMM or perhaps even a combination. Over-optimistic Motherboard settings: In your BIOS settings, and some motherboard jumpers you have options to set various timings, mostly the defaults will be sufficient, but sometimes, setting the wait states on RAM too low, or setting the RAM Speed: Turbo option, or similar in the BIOS will cause strange behaviour. A possible idea is to set to BIOS defaults, but it might be worth noting down your settings first! Unclean or insufficient power to the motherboard. If you have any unused I/O boards, hard disks, or CDROMs in your system, try temporarily removing them or disconnecting the power cable from them, to see if your power supply can manage a smaller load. Or try another power supply, preferably one with a little more power (for instance, if your current power supply is rated at 250 Watts try one rated at 300 Watts). You should also read the SIG11 FAQ (listed below) which has excellent explanations of all these problems, albeit from a Linux viewpoint. It also discusses how memory testing software or hardware can still pass faulty memory. Finally, if none of this has helped it is possible that you have just found a bug in FreeBSD, and you should follow the instructions to send a problem report. There is an extensive FAQ on this at the SIG11 problem FAQ My system crashes with either Fatal trap 12: page fault in kernel mode, or panic:, and spits out a bunch of information. What should I do? The FreeBSD developers are very interested in these errors, but need some more information than just the error you see. Copy your full crash message. Then consult the FAQ section on kernel panics, build a debugging kernel, and get a backtrace. This might sound difficult, but you do not need any programming skills; you just have to follow the instructions. Why does the screen go black and lose sync when I boot? This is a known problem with the ATI Mach 64 video card. The problem is that this card uses address 2e8, and the fourth serial port does too. Due to a bug (feature?) in the &man.sio.4; driver it will touch this port even if you do not have the fourth serial port, and even if you disable sio3 (the fourth port) which normally uses this address. Until the bug has been fixed, you can use this workaround: Enter at the boot prompt. (This will put the kernel into configuration mode). Disable sio0, sio1, sio2 and sio3 (all of them). This way the sio driver does not get activated -> no problems. Type exit to continue booting. If you want to be able to use your serial ports, you will have to build a new kernel with the following modification: in /usr/src/sys/i386/isa/sio.c find the one occurrence of the string 0x2e8 and remove that string and the preceding comma (keep the trailing comma). Now follow the normal procedure of building a new kernel. Even after applying these workarounds, you may still find that the X Window System does not work properly. If this is the case, make sure that the XFree86 version you are using is at least XFree86 3.3.3 or higher. This version and upwards has built-in support for the Mach64 cards and even a dedicated X server for those cards. Why does FreeBSD only use 64 MB of RAM when my system has 128 MB of RAM installed? Due to the manner in which FreeBSD gets the memory size from the BIOS, it can only detect 16 bits worth of Kbytes in size (65535 Kbytes = 64MB) (or less... some BIOSes peg the memory size to 16M). If you have more than 64MB, FreeBSD will attempt to detect it; however, the attempt may fail. To work around this problem, you need to use the kernel option specified below. There is a way to get complete memory information from the BIOS, but we do not have room in the bootblocks to do it. Someday when lack of room in the bootblocks is fixed, we will use the extended BIOS functions to get the full memory information...but for now we are stuck with the kernel option. options "MAXMEM=n" Where n is your memory in Kilobytes. For a 128 MB machine, you would want to use 131072. Why does FreeBSD 2.0 panic with kmem_map too small!? The message may also be mb_map too small! The panic indicates that the system ran out of virtual memory for network buffers (specifically, mbuf clusters). You can increase the amount of VM available for mbuf clusters by adding: options "NMBCLUSTERS=n" to your kernel config file, where n is a number in the range 512-4096, depending on the number of concurrent TCP connections you need to support. I would recommend trying 2048 - this should get rid of the panic completely. You can monitor the number of mbuf clusters allocated/in use on the system with netstat -m (see &man.netstat.1;). The default value for NMBCLUSTERS is 512 + MAXUSERS * 16. Why do I get the error /kernel: proc: table is full? The FreeBSD kernel will only allow a certain number of processes to exist at one time. The number is based on the MAXUSERS option in the kernel configuration. MAXUSERS also affects various other in-kernel limits, such as network buffers (see this earlier question). If your machine is heavily loaded, you probably want to increase MAXUSERS. This will increase these other system limits in addition to the maximum number of processes. After FreeBSD 4.4, MAXUSERS became a tunable value that could be set with kern.maxusers in /boot/loader.conf. In earlier versions of FreeBSD, you need to adjust MAXUSERS in your kernel configuration. If your machine is lightly loaded, and you are simply running a very large number of processes, you can adjust this with the kern.maxproc sysctl. If these processes are being run by a single user, you will also need to adjust kern.maxprocperuid to be one less than your new kern.maxproc value. (It must be at least one less because one system program, &man.init.8;, must always be running.) To make a sysctl permanent across reboots, set this in /etc/sysctl.conf in recent versions of FreeBSD, or /etc/rc.local in older versions. Why do I get an error reading CMAP busy when rebooting with a new kernel? The logic that attempts to detect an out of date /var/db/kvm_*.db files sometimes fails and using a mismatched file can sometimes lead to panics. If this happens, reboot single-user and do: &prompt.root; rm /var/db/kvm_*.db What does the message ahc0: brkadrint, Illegal Host Access at seqaddr 0x0 mean? This is a conflict with an Ultrastor SCSI Host Adapter. During the boot process enter the kernel configuration menu and disable uha0, which is causing the problem. When I boot my system, I get the error ahc0: illegal cable configuration. My cabling is correct. What is going on? Your motherboard lacks the external logic to support automatic termination. Switch your SCSI BIOS to specify the correct termination for your configuration rather than automatic termination. The AIC7XXX driver cannot determine if the external logic for cable detection (and thus auto-termination) is available. The driver simply assumes that this support must exist if the configuration contained in the serial EEPROM is set to "automatic termination". Without the external cable detection logic the driver will often configure termination incorrectly, which can compromise the reliability of the SCSI bus. Why does Sendmail give me an error reading mail loops back to myself? This is answered in the sendmail FAQ as follows:- * I'm getting "Local configuration error" messages, such as: 553 relay.domain.net config error: mail loops back to myself 554 <user@domain.net>... Local configuration error How can I solve this problem? You have asked mail to the domain (e.g., domain.net) to be forwarded to a specific host (in this case, relay.domain.net) by using an MX record, but the relay machine does not recognize itself as domain.net. Add domain.net to /etc/sendmail.cw (if you are using FEATURE(use_cw_file)) or add "Cw domain.net" to /etc/sendmail.cf. The current version of the sendmail FAQ is no longer maintained with the sendmail release. It is however regularly posted to comp.mail.sendmail, comp.mail.misc, comp.mail.smail, comp.answers, and news.answers. You can also receive a copy via email by sending a message to mail-server@rtfm.mit.edu with the command send usenet/news.answers/mail/sendmail-faq as the body of the message. Why do full screen applications on remote machines misbehave? The remote machine may be setting your terminal type to something other than the cons25 terminal type required by the FreeBSD console. There are a number of possible work-arounds for this problem: After logging on to the remote machine, set your TERM shell variable to ansi or sco if the remote machine knows about these terminal types. Use a VT100 emulator like screen at the FreeBSD console. screen offers you the ability to run multiple concurrent sessions from one terminal, and is a neat program in its own right. Each screen window behaves like a VT100 terminal, so the TERM variable at the remote end should be set to vt100. Install the cons25 terminal database entry on the remote machine. The way to do this depends on the operating system on the remote machine. The system administration manuals for the remote system should be able to help you here. Fire up an X server at the FreeBSD end and login to the remote machine using an X based terminal emulator such as xterm or rxvt. The TERM variable at the remote host should be set to xterm or vt100. Why does my machine print calcru: negative time...? This can be caused by various hardware and/or software ailments relating to interrupts. It may be due to bugs but can also happen by nature of certain devices. Running TCP/IP over the parallel port using a large MTU is one good way to provoke this problem. Graphics accelerators can also get you here, in which case you should check the interrupt setting of the card first. A side effect of this problem are dying processes with the message SIGXCPU exceeded cpu time limit. For FreeBSD 3.0 and later from Nov 29, 1998 forward: If the problem cannot be fixed otherwise the solution is to set this sysctl variable: &prompt.root; sysctl -w kern.timecounter.method=1 This means a performance impact, but considering the cause of this problem, you probably will not notice. If the problem persists, keep the sysctl set to one and set the NTIMECOUNTER option in your kernel to increasingly large values. If by the time you have reached NTIMECOUNTER=20 the problem is not solved, interrupts are too hosed on your machine for reliable time keeping. I see pcm0 not found or my sound card is found as pcm1 but I have device pcm0 in my kernel config file. What is going on? This occurs in FreeBSD 3.x with PCI sound cards. The pcm0 device is reserved exclusively for ISA-based cards so, if you have a PCI card, then you will see this error, and your card will appear as pcm1. You cannot remove the warning by simply changing the line in the kernel config file to device pcm1 as this will result in pcm1 being reserved for ISA cards and your PCI card being found as pcm2 (along with the warning pcm1 not found). If you have a PCI sound card you will also have to make the snd1 device rather than snd0: &prompt.root; cd /dev &prompt.root; ./MAKEDEV snd1 This situation does not arise in FreeBSD 4.x as a lot of work has been done to make it more PnP-centric and the pcm0 device is no longer reserved exclusively for ISA cards Why is my PnP card no longer found (or found as unknown) since upgrading to FreeBSD 4.x? FreeBSD 4.x is now much more PnP-centric and this has had the side effect of some PnP devices (e.g. sound cards and internal modems) not working even though they worked under FreeBSD 3.x. The reasons for this behaviour are explained by the following e-mail, posted to the freebsd-questions mailing list by Peter Wemm, in answer to a question about an internal modem that was no longer found after an upgrade to FreeBSD 4.x (the comments in [] have been added to clarify the context.
The PNP bios preconfigured it [the modem] and left it laying around in port space, so [in 3.x] the old-style ISA probes found it there. Under 4.0, the ISA code is much more PnP-centric. It was possible [in 3.x] for an ISA probe to find a stray device and then for the PNP device id to match and then fail due to resource conflicts. So, it disables the programmable cards first so this double probing cannot happen. It also means that it needs to know the PnP id's for supported PnP hardware. Making this more user tweakable is on the TODO list.
To get the device working again requires finding its PnP id and adding it to the list that the ISA probes use to identify PnP devices. This is obtained using &man.pnpinfo.8; to probe the device, for example this is the output from &man.pnpinfo.8; for an internal modem: &prompt.root; pnpinfo Checking for Plug-n-Play devices... Card assigned CSN #1 Vendor ID PMC2430 (0x3024a341), Serial Number 0xffffffff PnP Version 1.0, Vendor Version 0 Device Description: Pace 56 Voice Internal Plug & Play Modem Logical Device ID: PMC2430 0x3024a341 #0 Device supports I/O Range Check TAG Start DF I/O Range 0x3f8 .. 0x3f8, alignment 0x8, len 0x8 [16-bit addr] IRQ: 4 - only one type (true/edge) [more TAG lines elided] TAG End DF End Tag Successfully got 31 resources, 1 logical fdevs -- card select # 0x0001 CSN PMC2430 (0x3024a341), Serial Number 0xffffffff Logical device #0 IO: 0x03e8 0x03e8 0x03e8 0x03e8 0x03e8 0x03e8 0x03e8 0x03e8 IRQ 5 0 DMA 4 0 IO range check 0x00 activate 0x01 The information you require is in the Vendor ID line at the start of the output. The hexadecimal number in parentheses (0x3024a341 in this example) is the PnP id and the string immediately before this (PMC2430) is a unique ASCII id. This information needs adding to the file /usr/src/sys/isa/sio.c. You should first make a backup of sio.c just in case things go wrong. You will also need it to make the patch to submit with your PR (you are going to submit a PR, are you not?) then edit sio.c and search for the line static struct isa_pnp_id sio_ids[] = { then scroll down to find the correct place to add the entry for your device. The entries look like this, and are sorted on the ASCII Vendor ID string which should be included in the comment to the right of the line of code along with all (if it will fit) or part of the Device Description from the output of &man.pnpinfo.8;: {0x0f804f3f, NULL}, /* OZO800f - Zoom 2812 (56k Modem) */ {0x39804f3f, NULL}, /* OZO8039 - Zoom 56k flex */ {0x3024a341, NULL}, /* PMC2430 - Pace 56 Voice Internal Modem */ {0x1000eb49, NULL}, /* ROK0010 - Rockwell ? */ {0x5002734a, NULL}, /* RSS0250 - 5614Jx3(G) Internal Modem */ Add the hexadecimal Vendor ID for your device in the correct place, save the file, rebuild your kernel, and reboot. Your device should now be found as an sio device as it was under FreeBSD 3.x
Why do I get the error nlist failed when running, for example, top or systat? The problem is that the application you are trying to run is looking for a specific kernel symbol, but, for whatever reason, cannot find it; this error stems from one of two problems: Your kernel and userland are not synchronized (i.e., you built a new kernel but did not do an installworld, or vice versa), and thus the symbol table is different from what the user application thinks it is. If this is the case, simply complete the upgrade process (see /usr/src/UPDATING for the correct sequence). You are not using /boot/loader to load your kernel, but doing it directly from boot2 (see &man.boot.8;). While there is nothing wrong with bypassing /boot/loader, it generally does a better job of making the kernel symbols available to user applications. Why does it take so long to connect to my computer via ssh or telnet? The symptom: there is a long delay between the time the TCP connection is established and the time when the client software asks for a password (or, in &man.telnet.1;'s case, when a login prompt appears). The problem: more likely than not, the delay is caused by the server software trying to resolve the client's IP address into a hostname. Many servers, including the Telnet and SSH servers that come with FreeBSD, do this in order to, among other things, store the hostname in a log file for future reference by the administrator. The remedy: if the problem occurs whenever you connect from your computer (the client) to any server, the problem is with the client; likewise, if the problem only occurs when someone connects to your computer (the server) the problem is with the server. If the problem is with the client, the only remedy is to fix the DNS so the server can resolve it. If this is on a local network, consider it a server problem and keep reading; conversely, if this is on the global Internet, you will most likely need to contact your ISP and ask them to fix it for you. If the problem is with the server, and this is on a local network, you need to configure the server to be able to resolve address-to-hostname queries for your local address range. See the &man.hosts.5; and &man.named.8; manual pages for more information. If this is on the global Internet, the problem may be that your server's resolver is not functioning correctly. To check, try to look up another host--say, www.yahoo.com. If it does not work, that is your problem. What does stray IRQ mean? Stray IRQs are indications of hardware IRQ glitches, mostly from hardware that removes its interrupt request in the middle of the interrupt request acknowledge cycle. One has three options for dealing with this: Live with the warnings. All except the first 5 per irq are suppressed anyway. Break the warnings by changing 5 to 0 in isa_strayintr() so that all the warnings are suppressed. Break the warnings by installing parallel port hardware that uses irq 7 and the PPP driver for it (this happens on most systems), and install an ide drive or other hardware that uses irq 15 and a suitable driver for it. Why does file: table is full show up repeatedly in dmesg? This error message indicates you have exhausted the number of available file descriptors on your system. Please see the kern.maxfiles section of the Tuning Kernel Limits section of the Handbook for a discussion and solution. Why does the clock on my laptop keep incorrect time? Your laptop has two or more clocks, and FreeBSD has chosen to use the wrong one. Run &man.dmesg.8;, and check for lines that contain Timecounter. The last line printed is the one that FreeBSD chose, and will almost certainly be TSC. &prompt.root; dmesg | grep Timecounter Timecounter "i8254" frequency 1193182 Hz Timecounter "TSC" frequency 595573479 Hz You can confirm this by checking the kern.timecounter.hardware &man.sysctl.3;. &prompt.root; sysctl kern.timecounter.hardware kern.timecounter.hardware: TSC The BIOS may modify the TSC clock—perhaps to change the speed of the processor when running from batteries, or going in to a power saving mode, but FreeBSD is unaware of these adjustments, and appears to gain or lose time. In this example, the i8254 clock is also available, and can be selected by writing its name to the kern.timecounter.hardware &man.sysctl.3;. &prompt.root; sysctl -w kern.timecounter.hardware=i8254 kern.timecounter.hardware: TSC -> i8254 Your laptop should now start keeping more accurate time. To have this change automatically run at boot time, add the following line to /etc/sysctl.conf. kern.timecounter.hardware=i8254 Why does FreeBSD's boot loader display Read error and stop after the BIOS screen? FreeBSD's boot loader is incorrectly recognizing the hard drive's geometry. This must be manually set within fdisk when creating or modifying FreeBSD's slice. The correct drive geometry values can be found within the machine's BIOS. Look for the number of cylinders, heads and sectors for the particular drive. Within &man.sysinstall.8;'s fdisk, hit G to set the drive geometry. A dialog will pop up requesting the number of cylinders, heads and sectors. Type the numbers found from the BIOS separates by forward slashes. 5000 cylinders, 250 sectors and 60 sectors would be entered as 5000/250/60 Press enter to set the values, and hit W to write the new partition table to the drive. Another operating system destroyed my Boot Manager. How do I get it back? Enter &man.sysinstall.8; and choose Configure, then Fdisk. Select the disk the Boot Manager resided on with the space key. Press W to write changes to the drive. A prompt will appear asking which boot loader to install. Select this, and it will be restored. What does the error swap_pager: indefinite wait buffer: mean? This means that a process is trying to page memory to disk, and the page attempt has hung trying to access the disk for more than 20 seconds. It might be caused by bad blocks on the disk drive, disk wiring, cables, or any other disk I/O-related hardware. If the drive itself is actually bad, you will also see disk errors in /var/log/messages and in the output of dmesg. Otherwise, check your cables and connections.
Commercial Applications This section is still very sparse, though we are hoping, of course, that companies will add to it! :) The FreeBSD group has no financial interest in any of the companies listed here but simply lists them as a public service (and feels that commercial interest in FreeBSD can have very positive effects on FreeBSD's long-term viability). We encourage commercial software vendors to send their entries here for inclusion. See the Vendors page for a longer list. Where can I get an Office Suite for FreeBSD? The FreeBSD Mall offers a FreeBSD native version of VistaSource ApplixWare 5. ApplixWare is a rich full-featured, commercial Office Suite for FreeBSD containing a word processor, spreadsheet, presentation program, vector drawing package, and other applications. ApplixWare is offered as part of the FreeBSD Mall's BSD Desktop Edition. The Linux version of StarOffice works flawlessly on FreeBSD. The easiest way to install the Linux version of StarOffice is through the FreeBSD Ports collection. Future versions of the open-source OpenOffice suite should work as well. Where can I get Motif for FreeBSD? The Open Group has released the source code to Motif 2.1.30. You can install the open-motif package, or compile it from ports. Refer to the ports section of the Handbook for more information on how to do this. The Open Motif distribution only allows redistribution if it is running on an open source operating system. In addition, there are commercial distributions of the Motif software available. These, however, are not for free, but their license allows them to be used in closed-source software. Contact Apps2go for the least expensive ELF Motif 2.1.20 distribution for FreeBSD (either i386 or Alpha). There are two distributions, the development edition and the runtime edition (for much less). These distributions includes: OSF/Motif manager, xmbind, panner, wsm. Development kit with uil, mrm, xm, xmcxx, include and Imake files. Static and dynamic ELF libraries (for use with FreeBSD 3.0 and above). Demonstration applets. Be sure to specify that you want the FreeBSD version of Motif when ordering (do not forget to mention the architecture you want too)! Versions for NetBSD and OpenBSD are also sold by Apps2go. This is currently a FTP only download. More info Apps2go WWW page or sales@apps2go.com or support@apps2go.com or phone (817) 431 8775 or +1 817 431-8775 Contact Metro Link for an either ELF or a.out Motif 2.1 distribution for FreeBSD. This distribution includes: OSF/Motif manager, xmbind, panner, wsm. Development kit with uil, mrm, xm, xmcxx, include and Imake files. Static and dynamic libraries (specify ELF for use with FreeBSD 3.0 and later; or a.out for use with FreeBSD 2.2.8 and earlier). Demonstration applets. Preformatted man pages. Be sure to specify that you want the FreeBSD version of Motif when ordering! Versions for Linux are also sold by Metro Link. This is available on either a CDROM or for FTP download. Contact Xi Graphics for an a.out Motif 2.0 distribution for FreeBSD. This distribution includes: OSF/Motif manager, xmbind, panner, wsm. Development kit with uil, mrm, xm, xmcxx, include and Imake files. Static and dynamic libraries (for use with FreeBSD 2.2.8 and earlier). Demonstration applets. Preformatted man pages. Be sure to specify that you want the FreeBSD version of Motif when ordering! Versions for BSDI and Linux are also sold by Xi Graphics. This is currently a 4 diskette set... in the future this will change to a unified CD distribution like their CDE. Where can I get CDE for FreeBSD? Xi Graphics used to sell CDE for FreeBSD, but no longer do. KDE is an open source X11 desktop which is similar to CDE in many respects. You might also like the look and feel of xfce. KDE and xfce are both in the ports system. Are there any commercial high-performance X servers? Yes, Xi Graphics and Metro Link sell Accelerated-X product for FreeBSD and other Intel based systems. The Metro Link offering is a high performance X Server that offers easy configuration using the FreeBSD Package suite of tools, support for multiple concurrent video boards and is distributed in binary form only, in a convenient FTP download. Not to mention the Metro Link offering is available at the very reasonable price of $39. Metro Link also sells both ELF and a.out Motif for FreeBSD (see above). More info Metro Link WWW page or sales@metrolink.com or tech@metrolink.com or phone (954) 938-0283 or +1 954 938-0283 The Xi Graphics offering is a high performance X Server that offers easy configuration, support for multiple concurrent video boards and is distributed in binary form only, in a unified diskette distribution for FreeBSD and Linux. Xi Graphics also offers a high performance X Server tailored for laptop support. There is a free compatibility demo of version 5.0 available. Xi Graphics also sells Motif and CDE for FreeBSD (see above). More info Xi Graphics WWW page or sales@xig.com or support@xig.com or phone (800) 946 7433 or +1 303 298-7478. Are there any Database systems for FreeBSD? Yes! See the Commercial Vendors section of FreeBSD's Web site. Also see the Databases section of the Ports collection. Can I run Oracle on FreeBSD? Yes. The following pages tell you exactly how to setup Linux-Oracle on FreeBSD: http://www.scc.nl/~marcel/howto-oracle.html http://www.lf.net/lf/pi/oracle/install-linux-oracle-on-freebsd User Applications So, where are all the user applications? Please take a look at the ports page for info on software packages ported to FreeBSD. The list currently tops &os.numports; and is growing daily, so come back to check often or subscribe to the freebsd-announce mailing list for periodic updates on new entries. Most ports should be available for the 2.2, 3.x and 4.x branches, and many of them should work on 2.1.x systems as well. Each time a FreeBSD release is made, a snapshot of the ports tree at the time of release in also included in the ports/ directory. We also support the concept of a package, essentially no more than a gzipped binary distribution with a little extra intelligence embedded in it for doing whatever custom installation work is required. A package can be installed and uninstalled again easily without having to know the gory details of which files it includes. Use the package installation menu in /stand/sysinstall (under the post-configuration menu item) or invoke the &man.pkg.add.1; command on the specific package files you are interested in installing. Package files can usually be identified by their .tgz suffix and CDROM distribution people will have a packages/All directory on their CD which contains such files. They can also be downloaded over the net for various versions of FreeBSD at the following locations: for 2.2.8-RELEASE/2.2.8-STABLE ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages-2.2.8/ for 3.X-RELEASE/3.X-STABLE ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages-3-stable/ for 4.X-RELEASE/4-STABLE ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages-4-stable/ for 5.X-CURRENT ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages-5-current or your nearest local mirror site. Note that all ports may not be available as packages since new ones are constantly being added. It is always a good idea to check back periodically to see which packages are available at the ftp.FreeBSD.org master site. Where do I find libc.so.3.0? You are trying to run a package built on 2.2 and later on a 2.1.x system. Please take a look at the previous section and get the correct port/package for your system. Why do I get a message reading Error: can't find libc.so.4.0? You accidently downloaded packages meant for 4.X and 5.X systems and attempted to install them on your 2.X or 3.X FreeBSD system. Please download the correct version of the packages. Why does ghostscript give lots of errors with my 386/486SX? You do not have a math co-processor, right? You will need to add the alternative math emulator to your kernel; you do this by adding the following to your kernel config file and it will be compiled in. options GPL_MATH_EMULATE You will need to remove the MATH_EMULATE option when you do this. Why do SCO/iBCS2 applications bomb on socksys? (FreeBSD 3.0 and older only). You first need to edit the /etc/sysconfig (or /etc/rc.conf, see &man.rc.conf.5;) file in the last section to change the following variable to YES: # Set to YES if you want ibcs2 (SCO) emulation loaded at startup ibcs2=NO It will load the ibcs2 kernel module at startup. You will then need to set up /compat/ibcs2/dev to look like: lrwxr-xr-x 1 root wheel 9 Oct 15 22:20 X0R@ -> /dev/null lrwxr-xr-x 1 root wheel 7 Oct 15 22:20 nfsd@ -> socksys -rw-rw-r-- 1 root wheel 0 Oct 28 12:02 null lrwxr-xr-x 1 root wheel 9 Oct 15 22:20 socksys@ -> /dev/null crw-rw-rw- 1 root wheel 41, 1 Oct 15 22:14 spx You just need socksys to go to /dev/null (see &man.null.4;) to fake the open & close. The code in -CURRENT will handle the rest. This is much cleaner than the way it was done before. If you want the spx driver for a local socket X connection, define SPX_HACK when you compile the system. How do I configure INN (Internet News) for my machine? After installing the news/inn package or port, an excellent place to start is Dave Barr's INN Page where you will find the INN FAQ. What version of Microsoft FrontPage should I get? Use the Port, Luke! A pre-patched version of Apache, apache13-fp, is available in the ports tree. Does FreeBSD support Java? Yes. Please see http://www.FreeBSD.org/java/. Why can I not build this port on my 3.X-STABLE machine? If you are running a FreeBSD version that lags significantly behind -CURRENT or -STABLE, you may need a ports upgrade kit from http://www.FreeBSD.org/ports/. If you are up to date, then someone might have committed a change to the port which works for -CURRENT but which broke the port for -STABLE. Please submit a bug report on this with the &man.send-pr.1; command, since the ports collection is supposed to work for both the -CURRENT and -STABLE branches. Where do I find ld.so? a.out applications like Netscape Navigator require a.out libraries. A version of FreeBSD built with ELF libraries does not install them by default. You will get complaints about not having /usr/libexec/ld.so if this is the case on your system. These libraries are available as an add-on in the compat22 distribution. Use &man.sysinstall.8; to install them. You can also install them from the FreeBSD source code: &prompt.root; cd /usr/src/lib/compat/compat22 &prompt.root; make install clean If you want to install the latest compat22 libraries whenever you run make world, edit /etc/make.conf to include COMPAT22=YES. Old compatibility libraries change rarely, if ever, so this is not generally needed. Also see the ERRATAs for 3.1-RELEASE and 3.2-RELEASE. I updated the sources, now how do I update my installed ports? FreeBSD does not include a port upgrading tool, but it does have some tools to make the upgrade process somewhat easier. You can also install additional tools to simplify port handling. The &man.pkg.version.1; command can generate a script that will update installed ports to the latest version in the ports tree. &prompt.root; pkg_version > /tmp/myscript The output script must be edited by hand before you use it. Current versions of &man.pkg.version.1; force this by inserting an &man.exit.1; at the beginning of the script. You should save the output of the script, as it will note packages that depend on the one that has been updated. These may or may not need to be updated as well. The usual case where they need to be updated is that a shared library has changed version numbers, so the ports that used that library need to be rebuilt to use the new version. If you have the disk space, you can use the portupgrade tool to automate all of this. portupgrade includes various tools to simplify package handling. It is available under sysutils/portupgrade. Since it is written in Ruby, portupgrade is an unlikely candidate for integration with the main FreeBSD tree. That should not stop anyone from using it, however. If your system is up full time, the &man.periodic.8; system can be used to generate a weekly list of ports that might need updating by setting weekly_status_pkg_enable="YES" in /etc/periodic.conf. Why is /bin/sh so minimal? Why does FreeBSD not use bash or another shell? Because POSIX says that there shall be such a shell. The more complicated answer: many people need to write shell scripts which will be portable across many systems. That is why POSIX specifies the shell and utility commands in great detail. Most scripts are written in Bourne shell, and because several important programming interfaces (&man.make.1;, &man.system.3;, &man.popen.3;, and analogues in higher-level scripting languages like Perl and Tcl) are specified to use the Bourne shell to interpret commands. Because the Bourne shell is so often and widely used, it is important for it to be quick to start, be deterministic in its behavior, and have a small memory footprint. The existing implementation is our best effort at meeting as many of these requirements simultaneously as we can. In order to keep /bin/sh small, we have not provided many of the convenience features that other shells have. That is why the Ports Collection includes more featureful shells like bash, scsh, tcsh, and zsh. (You can compare for yourself the memory utilization of all these shells by looking at the VSZ and RSS columns in a ps -u listing.) Why do Netscape and Opera take so long to start? The usual answer is that DNS on your system is misconfigured. Both Netscape and Opera perform DNS checks when starting up. The browser will not appear on your desktop until the program either gets a response or determines that the system has no network connection. Kernel Configuration I would like to customize my kernel. Is it difficult? Not at all! Check out the kernel config section of the Handbook. We recommend that you make a dated snapshot of your new /kernel called /kernel.YYMMDD after you get it working properly. Also back up your new /modules directory to /modules.YYMMDD. That way, if you make a mistake the next time you play with your configuration you can boot the backup kernel instead of having to fall back to kernel.GENERIC. This is particularly important if you are now booting from a controller that GENERIC does not support. My kernel compiles fail because _hw_float is missing. How do I solve this problem? Let me guess. You removed npx0 (see &man.npx.4;) from your kernel configuration file because you do not have a math co-processor, right? Wrong! :-) The npx0 is MANDATORY. Even if you do not have a mathematic co-processor, you must include the npx0 device. Why is my kernel so big (over 10MB)? Chances are, you compiled your kernel in debug mode. Kernels built in debug mode contain many symbols that are used for debugging, thus greatly increasing the size of the kernel. Note that if you running a FreeBSD 3.0 or later system, there will be little or no performance decrease from running a debug kernel, and it is useful to keep one around in case of a system panic. However, if you are running low on disk space, or you simply do not want to run a debug kernel, make sure that both of the following are true: You do not have a line in your kernel configuration file that reads: makeoptions DEBUG=-g You are not running &man.config.8; with the option. Both of the above situations will cause your kernel to be built in debug mode. As long as you make sure you follow the steps above, you can build your kernel normally, and you should notice a fairly large size decrease; most kernels tend to be around 1.5MB to 2MB. Why do I get interrupt conflicts with multi-port serial code? When I compile a kernel with multi-port serial code, it tells me that only the first port is probed and the rest skipped due to interrupt conflicts. How do I fix this? The problem here is that FreeBSD has code built-in to keep the kernel from getting trashed due to hardware or software conflicts. The way to fix this is to leave out the IRQ settings on all but one port. Here is a example: # # Multiport high-speed serial line - 16550 UARTS # device sio2 at isa? port 0x2a0 tty irq 5 flags 0x501 vector siointr device sio3 at isa? port 0x2a8 tty flags 0x501 vector siointr device sio4 at isa? port 0x2b0 tty flags 0x501 vector siointr device sio5 at isa? port 0x2b8 tty flags 0x501 vector siointr Why does every kernel I try to build fail to compile, even GENERIC? There are a number of possible causes for this problem. They are, in no particular order: You are not using the new make buildkernel and make installkernel targets, and your source tree is different from the one used to build the currently running system (e.g., you are compiling 4.3-RELEASE on a 4.0-RELEASE system). If you are attempting an upgrade, please read the /usr/src/UPDATING file, paying particular attention to the COMMON ITEMS section at the end. You are using the new make buildkernel and make installkernel targets, but you failed to assert the completion of the make buildworld target. The make buildkernel target relies on files generated by the make buildworld target to complete its job correctly. Even if you are trying to build FreeBSD-STABLE, it is possible that you fetched the source tree at a time when it was either being modified, or broken for other reasons; only releases are absolutely guaranteed to be buildable, although FreeBSD-STABLE builds fine the majority of the time. If you have not already done so, try re-fetching the source tree and see if the problem goes away. Try using a different server in case the one you are using is having problems. Disks, Filesystems, and Boot Loaders How can I add my new hard disk to my FreeBSD system? See the Disk Formatting Tutorial at www.FreeBSD.org. How do I move my system over to my huge new disk? The best way is to reinstall the OS on the new disk, then move the user data over. This is highly recommended if you have been tracking -stable for more than one release, or have updated a release instead of installing a new one. You can install booteasy on both disks with &man.boot0cfg.8;, and dual boot them until you are happy with the new configuration. Skip the next paragraph to find out how to move the data after doing this. Should you decide not to do a fresh install, you need to partition and label the new disk with either /stand/sysinstall, or &man.fdisk.8; and &man.disklabel.8;. You should also install booteasy on both disks with &man.boot0cfg.8;, so that you can dual boot to the old or new system after the copying is done. See the formatting-media article for details on this process. Now you have the new disk set up, and are ready to move the data. Unfortunately, you cannot just blindly copy the data. Things like device files (in /dev), flags, and links tend to screw that up. You need to use tools that understand these things, which means &man.dump.8;. Although it is suggested that you move the data in single user mode, it is not required. You should never use anything but &man.dump.8; and &man.restore.8; to move the root file system. The &man.tar.1; command may work - then again, it may not. You should also use &man.dump.8; and &man.restore.8; if you are moving a single partition to another empty partition. The sequence of steps to use dump to move a partitions data to a new partition is: newfs the new partition. mount it on a temporary mount point. cd to that directory. dump the old partition, piping output to the new one. For example, if you are going to move root to /dev/ad1s1a, with /mnt as the temporary mount point, it is: &prompt.root; newfs /dev/ad1s1a &prompt.root; mount /dev/ad1s1a /mnt &prompt.root; cd /mnt &prompt.root; dump 0af - / | restore xf - Rearranging your partitions with dump takes a bit more work. To merge a partition like /var into its parent, create the new partition large enough for both, move the parent partition as described above, then move the child partition into the empty directory that the first move created: &prompt.root; newfs /dev/ad1s1a &prompt.root; mount /dev/ad1s1a /mnt &prompt.root; cd /mnt &prompt.root; dump 0af - / | restore xf - &prompt.root; cd var &prompt.root; dump 0af - /var | restore xf - To split a directory from its parent, say putting /var on its own partition when it was not before, create both partitions, then mount the child partition on the appropriate directory in the temporary mount point, then move the old single partition: &prompt.root; newfs /dev/ad1s1a &prompt.root; newfs /dev/ad1s1d &prompt.root; mount /dev/ad1s1a /mnt &prompt.root; mkdir /mnt/var &prompt.root; mount /dev/ad1s1d /mnt/var &prompt.root; cd /mnt &prompt.root; dump 0af - / | restore xf - You might prefer &man.cpio.1;, &man.pax.1;, &man.tar.1; to &man.dump.8; for user data. At the time of this writing, these are known to lose file flag information, so use them with caution. Will a dangerously dedicated disk endanger my health? The installation procedure allows you to chose two different methods in partitioning your hard disk(s). The default way makes it compatible with other operating systems on the same machine, by using fdisk table entries (called slices in FreeBSD), with a FreeBSD slice that employs partitions of its own. Optionally, one can chose to install a boot-selector to switch between the possible operating systems on the disk(s). The alternative uses the entire disk for FreeBSD, and makes no attempt to be compatible with other operating systems. So why it is called dangerous? A disk in this mode does not contain what normal PC utilities would consider a valid fdisk table. Depending on how well they have been designed, they might complain at you once they are getting in contact with such a disk, or even worse, they might damage the BSD bootstrap without even asking or notifying you. In addition, the dangerously dedicated disk's layout is known to confuse many BIOSes, including those from AWARD (e.g. as found in HP Netserver and Micronics systems as well as many others) and Symbios/NCR (for the popular 53C8xx range of SCSI controllers). This is not a complete list, there are more. Symptoms of this confusion include the read error message printed by the FreeBSD bootstrap when it cannot find itself, as well as system lockups when booting. Why have this mode at all then? It only saves a few kbytes of disk space, and it can cause real problems for a new installation. Dangerously dedicated mode's origins lie in a desire to avoid one of the most common problems plaguing new FreeBSD installers - matching the BIOS geometry numbers for a disk to the disk itself. Geometry is an outdated concept, but one still at the heart of the PC's BIOS and its interaction with disks. When the FreeBSD installer creates slices, it has to record the location of these slices on the disk in a fashion that corresponds with the way the BIOS expects to find them. If it gets it wrong, you will not be able to boot. Dangerously dedicated mode tries to work around this by making the problem simpler. In some cases, it gets it right. But it is meant to be used as a last-ditch alternative - there are better ways to solve the problem 99 times out of 100. So, how do you avoid the need for DD mode when you are installing? Start by making a note of the geometry that your BIOS claims to be using for your disks. You can arrange to have the kernel print this as it boots by specifying at the boot: prompt, or using boot -v in the loader. Just before the installer starts, the kernel will print a list of BIOS geometries. Do not panic - wait for the installer to start and then use scrollback to read the numbers. Typically the BIOS disk units will be in the same order that FreeBSD lists your disks, first IDE, then SCSI. When you are slicing up your disk, check that the disk geometry displayed in the FDISK screen is correct (ie. it matches the BIOS numbers); if it is wrong, use the g key to fix it. You may have to do this if there is absolutely nothing on the disk, or if the disk has been moved from another system. Note that this is only an issue with the disk that you are going to boot from; FreeBSD will sort itself out just fine with any other disks you may have. Once you have got the BIOS and FreeBSD agreeing about the geometry of the disk, your problems are almost guaranteed to be over, and with no need for DD mode at all. If, however, you are still greeted with the dreaded read error message when you try to boot, it is time to cross your fingers and go for it - there is nothing left to lose. To return a dangerously dedicated disk for normal PC use, there are basically two options. The first is, you write enough NULL bytes over the MBR to make any subsequent installation believe this to be a blank disk. You can do this for example with &prompt.root; dd if=/dev/zero of=/dev/rda0 count=15 Alternatively, the undocumented DOS feature C:\> fdisk /mbr will to install a new master boot record as well, thus clobbering the BSD bootstrap. Which partitions can safely use softupdates? I have heard that softupdates on / can cause problems. Short answer: you can usually use softupdates safely on all partitions. Long answer: There used to be some concern over using softupdates on the root partition. Softupdates has two characteristics that caused this. First, a softupdates partition has a small chance of losing data during a system crash. (The partition will not be corrupted; the data will simply be lost.) Also, softupdates can cause temporary space shortages. When using softupdates, the kernel can take up to thirty seconds to actually write changes to the physical disk. If you delete a large file, the file still resides on disk until the kernel actually performs the deletion. This can cause a very simple race condition. Suppose you delete one large file and immediately create another large file. The first large file is not yet actually removed from the physical disk, so the disk might not have enough room for the second large file. You get an error that the partition does not have enough space, although you know perfectly well that you just released a large chunk of space! When you try again mere seconds later, the file creation works as you expect. This has left more than one user scratching his head and doubting his sanity, the FreeBSD filesystem, or both. If a system should crash after the kernel accepts a chunk of data for writing to disk, but before that data is actually written out, data could be lost or corrupted. This risk is extremely small, but generally manageable. Use of IDE write caching greatly increases this risk; it is strongly recommended that you disable IDE write caching when using softupdates. These issues affect all partitions using softupdates. So, what does this mean for the root partition? Vital information on the root partition changes very rarely. Files such as /kernel and the contents of /etc only change during system maintenance, or when users change their passwords. If the system crashed during the thirty-second window after such a change is made, it is possible that data could be lost. This risk is negligible for most applications, but you should be aware that it exists. If your system cannot tolerate this much risk, do not use softupdates on the root filesystem! / is traditionally one of the smallest partitions. By default, FreeBSD puts the /tmp directory on /. If you have a busy /tmp, you might see intermittent space problems. Symlinking /tmp to /var/tmp will solve this problem. What is inappropriate about my ccd? The symptom of this is: &prompt.root; ccdconfig -C ccdconfig: ioctl (CCDIOCSET): /dev/ccd0c: Inappropriate file type or format This usually happens when you are trying to concatenate the c partitions, which default to type unused. The ccd driver requires the underlying partition type to be FS_BSDFFS. Edit the disklabel of the disks you are trying to concatenate and change the types of partitions to 4.2BSD. Why can I not edit the disklabel on my ccd? The symptom of this is: &prompt.root; disklabel ccd0 (it prints something sensible here, so let us try to edit it) &prompt.root; disklabel -e ccd0 (edit, save, quit) disklabel: ioctl DIOCWDINFO: No disk label on disk; use "disklabel -r" to install initial label This is because the disklabel returned by ccd is actually a fake one that is not really on the disk. You can solve this problem by writing it back explicitly, as in: &prompt.root; disklabel ccd0 > /tmp/disklabel.tmp &prompt.root; disklabel -Rr ccd0 /tmp/disklabel.tmp &prompt.root; disklabel -e ccd0 (this will work now) Can I mount other foreign filesystems under FreeBSD? Digital UNIX UFS CDROMs can be mounted directly on FreeBSD. Mounting disk partitions from Digital UNIX and other systems that support UFS may be more complex, depending on the details of the disk partitioning for the operating system in question. Linux As of 2.2, FreeBSD supports ext2fs partitions. See &man.mount.ext2fs.8; for more information. NT A read-only NTFS driver exists for FreeBSD. For more information, see this tutorial by Mark Ovens at http://ukug.uk.FreeBSD.org/~mark/ntfs_install.html. Any other information on this subject would be appreciated. How do I mount a secondary DOS partition? The secondary DOS partitions are found after ALL the primary partitions. For example, if you have an E partition as the second DOS partition on the second SCSI drive, you need to create the special files for slice 5 in /dev, then mount /dev/da1s5: &prompt.root; cd /dev &prompt.root; sh MAKEDEV da1s5 &prompt.root; mount -t msdos /dev/da1s5 /dos/e Is there a cryptographic filesystem for &os;? Yes; see the security/cfs port. How can I use the NT loader to boot FreeBSD? This procedure is slightly different for 2.2.x and 3.x (with the 3-stage boot) systems. The general idea is that you copy the first sector of your native root FreeBSD partition into a file in the DOS/NT partition. Assuming you name that file something like c:\bootsect.bsd (inspired by c:\bootsect.dos), you can then edit the c:\boot.ini file to come up with something like this: [boot loader] timeout=30 default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS [operating systems] multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows NT" C:\BOOTSECT.BSD="FreeBSD" C:\="DOS" For 2.2.x systems this procedure assumes that DOS, NT, FreeBSD, or whatever have been installed into their respective fdisk partitions on the same disk. This example was tested on a system where DOS & NT were on the first fdisk partition, and FreeBSD on the second. FreeBSD was also set up to boot from its native partition, not the disk's MBR. Mount a DOS-formatted floppy (if you have converted to NTFS) or the FAT partition, under, say, /mnt. &prompt.root; dd if=/dev/rda0a of=/mnt/bootsect.bsd bs=512 count=1 Reboot into DOS or NT. NTFS users copy the bootsect.bsd and/or the bootsect.lnx file from the floppy to C:\. Modify the attributes (permissions) on boot.ini with: C:\> attrib -s -r c:\boot.ini Edit to add the appropriate entries from the example boot.ini above, and restore the attributes: C:\> attrib +s +r c:\boot.ini If FreeBSD is booting from the MBR, restore it with the DOS fdisk command after you reconfigure them to boot from their native partitions. For FreeBSD 3.x systems the procedure is somewhat simpler. If FreeBSD is installed on the same disk as the NT boot partition simply copy /boot/boot1 to C:\BOOTSECT.BSD However, if FreeBSD is installed on a different disk /boot/boot1 will not work, /boot/boot0 is needed. DO NOT SIMPLY COPY /boot/boot0 INSTEAD OF /boot/boot1, YOU WILL OVERWRITE YOUR PARTITION TABLE AND RENDER YOUR COMPUTER UN-BOOTABLE! /boot/boot0 needs to be installed using sysinstall by selecting the FreeBSD boot manager on the screen which asks if you wish to use a boot manager. This is because /boot/boot0 has the partition table area filled with NULL characters but sysinstall copies the partition table before copying /boot/boot0 to the MBR. When the FreeBSD boot manager runs it records the last OS booted by setting the active flag on the partition table entry for that OS and then writes the whole 512-bytes of itself back to the MBR so if you just copy /boot/boot0 to C:\BOOTSECT.BSD then it writes an empty partition table, with the active flag set on one entry, to the MBR. How do I boot FreeBSD and Linux from LILO? If you have FreeBSD and Linux on the same disk, just follow LILO's installation instructions for booting a non-Linux operating system. Very briefly, these are: Boot Linux, and add the following lines to /etc/lilo.conf: other=/dev/hda2 table=/dev/hda label=FreeBSD (the above assumes that your FreeBSD slice is known to Linux as /dev/hda2; tailor to suit your setup). Then, run lilo as root and you should be done. If FreeBSD resides on another disk, you need to add loader=/boot/chain.b to the LILO entry. For example: other=/dev/dab4 table=/dev/dab loader=/boot/chain.b label=FreeBSD In some cases you may need to specify the BIOS drive number to the FreeBSD boot loader to successfully boot off the second disk. For example, if your FreeBSD SCSI disk is probed by BIOS as BIOS disk 1, at the FreeBSD boot loader prompt you need to specify: Boot: 1:da(0,a)/kernel On FreeBSD 2.2.5 and later, you can configure &man.boot.8; to automatically do this for you at boot time. The Linux+FreeBSD mini-HOWTO is a good reference for FreeBSD and Linux interoperability issues. How do I boot FreeBSD and Linux using BootEasy? Install LILO at the start of your Linux boot partition instead of in the Master Boot Record. You can then boot LILO from BootEasy. If you are running Windows-95 and Linux this is recommended anyway, to make it simpler to get Linux booting again if you should need to reinstall Windows95 (which is a Jealous Operating System, and will bear no other Operating Systems in the Master Boot Record). How do I change the boot prompt from ??? to something more meaningful? You can not do that with the standard boot manager without rewriting it. There are a number of other boot managers in the sysutils ports category that provide this functionality. I have a new removable drive, how do I use it? Whether it is a removable drive like a ZIP or an EZ drive (or even a floppy, if you want to use it that way), or a new hard disk, once it is installed and recognized by the system, and you have your cartridge/floppy/whatever slotted in, things are pretty much the same for all devices. (this section is based on Mark Mayo's ZIP FAQ) If it is a ZIP drive or a floppy, you have already got a DOS filesystem on it, you can use a command like this: &prompt.root; mount -t msdos /dev/fd0c /floppy if it is a floppy, or this: &prompt.root; mount -t msdos /dev/da2s4 /zip for a ZIP disk with the factory configuration. For other disks, see how they are laid out using &man.fdisk.8; or &man.sysinstall.8;. The rest of the examples will be for a ZIP drive on da2, the third SCSI disk. Unless it is a floppy, or a removable you plan on sharing with other people, it is probably a better idea to stick a BSD file system on it. You will get long filename support, at least a 2X improvement in performance, and a lot more stability. First, you need to redo the DOS-level partitions/filesystems. You can either use &man.fdisk.8; or /stand/sysinstall, or for a small drive that you do not want to bother with multiple operating system support on, just blow away the whole FAT partition table (slices) and just use the BSD partitioning: &prompt.root; dd if=/dev/zero of=/dev/rda2 count=2 &prompt.root; disklabel -Brw da2 auto You can use disklabel or /stand/sysinstall