diff --git a/en_US.ISO8859-1/articles/contributing/article.sgml b/en_US.ISO8859-1/articles/contributing/article.sgml index a9c7965141..b86deecb84 100644 --- a/en_US.ISO8859-1/articles/contributing/article.sgml +++ b/en_US.ISO8859-1/articles/contributing/article.sgml @@ -1,469 +1,477 @@ + + + + Jordan + Hubbard + Contributed by + + + + Contributing to FreeBSD - Contributed by &a.jkh;. - contributing So you want to contribute something to FreeBSD? That is great! We can always use the help, and FreeBSD is one of those systems that relies on the contributions of its user base in order to survive. Your contributions are not only appreciated, they are vital to FreeBSD's continued growth! Contrary to what some people might also have you believe, you do not need to be a hot-shot programmer or a close personal friend of the FreeBSD core team in order to have your contributions accepted. The FreeBSD Project's development is done by a large and growing number of international contributors whose ages and areas of technical expertise vary greatly, and there is always more work to be done than there are people available to do it. Since the FreeBSD project is responsible for an entire operating system environment (and its installation) rather than just a kernel or a few scattered utilities, our TODO list also spans a very wide range of tasks, from documentation, beta testing and presentation to highly specialized types of kernel development. No matter what your skill level, there is almost certainly something you can do to help the project! Commercial entities engaged in FreeBSD-related enterprises are also encouraged to contact us. Need a special extension to make your product work? You will find us receptive to your requests, given that they are not too outlandish. Working on a value-added product? Please let us know! We may be able to work cooperatively on some aspect of it. The free software world is challenging a lot of existing assumptions about how software is developed, sold, and maintained throughout its life cycle, and we urge you to at least give it a second look. What is Needed The following list of tasks and sub-projects represents something of an amalgam of the various core team TODO lists and user requests we have collected over the last couple of months. Where possible, tasks have been ranked by degree of urgency. If you are interested in working on one of the tasks you see here, send mail to the coordinator listed by clicking on their names. If no coordinator has been appointed, maybe you would like to volunteer? Ongoing tasks Most of the tasks listed in the previous sections require either a considerable investment of time or an in-depth knowledge of the FreeBSD kernel (or both). However, there are also many useful tasks which are suitable for "weekend hackers", or people without programming skills. If you run FreeBSD-current and have a good Internet connection, there is a machine current.FreeBSD.org which builds a full release once a day — every now and again, try and install the latest release from it and report any failures in the process. Read the freebsd-bugs mailing list. There might be a problem you can comment constructively on or with patches you can test. Or you could even try to fix one of the problems yourself. Read through the FAQ and Handbook periodically. If anything is badly explained, out of date or even just completely wrong, let us know. Even better, send us a fix (SGML is not difficult to learn, but there is no objection to ASCII submissions). Help translate FreeBSD documentation into your native language (if not already available) — just send an email to &a.doc; asking if anyone is working on it. Note that you are not committing yourself to translating every single FreeBSD document by doing this — in fact, the documentation most in need of translation is the installation instructions. Read the freebsd-questions mailing list and &ng.misc occasionally (or even regularly). It can be very satisfying to share your expertise and help people solve their problems; sometimes you may even learn something new yourself! These forums can also be a source of ideas for things to work on. If you know of any bug fixes which have been successfully applied to -current but have not been merged into -stable after a decent interval (normally a couple of weeks), send the committer a polite reminder. Move contributed software to src/contrib in the source tree. Make sure code in src/contrib is up to date. Build the source tree (or just part of it) with extra warnings enabled and clean up the warnings. Fix warnings for ports which do deprecated things like using gets() or including malloc.h. If you have contributed any ports, send your patches back to the original author (this will make your life easier when they bring out the next version) Suggest further tasks for this list! Work through the PR database problem reports database The FreeBSD PR list shows all the current active problem reports and requests for enhancement that have been submitted by FreeBSD users. Look through the open PRs, and see if anything there takes your interest. Some of these might be very simple tasks, that just need an extra pair of eyes to look over them