to create multiple BSD partitions. You will certainly want to do this if you are adding swap space on a fixed disk, but it is probably irrelevant on a removable drive like a ZIP. Finally, create a new file system, this one is on our ZIP drive using the whole disk: &prompt.root; newfs /dev/rda2c and mount it: &prompt.root; mount /dev/da2c /zip and it is probably a good idea to add a line like this to /etc/fstab (see &man.fstab.5;) so you can just type mount /zip in the future: /dev/da2c /zip ffs rw,noauto 0 0 Why do I get Incorrect super block when mounting a CDROM? You have to tell &man.mount.8; the type of the device that you want to mount. This is described in the Handbook section on optical media, specifically the section Using Data CDs. Why do I get Device not configured when mounting a CDROM? This generally means that there is no CDROM in the CDROM drive, or the drive is not visible on the bus. Please see the Using Data CDs section of the Handbook for a detailed discussion of this issue. Why do all non-English characters in filenames show up as ? on my CDs when mounted in FreeBSD? Your CDROM probably uses the Joliet extension for storing information about files and directories. This is discussed in the Handbook chapter on creating and using CDROMs, specifically the section on Using Data CDROMs. I burned a CD under FreeBSD and now I can not read it under any other operating system. Why? You most likely burned a raw file to your CD, rather than creating an ISO 9660 filesystem. Take a look at the Handbook chapter on creating CDROMs, particularly the section on burning raw data CDs. How can I create an image of a data CD? This is discussed in the Handbook section on duplicating data CDs. For more on working with CDROMs, see the Creating CDs Section in the Storage chapter in the Handbook. Why can I not mount an audio CD? If you try to mount an audio CD, you will get an error like cd9660: /dev/acd0c: Invalid argument. This is because mount only works on filesystems. Audio CDs do not have filesystems; they just have data. You need a program that reads audio CDs, such as the audio/xmcd port. How do I mount a multi-session CD? By default, &man.mount.8; will attempt to mount the last data track (session) of a CD. If you would like to load an earlier session, you must use the command line argument. Please see &man.mount.cd9660.8; for specific examples. How do I let ordinary users mount floppies, CDROMs and other removable media? Ordinary users can be permitted to mount devices. Here is how: As root set the sysctl variable vfs.usermount to 1. &prompt.root; sysctl -w vfs.usermount=1 As root assign the appropriate permissions to the block device associated with the removable media. For example, to allow users to mount the first floppy drive, use: &prompt.root; chmod 666 /dev/fd0 To allow users in the group operator to mount the CDROM drive, use: &prompt.root; chgrp operator /dev/cd0c &prompt.root; chmod 640 /dev/cd0c Finally, add the line vfs.usermount=1 to the file /etc/sysctl.conf so that it is reset at system boot time. All users can now mount the floppy /dev/fd0 onto a directory that they own: &prompt.user; mkdir ~/my-mount-point &prompt.user; mount -t msdos /dev/fd0 ~/my-mount-point Users in group operator can now mount the CDROM /dev/cd0c onto a directory that they own: &prompt.user; mkdir ~/my-mount-point &prompt.user; mount -t msdos /dev/cd0c ~/my-mount-point Unmounting the device is simple: &prompt.user; umount ~/my-mount-point Enabling vfs.usermount, however, has negative security implications. A better way to access MSDOS formatted media is to use the mtools package in the ports collection. The du and df commands show different amounts of disk space available. What is going on? You need to understand what du and df really do. du goes through the directory tree, measures how large each file is, and presents the totals. df just asks the filesystem how much space it has left. They seem to be the same thing, but a file without a directory entry will affect df but not du. When a program is using a file, and you delete the file, the file is not really removed from the filesystem until the program stops using it. The file is immediately deleted from the directory listing, however. You can see this easily enough with a program such as more. Assume you have a file large enough that its presence affects the output of du and df. (Since disks can be so large today, this might be a very large file!) If you delete this file while using more on it, more does not immediately choke and complain that it cannot view the file. The entry is simply removed from the directory so no other program or user can access it. du shows that it is gone — it has walked the directory tree and the file is not listed. df shows that it is still there, as the filesystem knows that more is still using that space. Once you end the more session, du and df will agree. Note that softupdates can delay the freeing of disk space; you might need to wait up to 30 seconds for the change to be visible! This situation is common on web servers. Many people set up a FreeBSD web server and forget to rotate the log files. The access log fills up /var. The new administrator deletes the file, but the system still complains that the partition is full. Stopping and restarting the web server program would free the file, allowing the system to release the disk space. To prevent this from happening, set up &man.newsyslog.8;. How can I add more swap space? In the Configuration and Tuning section of the Handbook, you will find a section describing how to do this. System Administration Where are the system start-up configuration files? From 2.0.5R to 2.2.1R, the primary configuration file is /etc/sysconfig. All the options are to be specified in this file and other files such as /etc/rc (see &man.rc.8;) and /etc/netstart just include it. Look in the /etc/sysconfig file and change the value to match your system. This file is filled with comments to show what to put in there. In post-2.2.1 and 3.0, /etc/sysconfig was renamed to a more self-describing &man.rc.conf.5; file and the syntax cleaned up a bit in the process. /etc/netstart was also renamed to /etc/rc.network so that all files could be copied with a cp /usr/src/etc/rc* /etc command. And, in 3.1 and later, /etc/rc.conf has been moved to /etc/defaults/rc.conf. Do not edit this file! Instead, if there is any entry in /etc/defaults/rc.conf that you want to change, you should copy the line into /etc/rc.conf and change it there. For example, if you wish to start named, the DNS server included with FreeBSD in FreeBSD 3.1 or later, all you need to do is: &prompt.root; echo named_enable="YES" >> /etc/rc.conf To start up local services in FreeBSD 3.1 or later, place shell scripts in the /usr/local/etc/rc.d directory. These shell scripts should be set executable, and end with a .sh. In FreeBSD 3.0 and earlier releases, you should edit the /etc/rc.local file. The /etc/rc.serial is for serial port initialization (e.g. locking the port characteristics, and so on.). The /etc/rc.i386 is for Intel-specifics settings, such as iBCS2 emulation or the PC system console configuration. How do I add a user easily? Use the &man.adduser.8; command. For more complicated usage, the &man.pw.8; command. To remove the user again, use the &man.rmuser.8; command. Once again, &man.pw.8; will work as well. Why do I keep getting messages like root: not found after editing my crontab file? This is normally caused by editing the system crontab (/etc/crontab) and then using &man.crontab.1; to install it: &prompt.root; crontab /etc/crontab This is not the correct way to do things. The system crontab has a different format to the per-user crontabs which &man.crontab.1; updates (the &man.crontab.5; manual page explains the differences in more detail). If this is what you did, the extra crontab is simply a copy of /etc/crontab in the wrong format it. Delete it with the command: &prompt.root; crontab -r Next time, when you edit /etc/crontab, you should not do anything to inform &man.cron.8; of the changes, since it will notice them automatically. If you want something to be run once per day, week, or month, it is probably better to add shell scripts /usr/local/etc/periodic, and let the &man.periodic.8; command run from the system cron schedule it with the other periodic system tasks. The actual reason for the error is that the system crontab has an extra field, specifying which user to run the command as. In the default system crontab provided with FreeBSD, this is root for all entries. When this crontab is used as the root user's crontab (which is not the same as the system crontab), &man.cron.8; assumes the string root is the first word of the command to execute, but no such command exists. Why do I get the error, you are not in the correct group to su root when I try to su to root? This is a security feature. In order to su to root (or any other account with superuser privileges), you must be in the wheel group. If this feature were not there, anybody with an account on a system who also found out root's password would be able to gain superuser level access to the system. With this feature, this is not strictly true; &man.su.1; will prevent them from even trying to enter the password if they are not in wheel. To allow someone to su to root, simply put them in the wheel group. I made a mistake in rc.conf, or another startup file, and now I cannot edit it because the filesystem is read-only. What should I do? When you get the prompt to enter the shell pathname, simply press ENTER, and run mount / to re-mount the root filesystem in read/write mode. You may also need to run mount -a -t ufs to mount the filesystem where your favourite editor is defined. If your favourite editor is on a network filesystem, you will need to either configure the network manually before you can mount network filesystems, or use an editor which resides on a local filesystem, such as &man.ed.1;. If you intend to use a full screen editor such as &man.vi.1; or &man.emacs.1;, you may also need to run export TERM=cons25 so that these editors can load the correct data from the &man.termcap.5; database. Once you have performed these steps, you can edit /etc/rc.conf as you usually would to fix the syntax error. The error message displayed immediately after the kernel boot messages should tell you the number of the line in the file which is at fault. Why am I having trouble setting up my printer? Please have a look at the Handbook entry on printing. It should cover most of your problem. See the Handbook entry on printing. Some printers require a host-based driver to do any kind of printing. These so-called WinPrinters are not natively supported by FreeBSD. If your printer does not work in DOS or Windows NT 4.0, it is probably a WinPrinter. Your only hope of getting one of these to work is to check if the print/pnm2ppa port supports it. How can I correct the keyboard mappings for my system? Please see the Handbook section on using localization, specifically the section on console setup. Why do I get messages like: unknown: <PNP0303> can't assign resources on boot? The following is an excerpt from a post to the freebsd-current mailing list.
&a.wollman;, 24 April 2001 The can't assign resources messages indicate that the devices are legacy ISA devices for which a non-PnP-aware driver is compiled into the kernel. These include devices such as keyboard controllers, the programmable interrupt controller chip, and several other bits of standard infrastructure. The resources cannot be assigned because there is already a driver using those addresses.
Why can I not get user quotas to work properly? Do not turn on quotas on /, Put the quota file on the file system that the quotas are to be enforced on. ie: Filesystem Quota file /usr /usr/admin/quotas /home /home/admin/quotas Does FreeBSD support System V IPC primitives? Yes, FreeBSD supports System V-style IPC. This includes shared memory, messages and semaphores. You need to add the following lines to your kernel config to enable them. options SYSVSHM # enable shared memory options SYSVSEM # enable for semaphores options SYSVMSG # enable for messaging In FreeBSD 3.2 and later, these options are already part of the GENERIC kernel, which means they should already be compiled into your system. Recompile and install your kernel. How do I use sendmail for mail delivery with UUCP? The sendmail configuration that ships with FreeBSD is suited for sites that connect directly to the Internet. Sites that wish to exchange their mail via UUCP must install another sendmail configuration file. Tweaking /etc/sendmail.cf manually is considered something for purists. Sendmail version 8 comes with a new approach of generating config files via some &man.m4.1; preprocessing, where the actual hand-crafted configuration is on a higher abstraction level. You should use the configuration files under /usr/src/usr.sbin/sendmail/cf. If you did not install your system with full sources, the sendmail config stuff has been broken out into a separate source distribution tarball just for you. Assuming you have got your CDROM mounted, do: &prompt.root; cd /cdrom/src &prompt.root; cat scontrib.?? | tar xzf - -C /usr/src contrib/sendmail Do not panic, this is only a few hundred kilobytes in size. The file README in the cf directory can serve as a basic introduction to m4 configuration. For UUCP delivery, you are best advised to use the mailertable feature. This constitutes a database that sendmail can use to base its routing decision upon. First, you have to create your .mc file. The directory /usr/src/usr.sbin/sendmail/cf/cf is the home of these files. Look around, there are already a few examples. Assuming you have named your file foo.mc, all you need to do in order to convert it into a valid sendmail.cf is: &prompt.root; cd /usr/src/usr.sbin/sendmail/cf/cf &prompt.root; make foo.cf &prompt.root; cp foo.cf /etc/mail/sendmail.cf A typical .mc file might look like: VERSIONID(`Your version number') OSTYPE(bsd4.4) FEATURE(accept_unresolvable_domains) FEATURE(nocanonify) FEATURE(mailertable, `hash -o /etc/mail/mailertable') define(`UUCP_RELAY', your.uucp.relay) define(`UUCP_MAX_SIZE', 200000) define(`confDONT_PROBE_INTERFACES') MAILER(local) MAILER(smtp) MAILER(uucp) Cw your.alias.host.name Cw youruucpnodename.UUCP The lines containing accept_unresolvable_domains, nocanonify, and confDONT_PROBE_INTERFACES features will prevent any usage of the DNS during mail delivery. The UUCP_RELAY clause is needed for bizarre reasons, do not ask. Simply put an Internet hostname there that is able to handle .UUCP pseudo-domain addresses; most likely, you will enter the mail relay of your ISP there. Once you have got this, you need this file called /etc/mail/mailertable. If have only one link to the outside that is used for all your mails, the following file will be enough: # # makemap hash /etc/mail/mailertable.db < /etc/mail/mailertable . uucp-dom:your.uucp.relay A more complex example might look like this: # # makemap hash /etc/mail/mailertable.db < /etc/mail/mailertable # horus.interface-business.de uucp-dom:horus .interface-business.de uucp-dom:if-bus interface-business.de uucp-dom:if-bus .heep.sax.de smtp8:%1 horus.UUCP uucp-dom:horus if-bus.UUCP uucp-dom:if-bus . uucp-dom: As you can see, this is part of a real-life file. The first three lines handle special cases where domain-addressed mail should not be sent out to the default route, but instead to some UUCP neighbor in order to shortcut the delivery path. The next line handles mail to the local Ethernet domain that can be delivered using SMTP. Finally, the UUCP neighbors are mentioned in the .UUCP pseudo-domain notation, to allow for a uucp-neighbor !recipient override of the default rules. The last line is always a single dot, matching everything else, with UUCP delivery to a UUCP neighbor that serves as your universal mail gateway to the world. All of the node names behind the uucp-dom: keyword must be valid UUCP neighbors, as you can verify using the command uuname. As a reminder that this file needs to be converted into a DBM database file before being usable, the command line to accomplish this is best placed as a comment at the top of the mailertable. You always have to execute this command each time you change your mailertable. Final hint: if you are uncertain whether some particular mail routing would work, remember the option to sendmail. It starts sendmail in address test mode; simply enter 3,0, followed by the address you wish to test for the mail routing. The last line tells you the used internal mail agent, the destination host this agent will be called with, and the (possibly translated) address. Leave this mode by typing Control-D. &prompt.user; sendmail -bt ADDRESS TEST MODE (ruleset 3 NOT automatically invoked) Enter <ruleset> <address> > 3,0 foo@example.com canonify input: foo @ example . com ... parse returns: $# uucp-dom $@ your.uucp.relay $: foo < @ example . com . > > ^D How do I set up mail with a dialup connection to the 'net? If you have got a statically assigned IP number, you should not need to adjust anything from the default. Set your host name up as your assigned Internet name and sendmail will do the rest. If you have got a dynamically assigned IP number and use a dialup PPP connection to the Internet, you will probably be given a mailbox on your ISPs mail server. Lets assume your ISPs domain is myISP.com, and that your user name is user. Lets also assume you have called your machine bsd.home and that your ISP has told you that you may use relay.myISP.com as a mail relay. In order to retrieve mail from your mailbox, you will need to install a retrieval agent. Fetchmail is a good choice as it supports many different protocols. Usually, POP3 will be provided by your ISP. If you have chosen to use user-PPP, you can automatically fetch your mail when a connection to the 'net is established with the following entry in /etc/ppp/ppp.linkup: MYADDR: !bg su user -c fetchmail If you are using sendmail (as shown below) to deliver mail to non-local accounts, put the command !bg su user -c "sendmail -q" after the above shown entry. This forces sendmail to process your mailqueue as soon as the connection to the 'net is established. I am assuming that you have an account for user on bsd.home. In the home directory of user on bsd.home, create a .fetchmailrc file: poll myISP.com protocol pop3 fetchall pass MySecret This file should not be readable by anyone except user as it contains the password MySecret. In order to send mail with the correct from: header, you must tell sendmail to use user@myISP.com rather than user@bsd.home. You may also wish to tell sendmail to send all mail via relay.myISP.com, allowing quicker mail transmission. The following .mc file should suffice: VERSIONID(`bsd.home.mc version 1.0') OSTYPE(bsd4.4)dnl FEATURE(nouucp)dnl MAILER(local)dnl MAILER(smtp)dnl Cwlocalhost Cwbsd.home MASQUERADE_AS(`myISP.com')dnl FEATURE(allmasquerade)dnl FEATURE(masquerade_envelope)dnl FEATURE(nocanonify)dnl FEATURE(nodns)dnl define(`SMART_HOST', `relay.myISP.com') Dmbsd.home define(`confDOMAIN_NAME',`bsd.home')dnl define(`confDELIVERY_MODE',`deferred')dnl Refer to the previous section for details of how to turn this .mc file into a sendmail.cf file. Also, do not forget to restart sendmail after updating sendmail.cf. What other mail-server software can I use, instead of Sendmail? Sendmail is the default mail-server software for FreeBSD, but you can easily replace it with one of the other MTA (for instance, an MTA installed from the ports). There are various alternative MTA's in the ports tree already, with mail/exim, mail/postfix, mail/qmail, mail/zmailer, being some of the most popular choices. Diversity is nice, and the fact that you have many different mail-servers to chose from is considered a good thing; therefore try to avoid asking questions like Is Sendmail better than Qmail? in the mailing lists. If you do feel like asking, first check the mailing list archives. The advantages and disadvantages of each and every one of the available MTA's have already been discussed a few times. I have forgotten the root password! What do I do? Do not Panic! Simply restart the system, type boot -s at the Boot: prompt (just -s for FreeBSD releases before 3.2) to enter Single User mode. At the question about the shell to use, hit ENTER. You will be dropped to a &prompt.root; prompt. Enter mount -u / to remount your root filesystem read/write, then run mount -a to remount all the filesystems. Run passwd root to change the root password then run &man.exit.1; to continue booting. How do I keep Control-Alt-Delete from rebooting the system? If you are using syscons (the default console driver) in FreeBSD 2.2.7-RELEASE or later, build and install a new kernel with the line options SC_DISABLE_REBOOT in the configuration file. If you use the PCVT console driver in FreeBSD 2.2.5-RELEASE or later, use the following kernel configuration line instead: options PCVT_CTRL_ALT_DEL For older versions of FreeBSD, edit the keymap you are using for the console and replace the boot keywords with nop. The default keymap is /usr/share/syscons/keymaps/us.iso.kbd. You may have to instruct /etc/rc.conf to load this keymap explicitly for the change to take effect. Of course if you are using an alternate keymap for your country, you should edit that one instead. How do I reformat DOS text files to Unix ones? Simply use this perl command: &prompt.user; perl -i.bak -npe 's/\r\n/\n/g' file ... file is the file(s) to process. The modification is done in-place, with the original file stored with a .bak extension. Alternatively you can use the &man.tr.1; command: &prompt.user; tr -d '\r' < dos-text-file > unix-file dos-text-file is the file containing DOS text while unix-file will contain the converted output. This can be quite a bit faster than using perl. How do I kill processes by name? Use &man.killall.1;. Why is su bugging me about not being in root's ACL? The error comes from the Kerberos distributed authentication system. The problem is not fatal but annoying. You can either run su with the -K option, or uninstall Kerberos as described in the next question. How do I uninstall Kerberos? To remove Kerberos from the system, reinstall the bin distribution for the release you are running. If you have the CDROM, you can mount the cd (we will assume on /cdrom) and run &prompt.root; cd /cdrom/bin &prompt.root; ./install.sh Alternately, you can remove all "MAKE_KERBEROS" options from /etc/make.conf and rebuild world. How do I add pseudoterminals to the system? If you have lots of telnet, ssh, X, or screen users, you will probably run out of pseudoterminals. Here is how to add more: Build and install a new kernel with the line pseudo-device pty 256 in the configuration file. Run the commands &prompt.root; cd /dev &prompt.root; sh MAKEDEV pty{1,2,3,4,5,6,7} to make 256 device nodes for the new terminals. Edit /etc/ttys and add lines for each of the 256 terminals. They should match the form of the existing entries, i.e. they look like ttyqc none network The order of the letter designations is tty[pqrsPQRS][0-9a-v], using a regular expression. Reboot the system with the new kernel and you are ready to go. Why can I not create the snd0 device? There is no snd device. The name is used as a shorthand for the various devices that make up the FreeBSD sound driver, such as mixer, sequencer, and dsp. To create these devices you should &prompt.root; cd /dev &prompt.root; sh MAKEDEV snd0 How do I re-read /etc/rc.conf and re-start /etc/rc without a reboot? Go into single user mode and then back to multi user mode. On the console do: &prompt.root; shutdown now (Note: without -r or -h) &prompt.root; return &prompt.root; exit What is a sandbox? Sandbox is a security term. It can mean two things: A process which is placed inside a set of virtual walls that are designed to prevent someone who breaks into the process from being able to break into the wider system. The process is said to be able to play inside the walls. That is, nothing the process does in regards to executing code is supposed to be able to breech the walls so you do not have to do a detailed audit of its code to be able to say certain things about its security. The walls might be a userid, for example. This is the definition used in the security and named man pages. Take the ntalk service, for example (see /etc/inetd.conf). This service used to run as userid root. Now it runs as userid tty. The tty user is a sandbox designed to make it more difficult for someone who has successfully hacked into the system via ntalk from being able to hack beyond that user id. A process which is placed inside a simulation of the machine. This is more hard-core. Basically it means that someone who is able to break into the process may believe that he can break into the wider machine but is, in fact, only breaking into a simulation of that machine and not modifying any real data. The most common way to accomplish this is to build a simulated environment in a subdirectory and then run the processes in that directory chroot'd (i.e. / for that process is this directory, not the real / of the system). Another common use is to mount an underlying filesystem read-only and then create a filesystem layer on top of it that gives a process a seemingly writeable view into that filesystem. The process may believe it is able to write to those files, but only the process sees the effects - other processes in the system do not, necessarily. An attempt is made to make this sort of sandbox so transparent that the user (or hacker) does not realize that he is sitting in it. Unix implements two core sandboxes. One is at the process level, and one is at the userid level. Every Unix process is completely firewalled off from every other Unix process. One process cannot modify the address space of another. This is unlike Windows where a process can easily overwrite the address space of any other, leading to a crash. A Unix process is owned by a particular userid. If the userid is not the root user, it serves to firewall the process off from processes owned by other users. The userid is also used to firewall off on-disk data. What is securelevel? The securelevel is a security mechanism implemented in the kernel. Basically, when the securelevel is positive, the kernel restricts certain tasks; not even the superuser (i.e., root) is allowed to do them. At the time of this writing, the securelevel mechanism is capable of, among other things, limiting the ability to, unset certain file flags, such as schg (the system immutable flag), write to kernel memory via /dev/mem and /dev/kmem, load kernel modules, and alter &man.ipfirewall.4; rules. To check the status of the securelevel on a running system, simply execute the following command: &prompt.root; sysctl kern.securelevel The output will contain the name of the &man.sysctl.8; variable (in this case, kern.securelevel) and a number. The latter is the current value of the securelevel. If it is positive (i.e., greater than 0), at least some of the securelevel's protections are enabled. You cannot lower the securelevel of a running system; being able to do that would defeat its purpose. If you need to do a task that requires that the securelevel be non-positive (e.g., an installworld or changing the date), you will have to change the securelevel setting in /etc/rc.conf (you want to look for the kern_securelevel and kern_securelevel_enable variables) and reboot. For more information on securelevel and the specific things all the levels do, please consult the &man.init.8; manual page. Securelevel is not a silver bullet; it has many known deficiencies. More often than not, it provides a false sense of security. One of its biggest problems is that in order for it to be at all effective, all files used in the boot process up until the securelevel is set must be protected. If an attacker can get the system to execute their code prior to the securelevel being set (which happens quite late in the boot process since some things the system must do at start-up cannot be done at an elevated securelevel), its protections are invalidated. While this task of protecting all files used in the boot process is not technically impossible, if it is achieved, system maintenance will become a nightmare since one would have to take the system down, at least to single-user mode, to modify a configuration file. This point and others are often discussed on the mailing lists, particularly freebsd-security. Please search the archives here for an extensive discussion. Some people are hopeful that securelevel will soon go away in favor of a more fine-grained mechanism, but things are still hazy in this respect. Consider yourself warned. I tried to update my system to the latest -STABLE, but got -RC or -BETA! What is going on? Short answer: it is just a name. RC stands for Release Candidate. It signifies that a release is imminent. In FreeBSD, -BETA is typically synonymous with the code freeze before a release. Long answer: FreeBSD derives its releases from one of two places. Major, dot-zero, releases, such as 3.0-RELEASE and 4.0-RELEASE, are branched from the head of the development stream, commonly referred to as -CURRENT. Minor releases, such as 3.1-RELEASE or 4.2-RELEASE, have been snapshots of the active -STABLE branch. Starting with 4.3-RELEASE, each release also now has its own branch which can be tracked by people requiring an extremely conservative rate of development (typically only security advisories). When a release is about to be made, the branch from which it will be derived from has to undergo a certain process. Part of this process is a code freeze. When a code freeze is initiated, the name of the branch is changed to reflect that it is about to become a release. For example, if the branch used to be called 4.0-STABLE, its name will be changed to 4.1-BETA to signify the code freeze and signify that extra pre-release testing should be happening. Bug fixes can still be committed to be part of the release. When the source code is in shape for the release the name will be changed to 4.1-RC to signify that a release is about to be made from it. Once in the RC stage, only the most critical bugs found can be fixed. Once the release, 4.1-RELEASE in this example, has been made, the branch will be renamed to 4.1-STABLE. I tried to install a new kernel, and the chflags failed. How do I get around this? Short answer: You are probably at security level greater than 0. Reboot directly to single user mode to install the kernel. Long answer: FreeBSD disallows changing system flags at security levels greater than 0. You can check your security level with the command: &prompt.root; sysctl kern.securelevel You cannot lower the security level; you have to boot to single mode to install the kernel, or change the security level in /etc/rc.conf then reboot. See the &man.init.8; man page for details on securelevel, and see /etc/defaults/rc.conf and the &man.rc.conf.5; man page for more information on rc.conf. I cannot change the time on my system by more than one second! How do I get around this? Short answer: You are probably at security level greater than 1. Reboot directly to single user mode to change the date. Long answer: FreeBSD disallows changing the time by more that one second at security levels greater than 1. You can check your security level with the command: &prompt.root; sysctl kern.securelevel You cannot lower the security level; you have to boot to single mode to change the date, or change the security level in /etc/rc.conf then reboot. See the &man.init.8; man page for details on securelevel, and see /etc/defaults/rc.conf and the &man.rc.conf.5; man page for more information on rc.conf. Why is rpc.statd using 256 megabytes of memory? No, there is no memory leak, and it is not using 256 Mbytes of memory. It simply likes to (i.e., always does) map an obscene amount of memory into its address space for convenience. There is nothing terribly wrong with this from a technical standpoint; it just throws off things like &man.top.1; and &man.ps.1;. &man.rpc.statd.8; maps its status file (resident on /var) into its address space; to save worrying about remapping it later when it needs to grow, it maps it with a generous size. This is very evident from the source code, where one can see that the length argument to &man.mmap.2; is 0x10000000, or one sixteenth of the address space on an IA32, or exactly 256MB. Why can I not unset the schg file flag? You are running at an elevated (i.e., greater than 0) securelevel. Lower the securelevel and try again. For more information, see the FAQ entry on securelevel and the &man.init.8; manual page. Why does SSH authentication through .shosts not work by default in recent versions of FreeBSD? The reason why .shosts authentication does not work by default in more recent versions of FreeBSD is because &man.ssh.1; is not installed suid root by default. To fix this, you can do one of the following: As a permanent fix, set ENABLE_SUID_SSH to true in /etc/make.conf and rebuild ssh (or run make world). As a temporary fix, change the mode on /usr/bin/ssh to 4555 by running chmod 4755 /usr/bin/ssh as root. Then add ENABLE_SUID_SSH= true to /etc/make.conf so the change takes effect the next time make world is run. What is vnlru? vnlru flushes and frees vnodes when the system hits the kern.maxvnodes limit. This kernel thread sits mostly idle, and only activates if you have a huge amount of RAM and are accessing tens of thousands of tiny files.
The X Window System and Virtual Consoles I want to run X, how do I go about it? The easiest way is to simply specify that you want to run X during the installation process. Then read and follow the documentation on the xf86config tool, which assists you in configuring XFree86 for your particular graphics card/mouse/etc. You may also wish to investigate the Xaccel server. See the section on Xi Graphics or Metro Link for more details. I tried to run X, but I get an KDENABIO failed (Operation not permitted) error when I type startx. What do I do now? Your system is running at a raised securelevel, is not it? It is, indeed, impossible to start X at a raised securelevel. To see why, look at the &man.init.8; man page. So the question is what else you should do instead, and you basically have two choices: set your securelevel back down to zero (usually from /etc/rc.conf), or run &man.xdm.1; at boot time (before the securelevel is raised). See for more information about running &man.xdm.1; at boot time. Why does my mouse not work with X? If you are using syscons (the default console driver), you can configure FreeBSD to support a mouse pointer on each virtual screen. In order to avoid conflicting with X, syscons supports a virtual device called /dev/sysmouse. All mouse events received from the real mouse device are written to the sysmouse device via moused. If you wish to use your mouse on one or more virtual consoles, and use X, see and set up moused. Then edit /etc/XF86Config and make sure you have the following lines. Section Pointer Protocol "SysMouse" Device "/dev/sysmouse" ..... The above example is for XFree86 3.3.2 or later. For earlier versions, the Protocol should be MouseSystems. Some people prefer to use /dev/mouse under X. To make this work, /dev/mouse should be linked to /dev/sysmouse (see &man.sysmouse.4;): &prompt.root; cd /dev &prompt.root; rm -f mouse &prompt.root; ln -s sysmouse mouse My mouse has a fancy wheel. Can I use it in X? Yes. But you need to customize X client programs. See Colas Nahaboo's web page (http://www.inria.fr/koala/colas/mouse-wheel-scroll/) . If you want to use the imwheel program, just follow these simple steps. Translate the Wheel Events The imwheel program works by translating mouse button 4 and mouse button 5 events into key events. Thus, you have to get the mouse driver to translate mouse wheel events to button 4 and 5 events. There are two ways of doing this, the first way is to have &man.moused.8; do the translation. The second way is for the X server itself to do the event translation. Using &man.moused.8; to Translate Wheel Events To have &man.moused.8; perform the event translations, simply add to the command line used to start &man.moused.8;. For example, if you normally start &man.moused.8; via moused -p /dev/psm0 you would start it by entering moused -p /dev/psm0 -z 4 instead. If you start &man.moused.8; automatically during bootup via /etc/rc.conf, you can simply add to the moused_flags variable in /etc/rc.conf. You now need to tell X that you have a 5 button mouse. To do this, simply add the line Buttons 5 to the Pointer section of /etc/XF86Config. For example, you might have the following Pointer section in /etc/XF86Config. <quote>Pointer</quote> Section for Wheeled Mouse in XFree86 3.3.x series XF86Config with moused Translation Section "Pointer" Protocol "SysMouse" Device "/dev/sysmouse" Buttons 5 EndSection <quote>InputDevice</quote> Section for Wheeled Mouse in XFree86 4.x series XF86Config with X Server Translation Section "InputDevice" Identifier "Mouse1" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/sysmouse" Option "Buttons" "5" EndSection <quote>.emacs</quote> example for naive page scrolling with Wheeled Mouse ;; wheel mouse (global-set-key [mouse-4] 'scroll-down) (global-set-key [mouse-5] 'scroll-up) Using Your X Server to Translate the Wheel Events If you are not running &man.moused.8;, or if you do not want &man.moused.8; to translate your wheel events, you can have the X server do the event translation instead. This requires a couple of modifications to your /etc/XF86Config file. First, you need to choose the proper protocol for your mouse. Most wheeled mice use the IntelliMouse protocol. However, XFree86 does support other protocols, such as MouseManPlusPS/2 for the Logitech MouseMan+ mice. Once you have chosen the protocol you will use, you need to add a Protocol line to the Pointer section. Secondly, you need to tell the X server to remap wheel scroll events to mouse buttons 4 and 5. This is done with the ZAxisMapping option. For example, if you are not using &man.moused.8;, and you have an IntelliMouse attached to the PS/2 mouse port you would use the following in /etc/XF86Config. <quote>Pointer</quote> Section for Wheeled Mouse in <filename>XF86Config</filename> with X Server Translation Section "Pointer" Protocol "IntelliMouse" Device "/dev/psm0" ZAxisMapping 4 5 EndSection <quote>InputDevice</quote> Section for Wheeled Mouse in XFree86 4.x series XF86Config with X Server Translation Section "InputDevice" Identifier "Mouse1" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/psm0" Option "ZAxisMapping" "4 5" EndSection <quote>.emacs</quote> example for naive page scrolling with Wheeled Mouse ;; wheel mouse (global-set-key [mouse-4] 'scroll-down) (global-set-key [mouse-5] 'scroll-up) Install imwheel Next, install imwheel from the Ports collection. It can be found in the x11 category. This program will map the wheel events from your mouse into keyboard events. For example, it might send Page Up to a program when you scroll the wheel forwards. Imwheel uses a configuration file to map the wheel events to key presses so that it can send different keys to different applications. The default imwheel configuration file is installed in /usr/X11R6/etc/imwheelrc. You can copy it to ~/.imwheelrc and then edit it if you wish to customize imwheel's configuration. The format of the configuration file is documented in &man.imwheel.1;. Configure Emacs to Work with Imwheel (optional) If you use emacs or Xemacs, then you need to add a small section to your ~/.emacs file. For emacs, add the following: <application>Emacs</application> Configuration for <application>Imwheel</application> ;;; For imwheel (setq imwheel-scroll-interval 3) (defun imwheel-scroll-down-some-lines () (interactive) (scroll-down imwheel-scroll-interval)) (defun imwheel-scroll-up-some-lines () (interactive) (scroll-up imwheel-scroll-interval)) (global-set-key [?\M-\C-\)] 'imwheel-scroll-up-some-lines) (global-set-key [?\M-\C-\(] 'imwheel-scroll-down-some-lines) ;;; end imwheel section For Xemacs, add the following to your ~/.emacs file instead: <application>Xemacs</application> Configuration for <application>Imwheel</application> ;;; For imwheel (setq imwheel-scroll-interval 3) (defun imwheel-scroll-down-some-lines () (interactive) (scroll-down imwheel-scroll-interval)) (defun imwheel-scroll-up-some-lines () (interactive) (scroll-up imwheel-scroll-interval)) (define-key global-map [(control meta \))] 'imwheel-scroll-up-some-lines) (define-key global-map [(control meta \()] 'imwheel-scroll-down-some-lines) ;;; end imwheel section Run Imwheel You can just type imwheel in an xterm to start it up once it is installed. It will background itself and take effect immediately. If you want to always use imwheel, simply add it to your .xinitrc or .xsession file. You can safely ignore any warnings imwheel displays about PID files. Those warnings only apply to the Linux version of imwheel. Why do X Window menus and dialog boxes not work right? Try turning off the Num Lock key. If your Num Lock key is on by default at boot-time, you may add the following line in the Keyboard section of the XF86Config file. # Let the server do the NumLock processing. This should only be # required when using pre-R6 clients ServerNumLock What is a virtual console and how do I make more? Virtual consoles, put simply, enable you to have several simultaneous sessions on the same machine without doing anything complicated like setting up a network or running X. When the system starts, it will display a login prompt on the monitor after displaying all the boot messages. You can then type in your login name and password and start working (or playing!) on the first virtual console. At some point, you will probably wish to start another session, perhaps to look at documentation for a program you are running or to read your mail while waiting for an FTP transfer to finish. Just do Alt-F2 (hold down the Alt key and press the F2 key), and you will find a login prompt waiting for you on the second virtual console! When you want to go back to the original session, do Alt-F1. The default FreeBSD installation has three virtual consoles enabled (8 starting with 3.3-RELEASE), and Alt-F1, Alt-F2, and Alt-F3 will switch between these virtual consoles. To enable more of them, edit /etc/ttys (see &man.ttys.5;) and add entries for ttyv4 to ttyvc after the comment on Virtual terminals: # Edit the existing entry for ttyv3 in /etc/ttys and change # "off" to "on". ttyv3 "/usr/libexec/getty Pc" cons25 on secure ttyv4 "/usr/libexec/getty Pc" cons25 on secure ttyv5 "/usr/libexec/getty Pc" cons25 on secure ttyv6 "/usr/libexec/getty Pc" cons25 on secure ttyv7 "/usr/libexec/getty Pc" cons25 on secure ttyv8 "/usr/libexec/getty Pc" cons25 on secure ttyv9 "/usr/libexec/getty Pc" cons25 on secure ttyva "/usr/libexec/getty Pc" cons25 on secure ttyvb "/usr/libexec/getty Pc" cons25 on secure Use as many or as few as you want. The more virtual terminals you have, the more resources that are used; this can be important if you have 8MB RAM or less. You may also want to change the secure to insecure. If you want to run an X server you must leave at least one virtual terminal unused (or turned off) for it to use. That is to say that if you want to have a login prompt pop up for all twelve of your Alt-function keys, you are out of luck - you can only do this for eleven of them if you also want to run an X server on the same machine. The easiest way to disable a console is by turning it off. For example, if you had the full 12 terminal allocation mentioned above and you wanted to run X, you would change settings for virtual terminal 12 from: ttyvb "/usr/libexec/getty Pc" cons25 on secure to: ttyvb "/usr/libexec/getty Pc" cons25 off secure If your keyboard has only ten function keys, you would end up with: ttyv9 "/usr/libexec/getty Pc" cons25 off secure ttyva "/usr/libexec/getty Pc" cons25 off secure ttyvb "/usr/libexec/getty Pc" cons25 off secure (You could also just delete these lines.) Once you have edited /etc/ttys, the next step is to make sure that you have enough virtual terminal devices. The easiest way to do this is: &prompt.root; cd /dev &prompt.root; sh MAKEDEV vty12 Next, the easiest (and cleanest) way to activate the virtual consoles is to reboot. However, if you really do not want to reboot, you can just shut down the X Window system and execute (as root): &prompt.root; kill -HUP 1 It is imperative that you completely shut down X Window if it is running, before running this command. If you do not, your system will probably appear to hang/lock up after executing the kill command. How do I access the virtual consoles from X? Use Ctrl Alt Fn to switch back to a virtual console. Ctrl Alt F1 would return you to the first virtual console. Once you are back to a text console, you can then use Alt Fn as normal to move between them. To return to the X session, you must switch to the virtual console running X. If you invoked X from the command line, (e.g., using startx) then the X session will attach to the next unused virtual console, not the text console from which it was invoked. If you have eight active virtual terminals then X will be running on the ninth, and you would use Alt F9 to return. How do I start XDM on boot? There are two schools of thought on how to start xdm. One school starts xdm from /etc/ttys (see &man.ttys.5;) using the supplied example, while the other simply runs xdm from rc.local (see &man.rc.8;) or from a X.sh script in /usr/local/etc/rc.d. Both are equally valid, and one may work in situations where the other does not. In both cases the result is the same: X will pop up a graphical login: prompt. The ttys method has the advantage of documenting which vty X will start on and passing the responsibility of restarting the X server on logout to init. The rc.local method makes it easy to kill xdm if there is a problem starting the X server. If loaded from rc.local, xdm should be started without any arguments (i.e., as a daemon). xdm must start AFTER getty runs, or else getty and xdm will conflict, locking out the console. The best way around this is to have the script sleep 10 seconds or so then launch xdm. If you are to start xdm from /etc/ttys, there still is a chance of conflict between xdm and &man.getty.8;. One way to avoid this is to add the vt number in the /usr/X11R6/lib/X11/xdm/Xservers file. :0 local /usr/X11R6/bin/X vt4 The above example will direct the X server to run in /dev/ttyv3. Note the number is offset by one. The X server counts the vty from one, whereas the FreeBSD kernel numbers the vty from zero. Why do I get Couldn't open console when I run xconsole? If you start X with startx, the permissions on /dev/console will not get changed, resulting in things like xterm -C and xconsole not working. This is because of the way console permissions are set by default. On a multi-user system, one does not necessarily want just any user to be able to write on the system console. For users who are logging directly onto a machine with a VTY, the &man.fbtab.5; file exists to solve such problems. In a nutshell, make sure an uncommented line of the form /dev/ttyv0 0600 /dev/console is in /etc/fbtab (see &man.fbtab.5;) and it will ensure that whomever logs in on /dev/ttyv0 will own the console. Before, I was able to run XFree86 as a regular user. Why does it now say that I must be root? All X servers need to be run as root in order to get direct access to your video hardware. Older versions of XFree86 (<= 3.3.6) installed all bundled servers to be automatically run as root (setuid to root). This is obviously a security hazard because X servers are large, complicated programs. Newer versions of XFree86 do not install the servers setuid to root for just this reason. Obviously, running an X server as the root user is not acceptable, nor a good idea security-wise. There are two ways to be able to use X as a regular user. The first is to use xdm or another display manager (e.g., kdm); the second is to use the Xwrapper. xdm is a daemon that handles graphical logins. It is usually started at boot time, and is responsible for authenticating users and starting their sessions; it is essentially the graphical counterpart of &man.getty.8; and &man.login.1;. For more information on xdm see the XFree86 documentation, and the the FAQ entry on it. Xwrapper is the X server wrapper; it is a small utility to enable one to manually run an X server while maintaining reasonable safety. It performs some sanity checks on the command line arguments given, and if they pass, runs the appropriate X server. If you do not want to run a display manger for whatever reason, this is for you. If you have installed the complete ports collection, you can find the port in /usr/ports/x11/wrapper. Why does my PS/2 mouse misbehave under X? Your mouse and the mouse driver may have somewhat become out of synchronization. In versions 2.2.5 and earlier, switching away from X to a virtual terminal and getting back to X again may make them re-synchronized. If the problem occurs often, you may add the following option in your kernel configuration file and recompile it. options PSM_CHECKSYNC See the section on building a kernel if you have no experience with building kernels. With this option, there should be less chance of synchronization problem between the mouse and the driver. If, however, you still see the problem, click any mouse button while holding the mouse still to re-synchronize the mouse and the driver. Note that unfortunately this option may not work with all the systems and voids the tap feature of the ALPS GlidePoint device attached to the PS/2 mouse port. In versions 2.2.6 and later, synchronization check is done in a slightly better way and is standard in the PS/2 mouse driver. It should even work with GlidePoint. (As the check code has become a standard feature, PSM_CHECKSYNC option is not available in these versions.) However, in rare case the driver may erroneously report synchronization problem and you may see the kernel message: psmintr: out of sync (xxxx != yyyy) and find your mouse does not seem to work properly. If this happens, disable the synchronization check code by setting the driver flags for the PS/2 mouse driver to 0x100. Enter UserConfig by giving the option at the boot prompt: boot: -c Then, in the UserConfig command line, type: UserConfig> flags psm0 0x100 UserConfig> quit Why does my PS/2 mouse from MouseSystems not work? There have been some reports that certain model of PS/2 mouse from MouseSystems works only if it is put into the high resolution mode. Otherwise, the mouse cursor may jump to the upper-left corner of the screen every so often. Unfortunately there is no workaround for versions 2.0.X and 2.1.X. In versions 2.2 through 2.2.5, apply the following patch to /sys/i386/isa/psm.c and rebuild the kernel. See the section on building a kernel if you have no experience with building kernels. @@ -766,6 +766,8 @@ if (verbose >= 2) log(LOG_DEBUG, "psm%d: SET_DEFAULTS return code:%04x\n", unit, i); + set_mouse_resolution(sc->kbdc, PSMD_RES_HIGH); + #if 0 set_mouse_scaling(sc->kbdc); /* 1:1 scaling */ set_mouse_mode(sc->kbdc); /* stream mode */ In versions 2.2.6 or later, specify the flags 0x04 to the PS/2 mouse driver to put the mouse into the high resolution mode. Enter UserConfig by giving the option at the boot prompt: boot: -c Then, in the UserConfig command line, type: UserConfig> flags psm0 0x04 UserConfig> quit See the previous section for another possible cause of mouse problems. When building an X app, imake cannot find Imake.tmpl. Where is it? Imake.tmpl is part of the Imake package, a standard X application building tool. Imake.tmpl, as well as several header files that are required to build X apps, is contained in the X prog distribution. You can install this from sysinstall or manually from the X distribution files. An X app I am building depends on XFree86 3.3.x, but I have XFree86 4.x installed. What should I do? To tell the port build to link to the XFree86 4.x libraries, add the following to /etc/make.conf, (if you do not have this file, create it): XFREE86_VERSION= 4 How do I reverse the mouse buttons? Run the command xmodmap -e "pointer = 3 2 1" from your .xinitrc or .xsession. How do I install a splash screen and where do I find them? Just prior to the release of FreeBSD 3.1, a new feature was added to allow the display of splash screens during the boot messages. The splash screens currently must be a 256 color bitmap (*.BMP) or ZSoft PCX (*.PCX) file. In addition, they must have a resolution of 320x200 or less to work on standard VGA adapters. If you compile VESA support into your kernel, then you can use larger bitmaps up to 1024x768. Note that VESA support requires the VM86 kernel option to be compiled into the kernel. The actual VESA support can either be compiled directly into the kernel with the VESA kernel config option or by loading the VESA kld module during bootup. To use a splash screen, you need to modify the startup files that control the boot process for FreeBSD. The files for this changed prior to the release of FreeBSD 3.2, so there are now two ways of loading a splash screen: FreeBSD 3.1 The first step is to find a bitmap version of your splash screen. Release 3.1 only supports Windows bitmap splash screens. Once you have found your splash screen of choice copy it to /boot/splash.bmp. Next, you need to have a /boot/loader.rc file that contains the following lines: load kernel load -t splash_image_data /boot/splash.bmp load splash_bmp autoboot FreeBSD 3.2+ In addition to adding support for PCX splash screens, FreeBSD 3.2 includes a nicer way of configuring the boot process. If you wish, you can use the method listed above for FreeBSD 3.1. If you do and you want to use PCX, replace splash_bmp with splash_pcx. If, on the other hand, you want to use the newer boot configuration, you need to create a /boot/loader.rc file that contains the following lines: include /boot/loader.4th start and a /boot/loader.conf that contains the following: splash_bmp_load="YES" bitmap_load="YES" This assumes you are using /boot/splash.bmp for your splash screen. If you would rather use a PCX file, copy it to /boot/splash.pcx, create a /boot/loader.rc as instructed above, and create a /boot/loader.conf that contains: splash_pcx_load="YES" bitmap_load="YES" bitmap_name="/boot/splash.pcx" Now all you need is a splash screen. For that you can surf on over to the gallery at http://www.baldwin.cx/splash/. Can I use the Windows keys on my keyboard in X? Yes. All you need to do is use &man.xmodmap.1; to define what function you wish them to perform. Assuming all Windows keyboards are standard then the keycodes for the 3 keys are 115 - Windows key, between the left-hand Ctrl and Alt keys 116 - Windows key, to the right of the Alt-Gr key 117 - Menu key, to the left of the right-hand Ctrl key To have the left Windows key print a comma, try this. &prompt.root; xmodmap -e "keycode 115 = comma" You will probably have to re-start your window manager to see the result. To have the Windows key-mappings enabled automatically every time you start X either put the xmodmap commands in your ~/.xinitrc file or, preferably, create a file ~/.xmodmaprc and include the xmodmap options, one per line, then add the line xmodmap $HOME/.xmodmaprc to your ~/.xinitrc. For example, you could map the 3 keys top be F13, F14, and F15, respectively. This would make it easy to map them to useful functions within applications or your window manager, as demonstrated further down. To do this put the following in ~/.xmodmaprc. keycode 115 = F13 keycode 116 = F14 keycode 117 = F15 If you use fvwm2, for example, you could map the keys so that F13 iconifies (or de-iconifies) the window the cursor is in, F14 brings the window the cursor is in to the front or, if it is already at the front, pushes it to the back, and F15 pops up the main Workplace (application) menu even if the cursor is not on the desktop, which is useful if you do not have any part of the desktop visible (and the logo on the key matches its functionality). The following entries in ~/.fvwmrc implement the aforementioned setup: Key F13 FTIWS A Iconify Key F14 FTIWS A RaiseLower Key F15 A A Menu Workplace Nop How can I get 3D hardware acceleration for OpenGL? The availability of 3D acceleration depends on the version of XFree86 you are using and the type of video chip you have. If you have an NVIDIA chip, check out the FreeBSD NVIDIA Driver Initiative page, which discusses 3D acceleration for NVIDIA chips using XFree86-4. For other cards with XFree86-4, including the Matrox G200/G400, ATI Rage 128/Radeon, and 3dfx Voodoo 3, 4, 5, and Banshee, information on hardware acceleration is available on the XFree86-4 Direct Rendering on FreeBSD page. Users of XFree86 version 3.3 can use the Utah-GLX port found in graphics/utah-glx to get limited accelerated OpenGL on the Matrox Gx00, ATI Rage Pro, SiS 6326, i810, Savage, and older NVIDIA chips. Networking Where can I get information on diskless booting? Diskless booting means that the FreeBSD box is booted over a network, and reads the necessary files from a server instead of its hard disk. For full details, please read the Handbook entry on diskless booting Can a FreeBSD box be used as a dedicated network router? Yes. Please see the Handbook entry on advanced networking, specifically the section on routing and gateways. Can I connect my Win95 box to the Internet via FreeBSD? Typically, people who ask this question have two PC's at home, one with FreeBSD and one with Win95; the idea is to use the FreeBSD box to connect to the Internet and then be able to access the Internet from the Windows95 box through the FreeBSD box. This is really just a special case of the previous question. ... and the answer is yes! In FreeBSD 3.x, user-mode &man.ppp.8; contains a option. If you run &man.ppp.8; with the , set gateway_enable to YES in /etc/rc.conf, and configure your Windows machine correctly, this should work fine. More detailed information about setting this up can be found in the Pedantic PPP Primer by Steve Sims. If you are using kernel-mode PPP, or have an Ethernet connection to the Internet, you will have to use &man.natd.8;. Please look at the natd section of this FAQ. Does FreeBSD support SLIP and PPP? Yes. See the manual pages for &man.slattach.8;, &man.sliplogin.8;, &man.ppp.8;, and &man.pppd.8;. &man.ppp.8; and &man.pppd.8; provide support for both incoming and outgoing connections, while &man.sliplogin.8; deals exclusively with incoming connections, and &man.slattach.8; deals exclusively with outgoing connections. For more information on how to use these, please see the Handbook chapter on PPP and SLIP. If you only have access to the Internet through a shell account, you may want to have a look at the net/slirp package. It can provide you with (limited) access to services such as ftp and http direct from your local machine. Does FreeBSD support NAT or Masquerading? If you have a local subnet (one or more local machines), but have been allocated only a single IP number from your Internet provider (or even if you receive a dynamic IP number), you may want to look at the &man.natd.8; program. &man.natd.8; allows you to connect an entire subnet to the Internet using only a single IP number. The &man.ppp.8; program has similar functionality built in via the switch. The alias library (&man.libalias.3;) is used in both cases. How do I connect two FreeBSD systems over a parallel line using PLIP? Please see the PLIP section of the Handbook. Why can I not create a /dev/ed0 device? Because they aren't necessary. In the Berkeley networking framework, network interfaces are only directly accessible by kernel code. Please see the /etc/rc.network file and the manual pages for the various network programs mentioned there for more information. If this leaves you totally confused, then you should pick up a book describing network administration on another BSD-related operating system; with few significant exceptions, administering networking on FreeBSD is basically the same as on SunOS 4.0 or Ultrix. How can I set up Ethernet aliases? If the alias is on the same subnet as an address already configured on the interface, then add netmask 0xffffffff to your &man.ifconfig.8; command-line, as in the following: &prompt.root; ifconfig ed0 alias 192.0.2.2 netmask 0xffffffff Otherwise, just specify the network address and netmask as usual: &prompt.root; ifconfig ed0 alias 172.16.141.5 netmask 0xffffff00 How do I get my 3C503 to use the other network port? If you want to use the other ports, you will have to specify an additional parameter on the &man.ifconfig.8; command line. The default port is link0. To use the AUI port instead of the BNC one, use link2. These flags should be specified using the ifconfig_* variables in /etc/rc.conf (see &man.rc.conf.5;). Why am I having trouble with NFS and FreeBSD? Certain PC network cards are better than others (to put it mildly) and can sometimes cause problems with network intensive applications like NFS. See the Handbook entry on NFS for more information on this topic. Why can I not NFS-mount from a Linux box? Some versions of the Linux NFS code only accept mount requests from a privileged port; try &prompt.root; mount -o -P linuxbox:/blah /mnt Why can I not NFS-mount from a Sun box? Sun workstations running SunOS 4.X only accept mount requests from a privileged port; try &prompt.root; mount -o -P sunbox:/blah /mnt Why does mountd keep telling me it can't change attributes and that I have a bad exports list on my FreeBSD NFS server? The most frequent problem is not understanding the correct format of /etc/exports. Please review &man.exports.5; and the NFS entry in the Handbook, especially the section on configuring NFS. Why am I having problems talking PPP to NeXTStep machines? Try disabling the TCP extensions in /etc/rc.conf (see &man.rc.conf.5;) by changing the following variable to NO: tcp_extensions=NO Xylogic's Annex boxes are also broken in this regard and you must use the above change to connect thru them. How do I enable IP multicast support? Multicast host operations are fully supported in FreeBSD 2.0 and later by default. If you want your box to run as a multicast router, you will need to recompile your kernel with the MROUTING option and run &man.mrouted.8;. FreeBSD 2.2 and later will start &man.mrouted.8; at boot time if the flag mrouted_enable is set to "YES" in /etc/rc.conf. MBONE tools are available in their own ports category, mbone. If you are looking for the conference tools vic and vat, look there! Which network cards are based on the DEC PCI chipset? Here is a list compiled by Glen Foster gfoster@driver.nsta.org, with some more modern additions: Network cards based on the DEC PCI chipset Vendor Model ASUS PCI-L101-TB Accton ENI1203 Cogent EM960PCI Compex ENET32-PCI D-Link DE-530 Dayna DP1203, DP2100 DEC DE435, DE450 Danpex EN-9400P3 JCIS Condor JC1260 Linksys EtherPCI Mylex LNP101 SMC EtherPower 10/100 (Model 9332) SMC EtherPower (Model 8432) TopWare TE-3500P Znyx (2.2.x) ZX312, ZX314, ZX342, ZX345, ZX346, ZX348 Znyx (3.x) ZX345Q, ZX346Q, ZX348Q, ZX412Q, ZX414, ZX442, ZX444, ZX474, ZX478, ZX212, ZX214 (10mbps/hd)