and confirm that the fix in the PR is a good one. Others might be much more complex. Start with the PRs that have not been assigned to anyone else, but if one them is assigned to someone else, but it looks like something you can handle, email the person it is assigned to and ask if you can work on it—they might already have a patch ready to be tested, or further ideas that you can discuss with them. How to Contribute Contributions to the system generally fall into one or more of the following 6 categories: Bug reports and general commentary An idea or suggestion of general technical interest should be mailed to the &a.hackers;. Likewise, people with an interest in such things (and a tolerance for a high volume of mail!) may subscribe to the hackers mailing list by sending mail to &a.majordomo;. See mailing lists for more information about this and other mailing lists. If you find a bug or are submitting a specific change, please report it using the &man.send-pr.1; program or its WEB-based equivalent. Try to fill-in each field of the bug report. Unless they exceed 65KB, include any patches directly in the report. When including patches, do not use cut-and-paste because cut-and-paste turns tabs into spaces and makes them unusable. Consider compressing patches and using &man.uuencode.1; if they exceed 20KB. Upload very large submissions to ftp.FreeBSD.org:/pub/FreeBSD/incoming/. After filing a report, you should receive confirmation along with a tracking number. Keep this tracking number so that you can update us with details about the problem by sending mail to bug-followup@FreeBSD.org. Use the number as the message subject, e.g. "Re: kern/3377". Additional information for any bug report should be submitted this way. If you do not receive confirmation in a timely fashion (3 days to a week, depending on your email connection) or are, for some reason, unable to use the &man.send-pr.1; command, then you may ask someone to file it for you by sending mail to the &a.bugs;. Changes to the documentation documentation submissions Changes to the documentation are overseen by the &a.doc;. Send submissions and changes (even small ones are welcome!) using send-pr as described in Bug Reports and General Commentary. Changes to existing source code FreeBSD-current An addition or change to the existing source code is a somewhat trickier affair and depends a lot on how far out of date you are with the current state of the core FreeBSD development. There is a special on-going release of FreeBSD known as FreeBSD-current which is made available in a variety of ways for the convenience of developers working actively on the system. See Staying current with FreeBSD for more information about getting and using FreeBSD-current. Working from older sources unfortunately means that your changes may sometimes be too obsolete or too divergent for easy re-integration into FreeBSD. Chances of this can be minimized somewhat by subscribing to the &a.announce; and the &a.current; lists, where discussions on the current state of the system take place. Assuming that you can manage to secure fairly up-to-date sources to base your changes on, the next step is to produce a set of diffs to send to the FreeBSD maintainers. This is done with the &man.diff.1; command, with the context diff form being preferred. For example: diff &prompt.user; diff -c oldfile newfile or &prompt.user; diff -c -r olddir newdir would generate such a set of context diffs for the given source file or directory hierarchy. See the man page for &man.diff.1; for more details. Once you have a set of diffs (which you may test with the &man.patch.1; command), you should submit them for inclusion with FreeBSD. Use the &man.send-pr.1; program as described in Bug Reports and General Commentary. Do not just send the diffs to the &a.hackers; or they will get lost! We greatly appreciate your submission (this is a volunteer project!); because we are busy, we may not be able to address it immediately, but it will remain in the pr database until we do. uuencode If you feel it appropriate (e.g. you have added, deleted, or renamed files), bundle your changes into a tar file and run the &man.uuencode.1; program on it. Shar archives are also welcome. If your change is of a potentially sensitive nature, e.g. you are unsure of copyright issues governing its further distribution or you are simply not ready to release it without a tighter review first, then you should send it to &a.core; directly rather than submitting it with &man.send-pr.1;. The core mailing list reaches a much smaller group of people who do much of the day-to-day work on FreeBSD. Note that this group is also very busy and so you should only send mail to them where it is truly necessary. Please refer to &man.intro.9; and &man.style.9; style for some information on coding style. We would appreciate it if you were at least aware of this information before submitting code. New code or major value-added packages In the case of a significant contribution of a large body work, or the addition of an important new feature to FreeBSD, it becomes almost always necessary to either send changes as uuencoded tar files or upload them to a web or FTP site for other