Why do I have to use the FQDN for hosts on my site? You will probably find that the host is actually in a different domain; for example, if you are in foo.example.org and you wish to reach a host called mumble in the example.org domain, you will have to refer to it by the fully-qualified domain name, mumble.example.org, instead of just mumble. Traditionally, this was allowed by BSD BIND resolvers. However the current version of bind (see &man.named.8;) that ships with FreeBSD no longer provides default abbreviations for non-fully qualified domain names other than the domain you are in. So an unqualified host mumble must either be found as mumble.foo.example.org, or it will be searched for in the root domain. This is different from the previous behavior, where the search continued across mumble.example.org, and mumble.edu. Have a look at RFC 1535 for why this was considered bad practice, or even a security hole. As a good workaround, you can place the line search foo.example.org example.org instead of the previous domain foo.example.org into your /etc/resolv.conf file (see &man.resolv.conf.5;). However, make sure that the search order does not go beyond the boundary between local and public administration, as RFC 1535 calls it. Why do I get an error, Permission denied, for all networking operations? If you have compiled your kernel with the IPFIREWALL option, you need to be aware that the default policy as of 2.1.7R (this actually changed during 2.1-STABLE development) is to deny all packets that are not explicitly allowed. If you had unintentionally misconfigured your system for firewalling, you can restore network operability by typing the following while logged in as root: &prompt.root; ipfw add 65534 allow all from any to any You can also set firewall_type="open" in /etc/rc.conf. For further information on configuring a FreeBSD firewall, see the Handbook section. How much overhead does IPFW incur? Please see the Handbook's Firewalls section, specifically the section on IPFW Overhead & Optimization. Why is my ipfw fwd rule to redirect a service to another machine not working? Possibly because you want to do network address translation (NAT) and not just forward packets. A fwd rule does exactly what it says; it forwards packets. It does not actually change the data inside the packet. Say we have a rule like: 01000 fwd 10.0.0.1 from any to foo 21 When a packet with a destination address of foo arrives at the machine with this rule, the packet is forwarded to 10.0.0.1, but it still has the destination address of foo! The destination address of the packet is not changed to 10.0.0.1. Most machines would probably drop a packet that they receive with a destination address that is not their own. Therefore, using a fwd rule does not often work the way the user expects. This behavior is a feature and not a bug. See the FAQ about redirecting services, the &man.natd.8; manual, or one of the several port redirecting utilities in the ports collection for a correct way to do this. How can I redirect service requests from one machine to another? You can redirect FTP (and other service) request with the socket package, available in the ports tree in category sysutils. Simply replace the service's command line to call socket instead, like so: ftp stream tcp nowait nobody /usr/local/bin/socket socket ftp.example.com ftp where ftp.example.com and ftp are the host and port to redirect to, respectively. Where can I get a bandwidth management tool? There are three bandwidth management tools available for FreeBSD. &man.dummynet.4; is integrated into FreeBSD (or more specifically, &man.ipfw.4;); ALTQ is available for free; Bandwidth Manager from Emerging Technologies is a commercial product. Why do I get /dev/bpf0: device not configured? You are running a program that requires the Berkeley Packet Filter (&man.bpf.4;), but it's not in your kernel. Add this to your kernel config file and build a new kernel: pseudo-device bpf # Berkeley Packet Filter After rebooting, create the device node. This can be accomplished by going to the /dev directory and running: &prompt.root; sh MAKEDEV bpf0 Please see the Handbook entry on device nodes for more information on creating devices. How do I mount a disk from a Windows machine that is on my network, like smbmount in Linux? Use the SMBFS toolset. It includes a set of kernel modifications and a set of userland programs. The programs and information are available as net/smbfs in the ports collection, or in the base system as of 4.5-RELEASE and later. What are these messages about icmp-response bandwidth limit 300/200 pps in my log files? This is the kernel telling you that some activity is provoking it to send more ICMP or TCP reset (RST) responses than it thinks it should. ICMP responses are often generated as a result of attempted connections to unused UDP ports. TCP resets are generated as a result of attempted connections to unopened TCP ports. Among others, these are the kinds of activities which may cause these messages: Brute-force denial of service (DoS) attacks (as opposed to single-packet attacks which exploit a specific vulnerability). Port scans which attempt to connect to a large number of ports (as opposed to only trying a few well-known ports). The first number in the message tells you how many packets the kernel would have sent if the limit was not in place, and the second number tells you the limit. You can control the limit using the net.inet.icmp.icmplim sysctl variable like this, where 300 is the limit in packets per second: &prompt.root; sysctl -w net.inet.icmp.icmplim=300 If you do not want to see messages about this in your log files, but you still want the kernel to do response limiting, you can use the net.inet.icmp.icmplim_output sysctl variable to disable the output like this: &prompt.root; sysctl -w net.inet.icmp.icmplim_output=0 Finally, if you want to disable response limiting, you can set the net.inet.icmp.icmplim sysctl variable (see above for an example) to 0. Disabling response limiting is discouraged for the reasons listed above. What are these arp: unknown hardware address format error messages? This means that some device on your local Ethernet is using a MAC address in a format that FreeBSD does not recognize. This is probably caused by someone experimenting with an Ethernet card somewhere else on the network. You will see this most commonly on cable modem networks. It is harmless, and should not affect the performance of your FreeBSD machine.
Security BIND (named) is listening on port 53 and some other high-numbered port. What is going on? FreeBSD 3.0 and later use a version of BIND that uses a random high-numbered port for outgoing queries. If you want to use port 53 for outgoing queries, either to get past a firewall or to make yourself feel better, you can try the following in /etc/namedb/named.conf: options { query-source address * port 53; }; You can replace the * with a single IP address if you want to tighten things further. Congratulations, by the way. It is good practice to read your &man.sockstat.1; output and notice odd things! Sendmail is listening on port 587 as well as the standard port 25! What is going on? Recent versions of Sendmail support a mail submission feature that runs over port 587. This is not yet widely supported, but is growing in popularity. What is this UID 0 toor account? Have I been compromised? Do not worry. toor is an alternative superuser account (toor is root spelt backwards). Previously it was created when the &man.bash.1; shell was installed but now it is created by default. It is intended to be used with a non-standard shell so you do not have to change root's default shell. This is important as shells which are not part of the base distribution (for example a shell installed from ports or packages) are likely be to be installed in /usr/local/bin which, by default, resides on a different filesystem. If root's shell is located in /usr/local/bin and /usr (or whatever filesystem contains /usr/local/bin) is not mounted for some reason, root will not be able to log in to fix a problem (although if you reboot into single user mode you will be prompted for the path to a shell). Some people use toor for day-to-day root tasks with a non-standard shell, leaving root, with a standard shell, for single user mode or emergencies. By default you cannot log in using toor as it does not have a password, so log in as root and set a password for toor if you want to use it. Why is suidperl not working properly? For security reasons, suidperl is installed without the suid bit by default. The system administrator can enable suid behavior with the following command. &prompt.root; chmod u+s /usr/bin/suidperl If you want suidperl to be built suid during upgrades from source, edit /etc/make.conf and add ENABLE_SUIDPERL=true before you run make buildworld. PPP I cannot make &man.ppp.8; work. What am I doing wrong? You should first read the &man.ppp.8; man page and the PPP section of the handbook. Enable logging with the command set log Phase Chat Connect Carrier lcp ipcp ccp command This command may be typed at the &man.ppp.8; command prompt or it may be entered in the /etc/ppp/ppp.conf configuration file (the start of the default section is the best place to put it). Make sure that /etc/syslog.conf (see &man.syslog.conf.5;) contains the lines !ppp *.* /var/log/ppp.log and that the file /var/log/ppp.log exists. You can now find out a lot about what is going on from the log file. Do not worry if it does not all make sense. If you need to get help from someone, it may make sense to them. If your version of &man.ppp.8; does not understand the set log command, you should download the latest version. It will build on FreeBSD version 2.1.5 and higher. Why does &man.ppp.8; hang when I run it? This is usually because your hostname will not resolve. The best way to fix this is to make sure that /etc/hosts is consulted by your resolver first by editing /etc/host.conf and putting the hosts line first. Then, simply put an entry in /etc/hosts for your local machine. If you have no local network, change your localhost line: 127.0.0.1 foo.bar.com foo localhost Otherwise, simply add another entry for your host. Consult the relevant man pages for more details. You should be able to successfully ping -c1 `hostname` when you are done. Why will &man.ppp.8; not dial in -auto mode? First, check that you have got a default route. By running netstat -rn (see &man.netstat.1;), you should see two entries like this: Destination Gateway Flags Refs Use Netif Expire default 10.0.0.2 UGSc 0 0 tun0 10.0.0.2 10.0.0.1 UH 0 0 tun0 This is assuming that you have used the addresses from the handbook, the man page or from the ppp.conf.sample file. If you do not have a default route, it may be because you are running an old version of &man.ppp.8; that does not understand the word HISADDR in the ppp.conf file. If your version of &man.ppp.8; is from before FreeBSD 2.2.5, change the add 0 0 HISADDR line to one saying add 0 0 10.0.0.2 Another reason for the default route line being missing is that you have mistakenly set up a default router in your /etc/rc.conf (see &man.rc.conf.5;) file (this file was called /etc/sysconfig prior to release 2.2.2), and you have omitted the line saying delete ALL from ppp.conf. If this is the case, go back to the Final system configuration section of the handbook. What does No route to host mean? This error is usually due to a missing MYADDR: delete ALL add 0 0 HISADDR section in your /etc/ppp/ppp.linkup file. This is only necessary if you have a dynamic IP address or do not know the address of your gateway. If you are using interactive mode, you can type the following after entering packet mode (packet mode is indicated by the capitalized PPP in the prompt): delete ALL add 0 0 HISADDR Refer to the PPP and Dynamic IP addresses section of the handbook for further details. Why does my connection drop after about 3 minutes? The default PPP timeout is 3 minutes. This can be adjusted with the line set timeout NNN where NNN is the number of seconds of inactivity before the connection is closed. If NNN is zero, the connection is never closed due to a timeout. It is possible to put this command in the ppp.conf file, or to type it at the prompt in interactive mode. It is also possible to adjust it on the fly while the line is active by connecting to ppps server socket using &man.telnet.1; or &man.pppctl.8;. Refer to the &man.ppp.8; man page for further details. Why does my connection drop under heavy load? If you have Link Quality Reporting (LQR) configured, it is possible that too many LQR packets are lost between your machine and the peer. Ppp deduces that the line must therefore be bad, and disconnects. Prior to FreeBSD version 2.2.5, LQR was enabled by default. It is now disabled by default. LQR can be disabled with the line disable lqr Why does my connection drop after a random amount of time? Sometimes, on a noisy phone line or even on a line with call waiting enabled, your modem may hang up because it thinks (incorrectly) that it lost carrier. There is a setting on most modems for determining how tolerant it should be to temporary losses of carrier. On a USR Sportster for example, this is measured by the S10 register in tenths of a second. To make your modem more forgiving, you could add the following send-expect sequence to your dial string: set dial "...... ATS10=10 OK ......" Refer to your modem manual for details. Why does my connection hang after a random amount of time? Many people experience hung connections with no apparent explanation. The first thing to establish is which side of the link is hung. If you are using an external modem, you can simply try using &man.ping.8; to see if the TD light is flashing when you transmit data. If it flashes (and the RD light does not), the problem is with the remote end. If TD does not flash, the problem is local. With an internal modem, you will need to use the set server command in your ppp.conf file. When the hang occurs, connect to &man.ppp.8; using &man.pppctl.8;. If your network connection suddenly revives (PPP was revived due to the activity on the diagnostic socket) or if you cannot connect (assuming the set socket command succeeded at startup time), the problem is local. If you can connect and things are still hung, enable local async logging with set log local async and use &man.ping.8; from another window or terminal to make use of the link. The async logging will show you the data being transmitted and received on the link. If data is going out and not coming back, the problem is remote. Having established whether the problem is local or remote, you now have two possibilities: The remote end is not responding. What can I do? There is very little you can do about this. Most ISPs will refuse to help if you are not running a Microsoft OS. You can enable lqr in your ppp.conf file, allowing &man.ppp.8; to detect the remote failure and hang up, but this detection is relatively slow and therefore not that useful. You may want to avoid telling your ISP that you are running user-PPP... First, try disabling all local compression by adding the following to your configuration: disable pred1 deflate deflate24 protocomp acfcomp shortseq vj deny pred1 deflate deflate24 protocomp acfcomp shortseq vj Then reconnect to ensure that this makes no difference. If things improve or if the problem is solved completely, determine which setting makes the difference through trial and error. This will provide good ammunition when you contact your ISP (although it may make it apparent that you are not running a Microsoft product). Before contacting your ISP, enable async logging locally and wait until the connection hangs again. This may use up quite a bit of disk space. The last data read from the port may be of interest. It is usually ascii data, and may even describe the problem (Memory fault, core dumped?). If your ISP is helpful, they should be able to enable logging on their end, then when the next link drop occurs, they may be able to tell you why their side is having a problem. Feel free to send the details to &a.brian;, or even to ask your ISP to contact me directly. &man.ppp.8; has hung. What can I do? Your best bet here is to rebuild &man.ppp.8; by adding CFLAGS+=-g and STRIP= to the end of the Makefile, then doing a make clean && make && make install. When &man.ppp.8; hangs, find the &man.ppp.8; process id with ps ajxww | fgrep ppp and run gdb ppp PID. From the gdb prompt, you can then use bt to get a stack trace. Send the results to brian@Awfulhak.org. Why does nothing happen after the Login OK! message? Prior to FreeBSD version 2.2.5, once the link was established, &man.ppp.8; would wait for the peer to initiate the Line Control Protocol (LCP). Many ISPs will not initiate negotiations and expect the client to do so. To force &man.ppp.8; to initiate the LCP, use the following line: set openmode active It usually does no harm if both sides initiate negotiation, so openmode is now active by default. However, the next section explains when it does do some harm. I keep seeing errors about magic being the same. What does it mean? Occasionally, just after connecting, you may see messages in the log that say magic is the same. Sometimes, these messages are harmless, and sometimes one side or the other exits. Most PPP implementations cannot survive this problem, and even if the link seems to come up, you will see repeated configure requests and configure acknowledgments in the log file until &man.ppp.8; eventually gives up and closes the connection. This normally happens on server machines with slow disks that are spawning a getty on the port, and executing &man.ppp.8; from a login script or program after login. I have also heard reports of it happening consistently when using slirp. The reason is that in the time taken between &man.getty.8; exiting and &man.ppp.8; starting, the client-side &man.ppp.8; starts sending Line Control Protocol (LCP) packets. Because ECHO is still switched on for the port on the server, the client &man.ppp.8; sees these packets reflect back. One part of the LCP negotiation is to establish a magic number for each side of the link so that reflections can be detected. The protocol says that when the peer tries to negotiate the same magic number, a NAK should be sent and a new magic number should be chosen. During the period that the server port has ECHO turned on, the client &man.ppp.8; sends LCP packets, sees the same magic in the reflected packet and NAKs it. It also sees the NAK reflect (which also means &man.ppp.8; must change its magic). This produces a potentially enormous number of magic number changes, all of which are happily piling into the server's tty buffer. As soon as &man.ppp.8; starts on the server, it is flooded with magic number changes and almost immediately decides it has tried enough to negotiate LCP and gives up. Meanwhile, the client, who no longer sees the reflections, becomes happy just in time to see a hangup from the server. This can be avoided by allowing the peer to start negotiating with the following line in your ppp.conf file: set openmode passive This tells &man.ppp.8; to wait for the server to initiate LCP negotiations. Some servers however may never initiate negotiations. If this is the case, you can do something like: set openmode active 3 This tells &man.ppp.8; to be passive for 3 seconds, and then to start sending LCP requests. If the peer starts sending requests during this period, &man.ppp.8; will immediately respond rather than waiting for the full 3 second period. LCP negotiations continue until the connection is closed. What is wrong? There is currently an implementation mis-feature in &man.ppp.8; where it does not associate LCP, CCP & IPCP responses with their original requests. As a result, if one PPP implementation is more than 6 seconds slower than the other side, the other side will send two additional LCP configuration requests. This is fatal. Consider two implementations, A and B. A starts sending LCP requests immediately after connecting and B takes 7 seconds to start. When B starts, A has sent 3 LCP REQs. We are assuming the line has ECHO switched off, otherwise we would see magic number problems as described in the previous section. B sends a REQ, then an ACK to the first of A's REQs. This results in A entering the OPENED state and sending and ACK (the first) back to B. In the meantime, B sends back two more ACKs in response to the two additional REQs sent by A before B started up. B then receives the first ACK from A and enters the OPENED state. A receives the second ACK from B and goes back to the REQ-SENT state, sending another (forth) REQ as per the RFC. It then receives the third ACK and enters the OPENED state. In the meantime, B receives the forth REQ from A, resulting in it reverting to the ACK-SENT state and sending another (second) REQ and (forth) ACK as per the RFC. A gets the REQ, goes into REQ-SENT and sends another REQ. It immediately receives the following ACK and enters OPENED. This goes on until one side figures out that they are getting nowhere and gives up. The best way to avoid this is to configure one side to be passive - that is, make one side wait for the other to start negotiating. This can be done with the set openmode passive command. Care should be taken with this option. You should also use the set stopped N command to limit the amount of time that &man.ppp.8; waits for the peer to begin negotiations. Alternatively, the set openmode active N command (where N is the number of seconds to wait before starting negotiations) can be used. Check the manual page for details. Why does &man.ppp.8; lock up shortly after connection? Prior to version 2.2.5 of FreeBSD, it was possible that your link was disabled shortly after connection due to &man.ppp.8; mis-handling Predictor1 compression negotiation. This would only happen if both sides tried to negotiate different Compression Control Protocols (CCP). This problem is now corrected, but if you are still running an old version of &man.ppp.8; the problem can be circumvented with the line disable pred1 Why does &man.ppp.8; lock up when I shell out to test it? When you execute the shell or ! command, &man.ppp.8; executes a shell (or if you have passed any arguments, &man.ppp.8; will execute those arguments). Ppp will wait for the command to complete before continuing. If you attempt to use the PPP link while running the command, the link will appear to have frozen. This is because &man.ppp.8; is waiting for the command to complete. If you wish to execute commands like this, use the !bg command instead. This will execute the given command in the background, and &man.ppp.8; can continue to service the link. Why does &man.ppp.8; over a null-modem cable never exit? There is no way for &man.ppp.8; to automatically determine that a direct connection has been dropped. This is due to the lines that are used in a null-modem serial cable. When using this sort of connection, LQR should always be enabled with the line enable lqr LQR is accepted by default if negotiated by the peer. Why does &man.ppp.8; dial for no reason in -auto mode? If &man.ppp.8; is dialing unexpectedly, you must determine the cause, and set up Dial filters (dfilters) to prevent such dialing. To determine the cause, use the following line: set log +tcp/ip This will log all traffic through the connection. The next time the line comes up unexpectedly, you will see the reason logged with a convenient timestamp next to it. You can now disable dialing under these circumstances. Usually, this sort of problem arises due to DNS lookups. To prevent DNS lookups from establishing a connection (this will not prevent &man.ppp.8; from passing the packets through an established connection), use the following: set dfilter 1 deny udp src eq 53 set dfilter 2 deny udp dst eq 53 set dfilter 3 permit 0/0 0/0 This is not always suitable, as it will effectively break your demand-dial capabilities - most programs will need a DNS lookup before doing any other network related things. In the DNS case, you should try to determine what is actually trying to resolve a host name. A lot of the time, &man.sendmail.8; is the culprit. You should make sure that you tell sendmail not to do any DNS lookups in its configuration file. See the section on Mail Configuration for details on how to create your own configuration file and what should go into it. You may also want to add the following line to your .mc file: define(`confDELIVERY_MODE', `d')dnl This will make sendmail queue everything until the queue is run (usually, sendmail is invoked with , telling it to run the queue every 30 minutes) or until a sendmail -q is done (perhaps from your ppp.linkup file). What do these CCP errors mean? I keep seeing the following errors in my log file: CCP: CcpSendConfigReq CCP: Received Terminate Ack (1) state = Req-Sent (6) This is because &man.ppp.8; is trying to negotiate Predictor1 compression, and the peer does not want to negotiate any compression at all. The messages are harmless, but if you wish to remove them, you can disable Predictor1 compression locally too: disable pred1 Why does &man.ppp.8; lock up during file transfers with IO errors? Under FreeBSD 2.2.2 and before, there was a bug in the tun driver that prevents incoming packets of a size larger than the tun interface's MTU size. Receipt of a packet greater than the MTU size results in an IO error being logged via syslogd. The PPP specification says that an MRU of 1500 should always be accepted as a minimum, despite any LCP negotiations, therefore it is possible that should you decrease the MTU to less than 1500, your ISP will transmit packets of 1500 regardless, and you will tickle this non-feature - locking up your link. The problem can be circumvented by never setting an MTU of less than 1500 under FreeBSD 2.2.2 or before. Why does &man.ppp.8; not log my connection speed? In order to log all lines of your modem conversation, you must enable the following: set log +connect This will make &man.ppp.8; log everything up until the last requested expect string. If you wish to see your connect speed and are using PAP or CHAP (and therefore do not have anything to chat after the CONNECT in the dial script - no set login script), you must make sure that you instruct &man.ppp.8; to expect the whole CONNECT line, something like this: set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 4 \ \"\" ATZ OK-ATZ-OK ATDT\\T TIMEOUT 60 CONNECT \\c \\n" Here, we get our CONNECT, send nothing, then expect a line-feed, forcing &man.ppp.8; to read the whole CONNECT response. Why does &man.ppp.8; ignore the \ character in my chat script? Ppp parses each line in your config files so that it can interpret strings such as set phone "123 456 789" correctly (and realize that the number is actually only one argument. In order to specify a " character, you must escape it using a backslash (\). When the chat interpreter parses each argument, it re-interprets the argument in order to find any special escape sequences such as \P or \T (see the man page). As a result of this double-parsing, you must remember to use the correct number of escapes. If you wish to actually send a \ character to (say) your modem, you would need something like: set dial "\"\" ATZ OK-ATZ-OK AT\\\\X OK" resulting in the following sequence: ATZ OK AT\X OK or set phone 1234567 set dial "\"\" ATZ OK ATDT\\T" resulting in the following sequence: ATZ OK ATDT1234567 Why does &man.ppp.8; get a seg-fault, but I see no ppp.core file? Ppp (or any other program for that matter) should never dump core. Because &man.ppp.8; runs with an effective user id of 0, the operating system will not write &man.ppp.8;'s core image to disk before terminating it. If, however &man.ppp.8; is actually terminating due to a segmentation violation or some other signal that normally causes core to be dumped, and you are sure you are using the latest version (see the start of this section), then you should do the following: &prompt.user; tar xfz ppp-*.src.tar.gz &prompt.user; cd ppp*/ppp &prompt.user; echo STRIP= >>Makefile &prompt.user; echo CFLAGS+=-g >>Makefile &prompt.user; make clean all &prompt.user; su &prompt.root; make install &prompt.root; chmod 555 /usr/sbin/ppp You will now have a debuggable version of &man.ppp.8; installed. You will have to be root to run &man.ppp.8; as all of its privileges have been revoked. When you start &man.ppp.8;, take a careful note of what your current directory was at the time. Now, if and when &man.ppp.8; receives the segmentation violation, it will dump a core file called ppp.core. You should then do the following: &prompt.user; su &prompt.root; gdb /usr/sbin/ppp ppp.core (gdb) bt ..... (gdb) f 0 .... (gdb) i args .... (gdb) l ..... All of this information should be given alongside your question, making it possible to diagnose the problem. If you are familiar with gdb, you may wish to find out some other bits and pieces such as what actually caused the dump and the addresses & values of the relevant variables. Why does the process that forces a dial in auto mode never connect? This was a known problem with &man.ppp.8; set up to negotiate a dynamic local IP number with the peer in auto mode. It is fixed in the latest version - search the man page for iface. The problem was that when that initial program calls &man.connect.2;, the IP number of the tun interface is assigned to the socket endpoint. The kernel creates the first outgoing packet and writes it to the tun device. &man.ppp.8; then reads the packet and establishes a connection. If, as a result of &man.ppp.8;'s dynamic IP assignment, the interface address is changed, the original socket endpoint will be invalid. Any subsequent packets sent to the peer will usually be dropped. Even if they are not, any responses will not route back to the originating machine as the IP number is no longer owned by that machine. There are several theoretical ways to approach this problem. It would be nicest if the peer would re-assign the same IP number if possible :-) The current version of &man.ppp.8; does this, but most other implementations do not. The easiest method from our side would be to never change the tun interface IP number, but instead to change all outgoing packets so that the source IP number is changed from the interface IP to the negotiated IP on the fly. This is essentially what the iface-alias option in the latest version of &man.ppp.8; is doing (with the help of &man.libalias.3; and &man.ppp.8;'s switch) - it is maintaining all previous interface addresses and NATing them to the last negotiated address. Another alternative (and probably the most reliable) would be to implement a system call that changes all bound sockets from one IP to another. &man.ppp.8; would use this call to modify the sockets of all existing programs when a new IP number is negotiated. The same system call could be used by dhcp clients when they are forced to re-bind() their sockets. Yet another possibility is to allow an interface to be brought up without an IP number. Outgoing packets would be given an IP number of 255.255.255.255 up until the first SIOCAIFADDR ioctl is done. This would result in fully binding the socket. It would be up to &man.ppp.8; to change the source IP number, but only if it is set to 255.255.255.255, and only the IP number and IP checksum would need to change. This, however is a bit of a hack as the kernel would be sending bad packets to an improperly configured interface, on the assumption that some other mechanism is capable of fixing things retrospectively. Why do most games not work with the -nat switch? The reason games and the like do not work when libalias is in use is that the machine on the outside will try to open a connection or send (unsolicited) UDP packets to the machine on the inside. The NAT software does not know that it should send these packets to the interior machine. To make things work, make sure that the only thing running is the software that you are having problems with, then either run tcpdump on the tun interface of the gateway or enable &man.ppp.8; tcp/ip logging (set log +tcp/ip) on the gateway. When you start the offending software, you should see packets passing through the gateway machine. When something comes back from the outside, it will be dropped (that is the problem). Note the port number of these packets then shut down the offending software. Do this a few times to see if the port numbers are consistent. If they are, then the following line in the relevant section of /etc/ppp/ppp.conf will make the software functional: nat port proto internalmachine:port port where proto is either tcp or udp, internalmachine is the machine that you want the packets to be sent to and port is the destination port number of the packets. You will not be able to use the software on other machines without changing the above command, and running the software on two internal machines at the same time is out of the question - after all, the outside world is seeing your entire internal network as being just a single machine. If the port numbers are not consistent, there are three more options: Submit support in libalias. Examples of special cases can be found in /usr/src/lib/libalias/alias_*.c (alias_ftp.c is a good prototype). This usually involves reading certain recognised outgoing packets, identifying the instruction that tells the outside machine to initiate a connection back to the internal machine on a specific (random) port and setting up a route in the alias table so that the subsequent packets know where to go. This is the most difficult solution, but it is the best and will make the software work with multiple machines. Use a proxy. The application may support socks5 for example, or (as in the cvsup case) may have a passive option that avoids ever requesting that the peer open connections back to the local machine. Redirect everything to the internal machine using nat addr. This is the sledge-hammer approach. Has anybody made a list of useful port numbers? Not yet, but this is intended to grow into such a list (if any interest is shown). In each example, internal should be replaced with the IP number of the machine playing the game. Asheron's Call nat port udp internal :65000 65000 Manually change the port number within the game to 65000. If you have got a number of machines that you wish to play on assign a unique port number for each (i.e. 65001, 65002, etc) and add a nat port line for each one. Half Life nat port udp internal:27005 27015 PCAnywhere 8.0 nat port udp internal:5632 5632 nat port tcp internal:5631 5631 Quake nat port udp internal:6112 6112 Alternatively, you may want to take a look at www.battle.net for Quake proxy support. Quake 2 nat port udp internal:27901 27910 nat port udp internal:60021 60021 nat port udp internal:60040 60040 Red Alert nat port udp internal:8675 8675 nat port udp internal:5009 5009 What are FCS errors? FCS stands for Frame Check Sequence. Each PPP packet has a checksum attached to ensure that the data being received is the data being sent. If the FCS of an incoming packet is incorrect, the packet is dropped and the HDLC FCS count is increased. The HDLC error values can be displayed using the show hdlc command. If your link is bad (or if your serial driver is dropping packets), you will see the occasional FCS error. This is not usually worth worrying about although it does slow down the compression protocols substantially. If you have an external modem, make sure your cable is properly shielded from interference - this may eradicate the problem. If your link freezes as soon as you have connected and you see a large number of FCS errors, this may be because your link is not 8 bit clean. Make sure your modem is not using software flow control (XON/XOFF). If your datalink must use software flow control, use the command set accmap 0x000a0000 to tell &man.ppp.8; to escape the ^Q and ^S characters. Another reason for seeing too many FCS errors may be that the remote end has stopped talking PPP. You may want to enable async logging at this point to determine if the incoming data is actually a login or shell prompt. If you have a shell prompt at the remote end, it is possible to terminate &man.ppp.8; without dropping the line by using the close lcp command (a following term command will reconnect you to the shell on the remote machine. If nothing in your log file indicates why the link might have been terminated, you should ask the remote administrator (your ISP?) why the session was terminated. Why do MacOS and Windows 98 connections freeze when running PPPoE on the gateway? Thanks to Michael Wozniak mwozniak@netcom.ca for figuring this out and Dan Flemming danflemming@mac.com for the Mac solution: This is due to what is called a Black Hole router. MacOS and Windows 98 (and maybe other Microsoft OSs) send TCP packets with a requested segment size too big to fit into a PPPoE frame (MTU is 1500 by default for Ethernet) and have the do not fragment bit set (default of TCP) and the Telco router is not sending ICMP must fragment back to the www site you are trying to load. (Alternatively, the router is sending the ICMP packet correctly, but the firewall at the www site is dropping it.) When the www server is sending you frames that do not fit into the PPPoE pipe the Telco router drops them on the floor and your page does not load (some pages/graphics do as they are smaller than a MSS.) This seems to be the default of most Telco PPPoE configurations (if only they knew how to program a router... sigh...) One fix is to use regedit on your 95/98 boxes to add the following registry entry... HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Class\NetTrans\0000\MaxMTU It should be a string with a value 1436, as some ADSL routers are reported to be unable to deal with packets larger than this. This registry key has been changed to Tcpip\Parameters\Interfaces\ID for adapter\MTU in Windows 2000 and becomes a DWORD. Refer to the Microsoft Knowledge Base documents Q158474 - Windows TCPIP Registry Entries and Q120642 - TCPIP & NBT Configuration Parameters for Windows NT for more information on changing Windows MTU to work with a NAT router. Another regedit possibility under Windows 2000 is to set the Tcpip\Parameters\Interfaces\ID for adapter\EnablePMTUBHDetect DWORD to 1 as mentioned in the Microsoft document 120642 mentioned above. Unfortunately, MacOS does not provide an interface for changing TCP/IP settings. However, there is commercial software available, such as OTAdvancedTuner (OT for OpenTransport, the MacOS TCP/IP stack) by Sustainable Softworks, that will allow users to customize TCP/IP settings. MacOS NAT users should select ip_interface_MTU from the drop-down menu, enter 1450 instead of 1500 in the box, click the box next to Save as Auto Configure, and click Make Active. The latest version of &man.ppp.8; (2.3 or greater) has an enable tcpmssfixup command that will automatically adjust the MSS to an appropriate value. This facility is enabled by default. If you are stuck with an older version of &man.ppp.8;, you may want to look at the tcpmssd port. None of this helps - I am desperate! What can I do? If all else fails, send as much information as you can, including your config files, how you are starting &man.ppp.8;, the relevant parts of your log file and the output of the netstat -rn command (before and after connecting) to the &a.questions; or the comp.unix.bsd.freebsd.misc news group, and someone should point you in the right direction. Serial Communications This section answers common questions about serial communications with FreeBSD. PPP and SLIP are covered in the section. How do I tell if FreeBSD found my serial ports? As the FreeBSD kernel boots, it will probe for the serial ports in your system for which the kernel was configured. You can either watch your system closely for the messages it prints or run the command &prompt.user; dmesg | grep sio after your system is up and running. Here is some example output from the above command: sio0 at 0x3f8-0x3ff irq 4 on isa sio0: type 16550A sio1 at 0x2f8-0x2ff irq 3 on isa sio1: type 16550A This shows two serial ports. The first is on irq 4, is using port address 0x3f8, and has a 16550A-type UART chip. The second uses the same kind of chip but is on irq 3 and is at port address 0x2f8. Internal modem cards are treated just like serial ports---except that they always have a modem attached to the port. The GENERIC kernel includes support for two serial ports using the same irq and port address settings in the above example. If these settings are not right for your system, or if you have added modem cards or have more serial ports than your kernel is configured for, just reconfigure your kernel. See section about building a kernel for more details. How do I tell if FreeBSD found my modem cards? Refer to the answer to the previous question. I just upgraded to 2.0.5 and my tty0X are missing! How do I solve this problem? Do not worry, they have been merged with the ttydX devices. You will have to change any old configuration files you have, though. How do I access the serial ports on FreeBSD? The third serial port, sio2 (see &man.sio.4;, known as COM3 in DOS), is on /dev/cuaa2 for dial-out devices, and on /dev/ttyd2 for dial-in devices. What is the difference between these two classes of devices? You use ttydX for dial-ins. When opening /dev/ttydX in blocking mode, a process will wait for the corresponding cuaaX device to become inactive, and then wait for the carrier detect line to go active. When you open the cuaaX device, it makes sure the serial port is not already in use by the ttydX device. If the port is available, it steals it from the ttydX device. Also, the cuaaX device does not care about carrier detect. With this scheme and an auto-answer modem, you can have remote users log in and you can still dial out with the same modem and the system will take care of all the conflicts. How do I enable support for a multiport serial card? Again, the section on kernel configuration provides information about configuring your kernel. For a multiport serial card, place an &man.sio.4; line for each serial port on the card in the kernel configuration file. But place the irq and vector specifiers on only one of the entries. All of the ports on the card should share one irq. For consistency, use the last serial port to specify the irq. Also, specify the COM_MULTIPORT option. The following example is for an AST 4-port serial card on irq 7: options "COM_MULTIPORT" device sio4 at isa? port 0x2a0 tty flags 0x781 device sio5 at isa? port 0x2a8 tty flags 0x781 device sio6 at isa? port 0x2b0 tty flags 0x781 device sio7 at isa? port 0x2b8 tty flags 0x781 irq 7 vector siointr The flags indicate that the master port has minor number 7 (0x700), diagnostics enabled during probe (0x080), and all the ports share an irq (0x001). Can FreeBSD handle multiport serial cards sharing irqs? Not yet. You will have to use a different irq for each card. Can I set the default serial parameters for a port? The ttydX (or cuaaX) device is the regular device you will want to open for your applications. When a process opens the device, it will have a default set of terminal I/O settings. You can see these settings with the command &prompt.root; stty -a -f /dev/ttyd1 When you change the settings to this device, the settings are in effect until the device is closed. When it is reopened, it goes back to the default set. To make changes to the default set, you can open and adjust the settings of the initial state device. For example, to turn on CLOCAL mode, 8 bits, and XON/XOFF flow control by default for ttyd5, do: &prompt.root; stty -f /dev/ttyid5 clocal cs8 ixon ixoff A good place to do this is in /etc/rc.serial. Now, an application will have these settings by default when it opens ttyd5. It can still change these settings to its liking, though. You can also prevent certain settings from being changed by an application by making adjustments to the lock state device. For example, to lock the speed of ttyd5 to 57600 bps, do &prompt.root; stty -f /dev/ttyld5 57600 Now, an application that opens ttyd5 and tries to change the speed of the port will be stuck with 57600 bps. Naturally, you should make the initial state and lock state devices writable only by root. The &man.MAKEDEV.8; script does NOT do this when it creates the device entries. How can I enable dialup logins on my modem? So you want to become an Internet service provider, eh? First, you will need one or more modems that can auto-answer. Your modem will need to assert carrier-detect when it detects a carrier and not assert it all the time. It will need to hang up the phone and reset itself when the data terminal ready (DTR) line goes from on to off. It should probably use RTS/CTS flow control or no local flow control at all. Finally, it must use a constant speed between the computer and itself, but (to be nice to your callers) it should negotiate a speed between itself and the remote modem. For many Hayes command-set--compatible modems, this command will make these settings and store them in nonvolatile memory: AT &C1 &D3 &K3 &Q6 S0=1 &W See the section on sending AT commands below for information on how to make these settings without resorting to an MS-DOS terminal program. Next, make an entry in /etc/ttys (see &man.ttys.5;) for the modem. This file lists all the ports on which the operating system will await logins. Add a line that looks something like this: ttyd1 "/usr/libexec/getty std.57600" dialup on insecure This line indicates that the second serial port (/dev/ttyd1) has a modem connected running at 57600 bps and no parity (std.57600, which comes from the file /etc/gettytab, see &man.gettytab.5;). The terminal type for this port is dialup. The port is on and is insecure---meaning root logins on the port are not allowed. For dialin ports like this one, use the ttydX entry. It is common practice to use dialup as the terminal type. Many users set up in their .profile or .login files a prompt for the actual terminal type if the starting type is dialup. The example shows the port as insecure. To become root on this port, you have to login as a regular user, then &man.su.1; to become root. If you use secure then root can login in directly. After making modifications to /etc/ttys, you need to send a hangup or HUP signal to the &man.init.8; process: &prompt.root; kill -HUP 1 This forces the &man.init.8; process to reread /etc/ttys. The init process will then start getty processes on all on ports. You can find out if logins are available for your port by typing &prompt.user; ps -ax | grep '[t]tyd1' You should see something like: 747 ?? I 0:00.04 /usr/libexec/getty std.57600 ttyd1 How can I connect a dumb terminal to my FreeBSD box? If you are using another computer as a terminal into your FreeBSD system, get a null modem cable to go between the two serial ports. If you are using an actual terminal, see its accompanying instructions. Then, modify /etc/ttys (see &man.ttys.5;), like above. For example, if you are hooking up a WYSE-50 terminal to the fifth serial port, use an entry like this: ttyd4 "/usr/libexec/getty std.38400" wyse50 on secure This example shows that the port on /dev/ttyd4 has a wyse50 terminal connected at 38400 bps with no parity (std.38400 from /etc/gettytab, see &man.gettytab.5;) and root logins are allowed (secure). Why can I not run tip or cu? On your system, the programs &man.tip.1; and &man.cu.1; are probably executable only by uucp and group dialer. You can use the group dialer to control who has access to your modem or remote systems. Just add yourself to group dialer. Alternatively, you can let everyone on your system run &man.tip.1; and &man.cu.1; by typing: &prompt.root; chmod 4511 /usr/bin/cu &prompt.root; chmod 4511 /usr/bin/tip My stock Hayes modem is not supported---what can I do? Actually, the man page for &man.tip.1; is out of date. There is a generic Hayes dialer already built in. Just use at=hayes in your /etc/remote (see &man.remote.5;) file. The Hayes driver is not smart enough to recognize some of the advanced features of newer modems---messages like BUSY, NO DIALTONE, or CONNECT 115200 will just confuse it. You should turn those messages off when you use &man.tip.1; (using ATX0&W). Also, the dial timeout for &man.tip.1; is 60 seconds. Your modem should use something less, or else tip will think there is a communication problem. Try ATS7=45&W. Actually, as shipped &man.tip.1; does not yet support it fully. The solution is to edit the file tipconf.h in the directory /usr/src/usr.bin/tip/tip. Obviously you need the source distribution to do this. Edit the line #define HAYES 0 to #define HAYES 1. Then make and make install. Everything works nicely after that. How am I expected to enter these AT commands? Make what is called a direct entry in your /etc/remote file (see &man.remote.5;). For example, if your modem is hooked up to the first serial port, /dev/cuaa0, then put in the following line: cuaa0:dv=/dev/cuaa0:br#19200:pa=none Use the highest bps rate your modem supports in the br capability. Then, type tip cuaa0 (see &man.tip.1;) and you will be connected to your modem. If there is no /dev/cuaa0 on your system, do this: &prompt.root; cd /dev &prompt.root; sh MAKEDEV cuaa0 Or use cu as root with the following command: &prompt.root; cu -lline -sspeed with line being the serial port (e.g. /dev/cuaa0) and speed being the speed (e.g.57600). When you are done entering the AT commands hit ~. to exit. Why does the <@> sign for the pn capability not work? The <@> sign in the phone number capability tells tip to look in /etc/phones for a phone number. But the <@> sign is also a special character in capability files like /etc/remote. Escape it with a backslash: pn=\@ How can I dial a phone number on the command line? Put what is called a generic entry in your /etc/remote file (see &man.remote.5;). For example: tip115200|Dial any phone number at 115200 bps:\ :dv=/dev/cuaa0:br#115200:at=hayes:pa=none:du: tip57600|Dial any phone number at 57600 bps:\ :dv=/dev/cuaa0:br#57600:at=hayes:pa=none:du: Then you can do something like tip -115200 5551234. If you prefer &man.cu.1; over &man.tip.1;, use a generic cu entry: cu115200|Use cu to dial any number at 115200bps:\ :dv=/dev/cuaa1:br#57600:at=hayes:pa=none:du: and type cu 5551234 -s 115200. Do I have to type in the bps rate every time I do that? Put in an entry for tip1200 or cu1200, but go ahead and use whatever bps rate is appropriate with the br capability. &man.tip.1; thinks a good default is 1200 bps which is why it looks for a tip1200 entry. You do not have to use 1200 bps, though. How can I more easily access a number of hosts through a terminal server? Rather than waiting until you are connected and typing CONNECT host each time, use tip's cm capability. For example, these entries in /etc/remote (see &man.remote.5;): pain|pain.deep13.com|Forrester's machine:\ :cm=CONNECT pain\n:tc=deep13: muffin|muffin.deep13.com|Frank's machine:\ :cm=CONNECT muffin\n:tc=deep13: deep13:Gizmonics Institute terminal server:\ :dv=/dev/cuaa2:br#38400:at=hayes:du:pa=none:pn=5551234: will let you type tip pain or tip muffin to connect to the hosts pain or muffin; and tip deep13 to get to the terminal server. Can tip try more than one line for each site? This is often a problem where a university has several modem lines and several thousand students trying to use them... Make an entry for your university in /etc/remote (see &man.remote.5;) and use <\@> for the pn capability: big-university:\ :pn=\@:tc=dialout dialout:\ :dv=/dev/cuaa3:br#9600:at=courier:du:pa=none: Then, list the phone numbers for the university in /etc/phones (see &man.phones.5;): big-university 5551111 big-university 5551112 big-university 5551113 big-university 5551114 &man.tip.1; will try each one in the listed order, then give up. If you want to keep retrying, run &man.tip.1; in a while loop. Why do I have to hit CTRL+P twice to send CTRL+P once? CTRL+P is the default force character, used to tell &man.tip.1; that the next character is literal data. You can set the force character to any other character with the ~s escape, which means set a variable. Type ~sforce=single-char followed by a newline. single-char is any single character. If you leave out single-char, then the force character is the nul character, which you can get by typing CTRL+2 or CTRL+SPACE. A pretty good value for single-char is SHIFT+CTRL+6, which I have seen only used on some terminal servers. You can have the force character be whatever you want by specifying the following in your $HOME/.tiprc file: force=single-char Why is everything I type suddenly in UPPER CASE? You must have pressed CTRL+A, &man.tip.1; raise character, specially designed for people with broken caps-lock keys. Use ~s as above and set the variable raisechar to something reasonable. In fact, you can set it to the same as the force character, if you never expect to use either of these features. Here is a sample .tiprc file perfect for Emacs users who need to type CTRL+2 and CTRL+A a lot: force=^^ raisechar=^^ The ^^ is SHIFT+CTRL+6. How can I do file transfers with tip? If you are talking to another Unix system, you can send and receive files with ~p (put) and ~t (take). These commands run &man.cat.1; and &man.echo.1; on the remote system to accept and send files. The syntax is: ~p <local-file> [<remote-file>] ~t <remote-file> [<local-file>] There is no error checking, so you probably should use another protocol, like zmodem. How can I run zmodem with tip? First, install one of the zmodem programs from the ports collection (such as one of the two from the comms category, lrzsz or rzsz. To receive files, start the sending program on the remote end. Then, press enter and type ~C rz (or ~C lrz if you installed lrzsz) to begin receiving them locally. To send files, start the receiving program on the remote end. Then, press enter and type ~C sz files (or ~C lsz files) to send them to the remote system. Why does FreeBSD not find my serial ports, even when the settings are correct? Motherboards and cards with Acer UARTs do not probe properly under the FreeBSD sio probe. Obtain a patch from www.lemis.com to fix your problem. Miscellaneous Questions FreeBSD uses far more swap space than Linux. Why? FreeBSD only appears to use more swap than Linux. In actual fact, it does not. The main difference between FreeBSD and Linux in this regard is that FreeBSD will proactively move entirely idle, unused pages of main memory into swap in order to make more main memory available for active use. Linux tends to only move pages to swap as a last resort. The perceived heavier use of swap is balanced by the more efficient use of main memory. Note that while FreeBSD is proactive in this regard, it does not arbitrarily decide to swap pages when the system is truly idle. Thus you will not find your system all paged out when you get up in the morning after leaving it idle overnight. Why does top show very little free memory even when I have very few programs running? The simple answer is that free memory is wasted memory. Any memory that your programs do not actively allocate is used within the FreeBSD kernel as disk cache. The values shown by &man.top.1; labeled as Inact, Cache, and Buf are all cached data at different aging levels. This cached data means the system does not have to access a slow disk again for data it has accessed recently, thus increasing overall performance. In general, a low value shown for Free memory in &man.top.1; is good, provided it is not very low. Why use (what are) a.out and ELF executable formats? To understand why FreeBSD uses the ELF format, you must first know a little about the 3 currently dominant executable formats for Unix: Prior to FreeBSD 3.x, FreeBSD used the a.out format. &man.a.out.5; The oldest and classic Unix object format. It uses a short and compact header with a magic number at the beginning that is often used to characterize the format (see &man.a.out.5; for more details). It contains three loaded segments: .text, .data, and .bss plus a symbol table and a string table. COFF The SVR3 object format. The header now comprises a section table, so you can have more than just .text, .data, and .bss sections. ELF The successor to COFF, featuring Multiple sections and 32-bit or 64-bit possible values. One major drawback: ELF was also designed with the assumption that there would be only one ABI per system architecture. That assumption is actually quite incorrect, and not even in the commercial SYSV world (which has at least three ABIs: SVR4, Solaris, SCO) does it hold true. FreeBSD tries to work around this problem somewhat by providing a utility for branding a known ELF executable with information about the ABI it is compliant with. See the man page for &man.brandelf.1; for more information. FreeBSD comes from the classic camp and has traditionally used the &man.a.out.5; format, a technology tried and proven through many generations of BSD releases. Though it has also been possible for some time to build and run native ELF binaries (and kernels) on a FreeBSD system, FreeBSD initially resisted the push to switch to ELF as the default format. Why? Well, when the Linux camp made their painful transition to ELF, it was not so much to flee the a.out executable format as it was their inflexible jump-table based shared library mechanism, which made the construction of shared libraries very difficult for vendors and developers alike. Since the ELF tools available offered a solution to the shared library problem and were generally seen as the way forward anyway, the migration cost was accepted as necessary and the transition made. In FreeBSD's case, our shared library mechanism is based more closely on Sun's SunOS-style shared library mechanism and, as such, is very easy to use. However, starting with 3.0, FreeBSD officially supports ELF binaries as the default format. Even though the a.out executable format has served us well, the GNU people, who author the compiler tools we use, have dropped support for the a.out format. This has forced us to maintain a divergent version of the compiler and linker, and has kept us from reaping the benefits of the latest GNU development efforts. Also the demands of ISO-C++, notably constructors and destructors, has also led to native ELF support in future FreeBSD releases. Yes, but why are there so many different formats? Back in the dim, dark past, there was simple hardware. This simple hardware supported a simple, small system. a.out was completely adequate for the job of representing binaries on this simple system (a PDP-11). As people ported Unix from this simple system, they retained the a.out format because it was sufficient for the early ports of Unix to architectures like the Motorola 68k, VAXen, etc. Then some bright hardware engineer decided that if he could force software to do some sleazy tricks, then he would be able to shave a few gates off the design and allow his CPU core to run faster. While it was made to work with this new kind of hardware (known these days as RISC), a.out was ill-suited for this hardware, so many formats were developed to get to a better performance from this hardware than the limited, simple a.out format could offer. Things like COFF, ECOFF, and a few obscure others were invented and their limitations explored before things seemed to settle on ELF. In addition, program sizes were getting huge and disks (and physical memory) were still relatively small so the concept of a shared library was born. The VM system also became more sophisticated. While each one of these advancements was done using the a.out format, its usefulness was stretched more and more with each new feature. In addition, people wanted to dynamically load things at run time, or to junk parts of their program after the init code had run to save in core memory and/or swap space. Languages became more sophisticated and people wanted code called before main automatically. Lots of hacks were done to the a.out format to allow all of these things to happen, and they basically worked for a time. In time, a.out was not up to handling all these problems without an ever increasing overhead in code and complexity. While ELF solved many of these problems, it would be painful to switch from the system that basically worked. So ELF had to wait until it was more painful to remain with a.out than it was to migrate to ELF. However, as time passed, the build tools that FreeBSD derived their build tools from (the assembler and loader especially) evolved in two parallel trees. The FreeBSD tree added shared libraries and fixed some bugs. The GNU folks that originally write these programs rewrote them and added simpler support for building cross compilers, plugging in different formats at will, etc. Since many people wanted to build cross compilers targeting FreeBSD, they were out of luck since the older sources that FreeBSD had for as and ld were not up to the task. The new gnu tools chain (binutils) does support cross compiling, ELF, shared libraries, C++ extensions, etc. In addition, many vendors are releasing ELF binaries, and it is a good thing for FreeBSD to run them. And if it is running ELF binaries, why bother having a.out any more? It is a tired old horse that has proven useful for a long time, but it is time to turn him out to pasture for his long, faithful years of service. ELF is more expressive than a.out and will allow more extensibility in the base system. The ELF tools are better maintained, and offer cross compilation support, which is important to many people. ELF may be a little slower than a.out, but trying to measure it can be difficult. There are also numerous details that are different between the two in how they map pages, handle init code, etc. None of these are very important, but they are differences. In time support for a.out will be moved out of the GENERIC kernel, and eventually removed from the kernel once the need to run legacy a.out programs is past. Why will chmod not change the permissions on symlinks? Symlinks do not have permissions, and by default, &man.chmod.1; will not follow symlinks to change the permissions on the target file. So if you have a file, foo, and a symlink to that file, bar, then this command will always succeed. &prompt.user; chmod g-w bar However, the permissions on foo will not have changed. You have to use either or together with the option to make this work. See the &man.chmod.1; and &man.symlink.7; man pages for more info. The option does a RECURSIVE &man.chmod.1;. Be careful about specifying directories or symlinks to directories to &man.chmod.1;. If you want to change the permissions of a directory referenced by a symlink, use &man.chmod.1; without any options and follow the symlink with a trailing slash (/). For example, if foo is a symlink to directory bar, and you want to change the permissions of foo (actually bar), you would do something like: &prompt.user; chmod 555 foo/ With the trailing slash, &man.chmod.1; will follow the symlink, foo, to change the permissions of the directory, bar. Why are login names restricted to 8 characters or less in FreeBSD 2.2.X and earlier? You would think it would be easy enough to change UT_NAMESIZE and rebuild the whole world, and everything would just work. Unfortunately there are often scads of applications and utilities (including system tools) that have hard-coded small numbers (not always 8 or 9, but oddball ones like 15 and 20) in structures and buffers. Not only will this get you log files which are trashed (due to variable-length records getting written when fixed records were expected), but it can break Suns NIS clients and potentially cause other problems in interacting with other Unix systems. In FreeBSD 3.0 and later, the maximum name length has been increased to 16 characters and those various utilities with hard-coded name sizes have been found and fixed. The fact that this touched so many areas of the system is why, in fact, the change was not made until 3.0. If you are absolutely confident in your ability to find and fix these sorts of problems for yourself when and if they pop up, you can increase the login name length in earlier releases by editing /usr/include/utmp.h and changing UT_NAMESIZE accordingly. You must also update MAXLOGNAME in /usr/include/sys/param.h to match the UT_NAMESIZE change. Finally, if you build from sources, do not forget that /usr/include is updated each time! Change the appropriate files in /usr/src/.. instead. Can I run DOS binaries under FreeBSD? Yes, starting with version 3.0 you can using BSDI's doscmd DOS emulation which has been integrated and enhanced. Send mail to the &a.emulation; if you are interested in joining this ongoing effort! For pre-3.0 systems, there is a neat utility called pcemu in the ports collection which emulates an 8088 and enough BIOS services to run DOS text mode applications. It requires the X Window System (provided as XFree86). What do I need to do to translate a FreeBSD document into my native language? See the Translation FAQ in the FreeBSD Documentation Project Primer. Why does my email to any address at FreeBSD.org bounce? The FreeBSD.org mail system rejects mail that is either misconfigured or is potential spam. Your mail might bounce for one of the following reasons: The email is being sent from a known spam domain or IP block. The FreeBSD mail servers reject email from known spam sources. If you have service through a company or domain who generates or relays spam, please switch to a service provider who does not. The body of the email only contains HTML. Mail should be sent in plain text only. Please configure your mail user agent to send plain text. The mailer at FreeBSD.org cannot resolve the IP address of the connecting host back to a symbolic name. Working reverse DNS is a standard requirement for accepting mail from a host. Set up reverse DNS for your mail server's IP address. Many home services (DSL, cable, dialup, etc.) will not give you this option. In this case, relay your email through your service provider's mail server. Where can I find a free FreeBSD account? While FreeBSD does not provide open access to any of their servers, others do provide open access Unix systems. The charge varies and limited services may be available. Arbornet, Inc, also known as M-Net, has been providing open access to Unix systems since 1983. Starting on an Altos running System III, the site switched to BSD/OS in 1991. In June of 2000, the site switched again to FreeBSD. M-Net can be accessed via telnet and SSH and provides basic access to the entire FreeBSD software suite. However, network access is limited to members and patrons who donate to the system, which is run as a non-profit organization. M-Net also provides an bulletin board system and interactive chat. Grex provides a site very similar to M-Net including the same bulletin board and interactive chat software. However, the machine is a Sun 4M and is running SunOS What is sup, and how do I use it? SUP stands for Software Update Protocol, and was developed by CMU for keeping their development trees in sync. We used it to keep remote sites in sync with our central development sources. SUP is not bandwidth friendly, and has been retired. The current recommended method to keep your sources up to date is CVSup What is the cute little red guy's name? He does not have one, and is just called the BSD daemon. If you insist upon using a name, call him beastie. Note that beastie is pronounced BSD. You can learn more about the BSD daemon on his home page. Can I use the BSD daemon image? Perhaps. The BSD daemon is copyrighted by Marshall Kirk McKusick. You will want to check his Statement on the Use of the BSD Daemon Figure for detailed usage terms. In summary, you are free to use the image in a tasteful manner, for personal use, so long as appropriate credit is given. If you want to use him commercially, you must contact Kirk McKusick. More details are available on the BSD Daemon's home page. Do you have any BSD daemon images I could use? You will find eps and Xfig drawings under /usr/share/examples/BSD_daemon/. What does MFC mean? MFC is an acronym for Merged From -CURRENT. It is used in the CVS logs to denote when a change was migrated from the CURRENT to the STABLE branches. What does BSD mean? It stands for something in a secret language that only members can know. It does not translate literally but its ok to tell you that BSD's translation is something between, Formula-1 Racing Team, Penguins are tasty snacks, and We have a better sense of humor than Linux. :-) Seriously, BSD is an acronym for Berkeley Software Distribution, which is the name the Berkeley CSRG (Computer Systems Research Group) chose for their Unix distribution way back when. What is a repo-copy? A repo-copy (which is a short form of repository copy) refers to the direct copying of files within the CVS repository. Without a repo-copy, if a file needed to be copied or moved to another place in the repository, the committer would run cvs add to put the file in its new location, and then cvs rm on the old file if the old copy was being removed. The disadvantage of this method is that the history (i.e. the entries in the CVS logs) of the file would not be copied to the new location. As the FreeBSD Project considers this history very useful, a repository copy is often used instead. This is a process where one of the repository meisters will copy the files directly within the repository, rather than using the &man.cvs.1; program. Why should I care what color the bikeshed is? The really, really short answer is that you should not. The somewhat longer answer is that just because you are capable of building a bikeshed does not mean you should stop others from building one just because you do not like the color they plan to paint it. This is a metaphor indicating that you need not argue about every little feature just because you know enough to do so. Some people have commented that the amount of noise generated by a change is inversely proportional to the complexity of the change. The longer and more complete answer is that after a very long argument about whether &man.sleep.1; should take fractional second arguments, &a.phk; posted a long message entitled A bike shed (any colour will do) on greener grass.... The appropriate portions of that message are quoted below.
&a.phk; on freebsd-hackers, October 2, 1999 What is it about this bike shed? Some of you have asked me. It is a long story, or rather it is an old story, but it is quite short actually. C. Northcote Parkinson wrote a book in the early 1960s, called Parkinson's Law, which contains a lot of insight into the dynamics of management. [snip a bit of commentary on the book] In the specific example involving the bike shed, the other vital component is an atomic power-plant, I guess that illustrates the age of the book. Parkinson shows how you can go in to the board of directors and get approval for building a multi-million or even billion dollar atomic power plant, but if you want to build a bike shed you will be tangled up in endless discussions. Parkinson explains that this is because an atomic plant is so vast, so expensive and so complicated that people cannot grasp it, and rather than try, they fall back on the assumption that somebody else checked all the details before it got this far. Richard P. Feynmann gives a couple of interesting, and very much to the point, examples relating to Los Alamos in his books. A bike shed on the other hand. Anyone can build one of those over a weekend, and still have time to watch the game on TV. So no matter how well prepared, no matter how reasonable you are with your proposal, somebody will seize the chance to show that he is doing his job, that he is paying attention, that he is here. In Denmark we call it setting your fingerprint. It is about personal pride and prestige, it is about being able to point somewhere and say There! I did that. It is a strong trait in politicians, but present in most people given the chance. Just think about footsteps in wet cement.
The FreeBSD Funnies How cool is FreeBSD? Q. Has anyone done any temperature testing while running FreeBSD? I know Linux runs cooler than DOS, but have never seen a mention of FreeBSD. It seems to run really hot. A. No, but we have done numerous taste tests on blindfolded volunteers who have also had 250 micrograms of LSD-25 administered beforehand. 35% of the volunteers said that FreeBSD tasted sort of orange, whereas Linux tasted like purple haze. Neither group mentioned any significant variances in temperature. We eventually had to throw the results of this survey out entirely anyway when we found that too many volunteers were wandering out of the room during the tests, thus skewing the results. We think most of the volunteers are at Apple now, working on their new scratch and sniff GUI. It is a funny old business we are in! Seriously, both FreeBSD and Linux use the HLT (halt) instruction when the system is idle thus lowering its energy consumption and therefore the heat it generates. Also if you have APM (advanced power management) configured, then FreeBSD can also put the CPU into a low power mode. Who is scratching in my memory banks?? Q. Is there anything odd that FreeBSD does when compiling the kernel which would cause the memory to make a scratchy sound? When compiling (and for a brief moment after recognizing the floppy drive upon startup, as well), a strange scratchy sound emanates from what appears to be the memory banks. A. Yes! You will see frequent references to daemons in the BSD documentation, and what most people do not know is that this refers to genuine, non-corporeal entities that now possess your computer. The scratchy sound coming from your memory is actually high-pitched whispering exchanged among the daemons as they best decide how to deal with various system administration tasks. If the noise gets to you, a good fdisk /mbr from DOS will get rid of them, but do not be surprised if they react adversely and try to stop you. In fact, if at any point during the exercise you hear the satanic voice of Bill Gates coming from the built-in speaker, take off running and do not ever look back! Freed from the counterbalancing influence of the BSD daemons, the twin demons of DOS and Windows are often able to re-assert total control over your machine to the eternal damnation of your soul. Now that you know, given a choice you would probably prefer to get used to the scratchy noises, no? How many FreeBSD hackers does it take to change a lightbulb? One thousand, one hundred and seventy-two: Twenty-three to complain to -CURRENT about the lights being out; Four to claim that it is a configuration problem, and that such matters really belong on -questions; Three to submit PRs about it, one of which is misfiled under doc and consists only of "it's dark"; One to commit an untested lightbulb which breaks buildworld, then back it out five minutes later; Eight to flame the PR originators for not including patches in their PRs; Five to complain about buildworld being broken; Thirty-one to answer that it works for them, and they must have cvsupped at a bad time; One to post a patch for a new lightbulb to -hackers; One to complain that he had patches for this three years ago, but when he sent them to -CURRENT they were just ignored, and he has had bad experiences with the PR system; besides, the proposed new lightbulb is non-reflexive; Thirty-seven to scream that lightbulbs do not belong in the base system, that committers have no right to do things like this without consulting the Community, and WHAT IS -CORE DOING ABOUT IT!? Two hundred to complain about the color of the bicycle shed; Three to point out that the patch breaks &man.style.9;; Seventeen to complain that the proposed new lightbulb is under GPL; Five hundred and eighty-six to engage in a flame war about the comparative advantages of the GPL, the BSD license, the MIT license, the NPL, and the personal hygiene of unnamed FSF founders; Seven to move various portions of the thread to -chat and -advocacy; One to commit the suggested lightbulb, even though it shines dimmer than the old one; Two to back it out with a furious flame of a commit message, arguing that FreeBSD is better off in the dark than with a dim lightbulb; Forty-six to argue vociferously about the backing out of the dim lightbulb and demanding a statement from -core; Eleven to request a smaller lightbulb so it will fit their Tamagotchi if we ever decide to port FreeBSD to that platform; Seventy-three to complain about the SNR on -hackers and -chat and unsubscribe in protest; Thirteen to post "unsubscribe", "How do I unsubscribe?", or "Please remove me from the list", followed by the usual footer; One to commit a working lightbulb while everybody is too busy flaming everybody else to notice; Thirty-one to point out that the new lightbulb would shine 0.364% brighter if compiled with TenDRA (although it will have to be reshaped into a cube), and that FreeBSD should therefore switch to TenDRA instead of EGCS; One to complain that the new lightbulb lacks fairings; Nine (including the PR originators) to ask "what is MFC?"; Fifty-seven to complain about the lights being out two weeks after the bulb has been changed. &a.nik; adds: I was laughing quite hard at this. And then I thought, "Hang on, shouldn't there be '1 to document it.' in that list somewhere?" And then I was enlightened :-) Where does data written to /dev/null go? It goes into a special data sink in the CPU where it is converted to heat which is vented through the heatsink / fan assembly. This is why CPU cooling is increasingly important; as people get used to faster processors, they become careless with their data and more and more of it ends up in /dev/null, overheating their CPUs. If you delete /dev/null (which effectively disables the CPU data sink) your CPU may run cooler but your system will quickly become constipated with all that excess data and start to behave erratically. If you have a fast network connection you can cool down your CPU by reading data out of /dev/random and sending it off somewhere; however you run the risk of overheating your network connection and / or angering your ISP, as most of the data will end up getting converted to heat by their equipment, but they generally have good cooling, so if you do not overdo it you should be OK. Paul Robinson adds: There are other methods. As every good sysadmin knows, it is part of standard practise to send data to the screen of interesting variety to keep all the pixies that make up your picture happy. Screen pixies (commonly mis-typed or re-named as 'pixels') are categorised by the type of hat they wear (red, green or blue) and will hide or appear (thereby showing the colour of their hat) whenever they receive a little piece of food. Video cards turn data into pixie-food, and then send them to the pixies - the more expensive the card, the better the food, so the better behaved the pixies are. They also need constant simulation - this is why screen savers exist. To take your suggestions further, you could just throw the random data to console, thereby letting the pixies consume it. This causes no heat to be produced at all, keeps the pixies happy and gets rid of your data quite quickly, even if it does make things look a bit messy on your screen. Incidentally, as an ex-admin of a large ISP who experienced many problems attempting to maintain a stable temperature in a server room, I would strongly discourage people sending the data they do not want out to the network. The fairies who do the packet switching and routing get annoyed by it as well. Advanced Topics How can I learn more about FreeBSD's internals? At this time, there is no book on FreeBSD-specific OS internals. Much general UNIX knowledge is directly applicable to FreeBSD, however. Additionally, there are BSD-specific books that are still relevant. For a list, please check the Handbook's Operating System Internals Bibliography. How can I contribute to FreeBSD? Please see the article on Contributing to FreeBSD for specific advice on how to do this. Assistance is more than welcome! What are SNAPs and RELEASEs? There are currently three active/semi-active branches in the FreeBSD CVS Repository (the RELENG_2 branch is probably only changed twice a year, which is why there are only three active branches of development): RELENG_2_2 AKA 2.2-STABLE RELENG_3 AKA 3.X-STABLE RELENG_4 AKA 4-STABLE HEAD AKA -CURRENT AKA 5.0-CURRENT HEAD is not an actual branch tag, like the other two; it is simply a symbolic constant for the current, non-branched development stream which we simply refer to as -CURRENT. Right now, -CURRENT is the 5.0 development stream and the 4-STABLE branch, RELENG_4, forked off from -CURRENT in Mar 2000. The 2.2-STABLE branch, RELENG_2_2, departed -CURRENT in November 1996, and has pretty much been retired. How do I make my own custom release? Please see the Release Engineering article. Why does make world clobber my existing installed binaries? Yes, this is the general idea; as its name might suggest, make world rebuilds every system binary from scratch, so you can be certain of having a clean and consistent environment at the end (which is why it takes so long). If the environment variable DESTDIR is defined while running make world or make install, the newly-created binaries will be deposited in a directory tree identical to the installed one, rooted at ${DESTDIR}. Some random combination of shared libraries modifications and program rebuilds can cause this to fail in make world however. Why does my system say (bus speed defaulted) when it boots? The Adaptec 1542 SCSI host adapters allow the user to configure their bus access speed in software. Previous versions of the 1542 driver tried to determine the fastest usable speed and set the adapter to that. We found that this breaks some users' systems, so you now have to define the TUNE_1542 kernel configuration option in order to have this take place. Using it on those systems where it works may make your disks run faster, but on those systems where it does not, your data could be corrupted. Can I follow current with limited Internet access? Yes, you can do this without downloading the whole source tree by using the CTM facility. How did you split the distribution into 240k files? Newer BSD based systems have a option to split that allows them to split files on arbitrary byte boundaries. Here is an example from /usr/src/Makefile. bin-tarball: (cd ${DISTDIR}; \ tar cf - . \ gzip --no-name -9 -c | \ split -b 240640 - \ ${RELEASEDIR}/tarballs/bindist/bin_tgz.) I have written a kernel extension, who do I send it to? Please take a look at the article on Contributing to FreeBSD to learn how to submit code. And thanks for the thought! How are Plug N Play ISA cards detected and initialized? By: Frank Durda IV uhclem@nemesis.lonestar.org In a nutshell, there a few I/O ports that all of the PnP boards respond to when the host asks if anyone is out there. So when the PnP probe routine starts, he asks if there are any PnP boards present, and all the PnP boards respond with their model # to a I/O read of the same port, so the probe routine gets a wired-OR yes to that question. At least one bit will be on in that reply. Then the probe code is able to cause boards with board model IDs (assigned by Microsoft/Intel) lower than X to go off-line. It then looks to see if any boards are still responding to the query. If the answer was 0, then there are no boards with IDs above X. Now probe asks if there are any boards below X. If so, probe knows there are boards with a model numbers below X. Probe then asks for boards greater than X-(limit/4) to go off-line. If repeats the query. By repeating this semi-binary search of IDs-in-range enough times, the probing code will eventually identify all PnP boards present in a given machine with a number of iterations that is much lower than what 2^64 would take. The IDs are two 32-bit fields (hence 2ˆ64) + 8 bit checksum. The first 32 bits are a vendor identifier. They never come out and say it, but it appears to be assumed that different types of boards from the same vendor could have different 32-bit vendor ids. The idea of needing 32 bits just for unique manufacturers is a bit excessive. The lower 32 bits are a serial #, Ethernet address, something that makes this one board unique. The vendor must never produce a second board that has the same lower 32 bits unless the upper 32 bits are also different. So you can have multiple boards of the same type in the machine and the full 64 bits will still be unique. The 32 bit groups can never be all zero. This allows the wired-OR to show non-zero bits during the initial binary search. Once the system has identified all the board IDs present, it will reactivate each board, one at a time (via the same I/O ports), and find out what resources the given board needs, what interrupt choices are available, etc. A scan is made over all the boards to collect this information. This info is then combined with info from any ECU files on the hard disk or wired into the MLB BIOS. The ECU and BIOS PnP support for hardware on the MLB is usually synthetic, and the peripherals do not really do genuine PnP. However by examining the BIOS info plus the ECU info, the probe routines can cause the devices that are PnP to avoid those devices the probe code cannot relocate. Then the PnP devices are visited once more and given their I/O, DMA, IRQ and Memory-map address assignments. The devices will then appear at those locations and remain there until the next reboot, although there is nothing that says you cannot move them around whenever you want. There is a lot of oversimplification above, but you should get the general idea. Microsoft took over some of the primary printer status ports to do PnP, on the logic that no boards decoded those addresses for the opposing I/O cycles. I found a genuine IBM printer board that did decode writes of the status port during the early PnP proposal review period, but MS said tough. So they do a write to the printer status port for setting addresses, plus that use that address + 0x800, and a third I/O port for reading that can be located anywhere between 0x200 and 0x3ff. Can you assign a major number for a device driver I have written? This depends on whether or not you plan on making the driver publicly available. If you do, then please send us a copy of the driver source code, plus the appropriate modifications to files.i386, a sample configuration file entry, and the appropriate &man.MAKEDEV.8; code to create any special files your device uses. If you do not, or are unable to because of licensing restrictions, then character major number 32 and block major number 8 have been reserved specifically for this purpose; please use them. In any case, we would appreciate hearing about your driver on &a.hackers;. What about alternative layout policies for directories? In answer to the question of alternative layout policies for directories, the scheme that is currently in use is unchanged from what I wrote in 1983. I wrote that policy for the original fast filesystem, and never revisited it. It works well at keeping cylinder groups from filling up. As several of you have noted, it works poorly for find. Most filesystems are created from archives that were created by a depth first search (aka ftw). These directories end up being striped across the cylinder groups thus creating a worst possible scenario for future depth first searches. If one knew the total number of directories to be created, the solution would be to create (total / fs_ncg) per cylinder group before moving on. Obviously, one would have to create some heuristic to guess at this number. Even using a small fixed number like say 10 would make an order of magnitude improvement. To differentiate restores from normal operation (when the current algorithm is probably more sensible), you could use the clustering of up to 10 if they were all done within a ten second window. Anyway, my conclusion is that this is an area ripe for experimentation. Kirk McKusick, September 1998 How can I make the most of the data I see when my kernel panics? [This section was extracted from a mail written by &a.wpaul; on the freebsd-current mailing list by &a.des;, who fixed a few typos and added the bracketed comments] From: Bill Paul <wpaul@skynet.ctr.columbia.edu> Subject: Re: the fs fun never stops To: Ben Rosengart Date: Sun, 20 Sep 1998 15:22:50 -0400 (EDT) Cc: current@FreeBSD.org Ben Rosengart posted the following panic message] > Fatal trap 12: page fault while in kernel mode > fault virtual address = 0x40 > fault code = supervisor read, page not present > instruction pointer = 0x8:0xf014a7e5 ^^^^^^^^^^ > stack pointer = 0x10:0xf4ed6f24 > frame pointer = 0x10:0xf4ed6f28 > code segment = base 0x0, limit 0xfffff, type 0x1b > = DPL 0, pres 1, def32 1, gran 1 > processor eflags = interrupt enabled, resume, IOPL = 0 > current process = 80 (mount) > interrupt mask = > trap number = 12 > panic: page fault [When] you see a message like this, it is not enough to just reproduce it and send it in. The instruction pointer value that I highlighted up there is important; unfortunately, it is also configuration dependent. In other words, the value varies depending on the exact kernel image that you are using. If you are using a GENERIC kernel image from one of the snapshots, then it is possible for somebody else to track down the offending function, but if you are running a custom kernel then only you can tell us where the fault occurred. What you should do is this: Write down the instruction pointer value. Note that the 0x8: part at the beginning is not significant in this case: it is the 0xf0xxxxxx part that we want. When the system reboots, do the following: &prompt.user; nm -n /kernel.that.caused.the.panic | grep f0xxxxxx where f0xxxxxx is the instruction pointer value. The odds are you will not get an exact match since the symbols in the kernel symbol table are for the entry points of functions and the instruction pointer address will be somewhere inside a function, not at the start. If you do not get an exact match, omit the last digit from the instruction pointer value and try again, i.e.: &prompt.user; nm -n /kernel.that.caused.the.panic | grep f0xxxxx If that does not yield any results, chop off another digit. Repeat until you get some sort of output. The result will be a possible list of functions which caused the panic. This is a less than exact mechanism for tracking down the point of failure, but it is better than nothing. I see people constantly show panic messages like this but rarely do I see someone take the time to match up the instruction pointer with a function in the kernel symbol table. The best way to track down the cause of a panic is by capturing a crash dump, then using &man.gdb.1; to generate a stack trace on the crash dump. In any case, the method I normally use is this: Set up a kernel config file, optionally adding options DDB if you think you need the kernel debugger for something. (I use this mainly for setting breakpoints if I suspect an infinite loop condition of some kind.) Use config -g KERNELCONFIG to set up the build directory. cd /sys/compile/ KERNELCONFIG; make Wait for kernel to finish compiling. make install reboot The &man.make.1; process will have built two kernels. kernel and kernel.debug. kernel was installed as /kernel, while kernel.debug can be used as the source of debugging symbols for &man.gdb.1;. To make sure you capture a crash dump, you need edit /etc/rc.conf and set dumpdev to point to your swap partition. This will cause the &man.rc.8; scripts to use the &man.dumpon.8; command to enable crash dumps. You can also run &man.dumpon.8; manually. After a panic, the crash dump can be recovered using &man.savecore.8;; if dumpdev is set in /etc/rc.conf, the &man.rc.8; scripts will run &man.savecore.8; automatically and put the crash dump in /var/crash. FreeBSD crash dumps are usually the same size as the physical RAM size of your machine. That is, if you have 64MB of RAM, you will get a 64MB crash dump. Therefore you must make sure there is enough space in /var/crash to hold the dump. Alternatively, you run &man.savecore.8; manually and have it recover the crash dump to another directory where you have more room. It is possible to limit the size of the crash dump by using options MAXMEM=(foo) to set the amount of memory the kernel will use to something a little more sensible. For example, if you have 128MB of RAM, you can limit the kernel's memory usage to 16MB so that your crash dump size will be 16MB instead of 128MB. Once you have recovered the crash dump, you can get a stack trace with &man.gdb.1; as follows: &prompt.user; gdb -k /sys/compile/KERNELCONFIG/kernel.debug /var/crash/vmcore.0 (gdb) where Note that there may be several screens worth of information; ideally you should use &man.script.1; to capture all of them. Using the unstripped kernel image with all the debug symbols should show the exact line of kernel source code where the panic occurred. Usually you have to read the stack trace from the bottom up in order to trace the exact sequence of events that lead to the crash. You can also use &man.gdb.1; to print out the contents of various variables or structures in order to examine the system state at the time of the crash. Now, if you are really insane and have a second computer, you can also configure &man.gdb.1; to do remote debugging such that you can use &man.gdb.1; on one system to debug the kernel on another system, including setting breakpoints, single-stepping through the kernel code, just like you can do with a normal user-mode program. I have not played with this yet as I do not often have the chance to set up two machines side by side for debugging purposes. [Bill adds: "I forgot to mention one thing: if you have DDB enabled and the kernel drops into the debugger, you can force a panic (and a crash dump) just by typing 'panic' at the ddb prompt. It may stop in the debugger again during the panic phase. If it does, type 'continue' and it will finish the crash dump." -ed] Why has dlsym() stopped working for ELF executables? The ELF toolchain does not, by default, make the symbols defined in an executable visible to the dynamic linker. Consequently dlsym() searches on handles obtained from calls to dlopen(NULL, flags) will fail to find such symbols. If you want to search, using dlsym(), for symbols present in the main executable of a process, you need to link the executable using the option to the ELF linker (&man.ld.1;). How can I increase or reduce the kernel address space? By default, the kernel address space is 256 MB on FreeBSD 3.x and 1 GB on FreeBSD 4.x. If you run a network-intensive server (e.g. a large FTP or HTTP server), you might find that 256 MB is not enough. So how do you increase the address space? There are two aspects to this. First, you need to tell the kernel to reserve a larger portion of the address space for itself. Second, since the kernel is loaded at the top of the address space, you need to lower the load address so it does not bump its head against the ceiling. The first goal is achieved by increasing the value of NKPDE in src/sys/i386/include/pmap.h. Here is what it looks like for a 1 GB address space: #ifndef NKPDE #ifdef SMP #define NKPDE 254 /* addressable number of page tables/pde's */ #else #define NKPDE 255 /* addressable number of page tables/pde's */ #endif /* SMP */ #endif To find the correct value of NKPDE, divide the desired address space size (in megabytes) by four, then subtract one for UP and two for SMP. To achieve the second goal, you need to compute the correct load address: simply subtract the address space size (in bytes) from 0x100100000; the result is 0xc0100000 for a 1 GB address space. Set LOAD_ADDRESS in src/sys/i386/conf/Makefile.i386 to that value; then set the location counter in the beginning of the section listing in src/sys/i386/conf/kernel.script to the same value, as follows: OUTPUT_FORMAT("elf32-i386", "elf32-i386", "elf32-i386") OUTPUT_ARCH(i386) ENTRY(btext) SEARCH_DIR(/usr/lib); SEARCH_DIR(/usr/obj/elf/home/src/tmp/usr/i386-unknown-freebsdelf/lib); SECTIONS { /* Read-only sections, merged into text segment: */ . = 0xc0100000 + SIZEOF_HEADERS; .interp : { *(.interp) } Then reconfig and rebuild your kernel. You will probably have problems with &man.ps.1; &man.top.1; and the like; make world should take care of it (or a manual rebuild of libkvm, &man.ps.1; and &man.top.1; after copying the patched pmap.h to /usr/include/vm/. NOTE: the size of the kernel address space must be a multiple of four megabytes. [&a.dg; adds: I think the kernel address space needs to be a power of two, but I am not certain about that. The old(er) boot code used to monkey with the high order address bits and I think expected at least 256MB granularity.] Acknowledgments
FreeBSD Core Team If you see a problem with this FAQ, or wish to submit an entry, please mail the &a.faq;. We appreciate your feedback, and cannot make this a better FAQ without your help!
&a.jkh; Occasional fits of FAQ-reshuffling and updating. &a.dwhite; Services above and beyond the call of duty on freebsd-questions &a.joerg; Services above and beyond the call of duty on Usenet &a.wollman; Networking and formatting Jim Lowe Multicast information &a.pds; FreeBSD FAQ typing machine slavey The FreeBSD Team Kvetching, moaning, submitting data And to any others we have forgotten, apologies and heartfelt thanks!
&bibliography;
diff --git a/en_US.ISO8859-1/books/fdp-primer/sgml-primer/chapter.sgml b/en_US.ISO8859-1/books/fdp-primer/sgml-primer/chapter.sgml index ff133da1b8..663eef951e 100644 --- a/en_US.ISO8859-1/books/fdp-primer/sgml-primer/chapter.sgml +++ b/en_US.ISO8859-1/books/fdp-primer/sgml-primer/chapter.sgml @@ -1,1580 +1,1580 @@ SGML Primer The majority of FDP documentation is written in applications of SGML. This chapter explains exactly what that means, how to read and understand the source to the documentation, and the sort of SGML tricks you will see used in the documentation. Portions of this section were inspired by Mark Galassi's Get Going With DocBook. Overview Way back when, electronic text was simple to deal with. Admittedly, you had to know which character set your document was written in (ASCII, EBCDIC, or one of a number of others) but that was about it. Text was text, and what you saw really was what you got. No frills, no formatting, no intelligence. Inevitably, this was not enough. Once you have text in a machine-usable format, you expect machines to be able to use it and manipulate it intelligently. You would like to indicate that certain phrases should be emphasised, or added to a glossary, or be hyperlinks. You might want filenames to be shown in a typewriter style font for viewing on screen, but as italics when printed, or any of a myriad of other options for presentation. It was once hoped that Artificial Intelligence (AI) would make this easy. Your computer would read in the document and automatically identify key phrases, filenames, text that the reader should type in, examples, and more. Unfortunately, real life has not happened quite like that, and our computers require some assistance before they can meaningfully process our text. More precisely, they need help identifying what is what. You or I can look at
To remove /tmp/foo use &man.rm.1;. &prompt.user; rm /tmp/foo
and easily see which parts are filenames, which are commands to be typed in, which parts are references to manual pages, and so on. But the computer processing the document cannot. For this we need markup.
Markup is commonly used to describe adding value or increasing cost. The term takes on both these meanings when applied to text. Markup is additional text included in the document, distinguished from the document's content in some way, so that programs that process the document can read the markup and use it when making decisions about the document. Editors can hide the markup from the user, so the user is not distracted by it. The extra information stored in the markup adds value to the document. Adding the markup to the document must typically be done by a person—after all, if computers could recognise the text sufficiently well to add the markup then there would be no need to add it in the first place. This increases the cost (i.e., the effort required) to create the document. The previous example is actually represented in this document like this; To remove /tmp/foo use &man.rm.1;. &prompt.user; rm /tmp/foo]]> As you can see, the markup is clearly separate from the content. Obviously, if you are going to use markup you need to define what your markup means, and how it should be interpreted. You will need a markup language that you can follow when marking up your documents. Of course, one markup language might not be enough. A markup language for technical documentation has very different requirements than a markup language that was to be used for cookery recipes. This, in turn, would be very different from a markup language used to describe poetry. What you really need is a first language that you use to write these other markup languages. A meta markup language. This is exactly what the Standard Generalised Markup Language (SGML) is. Many markup languages have been written in SGML, including the two most used by the FDP, HTML and DocBook. Each language definition is more properly called a Document Type Definition (DTD). The DTD specifies the name of the elements that can be used, what order they appear in (and whether some markup can be used inside other markup) and related information. A DTD is sometimes referred to as an application of SGML. A DTD is a complete specification of all the elements that are allowed to appear, the order in which they should appear, which elements are mandatory, which are optional, and so forth. This makes it possible to write an SGML parser which reads in both the DTD and a document which claims to conform to the DTD. The parser can then confirm whether or not all the elements required by the DTD are in the document in the right order, and whether there are any errors in the markup. This is normally referred to as validating the document. This processing simply confirms that the choice of elements, their ordering, and so on, conforms to that listed in the DTD. It does not check that you have used - appropriate markup for the content. If you were - to try and mark up all the filenames in your document as function + appropriate markup for the content. If you + tried to mark up all the filenames in your document as function names, the parser would not flag this as an error (assuming, of course, that your DTD defines elements for filenames and functions, and that they are allowed to appear in the same place). It is likely that most of your contributions to the Documentation Project will consist of content marked up in either HTML or DocBook, rather than alterations to the DTDs. For this reason this book will not touch on how to write a DTD.
Elements, tags, and attributes All the DTDs written in SGML share certain characteristics. This is hardly surprising, as the philosophy behind SGML will inevitably show through. One of the most obvious manifestations of this philosophy is that of content and elements. Your documentation (whether it is a single web page, or a lengthy book) is considered to consist of content. This content is then divided (and further subdivided) into elements. The purpose of adding markup is to name and identify the boundaries of these elements for further processing. For example, consider a typical book. At the very top level, the book is itself an element. This book element obviously contains chapters, which can be considered to be elements in their own right. Each chapter will contain more elements, such as paragraphs, quotations, and footnotes. Each paragraph might contain further elements, identifying content that was direct speech, or the name of a character in the story. You might like to think of this as chunking content. At the very top level you have one chunk, the book. Look a little deeper, and you have more chunks, the individual chapters. These are chunked further into paragraphs, footnotes, character names, and so on. Notice how you can make this differentiation between different elements of the content without resorting to any SGML terms. It really is surprisingly straightforward. You could do this with a highlighter pen and a printout of the book, using different colours to indicate different chunks of content. Of course, we do not have an electronic highlighter pen, so we need some other way of indicating which element each piece of content belongs to. In languages written in SGML (HTML, DocBook, et al) this is done by means of tags. A tag is used to identify where a particular element starts, and where the element ends. The tag is not part of the element itself. Because each DTD was normally written to mark up specific types of information, each one will recognise different elements, and will therefore have different names for the tags. For an element called element-name the start tag will normally look like <element-name>. The corresponding closing tag for this element is </element-name>. Using an element (start and end tags) HTML has an element for indicating that the content enclosed by the element is a paragraph, called p. This element has both start and end tags. This is a paragraph. It starts with the start tag for the 'p' element, and it will end with the end tag for the 'p' element.