people to access. If you do not have access to a web or FTP site, ask on an appropriate FreeBSD mailing list for someone to host the changes for you. When working with large amounts of code, the touchy subject of copyrights also invariably comes up. Acceptable copyrights for code included in FreeBSD are: BSD copyright The BSD copyright. This copyright is most preferred due to its no strings attached nature and general attractiveness to commercial enterprises. Far from discouraging such commercial use, the FreeBSD Project actively encourages such participation by commercial interests who might eventually be inclined to invest something of their own into FreeBSD. GPLGNU General Public License GNU General Public License The GNU General Public License, or GPL. This license is not quite as popular with us due to the amount of extra effort demanded of anyone using the code for commercial purposes, but given the sheer quantity of GPL'd code we currently require (compiler, assembler, text formatter, etc) it would be silly to refuse additional contributions under this license. Code under the GPL also goes into a different part of the tree, that being /sys/gnu or /usr/src/gnu, and is therefore easily identifiable to anyone for whom the GPL presents a problem. Contributions coming under any other type of copyright must be carefully reviewed before their inclusion into FreeBSD will be considered. Contributions for which particularly restrictive commercial copyrights apply are generally rejected, though the authors are always encouraged to make such changes available through their own channels. To place a BSD-style copyright on your work, include the following text at the very beginning of every source code file you wish to protect, replacing the text between the %% with the appropriate information. Copyright (c) %%proper_years_here%% %%your_name_here%%, %%your_state%% %%your_zip%%. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer as the first lines of this file unmodified. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY %%your_name_here%% ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL %%your_name_here%% BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. $Id$ For your convenience, a copy of this text can be found in /usr/share/examples/etc/bsd-style-copyright. Money, Hardware or Internet access We are always very happy to accept donations to further the cause of the FreeBSD Project and, in a volunteer effort like ours, a little can go a long way! Donations of hardware are also very important to expanding our list of supported peripherals since we generally lack the funds to buy such items ourselves. <anchor id="donations">Donating funds The FreeBSD Foundation is a non-profit, tax-exempt foundation established to further the goals of the FreeBSD Project. As a 501(c)3 entity, the Foundation is generally exempt from US federal income tax as well as Colorado State income tax. Donations to a tax-exempt entity are often deductible from taxable federal income. Donations may be sent in check form to:
The FreeBSD Foundation 7321 Brockway Dr. Boulder, CO 80303 USA
The Foundation is not yet able to accept other forms of payment such as credit cards and PayPal.
More information about the FreeBSD Foundation can be found in The FreeBSD Foundation -- an Introduction. To contact the Foundation by email, write to bod@FreeBSDFoundation.org.
Donating hardware donations Donations of hardware in any of the 3 following categories are also gladly accepted by the FreeBSD Project: General purpose hardware such as disk drives, memory or complete systems should be sent to the FreeBSD, Inc. address listed in the donating funds section. Hardware for which ongoing compliance testing is desired. We are currently trying to put together a testing lab of all components that FreeBSD supports so that proper regression testing can be done with each new release. We are still lacking many important pieces (network cards, motherboards, etc) and if you would like to make such a donation, please contact &a.dg; for information on which items are still required. Hardware currently unsupported by FreeBSD for which you would like to see such support added. Please contact the &a.core; before sending such items as we will need to find a developer willing to take on the task before we can accept delivery of new hardware. Donating Internet access We can always use new mirror sites for FTP, WWW or cvsup. If you would like to be such a mirror, please contact the FreeBSD project administrators hubs@FreeBSD.org for more information.
diff --git a/en_US.ISO8859-1/books/handbook/advanced-networking/chapter.sgml b/en_US.ISO8859-1/books/handbook/advanced-networking/chapter.sgml index 0c0f737bf5..54dcb8dc88 100644 --- a/en_US.ISO8859-1/books/handbook/advanced-networking/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/advanced-networking/chapter.sgml @@ -1,4540 +1,4541 @@ Advanced Networking Synopsis The following chapter will cover some of the more frequently used network services on Unix systems. This, of course, will pertain to configuring said services on your FreeBSD system. Coranth Gryphon - Contributed + Contributed by Gateways and Routes routing gateway subnet For one machine to be able to find another, there must be a mechanism in place to describe how to get from one to the other. This is called Routing. A route is a defined pair of addresses: a destination and a gateway. The pair indicates that if you are trying to get to this destination, send along through this gateway. There are three types of destinations: individual hosts, subnets, and default. The default route is used if none of the other routes apply. We will talk a little bit more about default routes later on. There are also three types of gateways: individual hosts, interfaces (also called links), and Ethernet hardware addresses. An example To illustrate different aspects of routing, we will use the following example which is the output of the command netstat -r: Destination Gateway Flags Refs Use Netif Expire default outside-gw UGSc 37 418 ppp0 localhost localhost UH 0 181 lo0 test0 0:e0:b5:36:cf:4f UHLW 5 63288 ed0 77 10.20.30.255 link#1 UHLW 1 2421 foobar.com link#1 UC 0 0 host1 0:e0:a8:37:8:1e UHLW 3 4601 lo0 host2 0:e0:a8:37:8:1e UHLW 0 5 lo0 => host2.foobar.com link#1 UC 0 0 224 link#1 UC 0 0 default route The first two lines specify the default route (which we will cover in the next section) and the localhost route. loopback device The interface (Netif column) that it specifies to use for localhost is lo0, also known as the loopback device. This says to keep all traffic for this destination internal, rather than sending it out over the LAN, since it will only end up back where it started anyway. Ethernet MAC address The next thing that stands out are the 0:e0:... addresses. These are Ethernet hardware addresses. FreeBSD will automatically identify any hosts (test0 in the example) on the local Ethernet and add a route for that host, directly to it over the Ethernet interface, ed0. There is also a timeout (Expire column) associated with this type of route, which is used if we fail to hear from the host in a specific amount of time. In this case the route will be automatically deleted. These hosts are identified using a mechanism known as RIP (Routing Information Protocol), which figures out routes to local hosts based upon a shortest path determination. subnet FreeBSD will also add subnet routes for the local subnet (10.20.30.255 is the broadcast address for the subnet 10.20.30, and foobar.com is the domain name associated with that subnet). The designation link#1 refers to the first Ethernet card in the machine. You will notice no additional interface is specified for those. Both of these groups (local network hosts and local subnets) have their routes automatically configured by a daemon called routed. If this is not run, then only routes which are statically defined (ie. entered explicitly) will exist. The host1 line refers to our host, which it knows by Ethernet address. Since we are the sending host, FreeBSD knows to use the loopback interface (lo0) rather than sending it out over the Ethernet interface. The two host2 lines are an example of what happens when we use an &man.ifconfig.8; alias (see the section of Ethernet for reasons why we would do this). The => symbol after the lo0 interface says that not only are we using the loopback (since this is address also refers to the local host), but specifically it is an alias. Such routes only show up on the host that supports the alias; all other hosts on the local network will simply have a link#1 line for such. The final line (destination subnet 224) deals with MultiCasting, which will be covered in a another section. The other column that we should talk about are the Flags. Each route has different attributes that are described in the column. Below is a short table of some of these flags and their meanings: U Up: The route is active. H Host: The route destination is a single host. G Gateway: Send anything for this destination on to this remote system, which will figure out from there where to send it. S Static: This route was configured manually, not automatically generated by the system. C Clone: Generates a new route based upon this route for machines we connect to. This type of route is normally used for local networks. W WasCloned: Indicated a route that was auto-configured based upon a local area network (Clone) route. L Link: Route involves references to Ethernet hardware. Default routes default route When the local system needs to make a connection to remote host, it checks the routing table to determine if a known path exists. If the remote host falls into a subnet that we know how to reach (Cloned routes), then the system checks to see if it can connect along that interface. If all known paths fail, the system has one last option: the default route. This route is a special type of gateway route (usually the only one present in the system), and is always marked with a c in the flags field. For hosts on a local area network, this gateway is set to whatever machine has a direct connection to the outside world (whether via PPP link, or your hardware device attached to a dedicated data line). If you are configuring the default route for a machine which itself is functioning as the gateway to the outside world, then the default route will be the gateway machine at