This is another paragraph. But this one is much shorter.

]]>
Not all elements require an end tag. Some elements have no content. For example, in HTML you can indicate that you want a horizontal line to appear in the document. Obviously, this line has no content, so just the start tag is required for this element. Using an element (start tag only) HTML has an element for indicating a horizontal rule, called hr. This element does not wrap content, so only has a start tag. This is a paragraph.


This is another paragraph. A horizontal rule separates this from the previous paragraph.

]]>
If it is not obvious by now, elements can contain other elements. In the book example earlier, the book element contained all the chapter elements, which in turn contained all the paragraph elements, and so on. Elements within elements; <sgmltag>em</sgmltag> This is a simple paragraph where some of the words have been emphasised.

]]>
The DTD will specify the rules detailing which elements can contain other elements, and exactly what they can contain. People often confuse the terms tags and elements, and use the terms as if they were interchangeable. They are not. An element is a conceptual part of your document. An element has a defined start and end. The tags mark where the element starts and end. When this document (or anyone else knowledgeable about SGML) refers to the <p> tag they mean the literal text consisting of the three characters <, p, and >. But the phrase the <p> element refers to the whole element. This distinction is very subtle. But keep it in mind. Elements can have attributes. An attribute has a name and a value, and is used for adding extra information to the element. This might be information that indicates how the content should be rendered, or might be something that uniquely identifies that occurrence of the element, or it might be something else. An element's attributes are written inside the start tag for that element, and take the form attribute-name="attribute-value". In sufficiently recent versions of HTML, the p element has an attribute called align, which suggests an alignment (justification) for the paragraph to the program displaying the HTML. The align attribute can take one of four defined values, left, center, right and justify. If the attribute is not specified then the default is left. Using an element with an attribute The inclusion of the align attribute on this paragraph was superfluous, since the default is left.

This may appear in the center.

]]>
Some attributes will only take specific values, such as left or justify. Others will allow you to enter anything you want. If you need to include quotes (") within an attribute then use single quotes around the attribute value. Single quotes around attributes I am on the right!

]]>
Sometimes you do not need to use quotes around attribute values at all. However, the rules for doing this are subtle, and it is far simpler just to always quote your attribute values. The information on attributes, elements, and tags is stored in SGML catalogs. The various Documentation Project tools use these catalog files to validate your work. The tools in textproc/docproj include a variety of SGML catalog files. The FreeBSD Documentation Project includes its own set of catalog files. Your tools need to know about both sorts of catalog files. For you to do… In order to run the examples in this document you will need to install some software on your system and ensure that an environment variable is set correctly. Download and install textproc/docproj from the FreeBSD ports system. This is a meta-port that should download and install all of the programs and supporting files that are used by the Documentation Project. Add lines to your shell startup files to set SGML_CATALOG_FILES. (If you are not working on the English version of the documentation, you will want to substitute the correct directory for your language.) <filename>.profile</filename>, for &man.sh.1; and &man.bash.1; users SGML_ROOT=/usr/local/share/sgml SGML_CATALOG_FILES=${SGML_ROOT}/jade/catalog SGML_CATALOG_FILES=${SGML_ROOT}/iso8879/catalog:$SGML_CATALOG_FILES SGML_CATALOG_FILES=${SGML_ROOT}/html/catalog:$SGML_CATALOG_FILES SGML_CATALOG_FILES=${SGML_ROOT}/docbook/4.1/catalog:$SGML_CATALOG_FILES SGML_CATALOG_FILES=/usr/doc/share/sgml/catalog:$SGML_CATALOG_FILES SGML_CATALOG_FILES=/usr/doc/en_US.ISO8859-1/share/sgml/catalog:$SGML_CATALOG_FILES export SGML_CATALOG_FILES <filename>.login</filename>, for &man.csh.1; and &man.tcsh.1; users setenv SGML_ROOT /usr/local/share/sgml setenv SGML_CATALOG_FILES ${SGML_ROOT}/jade/catalog setenv SGML_CATALOG_FILES ${SGML_ROOT}/iso8879/catalog:$SGML_CATALOG_FILES setenv SGML_CATALOG_FILES ${SGML_ROOT}/html/catalog:$SGML_CATALOG_FILES setenv SGML_CATALOG_FILES ${SGML_ROOT}/docbook/4.1/catalog:$SGML_CATALOG_FILES setenv SGML_CATALOG_FILES /usr/doc/share/sgml/catalog:$SGML_CATALOG_FILES setenv SGML_CATALOG_FILES /usr/doc/en_US.ISO8859-1/share/sgml/catalog:$SGML_CATALOG_FILES Then either log out, and log back in again, or run those commands from the command line to set the variable values. Create example.sgml, and enter the following text; An example HTML file

This is a paragraph containing some text.

This paragraph contains some more text.

This paragraph might be right-justified.

]]>
Try and validate this file using an SGML parser. Part of textproc/docproj is the &man.nsgmls.1; validating parser. Normally, &man.nsgmls.1; reads in a document marked up according to an SGML DTD and returns a copy of the document's Element Structure Information Set (ESIS, but that is not important right now). However, when &man.nsgmls.1; is given the parameter, &man.nsgmls.1; will suppress its normal output, and just print error messages. This makes it a useful way to check to see if your document is valid or not. Use &man.nsgmls.1; to check that your document is valid; &prompt.user; nsgmls -s example.sgml As you will see, &man.nsgmls.1; returns without displaying any output. This means that your document validated successfully. See what happens when required elements are omitted. Try removing the title and /title tags, and re-run the validation. &prompt.user; nsgmls -s example.sgml nsgmls:example.sgml:5:4:E: character data is not allowed here nsgmls:example.sgml:6:8:E: end tag for "HEAD" which is not finished The error output from &man.nsgmls.1; is organised into colon-separated groups, or columns. Column Meaning 1 The name of the program generating the error. This will always be nsgmls. 2 The name of the file that contains the error. 3 Line number where the error appears. 4 Column number where the error appears. 5 A one letter code indicating the nature of the message. I indicates an informational message, W is for warnings, and E is for errors It is not always the fifth column either. nsgmls -sv displays nsgmls:I: SP version "1.3" (depending on the installed version). As you can see, this is an informational message. , and X is for cross-references. As you can see, these messages are errors. 6 The text of the error message. Simply omitting the title tags has generated 2 different errors. The first error indicates that content (in this case, characters, rather than the start tag for an element) has occurred where the SGML parser was expecting something else. In this case, the parser was expecting to see one of the start tags for elements that are valid inside head (such as title). The second error is because head elements must contain a title element. Because it does not &man.nsgmls.1; considers that the element has not been properly finished. However, the closing tag indicates that the element has been closed before it has been finished. Put the title element back in.
The DOCTYPE declaration The beginning of each document that you write must specify the name of the DTD that the document conforms to. This is so that SGML parsers can determine the DTD and ensure that the document does conform to it. This information is generally expressed on one line, in the DOCTYPE declaration. A typical declaration for a document written to conform with version 4.0 of the HTML DTD looks like this; ]]> That line contains a number of different components. <! Is the indicator that indicates that this is an SGML declaration. This line is declaring the document type. DOCTYPE Shows that this is an SGML declaration for the document type. html Names the first element that will appear in the document. PUBLIC "-//W3C//DTD HTML 4.0//EN" Lists the Formal Public Identifier (FPI) Formal Public Identifier for the DTD that this document conforms to. Your SGML parser will use this to find the correct DTD when processing this document. PUBLIC is not a part of the FPI, but indicates to the SGML processor how to find the DTD referenced in the FPI. Other ways of telling the SGML parser how to find the DTD are shown later. > Returns to the document. Formal Public Identifiers (FPIs)<indexterm significance="preferred"> <primary>Formal Public Identifier</primary> </indexterm> You do not need to know this, but it is useful background, and might help you debug problems when your SGML processor can not locate the DTD you are using. FPIs must follow a specific syntax. This syntax is as follows; "Owner//Keyword Description//Language" Owner This indicates the owner of the FPI. If this string starts with ISO then this is an ISO owned FPI. For example, the FPI "ISO 8879:1986//ENTITIES Greek Symbols//EN" lists ISO 8879:1986 as being the owner for the set of entities for Greek symbols. ISO 8879:1986 is the ISO number for the SGML standard. Otherwise, this string will either look like -//Owner or +//Owner (notice the only difference is the leading + or -). If the string starts with - then the owner information is unregistered, with a + it identifies it as being registered. ISO 9070:1991 defines how registered names are generated; it might be derived from the number of an ISO publication, an ISBN code, or an organisation code assigned according to ISO 6523. In addition, a registration authority could be created in order to assign registered names. The ISO council delegated this to the American National Standards Institute (ANSI). Because the FreeBSD Project has not been registered the owner string is -//FreeBSD. And as you can see, the W3C are not a registered owner either. Keyword There are several keywords that indicate the type of information in the file. Some of the most common keywords are DTD, ELEMENT, ENTITIES, and TEXT. DTD is used only for DTD files, ELEMENT is usually used for DTD fragments that contain only entity or element declarations. TEXT is used for SGML content (text and tags). Description Any description you want to supply for the contents of this file. This may include version numbers or any short text that is meaningful to you and unique for the SGML system. Language This is an ISO two-character code that identifies the native language for the file. EN is used for English. <filename>catalog</filename> files - If you use the syntax above and try and process this document + If you use the syntax above and process this document using an SGML processor, the processor will need to have some way of turning the FPI into the name of the file on your computer that contains the DTD. In order to do this it can use a catalog file. A catalog file (typically called catalog) contains lines that map FPIs to filenames. For example, if the catalog file contained the line; PUBLIC "-//W3C//DTD HTML 4.0//EN" "4.0/strict.dtd" The SGML processor would know to look up the DTD from strict.dtd in the 4.0 subdirectory of whichever directory held the catalog file that contained that line. Look at the contents of /usr/local/share/sgml/html/catalog. This is the catalog file for the HTML DTDs that will have been installed as part of the textproc/docproj port. <envar>SGML_CATALOG_FILES</envar> In order to locate a catalog file, your SGML processor will need to know where to look. Many of them feature command line parameters for specifying the path to one or more catalogs. In addition, you can set SGML_CATALOG_FILES to point to the files. This environment variable should consist of a colon-separated list of catalog files (including their full path). Typically, you will want to include the following files; /usr/local/share/sgml/docbook/4.1/catalog /usr/local/share/sgml/html/catalog /usr/local/share/sgml/iso8879/catalog /usr/local/share/sgml/jade/catalog You should already have done this. Alternatives to FPIs Instead of using an FPI to indicate the DTD that the document conforms to (and therefore, which file on the system contains the DTD) you can explicitly specify the name of the file. The syntax for this is slightly different: ]]> The SYSTEM keyword indicates that the SGML processor should locate the DTD in a system specific fashion. This typically (but not always) means the DTD will be provided as a filename. Using FPIs is preferred for reasons of portability. You do not want to have to ship a copy of the DTD around with your document, and if you used the SYSTEM identifier then everyone would need to keep their DTDs in the same place. Escaping back to SGML Earlier in this primer I said that SGML is only used when writing a DTD. This is not strictly true. There is certain SGML syntax that you will want to be able to use within your documents. For example, comments can be included in your document, and will be ignored by the parser. Comments are entered using SGML syntax. Other uses for SGML syntax in your document will be shown later too. Obviously, you need some way of indicating to the SGML processor that the following content is not elements within the document, but is SGML that the parser should act upon. These sections are marked by <! ... > in your document. Everything between these delimiters is SGML syntax as you might find within a DTD. As you may just have realised, the DOCTYPE declaration is an example of SGML syntax that you need to include in your document… Comments Comments are an SGML construction, and are normally only valid inside a DTD. However, as shows, it is possible to use SGML syntax within your document. The delimiter for SGML comments is the string --. The first occurrence of this string opens a comment, and the second closes it. SGML generic comment <!-- test comment --> ]]> Use 2 dashes There is a problem with producing the Postscript and PDF versions of this document. The above example probably shows just one hyphen symbol, - after the <! and before the >. You must use two -, not one. The Postscript and PDF versions have translated the two - in the original to a longer, more professional em-dash, and broken this example in the process. The HTML, plain text, and RTF versions of this document are not affected. ]]> If you have used HTML before you may have been shown different rules for comments. In particular, you may think that the string <!-- opens a comment, and it is only closed by -->. This is not the case. A lot of web browsers have broken HTML parsers, and will accept that as valid. However, the SGML parsers used by the Documentation Project are much stricter, and will reject documents that make that error. Erroneous SGML comments ]]> The SGML parser will treat this as though it were actually; <!THIS IS OUTSIDE THE COMMENT> This is not valid SGML, and may give confusing error messages. ]]> As the example suggests, do not write comments like that. ]]> That is a (slightly) better approach, but it still potentially confusing to people new to SGML. For you to do… Add some comments to example.sgml, and check that the file still validates using &man.nsgmls.1; Add some invalid comments to example.sgml, and see the error messages that &man.nsgmls.1; gives when it encounters an invalid comment. Entities Entities are a mechanism for assigning names to chunks of content. As an SGML parser processes your document, any entities it finds are replaced by the content of the entity. This is a good way to have re-usable, easily changeable chunks of content in your SGML documents. It is also the only way to include one marked up file inside another using SGML. There are two types of entities which can be used in two different situations; general entities and parameter entities. General Entities You cannot use general entities in an SGML context (although you define them in one). They can only be used in your document. Contrast this with parameter entities. Each general entity has a name. When you want to reference a general entity (and therefore include whatever text it represents in your document), you write &entity-name;. For example, suppose you had an entity called current.version which expanded to the current version number of your product. You could write; The current version of our product is ¤t.version;.]]> When the version number changes you can simply change the definition of the value of the general entity and reprocess your document. You can also use general entities to enter characters that you could not otherwise include in an SGML document. For example, < and & cannot normally appear in an SGML document. When the SGML parser sees the < symbol it assumes that a tag (either a start tag or an end tag) is about to appear, and when it sees the & symbol it assumes the next text will be the name of an entity. Fortunately, you can use the two general entities &lt; and &amp; whenever you need to include one or other of these A general entity can only be defined within an SGML context. Typically, this is done immediately after the DOCTYPE declaration. Defining general entities ]>]]> Notice how the DOCTYPE declaration has been extended by adding a square bracket at the end of the first line. The two entities are then defined over the next two lines, before the square bracket is closed, and then the DOCTYPE declaration is closed. The square brackets are necessary to indicate that we are extending the DTD indicated by the DOCTYPE declaration. Parameter entities Like general entities, parameter entities are used to assign names to reusable chunks of text. However, where as general entities can only be used within your document, parameter entities can only be used within an SGML context. Parameter entities are defined in a similar way to general entities. However, instead of using &entity-name; to refer to them, use %entity-name; Parameter entities use the Percent symbol. . The definition also includes the % between the ENTITY keyword and the name of the entity. Defining parameter entities ]>]]> This may not seem particularly useful. It will be. For you to do… Add a general entity to example.sgml. ]> An example HTML file

This is a paragraph containing some text.