your Internet Service Provider's (ISP) site. Let us look at an example of default routes. This is a common configuration: [Local2] <--ether--> [Local1] <--PPP--> [ISP-Serv] <--ether--> [T1-GW] The hosts Local1 and Local2 are at your site, with the formed being your PPP connection to your ISP's Terminal Server. Your ISP has a local network at their site, which has, among other things, the server where you connect and a hardware device (T1-GW) attached to the ISP's Internet feed. The default routes for each of your machines will be: host default gateway interface Local2 Local1 Ethernet Local1 T1-GW PPP A common question is Why (or how) would we set the T1-GW to be the default gateway for Local1, rather than the ISP server it is connected to?. Remember, since the PPP interface is using an address on the ISP's local network for your side of the connection, routes for any other machines on the ISP's local network will be automatically generated. Hence, you will already know how to reach the T1-GW machine, so there is no need for the intermediate step of sending traffic to the ISP server. As a final note, it is common to use the address ...1 as the gateway address for your local network. So (using the same example), if your local class-C address space was 10.20.30 and your ISP was using 10.9.9 then the default routes would be: Local2 (10.20.30.2) --> Local1 (10.20.30.1) Local1 (10.20.30.1, 10.9.9.30) --> T1-GW (10.9.9.1) Dual homed hosts dual homed hosts There is one other type of configuration that we should cover, and that is a host that sits on two different networks. Technically, any machine functioning as a gateway (in the example above, using a PPP connection) counts as a dual-homed host. But the term is really only used to refer to a machine that sits on two local-area networks. In one case, the machine as two Ethernet cards, each having an address on the separate subnets. Alternately, the machine may only have one Ethernet card, and be using &man.ifconfig.8; aliasing. The former is used if two physically separate Ethernet networks are in use, the latter if there is one physical network segment, but two logically separate subnets. Either way, routing tables are set up so that each subnet knows that this machine is the defined gateway (inbound route) to the other subnet. This configuration, with the machine acting as a Bridge between the two subnets, is often used when we need to implement packet filtering or firewall security in either or both directions. Routing propagation routing propogation We have already talked about how we define our routes to the outside world, but not about how the outside world finds us. We already know that routing tables can be set up so that all traffic for a particular address space (in our examples, a class-C subnet) can be sent to a particular host on that network, which will forward the packets inbound. When you get an address space assigned to your site, your service provider will set up their routing tables so that all traffic for your subnet will be sent down your PPP link to your site. But how do sites across the country know to send to your ISP? There is a system (much like the distributed DNS information) that keeps track of all assigned address-spaces, and defines their point of connection to the Internet Backbone. The Backbone are the main trunk lines that carry Internet traffic across the country, and around the world. Each backbone machine has a copy of a master set of tables, which direct traffic for a particular network to a specific backbone carrier, and from there down the chain of service providers until it reaches your network. It is the task of your service provider to advertise to the backbone sites that they are the point of connection (and thus the path inward) for your site. This is known as route propagation. Troubleshooting traceroute Sometimes, there is a problem with routing propagation, and some sites are unable to connect to you. Perhaps the most useful command for trying to figure out where a routing is breaking down is the &man.traceroute.8; command. It is equally useful if you cannot seem to make a connection to a remote machine (i.e. &man.ping.8; fails). The &man.traceroute.8; command is run with the name of the remote host you are trying to connect to. It will show the gateway hosts along the path of the attempt, eventually either reaching the target host, or terminating because of a lack of connection. For more information, see the manual page for &man.traceroute.8;. Steve Peterson - Written + Written by Bridging Introduction IP subnet bridge It is sometimes useful to divide one physical network (i.e., an Ethernet segment) into two separate network segments, without having to create IP subnets and use a router to connect the segments together. A device that connects two networks together in this fashion is called a bridge. and a FreeBSD system with two network interface cards can act as a bridge. The bridge works by learning the MAC layer addresses (i.e., Ethernet addresses) of the devices on each of its network interfaces. It forwards traffic between two networks only when its source and destination are on different networks. In many respects, a bridge is like an Ethernet switch with very few ports. Situations where bridging is appropriate There are two common situations in which a bridge is used today. High traffic on a segment Situation one is where your physical network segment is overloaded with traffic, but you don't want for whatever reason to subnet the network and interconnect the subnets with a router. Let's consider an example of a newspaper where the Editorial and Production departments are on the same subnetwork. The Editorial users all use server A for file service, and the Production users are on server B. An Ethernet is used to connect all users together, and high loads on the network are slowing things down. If the Editorial users could be segregated on one network segment and the Production users on another, the two network segments could be connected with a bridge. Only the network traffic destined for interfaces on the "other" side of the bridge would be sent to the other network, reducing congestion on each network segment. Filtering/traffic shaping firewall firewall IP Masquerading The second common situation is where firewall functionality is needed without IP Masquerading (NAT). An example is a small company that is connected via DSL or ISDN to their ISP. They have a 13 address global IP allocation for their ISP and have 10 PCs on their network. In this situation, using a router-based firewall is difficult because of subnetting issues. router DSL ISDN A bridge-based firewall can be configured and dropped into the path just downstream of their DSL/ISDN router without any IP numbering issues. Configuring a bridge Network interface card selection A bridge requires at least two network cards to function. Unfortunately, not all network interface cards as of FreeBSD 4.0 support bridging. Read &man.bridge.4; for details on the cards that are supported. Install and test the two network cards before continuing. Kernel configuration changes kernel configuration kernel configuration options BRIDGE To enable kernel support for bridging, add the options BRIDGE statement to your kernel configuration file, and rebuild your kernel. Firewall support firewall If you are planning to use the bridge as a firewall, you will need to add the IPFIREWALL option as well. Read for general information on configuring the bridge as a firewall. If you need to allow non-IP packets (such as ARP) to flow through the bridge, there is an undocumented firewall option that must be set. This option is IPFIREWALL_DEFAULT_TO_ACCEPT. Note that this changes the default rule for the firewall to accept any packet. Make sure you know how this changes the meaning of your ruleset before you set it. Traffic shaping support If you want to use the bridge as a traffic shaper, you will need to add the DUMMYNET option to your kernel configuration. Read &man.dummynet.4; for further information. Enabling the bridge Add the line net.link.ether.bridge=1 to /etc/sysctl.conf to enable the bridge at runtime. If you want the bridged packets to be filtered by &man.ipfw.8;, you should also add net.link.ether.bridge_ipfw=1 as well. Performance My bridge/firewall is a Pentium 90 with one 3Com 3C900B and one 3C905B. The protected side of the network runs at 10mbps half duplex and the connection between the bridge and my router (a Cisco 675) runs at 100mbps full duplex. With no filtering enabled, I've found that the bridge adds about 0.4 milliseconds of latency to pings from the protected 10mbps network to the Cisco 675. Other information If you want to be able to telnet into the bridge from the network, it is OK to assign one of the network cards an IP address. The consensus is that assigning both cards an address is a bad idea. If you have multiple bridges on your network, there cannot be more than one path between any two workstations. Technically, this means that there is no support for spanning tree link management. Bill Swingle - Written + Written by NFS NFS Among the many different file systems that FreeBSD supports is a very unique type, the Network File System or NFS. NFS allows you to share directories and files on one machine with one or more other machines via the network they are attached to. Using NFS, users and programs can access files on remote systems as if they were local files. NFS has several benefits: Local workstations don't need as much disk space because commonly used data can be stored on a single machine and still remain accessible to everyone on the network. There is no need for users to have unique home directories on every machine on your network. Once they have an established directory that is available via NFS it can be accessed from anywhere. Storage devices such as floppies and CDROM drives can be used by other machines on the network eliminating the need for extra hardware. How It Works NFS is composed of two sides – a client side and a server side. Think of it as a want/have relationship. The client wants the data that the server side has. The server shares its data with the client. In order for this system to function properly a few processes have to be configured and running properly. The server has to be running the following daemons: NFS server portmap mountd nfsd nfsd - The NFS Daemon which