This paragraph contains some more text.

This paragraph might be right-justified.

The current version of this document is: &version;

]]>
Validate the document using &man.nsgmls.1; Load example.sgml into your web browser (you may need to copy it to example.html before your browser recognises it as an HTML document). Unless your browser is very advanced, you will not see the entity reference &version; replaced with the version number. Most web browsers have very simplistic parsers which do not handle proper SGML This is a shame. Imagine all the problems and hacks (such as Server Side Includes) that could be avoided if they did. . The solution is to normalise your document using an SGML normaliser. The normaliser reads in valid SGML and outputs equally valid SGML which has been transformed in some way. One of the ways in which the normaliser transforms the SGML is to expand all the entity references in the document, replacing the entities with the text that they represent. You can use &man.sgmlnorm.1; to do this. &prompt.user; sgmlnorm example.sgml > example.html You should find a normalised (i.e., entity references expanded) copy of your document in example.html, ready to load into your web browser. If you look at the output from &man.sgmlnorm.1; you will see that it does not include a DOCTYPE declaration at the start. To include this you need to use the option; &prompt.user; sgmlnorm -d example.sgml > example.html
Using entities to include files Entities (both general and parameter) are particularly useful when used to include one file inside another. Using general entities to include files Suppose you have some content for an SGML book organised into files, one file per chapter, called chapter1.sgml, chapter2.sgml, and so forth, with a book.sgml file that will contain these chapters. In order to use the contents of these files as the values for your entities, you declare them with the SYSTEM keyword. This directs the SGML parser to use the contents of the named file as the value of the entity. Using general entities to include files ]> &chapter.1; &chapter.2; &chapter.3; ]]> When using general entities to include other files within a document, the files being included (chapter1.sgml, chapter2.sgml, and so on) must not start with a DOCTYPE declaration. This is a syntax error. Using parameter entities to include files Recall that parameter entities can only be used inside an SGML context. Why then would you want to include a file within an SGML context? You can use this to ensure that you can reuse your general entities. Suppose that you had many chapters in your document, and you reused these chapters in two different books, each book organising the chapters in a different fashion. You could list the entities at the top of each book, but this quickly becomes cumbersome to manage. Instead, place the general entity definitions inside one file, and use a parameter entity to include that file within your document. Using parameter entities to include files First, place your entity definitions in a separate file, called chapters.ent. This file contains the following; ]]> Now create a parameter entity to refer to the contents of the file. Then use the parameter entity to load the file into the document, which will then make all the general entities available for use. Then use the general entities as before; %chapters; ]> &chapter.1; &chapter.2; &chapter.3; ]]> For you to do… Use general entities to include files Create three files, para1.sgml, para2.sgml, and para3.sgml. Put content similar to the following in each file; This is the first paragraph.

]]>
Edit example.sgml so that it looks like this; ]> An example HTML file

The current version of this document is: &version;

¶1; ¶2; ¶3; ]]>
Produce example.html by normalising example.sgml. &prompt.user; sgmlnorm -d example.sgml > example.html Load example.html in to your web browser, and confirm that the paran.sgml files have been included in example.html.
Use parameter entities to include files You must have taken the previous steps first. Edit example.sgml so that it looks like this; %entities; ]> An example HTML file

The current version of this document is: &version;

¶1; ¶2; ¶3; ]]>
Create a new file, entities.sgml, with this content: ]]> Produce example.html by normalising example.sgml. &prompt.user; sgmlnorm -d example.sgml > example.html Load example.html in to your web browser, and confirm that the paran.sgml files have been included in example.html.
Marked sections SGML provides a mechanism to indicate that particular pieces of the document should be processed in a special way. These are termed marked sections. Structure of a marked section <![ KEYWORD [ Contents of marked section ]]> As you would expect, being an SGML construct, a marked section starts with <!. The first square bracket begins to delimit the marked section. KEYWORD describes how this marked section should be processed by the parser. The second square bracket indicates that the content of the marked section starts here. The marked section is finished by closing the two square brackets, and then returning to the document context from the SGML context with > Marked section keywords <literal>CDATA</literal>, <literal>RCDATA</literal> These keywords denote the marked sections content model, and allow you to change it from the default. When an SGML parser is processing a document it keeps track of what is called the content model. Briefly, the content model describes what sort of content the parser is expecting to see, and what it will do with it when it finds it. The two content models you will probably find most useful are CDATA and RCDATA. CDATA is for Character Data. If the parser is in this content model then it is expecting to see characters, and characters only. In this model the < and & symbols lose their special status, and will be treated as ordinary characters. RCDATA is for Entity references and character data If the parser is in this content model then it is expecting to see characters and entities. < loses its special status, but & will still be treated as starting the beginning of a general entity. This is particularly useful if you are including some verbatim text that contains lots of < and & characters. While you could go through the text ensuring that every < is converted to a &lt; and every & is converted to a &amp;, it can be easier to mark the section as only containing CDATA. When the SGML parser encounters this it will ignore the < and & symbols embedded in the content. When you use CDATA or RCDATA in examples of text marked up in SGML, keep in mind that the content of CDATA is not validated. You have to check the included SGML text using other means. You could, for example, write the example in another document, validate the example code, and then paste it to your CDATA content. Using a CDATA marked section <para>Here is an example of how you would include some text that contained many &lt; and &amp; symbols. The sample text is a fragment of HTML. The surrounding text (<para> and <programlisting>) are from DocBook.</para> <programlisting> <![ CDATA [ This is a sample that shows you some of the elements within HTML. Since the angle brackets are used so many times, it is simpler to say the whole example is a CDATA marked section than to use the entity names for the left and right angle brackets throughout.

  • This is a listitem
  • This is a second listitem
  • This is a third listitem

This is the end of the example.