services requests from NFS clients. mountd - The NFS Mount Daemon which actually carries out requests that &man.nfsd.8; passes on to it. portmap - The portmapper daemon which allows NFS clients to find out which port the NFS server is using. The client side only needs to run a single daemon: NFS client nfsiod nfsiod - The NFS async I/O Daemon which services requests from its NFS server. Configuring NFS NFS configuration Luckily for us, on a FreeBSD system this setup is a snap. The processes that need to be running can all be run at boot time with a few modifications to your /etc/rc.conf file. On the NFS server make sure you have: portmap_enable="YES" nfs_server_enable="YES" nfs_server_flags="-u -t -n 4" mountd_flags="-r" mountd is automatically run whenever the NFS server is enabled. The and flags to nfsd tell it to serve UDP and TCP clients. The flag tells nfsd to start 4 copies of itself. On the client, make sure you have: nfs_client_enable="YES" nfs_client_flags="-n 4" Like nfsd, the tells nfsiod to start 4 copies of itself. The last configuration step requires that you create a file called /etc/exports. The exports file specifies which file systems on your server will be shared (a.k.a., exported) and with what clients they will be shared. Each line in the file specifies a file system to be shared. There are a handful of options that can be used in this file but only a few will be mentioned here. You can find out about the rest in the &man.exports.5; man page. Here are a few example /etc/exports entries: NFS exporting filesystems The following line exports /cdrom to three silly machines that have the same domain name as the server (hence the lack of a domain name for each) or have entries in your /etc/hosts file. The flag makes the shared file system read-only. With this flag, the remote system will not be able to make any changes to the shared file system. /cdrom -ro moe larry curly The following line exports /home to three hosts by IP address. This is a useful setup if you have a private network but do not have DNS running. The flag allows all the directories below the specified file system to be exported as well. /home -alldirs 10.0.0.2 10.0.0.3 10.0.0.4 The following line exports /a to two machines that have different domain names than the server. The flag allows the root user on the remote system to write to the shared file system as root. Without the -maproot=0 flag even if someone has root access on the remote system they won't be able to modify files on the shared file system. /a -maproot=0 host.domain.com box.example.com In order for a client to share an exported file system it must have permission to do so. Make sure your client is listed in your /etc/exports file. It's important to remember that you must restart mountd whenever you modify /etc/exports so that your changes take effect. This can be accomplished by sending the hangup signal to the mountd process : &prompt.root; kill -HUP `cat /var/run/mountd.pid` Now that you have made all these changes you can just reboot and let FreeBSD start everything for you at boot time or you can run the following commands as root: On the NFS server: &prompt.root; portmap &prompt.root; nfsd -u -t -n 4 &prompt.root; mountd -r On the NFS client: &prompt.root; nfsiod -n 4 Now you should be ready to actually mount a remote file system. This can be done one of two ways. In these examples the server's name will be server and the client's name will be client. If you just want to temporarily mount a remote file system or just want to test out your config you can run a command like this as root on the client: NFS mounting filesystems &prompt.root; mount server:/home /mnt This will mount /home on the server on /mnt on the client. If everything is setup correctly you should be able to go into /mnt on the client and see all the files that are on the server. If you want to permanently (each time you reboot) mount a remote file system you need to add it to your /etc/fstab file. Here is an example line: server:/home /mnt nfs rw 0 0 Read the &man.fstab.5; man page for more options. Practical Uses There are many very cool uses for NFS. Some of the more common ones are listed below. NFS uses Have several machines on a network and share a CDROM or floppy drive among them. This is cheaper and often more convenient. With so many machines on a network, it gets old having your personal files strewn all over the place. You can have a central NFS server that houses all user home directories and shares them with the rest of the machines on the LAN, so no matter where you log in you will have the same home directory. When you get to reinstalling FreeBSD on one of your machines, NFS is the way to go! Just pop your distribution CDROM into your file server and away you go! Have a common /usr/ports/distfiles directory that all your machines share. That way, when you go to install a port that you've already installed on a different machine, you do not have to download the source all over again! John Lind - Contributed + Contributed by Problems integrating with other systems Certain Ethernet adapters for ISA PC systems have limitations which can lead to serious network problems, particularly with NFS. This difficulty