]]> ]]> </programlisting>
If you look at the source for this document you will see this technique used throughout.
<literal>INCLUDE</literal> and <literal>IGNORE</literal> If the keyword is INCLUDE then the contents of the marked section will be processed. If the keyword is IGNORE then the marked section is ignored and will not be processed. It will not appear in the output. Using <literal>INCLUDE</literal> and <literal>IGNORE</literal> in marked sections <![ INCLUDE [ This text will be processed and included. ]]> <![ IGNORE [ This text will not be processed or included. ]]> By itself, this is not too useful. If you wanted to remove text from your document you could cut it out, or wrap it in comments. It becomes more useful when you realise you can use parameter entities to control this. Remember that parameter entities can only be used in SGML contexts, and the keyword of a marked section is an SGML context. For example, suppose that you produced a hard-copy version of some documentation and an electronic version. In the electronic version you wanted to include some extra content that was not to appear in the hard-copy. Create a parameter entity, and set its value to INCLUDE. Write your document, using marked sections to delimit content that should only appear in the electronic version. In these marked sections use the parameter entity in place of the keyword. When you want to produce the hard-copy version of the document, change the parameter entity's value to IGNORE and reprocess the document. Using a parameter entity to control a marked section <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN" [ <!ENTITY % electronic.copy "INCLUDE"> ]]> ... <![ %electronic.copy [ This content should only appear in the electronic version of the document. ]]> When producing the hard-copy version, change the entity's definition to; <!ENTITY % electronic.copy "IGNORE"> On reprocessing the document, the marked sections that use %electronic.copy as their keyword will be ignored.
For you to do… Create a new file, section.sgml, that contains the following; <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0//EN" [ <!ENTITY % text.output "INCLUDE"> ]> <html> <head> <title>An example using marked sections</title> </head> <body> <p>This paragraph <![ CDATA [contains many < characters (< < < < <) so it is easier to wrap it in a CDATA marked section ]]></p> <![ IGNORE [ <p>This paragraph will definitely not be included in the output.</p> ]]> <![ [ <p>This paragraph might appear in the output, or it might not.</p> <p>Its appearance is controlled by the parameter entity.</p> ]]> </body> </html> Normalise this file using &man.sgmlnorm.1; and examine the output. Notice which paragraphs have appeared, which have disappeared, and what has happened to the content of the CDATA marked section. Change the definition of the text.output entity from INCLUDE to IGNORE. Re-normalise the file, and examine the output to see what has changed.
Conclusion That is the conclusion of this SGML primer. For reasons of space and complexity several things have not been covered in depth (or at all). However, the previous sections cover enough SGML for you to be able to follow the organisation of the FDP documentation.
diff --git a/en_US.ISO8859-1/books/fdp-primer/translations/chapter.sgml b/en_US.ISO8859-1/books/fdp-primer/translations/chapter.sgml index 467130e879..f1a318c829 100644 --- a/en_US.ISO8859-1/books/fdp-primer/translations/chapter.sgml +++ b/en_US.ISO8859-1/books/fdp-primer/translations/chapter.sgml @@ -1,479 +1,479 @@ Translations This is the FAQ for people translating the FreeBSD documentation (FAQ, Handbook, tutorials, man pages, and others) to different languages. It is very heavily based on the translation FAQ from the FreeBSD German Documentation Project, originally written by Frank Gründer elwood@mc5sys.in-berlin.de and translated back to English by Bernd Warken bwarken@mayn.de. The FAQ maintainer is &a.nik;. Why a FAQ? More and more people are approaching the freebsd-doc mailing list and volunteering to translate FreeBSD documentation to other languages. This FAQ aims to answer their questions so they can start translating documentation as quickly as possible. What do i18n and l10n mean? i18n means internationalisation and l10n means localisation. They are just a convenient shorthand. i18n can be read as i followed by 18 letters, followed by n. Similarly, l10n is l followed by 10 letters, followed by n. Is there a mailing list for translators? Yes, freebsd-translate@ngo.org.uk. Subscribe by sending a message to freebsd-translate-request@ngo.org.uk with the word subscribe in the body of the message. You will receive a reply asking you to confirm your subscription (in exactly the same manner as the FreeBSD lists at FreeBSD.org). The primary language of the mailing list is English. However, posts in other languages will be accepted. The mailing list is not moderated, but you need to be a member of the list before you can post to it. The mailing list is archived, but they are not currently searchable. Sending the message help to majordomo@ngo.org.uk will send back instructions on how to access the archive. It is expected that the mailing list will transfer to FreeBSD.org and therefore become official in the near future. Are more translators needed? Yes. The more people work on translation the faster it gets done, and the faster changes to the English documentation are mirrored in the translated documents. You do not have to be a professional translator to be able to help. What languages do I need to know? Ideally, you will have a good knowledge of written English, and obviously you will need to be fluent in the language you are translating to. English is not strictly necessary. For example, you could do a Hungarian translation of the FAQ from the Spanish translation. What software do I need to know? It is strongly recommended that you maintain a local copy of the FreeBSD CVS repository (at least the documentation part) either using CTM or CVSup. The "Staying current with FreeBSD" chapter in the Handbook explains how to use these applications. You should be comfortable using CVS. This will allow you to see what has changed between different versions of the files that make up the documentation. [XXX To Do -- write a tutorial that shows how to use CVSup to get just the documentation, check it out, and see what has changed between two arbitrary revisions] How do I find out who else might be translating to the same language? The Documentation Project translations page lists the translation efforts that are currently known about. If others are already working on translating documentation to your language, please do not duplicate their efforts. Instead, contact them to see how you can help. If no one is listed on that page as translating for your language, then send a message to the &a.doc; in case someone else is thinking of doing a translation, but has not announced it yet. No one else is translating to my language. What do I do? Congratulations, you have just started the FreeBSD your-language-here Documentation Translation Project. Welcome aboard. First, decide whether or not you have got the time to spare. Since you are the only person working on your language at the moment it is going to be your responsibility to publicise your work and coordinate any volunteers that might want to help you. Write an e-mail to the Documentation Project mailing list, announcing that you are going to translate the documentation, so the Documentation Project translations page can be maintained. You should subscribe to the freebsd-translate@ngo.org.uk mailing list (as described earlier). If there is already someone in your country providing FreeBSD mirroring services you should contact them and ask if you can have some webspace for your project, and possibly an e-mail address or mailing list services. Then pick a document and start translating. It is best to start with something fairly small—either the FAQ, or one of the tutorials. I have translated some documentation, where do I send it? That depends. If you are already working with a translation team (such as the Japanese team, or the German team) then they will have their own procedures for handling submitted documentation, and these will be outlined on their web pages. If you are the only person working on a particular language (or you are responsible for a translation project and want to submit your changes back to the FreeBSD project) then you should send your translation to the FreeBSD project (see the next question). I am the only person working on translating to this language, how do I submit my translation? or We are a translation team, and want to submit documentation that our members have translated for us? First, make sure your translation is organised properly. This means that it should drop in to the existing documentation tree and build straight away. Currently, the FreeBSD documentation is stored in a top level directory called doc/. Directories below this are named according to the language code they are written in, as defined in ISO639 (/usr/share/misc/iso639 on a version of FreeBSD newer than 20th January 1999). If your language can be encoded in different ways (for example, Chinese) then there should be directories below this, one for each encoding format you have provided. Finally, you should have directories for each document. For example, a hypothetical Swedish translation might look like doc/ sv_SE.ISO8859-1/ Makefile books/ faq/ Makefile book.sgml sv_SE.ISO8859-1 is the name of the translation, in lang.encoding form. Note the two Makefiles, which will be used to build the documentation. Use &man.tar.1; and &man.gzip.1; to compress up your documentation, and send it to the project. &prompt.user; cd doc &prompt.user; tar cf swedish-docs.tar sv &prompt.user; gzip -9 swedish-docs.tar Put swedish-docs.tar.gz somewhere. If you do not have access to your own webspace (perhaps your ISP does not let you have any) then you can e-mail &a.nik;, and arrange to e-mail the files when it is convenient. Either way, you should use &man.send-pr.1; to submit a report indicating that you have submitted the documentation. It would be very helpful if you could get other people to look over your translation and double check it first, since it is unlikely that the person committing it will be fluent in the language. Someone (probably the Documentation Project Manager, currently &a.nik;) will then take your translation and confirm that it builds. In particular, the following things will be looked at: Do all your files use RCS strings (such as "ID")? Does make all in the sv_SE.ISO8859-1 directory work correctly? Does make install work correctly? If there are any problems then whoever is looking at the - submission will get back to you to try and work them out. + submission will get back to you to work them out. If there are no problems your translation will be committed as soon as possible. Can I include language or country specific text in my translation? We would prefer that you did not. For example, suppose that you are translating the Handbook to Korean, and want to include a section about retailers in Korea in your Handbook. There is no real reason why that information should not be in the English (or German, or Spanish, or Japanese, or …) versions as well. It is feasible that an English speaker in Korea might try and pick up a copy of FreeBSD whilst over there. It also helps increase FreeBSD's perceived presence around the globe, which is not a bad thing. If you have country specific information, please submit it as a change to the English Handbook (using &man.send-pr.1;) and then translate the change back to your language in the translated Handbook. Thanks. How should language specific characters be included? Non-ASCII characters in the documentation should be included using SGML entities. Briefly, these look like an ampersand (&), the name of the entity, and a semi-colon (;). The entity names are defined in ISO8879, which is in the ports tree as textproc/iso8879. A few examples include Entity Appearance Description &eacute; é Small e with an acute accent &Eacute; É Large E with an acute accent &uuml; ü Small u with an umlaut After you have installed the iso8879 port, the files in /usr/local/share/sgml/iso8879 contain the complete list. Addressing the reader In the English documents, the reader is addressed as you, there is no formal/informal distinction as there is in some languages. If you are translating to a language which does distinguish, use whichever form is typically used in other technical documentation in your language. If in doubt, use a mildly polite form. Do I need to include any additional information in my translations? Yes. The header of the English version of each document will look something like this; <!-- The FreeBSD Documentation Project $FreeBSD: doc/en_US.ISO8859-1/books/fdp-primer/translations/chapter.sgml,v 1.5 2000/07/07 18:38:38 dannyboy Exp $ --> The exact boilerplate may change, but it will always include a $FreeBSD$ line and the phrase The FreeBSD Documentation Project. Note that the $FreeBSD part is expanded automatically by CVS, so it should be empty (just $FreeBSD$) for new files. Your translated documents should include their own $FreeBSD$ line, and change the FreeBSD Documentation Project line to The FreeBSD language Documentation Project. In addition, you should add a third line which indicates which revision of the English text this is based on. So, the Spanish version of this file might start <!-- The FreeBSD Spanish Documentation Project $FreeBSD: doc/es_ES.ISO8859-1/books/fdp-primer/translations/chapter.sgml,v 1.3 1999/06/24 19:12:32 jesusr Exp $ Original revision: 1.11 --> diff --git a/en_US.ISO8859-1/books/handbook/basics/chapter.sgml b/en_US.ISO8859-1/books/handbook/basics/chapter.sgml index 013722849d..4183da033c 100644 --- a/en_US.ISO8859-1/books/handbook/basics/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/basics/chapter.sgml @@ -1,1478 +1,1479 @@ Chris Shumway Rewritten by Unix Basics Synopsis basics The following chapter will cover the basic commands and functionality of the FreeBSD operating system. Much of this material is relevant for any Unix-like operating system. Feel free to skim over this chapter if you are familiar with the material. If you are new to FreeBSD, then you will definitely want to read through this chapter carefully. After reading this chapter, you will know: How Unix file permissions work. What processes, daemons, and signals are. What a shell is, and how to change your default login environment. How to use basic text editors. How to read manual pages for more information. Permissions Unix FreeBSD, being a direct descendant of BSD Unix, is based on several key Unix concepts. The first, and most pronounced, is that FreeBSD is a multi-user operating system. The system can handle several users all working simultaneously on completely unrelated tasks. The system is responsible for properly sharing and managing requests for hardware devices, peripherals, memory, and CPU time evenly to each user. Because the system is capable of supporting multiple users, everything the system manages has a set of permissions governing who can read, write, and execute the resource. These permissions are stored as two octets broken into three pieces, one for the owner of the file, one for the group that the file belongs to, and one for everyone else. This numerical representation works like this: permissions file permissions Value Permission Directory Listing 0 No read, no write, no execute --- 1 No read, no write, execute --x 2 No read, write, no execute -w- 3 No read, write, execute -wx 4 Read, no write, no execute r-- 5 Read, no write, execute r-x 6 Read, write, no execute rw- 7 Read, write, execute rwx ls directories You can use the command line argument to &man.ls.1; to view a long directory listing that includes a column with information about a file's permissions for the owner, group, and everyone else. Here is how the first column of ls -l is broken up: -rw-r--r-- The first character, from left to right, is a special character that tells if this is a regular file, a directory, a special character or block device, a socket, or any other special pseudo-file device. The next three characters, designated as rw- gives the permissions for the owner of the file. The next three characters, r-- gives the permissions for the group that the file belongs to. The final three characters, r--, gives the permissions for the rest of the world. A dash means that the permission is turned off. In the case of this file, the permissions are set so the owner can read and write to the file, the group can read the file, and the rest of the world can only read the file. According to the table above, the permissions for this file would be 644, where each digit represents the three parts of the file's permission. This is all well and good, but how does the system control permissions on devices? FreeBSD actually treats most hardware devices as a file that programs can open, read, and write data to just like any other file. These special device files are stored on the /dev directory. Directories are also treated as files. They have read, write, and execute permissions. The executable bit for a directory has a slightly different meaning than that of files. When a directory is marked executable, it means it can be moved into, i.e. it is possible to cd into it. This also means that within the directory it is possible to access files whose names are known (subject, of course, to the permissions on the files themselves). In particular, in order to able to perform a directory listing, read permission must be set on the directory, whilst to delete a file that one knows the name of, it is necessary to have write and execute permissions to the directory containing the file. There are more to permissions, but they are primarily used in special circumstances such as setuid binaries and sticky directories. If you want more information on file permissions and how to set them, be sure to look at the &man.chmod.1; man page. Directory Structure directory hierarchy The FreeBSD directory hierarchy is fundamental to obtaining an overall understanding of the system. The most important concept to grasp is that of the root directory, /. This directory is the first one mounted at boot time and it contains the base system necessary to prepare the operating system for multi-user operation. The root directory also contains mount points for every other file system that you may want to mount. A mount point is a directory where additional file systems can be grafted onto the root file system. Standard mount points include /usr, /var, /mnt, and /cdrom. These directories are usually referenced to entries in the file /etc/fstab. /etc/fstab is a table of various file systems and mount points for reference by the system. Most of the file systems in /etc/fstab are mounted automatically at boot time from the script &man.rc.8; unless they contain the option. Consult the &man.fstab.5; manual page for more information on the format of the /etc/fstab file and the options it contains. A complete description of the filesystem hierarchy is available in &man.hier.7;. For now, a brief overview of the most common directories will suffice. Directory Description / Root directory of the filesystem. /bin/ User utilities fundamental to both single-user and multi-user environments. /boot/ Programs and configuration files used during operating system bootstrap. /boot/defaults/ Default bootstrapping configuration files; see &man.loader.conf.5;. /dev/ Device nodes; see &man.intro.4;. /etc/ System configuration files and scripts. /etc/defaults/ Default system configuration files; see &man.rc.8;. /etc/mail/ Configuration files for mail transport agents such as &man.sendmail.8;. /etc/namedb/ named configuration files; see &man.named.8;. /etc/periodic/ Scripts that are run daily, weekly, and monthly, via &man.cron.8;; see &man.periodic.8;. /etc/ppp/ ppp configuration files; see &man.ppp.8;. /mnt/ Empty directory commonly used by system administrators as a temporary mount point. /proc/ Process file system; see &man.procfs.5;, &man.mount.procfs.8;. /root/ Home directory for the root account. /sbin/ System programs and administration utilities fundamental to both single-user and multi-user environments. /stand/ Programs used in a standalone environment. /tmp/ Temporary files, usually a &man.mfs.8; memory-based filesystem (the contents of /tmp are usually NOT preserved across a system reboot). /usr/ The majority of user utilities and applications. /usr/bin/ Common utilities, programming tools, and applications. /usr/include/ Standard C include files. /usr/lib/ Archive libraries. /usr/libdata/ Miscellaneous utility data files. /usr/libexec/ System daemons & system utilities (executed by other programs). /usr/local/ Local executables, libraries, etc. Also used as the default destination for the FreeBSD ports framework. Within /usr/local, the general layout sketched out by &man.hier.7; for /usr should be used. Exceptions are the man directory is directly under /usr/local rather than under /usr/local/share. Ports documentation is in share/doc/port. /usr/obj/ Architecture-specific target tree produced by building the /usr/src tree. /usr/ports The FreeBSD ports collection (optional). /usr/sbin/ System daemons & system utilities (executed by users). /usr/share/ Architecture-independent files. /usr/src/ BSD and/or local source files. /usr/X11R6/ X11R6 distribution executables, libraries, etc (optional). /var/ Multi-purpose log, temporary, transient, and spool files. /var/log/ Miscellaneous system log files. /var/mail/ User mailbox files. /var/spool/ Miscellaneous printer and mail system spooling directories. /var/tmp/ Temporary files that are kept between system reboots. /var/yp NIS maps. Mounting and Unmounting Filesystems The filesystem is best visualized as a tree, rooted, as it were, at /. /dev, /usr, and the other directories in the root directory are branches, which may have their own branches, such as /usr/local, and so on. root filesystem There are various reasons to house some of these directories on separate filesystems. /var contains the directories log/, spool/, and various types of temporary files, and as such, may get filled up. Filling up the root filesystem is not a good idea, so splitting /var from / is often favorable. Another common reason to contain certain directory trees on other filesystems is if they are to be housed on separate physical disks, or are separate virtual disks, such as Network File System mounts, or CDROM drives. The <filename>fstab</filename> File filesystems mounted with fstab During the boot process, filesystems listed in /etc/fstab are automatically mounted (unless they are listed with the option). The /etc/fstab file contains a list of lines of the following format: device /mount-point fstype options dumpfreq passno device A device name (which should exist), as explained in Disk naming conventions above. mount-point A directory (which should exist), on which to mount the filesystem. fstype The filesystem type to pass to &man.mount.8;. The default FreeBSD filesystem is ufs. options Either for read-write filesystems, or for read-only filesystems, followed by any other options that may be needed. A common option is for filesystems not normally mounted during the boot sequence. Other options are listed in the &man.mount.8; manual page. dumpfreq This is used by dump to determine which filesystems require dumping. If the field is missing, a value of zero is assumed. passno This determines the order in which filesystems should be checked. Filesystems that should be skipped should have their passno set to zero. The root filesystem (which needs to be checked before everything else) should have it's passno set to one, and other filesystems' passno should be set to values greater than one. If more than one filesystems have the same passno then &man.fsck.8; will attempt to check filesystems in parallel if possible. The mount Command filesystems mounting The &man.mount.8; command is what is ultimately used to mount filesystems. In its most basic form, you use: &prompt.root; mount device mountpoint There are plenty of options, as mentioned in the &man.mount.8; manual page, but the most common are: Mount Options Mount all the filesystems listed in /etc/fstab. Exceptions are those marked as noauto, excluded by the flag, or those that are already mounted. Do everything except for the actual system call. This option is useful in conjunction with the flag to determine what the mount is actually trying to do. Force the mount of an unclean filesystem (dangerous), or forces the revocation of write access when downgrading a filesystem's mount status from read-write to read-only. Mount the filesystem read-only. This is identical to using the argument to the option. fstype Mount the given filesystem as the given filesystem type, or mount only filesystems of the given type, if given the option. ufs is the default filesystem type. Update mount options on the filesystem. Be verbose. Mount the filesystem read-write. The option takes a comma-separated list of the options, including the following: nodev Do not interpret special devices on the filesystem. This is a useful security option. noexec Do not allow execution of binaries on this filesystem. This is also a useful security option. nosuid Do not interpret setuid or setgid flags on the filesystem. This is also a useful security option. The <command>umount</command> Command filesystems unmounting The &man.umount.8; command takes, as a parameter, one of a mountpoint, a device name, or the or option. All forms take to force unmounting, and for verbosity. Be warned that is not generally a good idea. Forcibly unmounting filesystems might crash the computer or damage data on the filesystem. and are used to unmount all mounted filesystems, possibly modified by the filesystem types listed after . , however, does not attempt to unmount the root filesystem. Processes FreeBSD is a multi-tasking operating system. This means that it seems as though more than one program is running at once. Each program running at any one time is called a process. Every command you run will start at least one new process, and there are a number of system processes that run all the time, keeping the system functional. Each process is uniquely identified by a number called a process ID, or PID, and, like files, each process also has one owner and group. The owner and group information is used to determine what files and devices the process can open, using the file permissions discussed earlier. Most processes also have a parent process. The parent process is the process that started them. For example, if you are typing commands to the shell then the shell is a process, and any commands you run are also processes. Each process you run in this way will have your shell as its parent process. The exception to this is a special process called init. init is always the first process, so its PID is always 1. init is started automatically by the kernel when FreeBSD starts. Two commands are particularly useful to see the processes on the system, &man.ps.1; and &man.top.1;. The &man.ps.1; command is used to show a static list of the currently running processes, and can show their PID, how much memory they are using, the command line they were started with, and so on. The &man.top.1; command displays all the running processes, and updates the display every few seconds, so that you can interactively see what your computer is doing. By default, &man.ps.1; only shows you the commands that are running and are owned by you. For example: &prompt.user; ps PID TT STAT TIME COMMAND 298 p0 Ss 0:01.10 tcsh 7078 p0 S 2:40.88 xemacs mdoc.xsl (xemacs-21.1.14) 37393 p0 I 0:03.11 xemacs freebsd.dsl (xemacs-21.1.14) 48630 p0 S 2:50.89 /usr/local/lib/netscape-linux/navigator-linux-4.77.bi 48730 p0 IW 0:00.00 (dns helper) (navigator-linux-) 72210 p0 R+ 0:00.00 ps 390 p1 Is 0:01.14 tcsh 7059 p2 Is+ 1:36.18 /usr/local/bin/mutt -y 6688 p3 IWs 0:00.00 tcsh 10735 p4 IWs 0:00.00 tcsh 20256 p5 IWs 0:00.00 tcsh 262 v0 IWs 0:00.00 -tcsh (tcsh) 270 v0 IW+ 0:00.00 /bin/sh /usr/X11R6/bin/startx -- -bpp 16 280 v0 IW+ 0:00.00 xinit /home/nik/.xinitrc -- -bpp 16 284 v0 IW 0:00.00 /bin/sh /home/nik/.xinitrc 285 v0 S 0:38.45 /usr/X11R6/bin/sawfish As you can see in this example, the output from &man.ps.1; is organized in to a number of columns. PID is the process ID discussed earlier. PIDs are assigned starting from 1, go up to 99999, and wrap around back to the beginning when you run out. TT shows the tty the program is running on, and can safely be ignored for the moment. STAT shows the program's state, and again, can be safely ignored. TIME is the amount of time the program has been running on the CPU—this is not necessarily the elapsed time since you started the program, as some programs spend a lot of time waiting for things to happen before they need to spend time on the CPU. Finally, COMMAND is the command line that was used to run the program. &man.ps.1; supports a number of different options to change the information that is displayed. One of the most useful sets is auxww. displays information about all the running processes, not just your own. displays the username of the process' owner, as well as memory usage. displays information about daemon processes, and causes &man.ps.1; to display the full command line, rather than truncating it once it gets too long to fit on the screen. The output from &man.top.1; is similar. A sample session looks like this: &prompt.user; top last pid: 72257; load averages: 0.13, 0.09, 0.03 up 0+13:38:33 22:39:10 47 processes: 1 running, 46 sleeping CPU states: 12.6% user, 0.0% nice, 7.8% system, 0.0% interrupt, 79.7% idle Mem: 36M Active, 5256K Inact, 13M Wired, 6312K Cache, 15M Buf, 408K Free Swap: 256M Total, 38M Used, 217M Free, 15% Inuse PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND 72257 nik 28 0 1960K 1044K RUN 0:00 14.86% 1.42% top 7078 nik 2 0 15280K 10960K select 2:54 0.88% 0.88% xemacs-21.1.14 281 nik 2 0 18636K 7112K select 5:36 0.73% 0.73% XF86_SVGA 296 nik 2 0 3240K 1644K select 0:12 0.05% 0.05% xterm 48630 nik 2 0 29816K 9148K select 3:18 0.00% 0.00% navigator-linu 175 root 2 0 924K 252K select 1:41 0.00% 0.00% syslogd 7059 nik 2 0 7260K 4644K poll 1:38 0.00% 0.00% mutt ... The output is split in to two sections. The header (the first five lines) shows the PID of the last process to run, the system load averages (which are a measure of how busy the system is), the system uptime (time since the last reboot) and the current time. The other figures in the header relate to how many processes are running (47 in this case), how much memory and swap space has been taken up, and how much time the system is spending in different CPU states. Below that are a series of columns containing similar information to the output from &man.ps.1;. As before you can see the PID, the username, the amount of CPU time taken, and the command that was run. &man.top.1; also defaults to showing you the amount of memory space taken by the process. This is split in to two columns, one for total size, and one for resident size—total size is how much memory the application has needed, and the resident size is how much it is actually using at the moment. In this example you can see that Netscape has required almost 30 MB of RAM, but is currently only using 9 MB. &man.top.1; automatically updates this display every two seconds; this can be changed with the option. Daemons, Signals, and Killing Processes When you run an editor it is easy to control the editor, tell it to load files, and so on. You can do this because the editor provides facilities to do so, and because the editor is attached to a terminal. Some programs are not designed to be run with continuous user input, and so they disconnect from the terminal at the first opportunity. For example, a web server spends all day responding to web requests, it normally does not need any input from you. Programs that transport email from site to site are another example of this class of application. We call these programs daemons. Daemons were characters in Greek mythology; neither good or evil, they were little attendant spirits that, by and large, did useful things for mankind. Much like the web servers and mail servers of today do useful things. This is why the BSD mascot has, for a long time, been the cheerful looking daemon with sneakers and a pitchfork. There is a convention to name programs that normally run as daemons with a trailing d. BIND is the Berkeley Internet Name Daemon (and the actual program that executes is called named), the Apache web server program is called httpd, the line printer spooling daemon is lpd and so on. This is a convention, not a hard and fast rule; for example, the main mail daemon for the Sendmail application is called sendmail, and not maild, as you might imagine. Sometimes you will need to communicate with a daemon process. These communications are called signals, and you can communicate with daemons (or with any running process) by sending it a signal. There are a number of different signals that you can send—some of them have a specific meaning, others are interpreted by the application, and the application's documentation will tell you how that application interprets signals. You can only send a signal to - a process that you own. If you try and send a signal to someone else's - process it will be ignored. The exception to this is the + a process that you own. If you send a signal to someone else's + process with &man.kill.1; or &man.kill.2; permission will be denied. + The exception to this is the root user, who can send signals to everyone's processes. FreeBSD will also send applications signals in some cases. If an application is badly written, and tries to access memory that it is not supposed to, FreeBSD sends the process the Segmentation Violation signal (SIGSEGV). If an application has used the &man.alarm.3; system call to be alerted after a period of time has elapsed then it will be sent the Alarm signal (SIGALRM), and so on. Two signals can be used to stop a process, SIGTERM and SIGKILL. SIGTERM is the polite way to kill a process; the process can catch the signal, realize that you want it to shut down, close any log files it may have open, and generally finish whatever it is doing at the time before shutting down. In some cases a process may even ignore SIGTERM if it is in the middle of some task that can not be interrupted. SIGKILL can not be ignored by a process. This is the I do not care what you are doing, stop right now signal. If you send SIGKILL to a process then FreeBSD will stop that process there and then Not quite true—there are a few things that can not be interrupted. For example, if the process is trying to read from a file that is on another computer on the network, and the other computer has gone away for some reason (been turned off, or the network has a fault), then the process is said to be uninterruptible. Eventually the process will time out, typically after two minutes. As soon as this time out occurs the process will be killed. . The other signals you might want to use are SIGHUP, SIGUSR1, and SIGUSR2. These are general purpose signals, and different applications will do different things when they are sent. Suppose that you have changed your web server's configuration file—you would like to tell the web server to re-read its configuration. You could stop and restart httpd, but this would result in a brief outage period on your web server, which may be undesirable. Most daemons are written to respond to the SIGHUP signal by re-reading their configuration file. So instead of killing and restarting httpd you would send it the SIGHUP signal. Because there is no standard way to respond to these signals, different daemons will have different behavior, so be sure and read the documentation for the daemon in question. Signals are sent using the &man.kill.1; command, as this example shows. Sending a Signal to a Process This example shows how to send a signal to &man.inetd.8;. The &man.inetd.8; configuration file is /etc/inetd.conf, and &man.inetd.8; will re-read this configuration file when it is sent SIGHUP. Find the process ID of the process you want to send the signal to. Do this using &man.ps.1; and &man.grep.1;. The &man.grep.1; command is used to search through output, looking for the string you specify. This command is run as a normal user, and &man.inetd.8; is run as root, so the options must be given to &man.ps.1;. &prompt.user; ps -ax | grep inetd 198 ?? IWs 0:00.00 inetd -wW So the &man.inetd.8; PID is 198. In some cases the grep inetd command might also occur in this output. This is because of the way &man.ps.1; has to find the list of running processes. Use &man.kill.1; to send the signal. Because &man.inetd.8; is being run by root you must use &man.su.1; to become root first. &prompt.user; su Password: &prompt.root; /bin/kill -s HUP 198 In common most with Unix commands, &man.kill.1; will not print any - output if it is successful. If you try and send a signal to a + output if it is successful. If you send a signal to a process that you do not own then you will see kill: PID: Operation not permitted. If you mistype the PID you will either send the signal to the wrong process, which could be bad, or, if you are lucky, you will have sent the signal to a PID that is not currently in use, and you will see kill: PID: No such process. Why Use <command>/bin/kill</command>? Many shells provide the kill command as a built in command; that is, the shell will send the signal directly, rather than running /bin/kill. This can be very useful, but different shells have a different syntax for specifying the name of the signal to send. Rather than try to learn all of them, it can be simpler just to use the /bin/kill ... command directly. Sending other signals is very similar, just substitute TERM or KILL in the command line as necessary. Killing random process on the system can be a bad idea. In particular, &man.init.8;, process ID 1, is very special. Running /bin/kill -s KILL 1 is a quick way to shutdown your system. Always double check the arguments you run &man.kill.1; with before you press Return. Shells shells command-line In FreeBSD, a lot of everyday work is done in a command line interface called a shell. A shell's main job is to take commands from the input channel and execute them. A lot of shells also have built in functions to help everyday tasks such a file management, file globing, command line editing, command macros, and environment variables. FreeBSD comes with a set of shells, such as sh, the Bourne Shell, and tcsh, the improved C-shell. Many other shells are available from the FreeBSD Ports Collection, such as zsh and bash. Which shell do you use? It is really a matter of taste. If you are a C programmer you might feel more comfortable with a C-like shell such as tcsh. If you have come from Linux or are new to a Unix command line interface you might try bash. The point is that each shell has unique properties that may or may not work with your preferred working environment, and that you have a choice of what shell to use. One common feature in a shell is file-name completion. Given the typing of the first few letters of a command or filename, you can usually have the shell automatically complete the rest of the command or filename by hitting the Tab key on the keyboard. Here is an example. Suppose you have two files called foobar and foo.bar. You want to delete foo.bar. So what you would type on the keyboard is: rm fo[Tab].[Tab]. The shell would print out rm foo[BEEP].bar. The [BEEP] is the console bell, which is the shell telling me it was unable to totally complete the filename because there is more than one match. Both foobar and foo.bar start with fo, but it was able to complete to foo. If you type in ., then hit Tab again, the shell would be able to fill in the rest of the filename for you. environment variables Another function of the shell is environment variables. Environment variables are a variable key pair stored in the shell's environment space. This space can be read by any program invoked by the shell, and thus contains a lot of program configuration. Here is a list of common environment variables and what they mean: environment variables Variable Description USER Current logged in user's name. PATH Colon separated list of directories to search for binaries. DISPLAY Network name of the X11 display to connect to, if available. SHELL The current shell. TERM The name of the user's terminal. Used to determine the capabilities of the terminal. TERMCAP Database entry of the terminal escape codes to perform various terminal functions. OSTYPE Type of operating system. e.g., FreeBSD. MACHTYPE The CPU architecture that the system is running on. EDITOR The user's preferred text editor. PAGER The user's preferred text pager. MANPATH Colon separated list of directories to search for manual pages. Bourne shells To view or set an environment variable differs somewhat from shell to shell. For example, in the C-Style shells such as tcsh and csh, you would use setenv to set and view environment variables. Under Bourne shells such as sh and bash, you would use set and export to view and set your current environment variables. For example, to set or modify the EDITOR environment variable, under csh or tcsh a command like this would set EDITOR to /usr/local/bin/emacs: &prompt.user; setenv EDITOR /usr/local/bin/emacs Under Bourne shells: &prompt.user; export EDITOR="/usr/local/bin/emacs" You can also make most shells expand the environment variable by placing a $ character in front of it on the command line. For example, echo $TERM would print out whatever $TERM is set to, because the shell expands $TERM and passes it on to echo. Shells treat a lot of special characters, called meta-characters as special representations of data. The most common one is the * character, which represents any number of characters in a filename. These special meta-characters can be used to do file name globing. For example, typing in echo * is almost the same as typing in ls because the shell takes all the files that match * and puts them on the command line for echo to see. To prevent the shell from interpreting these special characters, they can be escaped from the shell by putting a backslash (\) character in front of them. echo $TERM prints whatever your terminal is set to. echo \$TERM prints $TERM as is. Changing Your Shell The easiest way to change your shell is to use the chsh command. Running chsh will place you into the editor that is in your EDITOR environment variable; if it is not set, you will be placed in vi. Change the Shell: line accordingly. You can also give chsh the option; this will set your shell for you, without requiring you to enter an editor. For example, if you wanted to change your shell to bash, the following should do the trick: &prompt.user; chsh -s /usr/local/bin/bash Running chsh with no parameters and editing the shell from there would work also. The shell that you wish to use must be present in the /etc/shells file. If you have installed a shell from the ports collection, then this should have been done for you already. If you installed the shell by hand, you must do this. For example, if you installed bash by hand and placed it into /usr/local/bin, you would want to: &prompt.root; echo "/usr/local/bin/bash" >> /etc/shells Then rerun chsh. Text Editors text editors editors A lot of configuration in FreeBSD is done by editing text files. Because of this, it would be a good idea to become familiar with a text editor. FreeBSD comes with a few as part of the base system, and many more are available in the ports collection. ee The easiest and simplest editor to learn is an editor called ee, which stands for easy editor. To start ee, one would type at the command line ee filename where filename is the name of the file to be edited. For example, to edit /etc/rc.conf, type in ee /etc/rc.conf. Once inside of ee, all of the commands for manipulating the editor's functions are listed at the top of the display. The caret ^ character means the control key on the keyboard, so ^e expands to pressing the control key plus the letter e. To leave ee, hit the escape key, then choose leave editor. The editor will prompt you to save any changes if the file has been modified. vi editors vi emacs editors emacs FreeBSD also comes with more powerful text editors such as vi as part of the base system, and emacs and vim as part of the FreeBSD Ports Collection. These editors offer much more functionality and power at the expense of being a little more complicated to learn. However if you plan on doing a lot of text editing, learning a more powerful editor such as vim or emacs will save you much more time in the long run. Devices and Device Nodes A device is a term used mostly for hardware-related activities in a system, including disks, printers, graphics cards, and keyboards. When FreeBSD boots, the majority of what FreeBSD displays are devices being detected. You can look through the boot messages again by viewing /var/run/dmesg.boot. For example, acd0 is the first IDE CDROM drive, while kbd0 represents the keyboard. Most of these devices in a Unix operating system must be accessed through a special file called device nodes, which are located in the /dev directory. Creating Device Nodes When adding a new device to your system, or compiling in support for additional devices, a device driver often-times needs to be created. MAKEDEV Script On systems without DEVFS, device nodes are created using the &man.MAKEDEV.8; script as shown below: &prompt.root; cd /dev &prompt.root; sh MAKEDEV ad1 This example would make the proper device nodes for the second IDE drive when installed. devfs (Device File System) The device file system, or devfs, provides access to kernel's device namespace in the global filesystem namespace. Instead of having to create and modify device nodes, devfs maintains this particular filesystem for you. See the &man.devfs.5; man page for more information. devfs is used by default in FreeBSD 5.0. For More Information... Manual Pages manual pages The most comprehensive documentation on FreeBSD is in the form of manual pages. Nearly every program on the system comes with a short reference manual explaining the basic operation and various arguments. These manuals can be viewed with the man command. Use of the man command is simple: &prompt.user; man command command is the name of the command you wish to learn about. For example, to learn more about ls command type: &prompt.user; man ls The online manual is divided up into numbered sections: User commands. System calls and error numbers. Functions in the C libraries. Device drivers. File formats. Games and other diversions. Miscellaneous information. System maintenance and operation commands. Kernel developers. In some cases, the same topic may appear in more than one section of the online manual. For example, there is a chmod user command and a chmod() system call. In this case, you can tell the man command which one you want by specifying the section: &prompt.user; man 1 chmod This will display the manual page for the user command chmod. References to a particular section of the online manual are traditionally placed in parenthesis in written documentation, so &man.chmod.1; refers to the chmod user command and &man.chmod.2; refers to the system call. This is fine if you know the name of the command and simply wish to know how to use it, but what if you cannot recall the command name? You can use man to search for keywords in the command descriptions by using the switch: &prompt.user; man -k mail With this command you will be presented with a list of commands that have the keyword mail in their descriptions. This is actually functionally equivalent to using the apropos command. So, you are looking at all those fancy commands in /usr/bin but do not have the faintest idea what most of them actually do? Simply do: &prompt.user; cd /usr/bin &prompt.user; man -f * or &prompt.user; cd /usr/bin &prompt.user; whatis * which does the same thing. GNU Info Files Free Software Foundation FreeBSD includes many applications and utilities produced by the Free Software Foundation (FSF). In addition to manual pages, these programs come with more extensive hypertext documents called info files which can be viewed with the info command or, if you installed emacs, the info mode of emacs. To use the &man.info.1; command, simply type: &prompt.user; info For a brief introduction, type h. For a quick command reference, type ?. diff --git a/en_US.ISO8859-1/books/handbook/contrib/chapter.sgml b/en_US.ISO8859-1/books/handbook/contrib/chapter.sgml index ee4550f378..df3aafdbd7 100644 --- a/en_US.ISO8859-1/books/handbook/contrib/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/contrib/chapter.sgml @@ -1,480 +1,480 @@ Jordan Hubbard Contributed by Contributing to FreeBSD contributing So you want to contribute something to FreeBSD? That is great! We can always use the help, and FreeBSD is one of those systems that relies on the contributions of its user base in order to survive. Your contributions are not only appreciated, they are vital to FreeBSD's continued growth! Contrary to what some people might also have you believe, you do not need to be a hot-shot programmer or a close personal friend of the FreeBSD core team in order to have your contributions accepted. The FreeBSD Project's development is done by a large and growing number of international contributors whose ages and areas of technical expertise vary greatly, and there is always more work to be done than there are people available to do it. Since the FreeBSD project is responsible for an entire operating system environment (and its installation) rather than just a kernel or a few scattered utilities, our TODO list also spans a very wide range of tasks, from documentation, beta testing and presentation to highly specialized types of kernel development. No matter what your skill level, there is almost certainly something you can do to help the project! Commercial entities engaged in FreeBSD-related enterprises are also encouraged to contact us. Need a special extension to make your product work? You will find us receptive to your requests, given that they are not too outlandish. Working on a value-added product? Please let us know! We may be able to work cooperatively on some aspect of it. The free software world is challenging a lot of existing assumptions about how software is developed, sold, and maintained throughout its life cycle, and we urge you to at least give it a second look. What Is Needed The following list of tasks and sub-projects represents something of an amalgam of the various core team TODO lists and user requests we have collected over the last couple of months. Where possible, tasks have been ranked by degree of urgency. If you are interested in working on one of the tasks you see here, send mail to the coordinator listed by clicking on their names. If no coordinator has been appointed, maybe you would like to volunteer? Ongoing Tasks Most of the tasks listed in the previous sections require either a considerable investment of time or an in-depth knowledge of the FreeBSD kernel (or both). However, there are also many useful tasks which are suitable for "weekend hackers", or people without programming skills. If you run FreeBSD-current and have a good Internet connection, there is a machine current.FreeBSD.org which builds a full - release once a day — every now and again, try and install + release once a day — every now and again, try to install the latest release from it and report any failures in the process. Read the freebsd-bugs mailing list. There might be a problem you can comment constructively on or with patches you can test. Or you could even try to fix one of the problems yourself. Read through the FAQ and Handbook periodically. If anything is badly explained, out of date or even just completely wrong, let us know. Even better, send us a fix (SGML is not difficult to learn, but there is no objection to ASCII submissions). Help translate FreeBSD documentation into your native language (if not already available) — just send an email to &a.doc; asking if anyone is working on it. Note that you are not committing yourself to translating every single FreeBSD document by doing this — in fact, the documentation most in need of translation is the installation instructions. Read the freebsd-questions mailing list and &ng.misc; occasionally (or even regularly). It can be very satisfying to share your expertise and help people solve their problems; sometimes you may even learn something new yourself! These forums can also be a source of ideas for things to work on. If you know of any bug fixes which have been successfully applied to -current but have not been merged into -stable after a decent interval (normally a couple of weeks), send the committer a polite reminder. Move contributed software to src/contrib in the source tree. Make sure code in src/contrib is up to date. Build the source tree (or just part of it) with extra warnings enabled and clean up the warnings. Fix warnings for ports which do deprecated things like using gets() or including malloc.h. If you have contributed any ports, send your patches back to the original author (this will make your life easier when they bring out the next version) Suggest further tasks for this list! Work through the PR Database problem reports database The FreeBSD PR list shows all the current active problem reports and requests for enhancement that have been submitted by FreeBSD users. Look through the open PRs, and see if anything there takes your interest. Some of these might be very simple tasks, that just need an extra pair of eyes to look over them and confirm that the fix in the PR is a good one. Others might be much more complex. Start with the PRs that have not been assigned to anyone else, but if one them is assigned to someone else, but it looks like something you can handle, email the person it is assigned to and ask if you can work on it—they might already have a patch ready to be tested, or further ideas that you can discuss with them. How to Contribute Contributions to the system generally fall into one or more of the following 6 categories: Bug Reports and General Commentary An idea or suggestion of general technical interest should be mailed to the &a.hackers;. Likewise, people with an interest in such things (and a tolerance for a high volume of mail!) may subscribe to the hackers mailing list by sending mail to &a.majordomo;. See mailing lists for more information about this and other mailing lists. If you find a bug or are submitting a specific change, please report it using the &man.send-pr.1; program or its WEB-based equivalent. Try to fill-in each field of the bug report. Unless they exceed 65KB, include any patches directly in the report. If the patch is suitable to be applied to the source tree put [PATCH] in the synopsis of the report. When including patches, do not use cut-and-paste because cut-and-paste turns tabs into spaces and makes them unusable. Consider compressing patches and using &man.uuencode.1; if they exceed 20KB. Upload very large submissions to ftp://ftp.FreeBSD.org/pub/FreeBSD/incoming/. After filing a report, you should receive confirmation along with a tracking number. Keep this tracking number so that you can update us with details about the problem by sending mail to bug-followup@FreeBSD.org. Use the number as the message subject, e.g. "Re: kern/3377". Additional information for any bug report should be submitted this way. If you do not receive confirmation in a timely fashion (3 days to a week, depending on your email connection) or are, for some reason, unable to use the &man.send-pr.1; command, then you may ask someone to file it for you by sending mail to the &a.bugs;. Changes to the Documentation documentation submissions Changes to the documentation are overseen by the &a.doc;. Send submissions and changes (even small ones are welcome!) using send-pr as described in Bug Reports and General Commentary. Changes to Existing Source Code FreeBSD-current An addition or change to the existing source code is a somewhat trickier affair and depends a lot on how far out of date you are with the current state of the core FreeBSD development. There is a special on-going release of FreeBSD known as FreeBSD-current which is made available in a variety of ways for the convenience of developers working actively on the system. See Staying current with FreeBSD for more information about getting and using FreeBSD-current. Working from older sources unfortunately means that your changes may sometimes be too obsolete or too divergent for easy re-integration into FreeBSD. Chances of this can be minimized somewhat by subscribing to the &a.announce; and the &a.current; lists, where discussions on the current state of the system take place. Assuming that you can manage to secure fairly up-to-date sources to base your changes on, the next step is to produce a set of diffs to send to the FreeBSD maintainers. This is done with the &man.diff.1; command, with the context diff form being preferred. For example: diff &prompt.user; diff -c oldfile newfile or &prompt.user; diff -c -r olddir newdir would generate such a set of context diffs for the given source file or directory hierarchy. See the man page for &man.diff.1; for more details. Once you have a set of diffs (which you may test with the &man.patch.1; command), you should submit them for inclusion with FreeBSD. Use the &man.send-pr.1; program as described in Bug Reports and General Commentary. Do not just send the diffs to the &a.hackers; or they will get lost! We greatly appreciate your submission (this is a volunteer project!); because we are busy, we may not be able to address it immediately, but it will remain in the PR database until we do. Indicate your submission by including [PATCH] in the synopsis of the report. uuencode If you feel it appropriate (e.g. you have added, deleted, or renamed files), bundle your changes into a tar file and run the &man.uuencode.1; program on it. Shar archives are also welcome. If your change is of a potentially sensitive nature, e.g. you are unsure of copyright issues governing its further distribution or you are simply not ready to release it without a tighter review first, then you should send it to &a.core; directly rather than submitting it with &man.send-pr.1;. The core mailing list reaches a much smaller group of people who do much of the day-to-day work on FreeBSD. Note that this group is also very busy and so you should only send mail to them where it is truly necessary. Please refer to &man.intro.9; and &man.style.9; style for some information on coding style. We would appreciate it if you were at least aware of this information before submitting code. New Code or Major Value-Added Packages In the case of a significant contribution of a large body work, or the addition of an important new feature to FreeBSD, it becomes almost always necessary to either send changes as uuencoded tar files or upload them to a web or FTP site for other people to access. If you do not have access to a web or FTP site, ask on an appropriate FreeBSD mailing list for someone to host the changes for you. When working with large amounts of code, the touchy subject of copyrights also invariably comes up. Acceptable copyrights for code included in FreeBSD are: BSD copyright The BSD copyright. This copyright is most preferred due to its no strings attached nature and general attractiveness to commercial enterprises. Far from discouraging such commercial use, the FreeBSD Project actively encourages such participation by commercial interests who might eventually be inclined to invest something of their own into FreeBSD. GPLGNU General Public License GNU General Public License The GNU General Public License, or GPL. This license is not quite as popular with us due to the amount of extra effort demanded of anyone using the code for commercial purposes, but given the sheer quantity of GPL'd code we currently require (compiler, assembler, text formatter, etc) it would be silly to refuse additional contributions under this license. Code under the GPL also goes into a different part of the tree, that being /sys/gnu or /usr/src/gnu, and is therefore easily identifiable to anyone for whom the GPL presents a problem. Contributions coming under any other type of copyright must be carefully reviewed before their inclusion into FreeBSD will be considered. Contributions for which particularly restrictive commercial copyrights apply are generally rejected, though the authors are always encouraged to make such changes available through their own channels. To place a BSD-style copyright on your work, include the following text at the very beginning of every source code file you wish to protect, replacing the text between the %% with the appropriate information. Copyright (c) %%proper_years_here%% %%your_name_here%%, %%your_state%% %%your_zip%%. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer as the first lines of this file unmodified. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY %%your_name_here%% ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL %%your_name_here%% BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. $Id$ For your convenience, a copy of this text can be found in /usr/share/examples/etc/bsd-style-copyright. Money, Hardware or Internet Access We are always very happy to accept donations to further the cause of the FreeBSD Project and, in a volunteer effort like ours, a little can go a long way! Donations of hardware are also very important to expanding our list of supported peripherals since we generally lack the funds to buy such items ourselves. <anchor id="donations">Donating Funds The FreeBSD Foundation is a non-profit, tax-exempt foundation established to further the goals of the FreeBSD Project. As a 501(c)3 entity, the Foundation is generally exempt from US federal income tax as well as Colorado State income tax. Donations to a tax-exempt entity are often deductible from taxable federal income. Donations may be sent in check form to:
The FreeBSD Foundation 7321 Brockway Dr. Boulder, CO 80303 USA
The Foundation is not yet able to accept other forms of payment such as credit cards and PayPal.
More information about the FreeBSD Foundation can be found in The FreeBSD Foundation -- an Introduction. To contact the Foundation by email, write to bod@FreeBSDFoundation.org.
Donating Hardware donations Donations of hardware in any of the 3 following categories are also gladly accepted by the FreeBSD Project: General purpose hardware such as disk drives, memory or complete systems should be sent to the FreeBSD, Inc. address listed in the donating funds section. Hardware for which ongoing compliance testing is desired. We are currently trying to put together a testing lab of all components that FreeBSD supports so that proper regression testing can be done with each new release. We are still lacking many important pieces (network cards, motherboards, etc) and if you would like to make such a donation, please contact &a.dg; for information on which items are still required. Hardware currently unsupported by FreeBSD for which you would like to see such support added. Please contact the &a.core; before sending such items as we will need to find a developer willing to take on the task before we can accept delivery of new hardware. Donating Internet Access We can always use new mirror sites for FTP, WWW or cvsup. If you would like to be such a mirror, please contact the &a.hubs; for more information.
diff --git a/en_US.ISO8859-1/books/handbook/cutting-edge/chapter.sgml b/en_US.ISO8859-1/books/handbook/cutting-edge/chapter.sgml index 672cd044bc..45be67436f 100644 --- a/en_US.ISO8859-1/books/handbook/cutting-edge/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/cutting-edge/chapter.sgml @@ -1,1808 +1,1808 @@ Jim Mock Restructured, reorganized, and parts updated by Jordan Hubbard Original work by Poul-Henning Kamp John Polstra Nik Clayton The Cutting Edge Synopsis &os; is under constant development between releases. For people who want to be on the cutting edge, there are several easy mechanisms for keeping your system in sync with the latest developments. Be warned—the cutting edge is not for everyone! This chapter will help you decide if you want to track the development system, or stick with one of the released versions. After reading this chapter, you will know: The difference between the two development branches; &os.stable; and &os.current;. How to keep your system up to date with CVSup, CVS, or CTM. How to rebuild and reinstall the entire base system with make world. Before reading this chapter, you should: Properly setup your network connection (). Know how to install additional third-party software (). &os.current; vs. &os.stable; -CURRENT -STABLE There are two development branches to FreeBSD; &os.current; and &os.stable;. This section will explain a bit about each and describe how to keep your system up-to-date with each respective tree. &os.current; will be discussed first, then &os.stable;. Staying Current with &os; As you read this, keep in mind that &os.current; is the bleeding edge of &os; development. &os.current; users are expected to have a high degree of technical skill, and should be capable of solving difficult system problems on their own. If you are new to &os;, think twice before installing it. What Is &os.current;? snapshot &os.current; is the latest working sources for &os;. This includes work in progress, experimental changes, and transitional mechanisms that might or might not be present in the next official release of the software. While many &os; developers compile the &os.current; source code daily, there are periods of time when the sources are not buildable. These problems are resolved as expeditiously as possible, but whether or not &os.current; brings disaster or greatly desired functionality can be a matter of which exact moment you grabbed the source code in! Who Needs &os.current;? &os.current; is made available for 3 primary interest groups: Members of the &os; group who are actively working on some part of the source tree and for whom keeping current is an absolute requirement. Members of the &os; group who are active testers, willing to spend time solving problems in order to ensure that &os.current; remains as sane as possible. These are also people who wish to make topical suggestions on changes and the general direction of &os;, and submit patches to implement them. Those who merely wish to keep an eye on things, or to use the current sources for reference purposes (e.g. for reading, not running). These people also make the occasional comment or contribute code. What Is &os.current; <emphasis>Not</emphasis>? A fast-track to getting pre-release bits because you heard there is some cool new feature in there and you want to be the first on your block to have it. Being the first on the block to get the new feature means that you're the first on the block to get the new bugs. A quick way of getting bug fixes. Any given version of &os.current; is just as likely to introduce new bugs as to fix existing ones. In any way officially supported. We do our best to help people genuinely in one of the 3 legitimate &os.current; groups, but we simply do not have the time to provide tech support. This is not because we are mean and nasty people who do not like helping people out (we would not even be doing &os; if we were). We simply cannot answer hundreds messages a day and work on FreeBSD! Given the choice between improving &os; and answering lots of questions on experimental code, the developers opt for the former. Using &os.current; Join the &a.current; and the &a.cvsall;. This is not just a good idea, it is essential. If you are not on the &a.current;, you will not see the comments that people are making about the current state of the system and thus will probably end up stumbling over a lot of problems that others have already found and solved. Even more importantly, you will miss out on important bulletins which may be critical to your system's continued health. The &a.cvsall; mailing list will allow you to see the commit log entry for each change as it is made along with any pertinent information on possible side-effects. To join these lists, send mail to &a.majordomo; and specify the following in the body of your message: subscribe freebsd-current subscribe cvs-all majordomo Optionally, you can also say help and Majordomo will send you full help on how to subscribe and unsubscribe to the various other mailing lists we support. Grab the sources from ftp.FreeBSD.org. You can do this in one of three ways: cvsup cron -CURRENT Syncing with CVSup Use the cvsup program with this supfile. This is the most recommended method, since it allows you to grab the entire collection once and then only what has changed from then on. Many people run cvsup from cron and keep their sources up-to-date automatically. You have to customize the sample supfile above, and configure cvsup for your environment. If you want help doing this configuration, simply type: &prompt.root; pkg_add -f ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/All/cvsupit-3.0.tgz -CURRENT Downloading with ftp Use ftp. The source tree for &os.current; is always exported on: ftp://ftp.FreeBSD.org/pub/FreeBSD/FreeBSD-current/. Some of our FTP mirrors may also allow compressed/tarred grabbing of whole trees. e.g. you see: usr.bin/lex You can do the following to get the whole directory as a tar file: ftp> cd usr.bin ftp> get lex.tar -CURRENT Syncing with CTM Use the CTM facility. If you have very bad connectivity (high price connections or only email access) CTM is an option. However, it is a lot of hassle and can give you broken files. This leads to it being rarely used, which again increases the chance of it not working for fairly long periods of time. We recommend using CVSup for anybody with a 9600bps modem or faster connection. If you are grabbing the sources to run, and not just look at, then grab all of &os.current;, not just selected portions. The reason for this is that various parts of the source depend on updates elsewhere, and trying to compile just a subset is almost guaranteed to get you into trouble. Before compiling &os.current;, read the Makefile in /usr/src carefully. You should at least run a make world the first time through as part of the upgrading process. Reading the &a.current; will keep you up-to-date on other bootstrapping procedures that sometimes become necessary as we move towards the next release. Be active! If you are running &os.current;, we want to know what you have to say about it, especially if you have suggestions for enhancements or bug fixes. Suggestions with accompanying code are received most enthusiastically! Staying Stable with &os; What Is &os.stable;? -STABLE &os.stable; is our development branch from which major releases are made. Changes go into this branch at a different pace, and with the general assumption that they have first gone into &os.current; first for testing. This is still a development branch, however, and this means that at any given time, the sources for &os.stable; may or may not be suitable for any particular purpose. It is simply another engineering development track, not a resource for end-users. Who Needs &os.stable;? If you are interested in tracking or contributing to the FreeBSD development process, especially as it relates to the next point release of FreeBSD, then you should consider following &os.stable;. While it is true that security fixes also go into the &os.stable; branch, you do not need to track &os.stable; to do this. Every security advisory for FreeBSD explains how to fix the problem for the releases it affects That is not quite true. We can not continue to support old releases of FreeBSD forever, although we do support them for many years. For a complete description of the current security policy for old releases of FreeBSD, please see http://www.FreeBSD.org/security/ , and tracking an entire development branch just for security reasons is likely to bring in a lot of unwanted changes as well. Although we endeavor to ensure that the &os.stable; branch compiles and runs at all times, this cannot be guaranteed. In addition, while code is developed in &os.current; before including it in &os.stable;, more people run &os.stable; than &os.current;, so it is inevitable that bugs and corner cases will sometimes be found in &os.stable; that were not apparent in &os.current;. For these reasons, we do not recommend that you blindly track &os.stable;, and it is particularly important that you do not update any production servers to &os.stable; without first thoroughly testing the code in your development environment. If you do not have the resources to do this then we recommend that you run the most recent release of FreeBSD, and use the binary update mechanism to move from release to release. Using &os.stable; -STABLE using Join the &a.stable;. This will keep you informed of build-dependencies that may appear in &os.stable; or any other issues requiring special attention. Developers will also make announcements in this mailing list when they are contemplating some controversial fix or update, giving the users a chance to respond if they have any issues to raise concerning the proposed change. The &a.cvsall; mailing list will allow you to see the commit log entry for each change as it is made along with any pertinent information on possible side-effects. To join these lists, send mail to &a.majordomo; and specify the following in the body of your message: subscribe freebsd-stable subscribe cvs-all majordomo Optionally, you can also say help and Majordomo will send you full help on how to subscribe and unsubscribe to the various other mailing lists we support. If you are installing a new system and want it to be as stable as possible, you can simply grab the latest dated branch snapshot from ftp://releng4.FreeBSD.org/pub/FreeBSD/ and install it like any other release. If you are already running a previous release of &os; and wish to upgrade via sources then you can easily do so from ftp.FreeBSD.org. This can be done in one of three ways: -STABLE syncing with CVSup Use the cvsup program with this supfile. This is the most recommended method, since it allows you to grab the entire collection once and then only what has changed from then on. Many people run cvsup from cron to keep their sources up-to-date automatically. For a fairly easy interface to this, simply type:
&prompt.root; pkg_add -f ftp://ftp.FreeBSD.org/pub/FreeBSD/development/CVSup/cvsupit.tgz
-STABLE downloading with FTP Use ftp. The source tree for &os.stable; is always exported on: ftp://ftp.FreeBSD.org/pub/FreeBSD/FreeBSD-stable/ Some of our FTP mirrors may also allow compressed/tarred grabbing of whole trees. e.g. you see: usr.bin/lex You can do the following to get the whole directory for you as a tar file: ftp> cd usr.bin ftp> get lex.tar -STABLE syncing with CTM Use the CTM facility. If you do not have a fast and inexpensive connection to the Internet, this is the method you should consider using.
Essentially, if you need rapid on-demand access to the source and communications bandwidth is not a consideration, use cvsup or ftp. Otherwise, use CTM. -STABLE compiling Before compiling &os.stable;, read the Makefile in /usr/src carefully. You should at least run a make world the first time through as part of the upgrading process. Reading the &a.stable; will keep you up-to-date on other bootstrapping procedures that sometimes become necessary as we move towards the next release.
Synchronizing Your Source There are various ways of using an Internet (or email) connection to stay up-to-date with any given area of the &os; project sources, or all areas, depending on what interests you. The primary services we offer are Anonymous CVS, CVSup, and CTM. While it is possible to update only parts of your source tree, the only supported update procedure is to update the entire tree and recompile both userland (i.e., all the programs that run in user space, such as those in /bin and /sbin) and kernel sources. Updating only part of your source tree, only the kernel, or only userland will often result in problems. These problems may range from compile errors to kernel panics or data corruption. anonymous CVS Anonymous CVS and CVSup use the pull model of updating sources. In the case of CVSup the user (or a cron script) invokes the cvsup program, and it interacts with a cvsupd server somewhere to bring your files up-to-date. The updates you receive are up-to-the-minute and you get them when, and only when, you want them. You can easily restrict your updates to the specific files or directories that are of interest to you. Updates are generated on the fly by the server, according to what you have and what you want to have. Anonymous CVS is quite a bit more simplistic than CVSup in that it is just an extension to CVS which allows it to pull changes directly from a remote CVS repository. CVSup can do this far more efficiently, but Anonymous CVS is easier to use. CTM CTM, on the other hand, does not interactively compare the sources you have with those on the master archive or otherwise pull them across.. Instead, a script which identifies changes in files since its previous run is executed several times a day on the master CTM machine, any detected changes being compressed, stamped with a sequence-number and encoded for transmission over email (in printable ASCII only). Once received, these CTM deltas can then be handed to the &man.ctm.rmail.1; utility which will automatically decode, verify and apply the changes to the user's copy of the sources. This process is far more efficient than CVSup, and places less strain on our server resources since it is a push rather than a pull model. There are other trade-offs, of course. If you inadvertently wipe out portions of your archive, CVSup will detect and rebuild the damaged portions for you. CTM will not do this, and if you wipe some portion of your source tree out (and do not have it backed up) then you will have to start from scratch (from the most recent CVS base delta) and rebuild it all with CTM or, with anoncvs, simply delete the bad bits and resync. Using <command>make world</command> make world Once you have synchronized your local source tree against a particular version of &os; (&os.stable;, &os.current;, and so on) you can then use the source tree to rebuild the system. Take a Backup It cannot be stressed enough how important it is to take a backup of your system before you do this. While rebuilding the world is (as long as you follow these instructions) an easy task to do, there will inevitably be times when you make mistakes, or when mistakes made by others in the source tree render your system unbootable. Make sure you have taken a backup. And have a fix-it floppy to hand. You will probably never have to use it, but it is better to be safe than sorry! Subscribe to the Right Mailing List mailing list The &os.stable; and &os.current; branches are, by their nature, in development. People that contribute to &os; are human, and mistakes occasionally happen. Sometimes these mistakes can be quite harmless, just causing your system to print a new diagnostic warning. Or the change may be catastrophic, and render your system unbootable or destroy your filesystems (or worse). If problems like these occur, a heads up is posted to the appropriate mailing list, explaining the nature of the problem and which systems it affects. And an all clear announcement is posted when the problem has been solved. If you try to track &os.stable; or &os.current; and do not read the &a.stable; or the &a.current; respectively, then you are asking for trouble. Read <filename>/usr/src/UPDATING</filename> Before you do anything else, read /usr/src/UPDATING (or the equivalent file wherever you have a copy of the source code). This file should contain important information about problems you might encounter, or specify the order in which you might have to run certain commands. If UPDATING contradicts something you read here, UPDATING takes precedence. Reading UPDATING is not an acceptable substitute for subscribing to the correct mailing list, as described previously. The two requirements are complementary, not exclusive. Check <filename>/etc/make.conf</filename> make.conf Examine the files /etc/defaults/make.conf and /etc/make.conf. The first contains some default defines – most of which are commented out. To make use of them when you rebuild your system from source, add them to /etc/make.conf. Keep in mind that anything you add to /etc/make.conf is also used every time you run make, so it is a good idea to set them to something sensible for your system. A typical user will probably want to copy the CFLAGS and NOPROFILE lines found in /etc/defaults/make.conf to /etc/make.conf and uncomment them. Examine the other definitions (COPTFLAGS, NOPORTDOCS and so on) and decide if they are relevant to you. Update <filename>/etc/group</filename> The /etc directory contains a large part of your system's configuration information, as well as scripts that are run at system startup. Some of these scripts change from version to version of FreeBSD. Some of the configuration files are also used in the day to day running of the system. In particular, /etc/group. There have been occasions when the installation part of make world has expected certain usernames or groups to exist. When performing an upgrade it is likely that these groups did not exist. This caused problems when upgrading. The most recent example of this is when the ppp subsystem were installed using a non-existent (for them) group name. The solution is to examine /usr/src/etc/group and compare its list of groups with your own. If there are any groups in the new file that are not in your file then copy them over. Similarly, you should rename any groups in /etc/group which have the same GID but a different name to those in /usr/src/etc/group. If you are feeling particularly paranoid, you can check your system to see which files are owned by the group you are renaming or deleting. &prompt.root; find / -group GID -print will show all files owned by group GID (which can be either a group name or a numeric group ID). Drop to Single User Mode single-user mode You may want to compile the system in single user mode. Apart from the obvious benefit of making things go slightly faster, reinstalling the system will touch a lot of important system files, all the standard system binaries, libraries, include files and so on. Changing these on a running system (particularly if you have active users on the system at the time) is asking for trouble. multi-user mode Another method is to compile the system in multi-user mode, and then drop into single user mode for the installation. If you would like to do it this way, simply hold off on the following steps until the build has completed. As the superuser, you can execute &prompt.root; from a running system, which will drop it to single user mode. Alternatively, reboot the system, and at the boot prompt, enter the flag. The system will then boot single user. At the shell prompt you should then run: &prompt.root; fsck -p &prompt.root; mount -u / &prompt.root; mount -a -t ufs &prompt.root; swapon -a This checks the filesystems, remounts / read/write, mounts all the other UFS filesystems referenced in /etc/fstab and then turns swapping on. If your CMOS clock is set to local time and not to GMT, you may also need to run the following command: &prompt.root; adjkerntz -i This will make sure that your local timezone settings get set up correctly - without this, you may later run into some problems. Remove <filename>/usr/obj</filename> As parts of the system are rebuilt they are placed in directories which (by default) go under /usr/obj. The directories shadow those under /usr/src. You can speed up the make world process, and possibly save yourself some dependency headaches by removing this directory as well. Some files below /usr/obj may have the immutable flag set (see &man.chflags.1; for more information) which must be removed first. &prompt.root; cd /usr/obj &prompt.root; chflags -R noschg * &prompt.root; rm -rf * Recompile the Source Saving the Output It is a good idea to save the output you get from running &man.make.1; to another file. If something goes wrong you will have a copy of the error message. While this might not help you in diagnosing what has gone wrong, it can help others if you post your problem to one of the &os; mailing lists. The easiest way to do this is to use the &man.script.1; command, with a parameter that specifies the name of the file to save all output to. You would do this immediately before rebuilding the world, and then type exit when the process has finished. &prompt.root; script /var/tmp/mw.out Script started, output file is /var/tmp/mw.out &prompt.root; make TARGET … compile, compile, compile … &prompt.root; exit Script done, … If you do this, do not save the output in /tmp. This directory may be cleared next time you reboot. A better place to store it is in /var/tmp (as in the previous example) or in root's home directory. Compile and Install the Base System You must be in the /usr/src directory... &prompt.root; cd /usr/src (unless, of course, your source code is elsewhere, in which case change to that directory instead). make To rebuild the world you use the &man.make.1; command. This command reads instructions from the Makefile, which describes how the programs that comprise &os; should be rebuilt, the order in which they should be built, and so on. The general format of the command line you will type is as follows: &prompt.root; make In this example, is an option that you would pass to &man.make.1;. See the &man.make.1; manual page for an example of the options you can pass. passes a variable to the Makefile. The behavior of the Makefile is controlled by these variables. These are the same variables as are set in /etc/make.conf, and this provides another way of setting them. &prompt.root; make -DNOPROFILE=true target is another way of specifying that profiled libraries should not be built, and corresponds with the NOPROFILE= true # Avoid compiling profiled libraries lines in /etc/make.conf. target tells &man.make.1; what you want to do. Each Makefile defines a number of different targets, and your choice of target determines what happens. Some targets are listed in the Makefile, but are not meant for you to run. Instead, they are used by the build process to break out the steps necessary to rebuild the system into a number of sub-steps. Most of the time you will not need to pass any parameters to &man.make.1;, and so your command like will look like this: &prompt.root; make target Beginning with version 2.2.5 of &os; (actually, it was first created on the &os.current; branch, and then retrofitted to &os.stable; midway between 2.2.2 and 2.2.5) the world target has been split in two. buildworld and installworld. As the names imply, buildworld builds a complete new tree under /usr/obj, and installworld installs this tree on the current machine. This is very useful for 2 reasons. First, it allows you to do the build safe in the knowledge that no components of your running system will be affected. The build is self hosted. Because of this, you can safely run buildworld on a machine running in multi-user mode with no fear of ill-effects. It is still recommended that you run the installworld part in single user mode, though. Secondly, it allows you to use NFS mounts to upgrade multiple machines on your network. If you have three machines, A, B and C that you want to upgrade, run make buildworld and make installworld on A. B and C should then NFS mount /usr/src and /usr/obj from A, and you can then run make installworld to install the results of the build on B and C. Although the world target still exists, you are strongly encouraged not to use it. Run &prompt.root; make buildworld It is now possible to specify a -j option to make which will cause it to spawn several simultaneous processes. This is most useful on multi-CPU machines. However, since much of the compiling process is IO bound rather than CPU bound it is also useful on single CPU machines. On a typical single-CPU machine you would run: &prompt.root; make -j4 buildworld &man.make.1; will then have up to 4 processes running at any one time. Empirical evidence posted to the mailing lists shows this generally gives the best performance benefit. If you have a multi-CPU machine and you are using an SMP configured kernel try values between 6 and 10 and see how they speed things up. Be aware that this is still somewhat experimental, and commits to the source tree may occasionally break this feature. If the world fails to compile using this parameter try again without it before you report any problems. Timings make world timings Many factors influence the build time, but currently a 500 MHz Pentium 3 with 128 MB of RAM takes about 2 hours to build the &os.stable; tree, with no tricks or shortcuts used during the process. A &os.current; tree will take somewhat longer. Compile and Install a New Kernel kernel compiling To take full advantage of your new system you should recompile the kernel. This is practically a necessity, as certain memory structures may have changed, and programs like &man.ps.1; and &man.top.1; will fail to work until the kernel and source code versions are the same. The simplest, safest way to do this is to build and install a kernel based on GENERIC. While GENERIC may not have all the necessary devices for your system, it should contain everything necessary to boot your system back to single user mode. This is a good test that the new system works properly. After booting from GENERIC and verifying that your system works you can then build a new kernel based on your normal kernel configuration file. If you are upgrading to &os; 4.0 or above then the standard kernel build procedure (as described in ) is deprecated. Instead, you should run these commands after you have built the world with buildworld. &prompt.root; cd /usr/src &prompt.root; make buildkernel &prompt.root; make installkernel If you are upgrading to a version of &os; below 4.0 you should use the standard kernel build procedure. However, it is recommended that you use the new version of &man.config.8;, using a command line like this. &prompt.root; /usr/obj/usr/src/usr.sbin/config/config KERNELNAME Reboot into Single User Mode single-user mode You should reboot in to single user mode to test the new kernel works. Do this by following the instructions in . Install the New System Binaries If you were building a version of &os; recent enough to have used make buildworld then you should now use installworld to install the new system binaries. Run &prompt.root; cd /usr/src &prompt.root; make installworld If you specified variables on the make buildworld command line, you must specify the same variables in the make installworld command line. This does not necessarily hold true for other options; for example, must never be used with installworld. For example, if you ran: &prompt.root; make -DNOPROFILE=true buildworld you must install the results with: &prompt.root; make -DNOPROFILE=true installworld - otherwise it would try and install profiled libraries that + otherwise it would try to install profiled libraries that had not been built during the make buildworld phase. Update Files Not Updated by <command>make world</command> Remaking the world will not update certain directories (in particular, /etc, /var and /usr) with new or changed configuration files. mergemaster The simplest way to update these files is to use &man.mergemaster.8;, though it is possible to do it manually if you would prefer to do that. We strongly recommend you use &man.mergemaster.8;, however, and if you do then you can skip forward to the next section, since &man.mergemaster.8; is described below. Be sure to make a backup of /etc in case anything goes wrong. The &man.mergemaster.8; utility is a Bourne script that will aid you in determining the differences between your configuration files in /etc, and the configuration files in the source tree /usr/src/etc. This is the recommended solution for keeping the system configuration files up to date with those located in the source tree. mergemaster was integrated into the FreeBSD base system between 3.3-RELEASE and 3.4-RELEASE, which means it is present in all -STABLE and -CURRENT systems since 3.3. To begin simply type mergemaster at your prompt, and watch it start going. mergemaster will then build a temporary root environment, from / down, and populate it with various system configuration files. Those files are then compared to the ones currently installed in your system. At this point, files that differ will be shown in &man.diff.1; format, with the sign representing added or modified lines, and representing lines that will be removed either completely, or replaced with a new line. See the &man.diff.1; manual page for more information about the &man.diff.1; syntax and how file differences are shown. &man.mergemaster.8; will then show you each file that displays variances, and at this point you will have the option of either deleting the new file (referred to as the temporary file), install the temporary file in its unmodified state, merge the temporary file with the currently installed file, or view the &man.diff.1; results again. Choosing to delete the temporary will tell &man.mergemaster.8; that we wish to keep our current file unchanged, and to delete the one that is new. This option is not the most recommended one, unless you see no reason to change the current file. You can get help at any time by typing at the mergemaster prompt. If the user should choose to skip a file, it will be presented again after all other files have been worked with. Choosing to install the unmodified temporary file will replace the current file with the new one. For most unmodified files, this is the best option. Choosing to merge the file will present you with a text editor, and the contents of both files. You can now merge them by reviewing both files side by side on the screen, and choosing parts from both to create a finished product. When the files are compared side by side, the key will select the left contents and the key will select contents from your right. The final output will be a file consisting of both parts, which can then be installed. This option is customarily used for files where settings have been modified by the user. Choosing to view the diff results again, will show you the file differences just like &man.mergemaster.8; did before prompting you for an option. After &man.mergemaster.8; is complete with the system files you will be prompted for other options. &man.mergemaster.8; will ask if you want to rebuild the password file, run MAKEDEV and finishing up with a removal of the left over temporary files. If you wish to do the update manually, however, you cannot just copy over the files from /usr/src/etc to /etc and have it work. Some of these files must be installed first. This is because the /usr/src/etc directory is not a copy of what your /etc directory should look like. In addition, there are files that should be in /etc that are not in /usr/src/etc. The simplest way to do this by hand is to install the files into a new directory, and then work through them looking for differences. Backup Your Existing <filename>/etc</filename> Although, in theory, nothing is going to touch this directory automatically, it is always better to be sure. So copy your existing /etc directory somewhere safe. Something like: &prompt.root; cp -Rp /etc /etc.old does a recursive copy, preserves times, ownerships on files and suchlike. You need to build a dummy set of directories to install the new /etc and other files into. /var/tmp/root is a reasonable choice, and there are a number of subdirectories required under this as well. &prompt.root; mkdir /var/tmp/root &prompt.root; cd /usr/src/etc &prompt.root; make DESTDIR=/var/tmp/root distrib-dirs distribution This will build the necessary directory structure and install the files. A lot of the subdirectories that have been created under /var/tmp/root are empty and should be deleted. The simplest way to do this is to: &prompt.root; cd /var/tmp/root &prompt.root; find -d . -type d | xargs rmdir 2>/dev/null This will remove all empty directories. (Standard error is redirected to /dev/null to prevent the warnings about the directories that are not empty.) /var/tmp/root now contains all the files that should be placed in appropriate locations below /. You now have to go through each of these files, determining how they differ with your existing files. Note that some of the files that will have been installed in /var/tmp/root have a leading /var/tmp/root/ and /var/tmp/root/root/, although there may be others (depending on when you are reading this. Make sure you use The simplest way to do this is to use &man.diff.1; to compare the two files. &prompt.root; diff /etc/shells /var/tmp/root/etc/shells This will show you the differences between your /etc/shells file and the new /etc/shells file. Use these to decide whether to merge in changes that you have made or whether to copy over your old file. Name the New Root Directory (<filename>/var/tmp/root</filename>) with a Time Stamp, So You Can Easily Compare Differences Between Versions Frequently rebuilding the world means that you have to update /etc frequently as well, which can be a bit of a chore. You can speed this process up by keeping a copy of the last set of changed files that you merged into /etc. The following procedure gives one idea of how to do this. Make the world as normal. When you want to update /etc and the other directories, give the target directory a name based on the current date. If you were doing this on the 14th of February 1998 you could do the following. &prompt.root; mkdir /var/tmp/root-19980214 &prompt.root; cd /usr/src/etc &prompt.root; make DESTDIR=/var/tmp/root-19980214 \ distrib-dirs distribution Merge in the changes from this directory as outlined above. Do not remove the /var/tmp/root-19980214 directory when you have finished. When you have downloaded the latest version of the source and remade it, follow step 1. This will give you a new directory, which might be called /var/tmp/root-19980221 (if you wait a week between doing updates). You can now see the differences that have been made in the intervening week using &man.diff.1; to create a recursive diff between the two directories. &prompt.root; cd /var/tmp &prompt.root; diff -r root-19980214 root-19980221 Typically, this will be a much smaller set of differences than those between /var/tmp/root-19980221/etc and /etc. Because the set of differences is smaller, it is easier to migrate those changes across into your /etc directory. You can now remove the older of the two /var/tmp/root-* directories. &prompt.root; rm -rf /var/tmp/root-19980214 Repeat this process every time you need to merge in changes to /etc. You can use &man.date.1; to automate the generation of the directory names. &prompt.root; mkdir /var/tmp/root-`date "+%Y%m%d"` Update <filename>/dev</filename> DEVFS DEVFS If you are using DEVFS this is unnecessary. In most cases, the &man.mergemaster.8; tool will realize when it is necessary to update the devices, and offer to complete it automatically. These instructions tell how to update the devices manually. For safety's sake, this is a multi-step process. Copy /var/tmp/root/dev/MAKEDEV to /dev. &prompt.root; cp /var/tmp/root/dev/MAKEDEV /dev MAKEDEV If you used &man.mergemaster.8; to update /etc, then your MAKEDEV script should have been updated already, though it cannot hurt to check (with &man.diff.1;) and copy it manually if necessary. Now, take a snapshot of your current /dev. This snapshot needs to contain the permissions, ownerships, major and minor numbers of each filename, but it should not contain the time stamps. The easiest way to do this is to use &man.awk.1; to strip out some of the information. &prompt.root; cd /dev &prompt.root; ls -l | awk '{print $1, $2, $3, $4, $5, $6, $NF}' > /var/tmp/dev.out Remake all the devices. &prompt.root; Write another snapshot of the directory, this time to /var/tmp/dev2.out. Now look through these two files for any devices that you missed creating. There should not be any, but it is better to be safe than sorry. &prompt.root; diff /var/tmp/dev.out /var/tmp/dev2.out You are most likely to notice disk slice discrepancies which will involve commands such as &prompt.root; sh MAKEDEV sd0s1 to recreate the slice entries. Your precise circumstances may vary. Update <filename>/stand</filename> This step is included only for completeness. It can safely be omitted. For the sake of completeness, you may want to update the files in /stand as well. These files consist of hard links to the /stand/sysinstall binary. This binary should be statically linked, so that it can work when no other filesystems (and in particular /usr) have been mounted. &prompt.root; cd /usr/src/release/sysinstall &prompt.root; make all install Rebooting You are now done. After you have verified that everything appears to be in the right place you can reboot the system. A simple &man.fastboot.8; should do it. &prompt.root; fastboot Finished You should now have successfully upgraded your &os; system. Congratulations. If things went slightly wrong, it is easy to rebuild a particular piece of the system. For example, if you accidentally deleted /etc/magic as part of the upgrade or merge of /etc, the &man.file.1; command will stop working. In this case, the fix would be to run: &prompt.root; cd /usr/src/usr.bin/file &prompt.root; Questions Do I need to re-make the world for every change? There is no easy answer to this one, as it depends on the nature of the change. For example, if you just ran CVSup, and it has shown the following files as being updated, src/games/cribbage/instr.c src/games/sail/pl_main.c src/release/sysinstall/config.c src/release/sysinstall/media.c src/share/mk/bsd.port.mk it probably is not worth rebuilding the entire world. You could just go to the appropriate sub-directories and make all install, and that's about it. But if something major changed, for example src/lib/libc/stdlib then you should either re-make the world, or at least those parts of it that are statically linked (as well as anything else you might have added that is statically linked). At the end of the day, it is your call. You might be happy re-making the world every fortnight say, and let changes accumulate over that fortnight. Or you might want to re-make just those things that have changed, and are confident you can spot all the dependencies. And, of course, this all depends on how often you want to upgrade, and whether you are tracking &os.stable; or &os.current;. My compile failed with lots of signal 11 (or other signal number) errors. What has happened? signal 11 This is normally indicative of hardware problems. (Re)making the world is an effective way to stress test your hardware, and will frequently throw up memory problems. These normally manifest themselves as the compiler mysteriously dying on receipt of strange signals. A sure indicator of this is if you can restart the make and it dies at a different point in the process. In this instance there is little you can do except start swapping around the components in your machine to determine which one is failing. Can I remove /usr/obj when I have finished? The short answer is yes. /usr/obj contains all the object files that were produced during the compilation phase. Normally, one of the first steps in the /usr/obj around after you have finished makes little sense, and will free up a large chunk of disk space (currently about 340MB). However, if you know what you are doing you can have If you want to live dangerously then make the world, passing the NOCLEAN definition to make, like this: &prompt.root; make -DNOCLEAN world Can interrupted builds be resumed? This depends on how far through the process you got before you found a problem. In general (and this is not a hard and fast rule) the make world process builds new copies of essential tools (such as &man.gcc.1;, and &man.make.1;) and the system libraries. These tools and libraries are then installed. The new tools and libraries are then used to rebuild themselves, and are installed again. The entire system (now including regular user programs, such as &man.ls.1; or &man.grep.1;) is then rebuilt with the new system files. If you are at the last stage, and you know it (because you have looked through the output that you were storing) then you can (fairly safely) do … fix the problem … &prompt.root; cd /usr/src &prompt.root; make -DNOCLEAN all This will not undo the work of the previous make world. If you see the message -------------------------------------------------------------- Building everything.. -------------------------------------------------------------- in the make world output then it is probably fairly safe to do so. If you do not see that message, or you are not sure, then it is always better to be safe than sorry, and restart the build from scratch. NFS Can I use one machine as a This is a fairly easy task, and can save hours of compile time for many machines. Simply run the buildworld on a central machine, and then NFS mount /usr/src and /usr/obj on the remote machine and installworld there. How can I speed up making the world? Run in single user mode. Put the /usr/src and /usr/obj directories on separate filesystems held on separate disks. If possible, put these disks on separate disk controllers. Better still, put these filesystems across multiple disks using the &man.ccd.4; (concatenated disk driver) device. Turn off profiling (set NOPROFILE=true in /etc/make.conf). You almost certainly do not need it. Also in /etc/make.conf, set CFLAGS to something like -O -pipe. The optimization -O2 is much slower, and the optimization difference between -O and -O2 is normally negligible. -pipe lets the compiler use pipes rather than temporary files for communication, which saves disk access (at the expense of memory). Pass the option to make to run multiple processes in parallel. This usually helps regardless of whether you have a single or a multi processor machine. The filesystem holding /usr/src can be mounted (or remounted) with the option. This prevents the filesystem from recording the file access time. You probably do not need this information anyway. &prompt.root; mount -u -o noatime /usr/src The example assumes /usr/src is on its own filesystem. If it is not (if it is a part of /usr for example) then you will need to use that filesystem mount point, and not /usr/src. The filesystem holding /usr/obj can be mounted (or remounted) with the async option. This causes disk writes to happen asynchronously. In other words, the write completes immediately, and the data is written to the disk a few seconds later. This allows writes to be clustered together, and can be a dramatic performance boost. Keep in mind that this option makes your filesystem more fragile. With this option there is an increased chance that, should power fail, the filesystem will be in an unrecoverable state when the machine restarts. If /usr/obj is the only thing on this filesystem then it is not a problem. If you have other, valuable data on the same filesystem then ensure your backups are fresh before you enable this option. &prompt.root; mount -u -o async /usr/obj As above, if /usr/obj is not on its own filesystem, replace it in the example with the name of the appropriate mount point. What do I do if something goes wrong? Make absolutely sure your environment has no extraneous cruft from earlier builds. This is simple enough. &prompt.root; chflags -R noschg /usr/obj/usr &prompt.root; rm -rf /usr/obj/usr &prompt.root; cd /usr/src &prompt.root; make cleandir &prompt.root; make cleandir Yes, make cleandir really should be run twice. Then restart the whole process, starting with make buildworld. If you still have problems, send the error and the output of uname -a to &a.questions;. Be prepared to answer other questions about your setup! Mike Meyer Tracking for multiple machines If you have multiple machines that you want to track the same source tree, then having all of them download sources and rebuild everything seems like a waste of resources: disk space, network bandwidth, and CPU cycles. It is, and the solution is to have one machine do most of the work, while the rest of the machines mount that work via NFS. This section outlines a method of doing so. Preliminaries First, identify a set of machines that is going to run the same set of binaries, which we will call a build set. Each machine can have a custom kernel, but they will be running the same userland binaries. From that set, choose a machine to be the build machine. It is going to be the machine that the world and kernel are built on. Ideally, it should be a fast machine that has sufficient spare CPU to run make world. You will also want to choose a machine to be the test machine, which will test software updates before they are put into production. This must be a machine that you can afford to have down for an extended period of time. It can be the build machine, but need not be. All the machines in this build set need to mount /usr/obj and /usr/src from the same machine, and at the same point. Ideally, those are on two different drives on the build machine, but they can be NFS mounted on that machine as well. If you have multiple build sets, /usr/src should be on one build machine, and NFS mounted on the rest. Finally make sure that /etc/make.conf on all the machines in the build set agrees with the build machine. That means that the build machine must build all the parts of the base system that any machine in the build set is going to install. Also, each build machine should have its kernel name set with KERNCONF in /etc/make.conf, and the build machine should list them all in KERNCONF, listing its own kernel first. The build machine must have the kernel configuration files for each machine in /usr/src/sys/arch/conf if it is going to build their kernels. The base system Now that all that is done, you are ready to build everything. Build the kernel and world as described in on the build machine, but do not install anything. After the build has finished, go to the test machine, and install the kernel you just built. If this machine mounts /usr/src and /usr/obj via NFS, when you reboot to single user you will need to enable the network and mount them. The easiest way to do this is to boot to multi-user, then run shutdown now to go to single user mode. Once there, you can install the new kernel and world and run mergemaster just as you normally would. When done, reboot to return to normal multi-user operations for this machine. After you are certain that everything on the test machine is working properly, use the same procedure to install the new software on each of the other machines in the build set. Ports The same ideas can be used for the ports tree. The first critical step is mounting /usr/ports from the same machine to all the machines in the build set. You can then set up /etc/make.conf properly to share distfiles. You should set DISTDIR to a common shared directory that is writable by whichever user root is mapped to by your NFS mounts. Each machine should set WRKDIRPREFIX to a local build directory. Finally, if you are going to be building and distributing packages, you should set PACKAGES to a directory similar to DISTDIR.
diff --git a/en_US.ISO8859-1/books/handbook/introduction/chapter.sgml b/en_US.ISO8859-1/books/handbook/introduction/chapter.sgml index 016129ce9b..571aab2861 100644 --- a/en_US.ISO8859-1/books/handbook/introduction/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/introduction/chapter.sgml @@ -1,905 +1,905 @@ Jim Mock Restructured, reorganized, and parts rewritten by Introduction Synopsis Thank you for your interest in FreeBSD! The following chapter covers various items about the FreeBSD Project, such as its history, goals, development model, and so on. After reading this chapter, you will know: How FreeBSD relates to other computer operating systems. The history of the FreeBSD Project. The goals of the FreeBSD Project. The basics of the FreeBSD open-source development model. And of course: where the name "FreeBSD" comes from. Welcome to FreeBSD! 4.4BSD-Lite FreeBSD is a 4.4BSD-Lite based operating system for the Intel architecture (x86) and DEC Alpha based systems. Ports to other architectures are also underway. For a brief overview of FreeBSD, see the next section. You can also read about the history of FreeBSD, or the current release. If you are interested in contributing something to the Project (code, hardware, unmarked bills), see the Contributing to FreeBSD article. What Can FreeBSD Do? FreeBSD has many noteworthy features. Some of these are: preemptive multitasking Preemptive multitasking with dynamic priority adjustment to ensure smooth and fair sharing of the computer between applications and users, even under the heaviest of loads. multi-user facilities Multi-user facilities which allow many people to use a FreeBSD system simultaneously for a variety of things. This means, for example, that system peripherals such as printers and tape drives are properly shared between all users on the system or the network and that individual resource limits can be placed on users or groups of users, protecting critical system resources from over-use. TCP/IP networking Strong TCP/IP networking with support for industry standards such as SLIP, PPP, NFS, DHCP, and NIS. This means that your FreeBSD machine can interoperate easily with other systems as well as act as an enterprise server, providing vital functions such as NFS (remote file access) and email services or putting your organization on the Internet with WWW, FTP, routing and firewall (security) services. memory protection Memory protection ensures that applications (or users) cannot interfere with each other. One application crashing will not affect others in any way. FreeBSD is a 32-bit operating system (64-bit on the Alpha) and was designed as such from the ground up. X Window System XFree86 The industry standard X Window System (X11R6) provides a graphical user interface (GUI) for the cost of a common VGA card and monitor and comes with full sources. binary compatibility Linux binary compatibility SCO binary compatibility SVR4 binary compatibility BSD/OS binary compatibility NetBSD Binary compatibility with many programs built for Linux, SCO, SVR4, BSDI and NetBSD. Thousands of ready-to-run applications are available from the FreeBSD ports and packages collection. Why search the net when you can find it all right here? Thousands of additional and easy-to-port applications are available on the Internet. FreeBSD is source code compatible with most popular commercial Unix systems and thus most applications require few, if any, changes to compile. virtual memory Demand paged virtual memory and merged VM/buffer cache design efficiently satisfies applications with large appetites for memory while still maintaining interactive response to other users. Symetric Multi-Processing (SMP) SMP support for machines with multiple CPUs. compilers C compilers C++ compilers Fortran A full complement of C, C++, Fortran, and Perl development tools. Many additional languages for advanced research and development are also available in the ports and packages collection. source code Source code for the entire system means you have the greatest degree of control over your environment. Why be locked into a proprietary solution at the mercy of your vendor when you can have a truly open system? Extensive online documentation. And many more! 4.4BSD-Lite Computer Systems Resarch Group (CSRG) U.C. Berkeley FreeBSD is based on the 4.4BSD-Lite release from Computer Systems Research Group (CSRG) at the University of California at Berkeley, and carries on the distinguished tradition of BSD systems development. In addition to the fine work provided by CSRG, the FreeBSD Project has put in many thousands of hours in fine tuning the system for maximum performance and reliability in real-life load situations. As many of the commercial giants struggle to field PC operating systems with such features, performance and reliability, FreeBSD can offer them now! The applications to which FreeBSD can be put are truly limited only by your own imagination. From software development to factory automation, inventory control to azimuth correction of remote satellite antennae; if it can be done with a commercial Unix product then it is more than likely that you can do it with FreeBSD too! FreeBSD also benefits significantly from the literally thousands of high quality applications developed by research centers and universities around the world, often available at little to no cost. Commercial applications are also available and appearing in greater numbers every day. Because the source code for FreeBSD itself is generally available, the system can also be customized to an almost unheard of degree for special applications or projects, and in ways not generally possible with operating systems from most major commercial vendors. Here is just a sampling of some of the applications in which people are currently using FreeBSD: Internet Services: The robust TCP/IP networking built into FreeBSD makes it an ideal platform for a variety of Internet services such as: FTP servers FTP servers web servers World Wide Web servers (standard or secure [SSL]) firewall IP masquerading Firewalls and NAT (IP masquerading) gateways electronic mail Electronic Mail servers USENET USENET News or Bulletin Board Systems And more... With FreeBSD, you can easily start out small with an inexpensive 386 class PC and upgrade all the way up to a quad-processor Xeon with RAID storage as your enterprise grows. Education: Are you a student of computer science or a related engineering field? There is no better way of learning about operating systems, computer architecture and networking than the hands on, under the hood experience that FreeBSD can provide. A number of freely available CAD, mathematical and graphic design packages also make it highly useful to those whose primary interest in a computer is to get other work done! Research: With source code for the entire system available, FreeBSD is an excellent platform for research in operating systems as well as other branches of computer science. FreeBSD's freely available nature also makes it possible for remote groups to collaborate on ideas or shared development without having to worry about special licensing agreements or limitations on what may be discussed in open forums. router DNS Server Networking: Need a new router? A name server (DNS)? A firewall to keep people out of your internal network? FreeBSD can easily turn that unused 386 or 486 PC sitting in the corner into an advanced router with sophisticated packet-filtering capabilities. X Window System XFree86 X Window System Accellerated-X X Window workstation: FreeBSD is a fine choice for an inexpensive X terminal solution, either using the freely available XFree86 server or one of the excellent commercial servers provided by X Inside. Unlike an X terminal, FreeBSD allows many applications to be run locally, if desired, thus relieving the burden on a central server. FreeBSD can even boot diskless, making individual workstations even cheaper and easier to administer. GNU Compiler Collection Software Development: The basic FreeBSD system comes with a full complement of development tools including the renowned GNU C/C++ compiler and debugger. FreeBSD is available in both source and binary form on CDROM and via anonymous FTP. Please see for more information about obtaining FreeBSD. Who uses FreeBSD? Users Large sites running FreeBSD FreeBSD is used to power some of the biggest sites on the Internet, including: Yahoo! Yahoo! Apache Apache Be, Inc. Be, Inc. Blue Mountain Arts Blue Mountain Arts Pair Networks Pair Networks Whistle Communications Whistle Communications Microsoft Microsoft Hotmail Hotmail Sony Japan Sony Japan and many more. About the FreeBSD Project The following section provides some background information on the project, including a brief history, project goals, and the development model of the project. Jordan Hubbard Contributed by A Brief History of FreeBSD 386BSD Patchkit Hubbard, Jordan Williams, Nate Grimes, Rod FreeBSD Project History The FreeBSD project had its genesis in the early part of 1993, partially as an outgrowth of the Unofficial 386BSD Patchkit by the patchkit's last 3 coordinators: Nate Williams, Rod Grimes and myself. 386BSD Our original goal was to produce an intermediate snapshot of 386BSD in order to fix a number of problems with it that the patchkit mechanism just was not capable of solving. Some of you may remember the early working title for the project being 386BSD 0.5 or 386BSD Interim in reference to that fact. Jolitz, Bill 386BSD was Bill Jolitz's operating system, which had been up to that point suffering rather severely from almost a year's worth of neglect. As the patchkit swelled ever more uncomfortably with each passing day, we were in unanimous agreement that something - had to be done and decided to try and assist Bill by providing + had to be done and decided to assist Bill by providing this interim cleanup snapshot. Those plans came to a rude halt when Bill Jolitz suddenly decided to withdraw his sanction from the project without any clear indication of what would be done instead. Greenman, David Walnut Creek CDROM It did not take us long to decide that the goal remained worthwhile, even without Bill's support, and so we adopted the name FreeBSD, coined by David Greenman. Our initial objectives were set after consulting with the system's current users and, once it became clear that the project was on the road to perhaps even becoming a reality, I contacted Walnut Creek CDROM with an eye towards improving FreeBSD's distribution channels for those many unfortunates without easy access to the Internet. Walnut Creek CDROM not only supported the idea of distributing FreeBSD on CD but also went so far as to provide the project with a machine to work on and a fast Internet connection. Without Walnut Creek CDROM's almost unprecedented degree of faith in what was, at the time, a completely unknown project, it is quite unlikely that FreeBSD would have gotten as far, as fast, as it has today. 4.3BSD-Lite Net/2 U.C. Berkeley 386BSD Free Software Foundation The first CDROM (and general net-wide) distribution was FreeBSD 1.0, released in December of 1993. This was based on the 4.3BSD-Lite (Net/2) tape from U.C. Berkeley, with many components also provided by 386BSD and the Free Software Foundation. It was a fairly reasonable success for a first offering, and we followed it with the highly successful FreeBSD 1.1 release in May of 1994. Novell U.C. Berkeley Net/2 AT&amp;T Around this time, some rather unexpected storm clouds formed on the horizon as Novell and U.C. Berkeley settled their long-running lawsuit over the legal status of the Berkeley Net/2 tape. A condition of that settlement was U.C. Berkeley's concession that large parts of Net/2 were encumbered code and the property of Novell, who had in turn acquired it from AT&T some time previously. What Berkeley got in return was Novell's blessing that the 4.4BSD-Lite release, when it was finally released, would be declared unencumbered and all existing Net/2 users would be strongly encouraged to switch. This included FreeBSD, and the project was given until the end of July 1994 to stop shipping its own Net/2 based product. Under the terms of that agreement, the project was allowed one last release before the deadline, that release being FreeBSD 1.1.5.1. FreeBSD then set about the arduous task of literally re-inventing itself from a completely new and rather incomplete set of 4.4BSD-Lite bits. The Lite releases were light in part because Berkeley's CSRG had removed large chunks of code required for actually constructing a bootable running system (due to various legal requirements) and the fact that the Intel port of 4.4 was highly incomplete. It took the project until November of 1994 to make this transition, at which point it released FreeBSD 2.0 to the net and on CDROM (in late December). Despite being still more than a little rough around the edges, the release was a significant success and was followed by the more robust and easier to install FreeBSD 2.0.5 release in June of 1995. We released FreeBSD 2.1.5 in August of 1996, and it appeared to be popular enough among the ISP and commercial communities that another release along the 2.1-STABLE branch was merited. This was FreeBSD 2.1.7.1, released in February 1997 and capping the end of mainstream development on 2.1-STABLE. Now in maintenance mode, only security enhancements and other critical bug fixes will be done on this branch (RELENG_2_1_0). FreeBSD 2.2 was branched from the development mainline (-CURRENT) in November 1996 as the RELENG_2_2 branch, and the first full release (2.2.1) was released in April 1997. Further releases along the 2.2 branch were done in the summer and fall of '97, the last of which (2.2.8) appeared in November 1998. The first official 3.0 release appeared in October 1998 and spelled the beginning of the end for the 2.2 branch. The tree branched again on Jan 20, 1999, leading to the 4.0-CURRENT and 3.X-STABLE branches. From 3.X-STABLE, 3.1 was released on February 15, 1999, 3.2 on May 15, 1999, 3.3 on September 16, 1999, 3.4 on December 20, 1999, and 3.5 on June 24, 2000, which was followed a few days later by a minor point release update to 3.5.1, to incorporate some last-minute security fixes to Kerberos. This will be the final release in the 3.X branch. There was another branch on March 13, 2000, which saw the emergence of the 4.X-STABLE branch, now considered to be the "current -stable branch". There have been several releases from it so far: 4.0-RELEASE came out in March 2000, 4.1 was released in July 2000, 4.2 in November 2000, 4.3 in April 2001, and 4.4 in September 2001. There will be more releases along the 4.X-stable (RELENG_4) branch well into 2002. Long-term development projects continue to take place in the 5.0-CURRENT (trunk) branch, and SNAPshot releases of 5.0 on CDROM (and, of course, on the net) are continually made available from the snapshot server as work progresses. Jordan Hubbard Contributed by FreeBSD Project Goals FreeBSD Project Goals The goals of the FreeBSD Project are to provide software that may be used for any purpose and without strings attached. Many of us have a significant investment in the code (and project) and would certainly not mind a little financial compensation now and then, but we are definitely not prepared to insist on it. We believe that our first and foremost mission is to provide code to any and all comers, and for whatever purpose, so that the code gets the widest possible use and provides the widest possible benefit. This is, I believe, one of the most fundamental goals of Free Software and one that we enthusiastically support. GNU General Public License (GPL) GNU Lesser General Public License (LGPL) BSD Copyright That code in our source tree which falls under the GNU General Public License (GPL) or Library General Public License (LGPL) comes with slightly more strings attached, though at least on the side of enforced access rather than the usual opposite. Due to the additional complexities that can evolve in the commercial use of GPL software we do, however, prefer software submitted under the more relaxed BSD copyright when it is a reasonable option to do so. Satoshi Asami Contributed by The FreeBSD Development Model FreeBSD Project Development Model The development of FreeBSD is a very open and flexible process, FreeBSD being literally built from the contributions of hundreds of people around the world, as can be seen from our our list of contributors. We are constantly on the lookout for new developers and ideas, and those interested in becoming more closely involved with the project need simply contact us at the &a.hackers;. The &a.announce; is also available to those wishing to make other FreeBSD users aware of major areas of work. Useful things to know about the FreeBSD project and its development process, whether working independently or in close cooperation: The CVS repository CVS repository Concurrent Versions System CVS The central source tree for FreeBSD is maintained by CVS (Concurrent Versions System), a freely available source code control tool that comes bundled with FreeBSD. The primary CVS repository resides on a machine in Santa Clara CA, USA from where it is replicated to numerous mirror machines throughout the world. The CVS tree, as well as the -CURRENT and -STABLE trees which are checked out of it, can be easily replicated to your own machine as well. Please refer to the Synchronizing your source tree section for more information on doing this. The committers list committers The committers are the people who have write access to the CVS tree, and are thus authorized to make modifications to the FreeBSD source (the term committer comes from the &man.cvs.1; commit command, which is used to bring new changes into the CVS repository). The best way of making submissions for review by the committers list is to use the &man.send-pr.1; command, though if something appears to be jammed in the system then you may also reach them by sending mail to the &a.committers;. The FreeBSD core team core team The FreeBSD core team would be equivalent to the board of directors if the FreeBSD Project were a company. The primary task of the core team is to make sure the project, as a whole, is in good shape and is heading in the right directions. Inviting dedicated and responsible developers to join our group of committers is one of the functions of the core team, as is the recruitment of new core team members as others move on. The current core team was elected from a pool of committer candidates in October 2000. Elections are held every 2 years. Some core team members also have specific areas of responsibility, meaning that they are committed to ensuring that some large portion of the system works as advertised. For a complete list of FreeBSD developers and their areas of responsibility, please see the Contributors List Most members of the core team are volunteers when it comes to FreeBSD development and do not benefit from the project financially, so commitment should also not be misconstrued as meaning guaranteed support. The board of directors analogy above is not actually very accurate, and it may be more suitable to say that these are the people who gave up their lives in favor of FreeBSD against their better judgment! Outside contributors contributors Last, but definitely not least, the largest group of developers are the users themselves who provide feedback and bug fixes to us on an almost constant basis. The primary way of keeping in touch with FreeBSD's more non-centralized development is to subscribe to the &a.hackers; (see mailing list info) where such things are discussed. The FreeBSD Contributors List is a long and growing one, so why not join it by contributing something back to FreeBSD today? Providing code is not the only way of contributing to the project; for a more complete list of things that need doing, please refer to the FreeBSD Project web site. In summary, our development model is organized as a loose set of concentric circles. The centralized model is designed for the convenience of the users of FreeBSD, who are thereby provided with an easy way of tracking one central code base, not to keep potential contributors out! Our desire is to present a stable operating system with a large set of coherent application programs that the users can easily install and use, and this model works very well in accomplishing that. All we ask of those who would join us as FreeBSD developers is some of the same dedication its current people have to its continued success! The Current FreeBSD Release NetBSD OpenBSD 386BSD Free Software Foundation U.C. Berkeley Computer Systems Resarch Group (CSRG) FreeBSD is a freely available, full source 4.4BSD-Lite based release for Intel i386, i486, Pentium, Pentium Pro, Celeron, Pentium II, Pentium III (or compatible) and DEC Alpha based computer systems. It is based primarily on software from U.C. Berkeley's CSRG group, with some enhancements from NetBSD, OpenBSD, 386BSD, and the Free Software Foundation. Since our release of FreeBSD 2.0 in late 94, the performance, feature set, and stability of FreeBSD has improved dramatically. The largest change is a revamped virtual memory system with a merged VM/file buffer cache that not only increases performance, but also reduces FreeBSD's memory footprint, making a 5MB configuration a more acceptable minimum. Other enhancements include full NIS client and server support, transaction TCP support, dial-on-demand PPP, integrated DHCP support, an improved SCSI subsystem, ISDN support, support for ATM, FDDI, Fast and Gigabit Ethernet (1000Mbit) adapters, improved support for the latest Adaptec controllers, and many hundreds of bug fixes. We have also taken the comments and suggestions of many of our users to heart and have attempted to provide what we hope is a more sane and easily understood installation process. Your feedback on this (constantly evolving) process is especially welcome! In addition to the base distributions, FreeBSD offers a ported software collection with thousands of commonly sought-after programs. At the time of this printing, there were over &os.numports; ports! The list of ports ranges from http (WWW) servers, to games, languages, editors, and almost everything in between. The entire ports collection requires approximately 100MB of storage, all ports being expressed as deltas to their original sources. This makes it much easier for us to update ports, and greatly reduces the disk space demands made by the older 1.0 ports collection. To compile a port, you simply change to the directory of the program you wish to install, type make install, and let the system do the rest. The full original distribution for each port you build is retrieved dynamically off the CDROM or a local FTP site, so you need only enough disk space to build the ports you want. Almost every port is also provided as a pre-compiled package, which can be installed with a simple command (pkg_add) by those who do not wish to compile their own ports from source. A number of additional documents which you may find very helpful in the process of installing and using FreeBSD may now also be found in the /usr/share/doc directory on any machine running FreeBSD 2.1 or later. You may view the locally installed manuals with any HTML capable browser using the following URLs: The FreeBSD Handbook /usr/share/doc/handbook/index.html The FreeBSD FAQ /usr/share/doc/faq/index.html You can also view the master (and most frequently updated) copies at http://www.FreeBSD.org/. diff --git a/en_US.ISO8859-1/books/handbook/policies/chapter.sgml b/en_US.ISO8859-1/books/handbook/policies/chapter.sgml index cc06d59960..cbc67f6c8c 100644 --- a/en_US.ISO8859-1/books/handbook/policies/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/policies/chapter.sgml @@ -1,437 +1,437 @@ Poul-Henning Kamp Contributed by Source Tree Guidelines and Policies This chapter documents various guidelines and policies in force for the FreeBSD source tree. <makevar>MAINTAINER</makevar> on Makefiles ports maintainer June 1996. If a particular portion of the FreeBSD distribution is being maintained by a person or group of persons, they can communicate this fact to the world by adding a MAINTAINER= email-addresses line to the Makefiles covering this portion of the source tree. The semantics of this are as follows: The maintainer owns and is responsible for that code. This means that he is responsible for fixing bugs and answer problem reports pertaining to that piece of the code, and in the case of contributed software, for tracking new versions, as appropriate. Changes to directories which have a maintainer defined shall be sent to the maintainer for review before being committed. Only if the maintainer does not respond for an unacceptable period of time, to several emails, will it be acceptable to commit changes without review - by the maintainer. However, it is suggested that you try and have the + by the maintainer. However, it is suggested that you try to have the changes reviewed by someone else if at all possible. It is of course not acceptable to add a person or group as maintainer unless they agree to assume this duty. On the other hand it does not have to be a committer and it can easily be a group of people. Poul-Henning Kamp Contributed by David O'Brien Contributed Software contributed software Some parts of the FreeBSD distribution consist of software that is actively being maintained outside the FreeBSD project. For historical reasons, we call this contributed software. Some examples are perl, gcc and patch. Over the last couple of years, various methods have been used in dealing with this type of software and all have some number of advantages and drawbacks. No clear winner has emerged. Since this is the case, after some debate one of these methods has been selected as the official method and will be required for future imports of software of this kind. Furthermore, it is strongly suggested that existing contributed software converge on this model over time, as it has significant advantages over the old method, including the ability to easily obtain diffs relative to the official versions of the source by everyone (even without cvs access). This will make it significantly easier to return changes to the primary developers of the contributed software. Ultimately, however, it comes down to the people actually doing the work. If using this model is particularly unsuited to the package being dealt with, exceptions to these rules may be granted only with the approval of the core team and with the general consensus of the other developers. The ability to maintain the package in the future will be a key issue in the decisions. Because of some unfortunate design limitations with the RCS file format and CVS's use of vendor branches, minor, trivial and/or cosmetic changes are strongly discouraged on files that are still tracking the vendor branch. Spelling fixes are explicitly included here under the cosmetic category and are to be avoided for files with revision 1.1.x.x. The repository bloat impact from a single character change can be rather dramatic. The Tcl embedded programming language will be used as example of how this model works: src/contrib/tcl contains the source as distributed by the maintainers of this package. Parts that are entirely not applicable for FreeBSD can be removed. In the case of Tcl, the mac, win and compat subdirectories were eliminated before the import src/lib/libtcl contains only a "bmake style" Makefile that uses the standard bsd.lib.mk makefile rules to produce the library and install the documentation. src/usr.bin/tclsh contains only a bmake style Makefile which will produce and install the tclsh program and its associated man-pages using the standard bsd.prog.mk rules. src/tools/tools/tcl_bmake contains a couple of shell-scripts that can be of help when the Tcl software needs updating. These are not part of the built or installed software. The important thing here is that the src/contrib/tcl directory is created according to the rules: It is supposed to contain the sources as distributed (on a proper CVS vendor-branch and without RCS keyword expansion) with as few FreeBSD-specific changes as possible. The 'easy-import' tool on freefall will assist in doing the import, but if there are any doubts on how to go about it, it is imperative that you ask first and not blunder ahead and hope it works out. CVS is not forgiving of import accidents and a fair amount of effort is required to back out major mistakes. Because of the previously mentioned design limitations with CVS's vendor branches, it is required that official patches from the vendor be applied to the original distributed sources and the result re-imported onto the vendor branch again. Official patches should never be patched into the FreeBSD checked out version and "committed", as this destroys the vendor branch coherency and makes importing future versions rather difficult as there will be conflicts. Since many packages contain files that are meant for compatibility with other architectures and environments that FreeBSD, it is permissible to remove parts of the distribution tree that are of no interest to FreeBSD in order to save space. Files containing copyright notices and release-note kind of information applicable to the remaining files shall not be removed. If it seems easier, the bmake Makefiles can be produced from the dist tree automatically by some utility, something which would hopefully make it even easier to upgrade to a new version. If this is done, be sure to check in such utilities (as necessary) in the src/tools directory along with the port itself so that it is available to future maintainers. In the src/contrib/tcl level directory, a file called FREEBSD-upgrade should be added and it should states things like: Which files have been left out Where the original distribution was obtained from and/or the official master site. Where to send patches back to the original authors Perhaps an overview of the FreeBSD-specific changes that have been made. However, please do not import FREEBSD-upgrade with the contributed source. Rather you should cvs add FREEBSD-upgrade ; cvs ci after the initial import. Example wording from src/contrib/cpio is below: This directory contains virgin sources of the original distribution files on a "vendor" branch. Do not, under any circumstances, attempt to upgrade the files in this directory via patches and a cvs commit. New versions or official-patch versions must be imported. Please remember to import with "-ko" to prevent CVS from corrupting any vendor RCS Ids. For the import of GNU cpio 2.4.2, the following files were removed: INSTALL cpio.info mkdir.c Makefile.in cpio.texi mkinstalldirs To upgrade to a newer version of cpio, when it is available: 1. Unpack the new version into an empty directory. [Do not make ANY changes to the files.] 2. Remove the files listed above and any others that don't apply to FreeBSD. 3. Use the command: cvs import -ko -m 'Virgin import of GNU cpio v<version>' \ src/contrib/cpio GNU cpio_<version> For example, to do the import of version 2.4.2, I typed: cvs import -ko -m 'Virgin import of GNU v2.4.2' \ src/contrib/cpio GNU cpio_2_4_2 4. Follow the instructions printed out in step 3 to resolve any conflicts between local FreeBSD changes and the newer version. Do not, under any circumstances, deviate from this procedure. To make local changes to cpio, simply patch and commit to the main branch (aka HEAD). Never make local changes on the GNU branch. All local changes should be submitted to "cpio@gnu.ai.mit.edu" for inclusion in the next vendor release. obrien@FreeBSD.org - 30 March 1997 Encumbered Files It might occasionally be necessary to include an encumbered file in the FreeBSD source tree. For example, if a device requires a small piece of binary code to be loaded to it before the device will operate, and we do not have the source to that code, then the binary file is said to be encumbered. The following policies apply to including encumbered files in the FreeBSD source tree. Any file which is interpreted or executed by the system CPU(s) and not in source format is encumbered. Any file with a license more restrictive than BSD or GNU is encumbered. A file which contains downloadable binary data for use by the hardware is not encumbered, unless (1) or (2) apply to it. It must be stored in an architecture neutral ASCII format (file2c or uuencoding is recommended). Any encumbered file requires specific approval from the Core team before it is added to the CVS repository. Encumbered files go in src/contrib or src/sys/contrib. The entire module should be kept together. There is no point in splitting it, unless there is code-sharing with non-encumbered code. Object files are named arch/filename.o.uu>. Kernel files: Should always be referenced in conf/files.* (for build simplicity). Should always be in LINT, but the Core team decides per case if it should be commented out or not. The Core team can, of course, change their minds later on. The Release Engineer decides whether or not it goes in to the release. User-land files: core team The Core team decides if the code should be part of make world. release engineer The Release Engineer decides if it goes in to the release. Satoshi Asami Contributed by Peter Wemm David O'Brien Shared Libraries If you are adding shared library support to a port or other piece of software that does not have one, the version numbers should follow these rules. Generally, the resulting numbers will have nothing to do with the release version of the software. The three principles of shared library building are: Start from 1.0 If there is a change that is backwards compatible, bump minor number (note that ELF systems ignore the minor number) If there is an incompatible change, bump major number For instance, added functions and bugfixes result in the minor version number being bumped, while deleted functions, changed function call syntax etc. will force the major version number to change. Stick to version numbers of the form major.minor (x.y). Our a.out dynamic linker does not handle version numbers of the form x.y.z well. Any version number after the y (ie. the third digit) is totally ignored when comparing shared lib version numbers to decide which library to link with. Given two shared libraries that differ only in the micro revision, ld.so will link with the higher one. Ie: if you link with libfoo.so.3.3.3, the linker only records 3.3 in the headers, and will link with anything starting with libfoo.so.3.(anything >= 3).(highest available). ld.so will always use the highest minor revision. Ie: it will use libc.so.2.2 in preference to libc.so.2.0, even if the program was initially linked with libc.so.2.0. In addition, our ELF dynamic linker does not handle minor version numbers at all. However, one should still specify a major and minor version number as our Makefiles "do the right thing" based on the type of system. For non-port libraries, it is also our policy to change the shared library version number only once between releases. In addition, it is our policy to change the major shared library version number only once between major OS releases. Ie: X.0 to (X+1).0. When you make a change to a system library that requires the version number to be bumped, check the Makefile's commit logs. It is the responsibility of the committer to ensure that the first such change since the release will result in the shared library version number in the Makefile to be updated, and any subsequent changes will not.