is not specific to FreeBSD, but FreeBSD systems are affected by it. The problem nearly always occurs when (FreeBSD) PC systems are networked with high-performance workstations, such as those made by Silicon Graphics, Inc., and Sun Microsystems, Inc. The NFS mount will work fine, and some operations may succeed, but suddenly the server will seem to become unresponsive to the client, even though requests to and from other systems continue to be processed. This happens to the client system, whether the client is the FreeBSD system or the workstation. On many systems, there is no way to shut down the client gracefully once this problem has manifested itself. The only solution is often to reset the client, because the NFS situation cannot be resolved. Though the correct solution is to get a higher performance and capacity Ethernet adapter for the FreeBSD system, there is a simple workaround that will allow satisfactory operation. If the FreeBSD system is the server, include the option on the mount from the client. If the FreeBSD system is the client, then mount the NFS file system with the option . These options may be specified using the fourth field of the fstab entry on the client for automatic mounts, or by using the parameter of the mount command for manual mounts. It should be noted that there is a different problem, sometimes mistaken for this one, when the NFS servers and clients are on different networks. If that is the case, make certain that your routers are routing the necessary UDP information, or you will not get anywhere, no matter what else you are doing. In the following examples, fastws is the host (interface) name of a high-performance workstation, and freebox is the host (interface) name of a FreeBSD system with a lower-performance Ethernet adapter. Also, /sharedfs will be the exported NFS filesystem (see man exports), and /project will be the mount point on the client for the exported file system. In all cases, note that additional options, such as or and may be desirable in your application. Examples for the FreeBSD system (freebox) as the client: in /etc/fstab on freebox: fastws:/sharedfs /project nfs rw,-r=1024 0 0 As a manual mount command on freebox: &prompt.root; mount -t nfs -o -r=1024 fastws:/sharedfs /project Examples for the FreeBSD system as the server: in /etc/fstab on fastws: freebox:/sharedfs /project nfs rw,-w=1024 0 0 As a manual mount command on fastws: &prompt.root; mount -t nfs -o -w=1024 freebox:/sharedfs /project Nearly any 16-bit Ethernet adapter will allow operation without the above restrictions on the read or write size. For anyone who cares, here is what happens when the failure occurs, which also explains why it is unrecoverable. NFS typically works with a block size of 8k (though it may do fragments of smaller sizes). Since the maximum Ethernet packet is around 1500 bytes, the NFS block gets split into multiple Ethernet packets, even though it is still a single unit to the upper-level code, and must be received, assembled, and acknowledged as a unit. The high-performance workstations can pump out the packets which comprise the NFS unit one right after the other, just as close together as the standard allows. On the smaller, lower capacity cards, the later packets overrun the earlier packets of the same unit before they can be transferred to the host and the unit as a whole cannot be reconstructed or acknowledged. As a result, the workstation will time out and try again, but it will try again with the entire 8K unit, and the process will be repeated, ad infinitum. By keeping the unit size below the Ethernet packet size limitation, we ensure that any complete Ethernet packet received can be acknowledged individually, avoiding the deadlock situation. Overruns may still occur when a high-performance workstations is slamming data out to a PC system, but with the better cards, such overruns are not guaranteed on NFS units. When an overrun occurs, the units affected will be retransmitted, and there will be a fair chance that they will be received, assembled, and acknowledged. Martin Renters - Contributed + Contributed by Diskless Operation diskless workstation netboot.com/netboot.rom allow you to boot your FreeBSD machine over the network and run FreeBSD without having a disk on your client. Under 2.0 it is now possible to have local swap. Swapping over NFS is also still supported. Supported Ethernet cards include: Western Digital/SMC 8003, 8013, 8216 and compatibles; NE1000/NE2000 and compatibles (requires recompile) Setup Instructions Find a machine that will be your server. This machine will require enough disk space to hold the FreeBSD 2.0 binaries and have bootp, tftp and NFS services available. Tested machines: HP-UX HP9000/8xx running HP-UX 9.04 or later (pre 9.04 doesn't work) Solaris Sun/Solaris 2.3. (you may need to get bootp) Set up a bootp server to provide the client with IP address, gateway, netmask. diskless:\ :ht=ether:\ :ha=0000c01f848a:\ :sm=255.255.255.0:\ :hn:\ :ds=192.1.2.3:\ :ip=192.1.2.4:\ :gw=192.1.2.5:\ :vm=rfc1048: TFTP bootp Set up a TFTP server (on same machine as bootp server) to provide booting information to client. The name of this file is cfg.X.X.X.X (or /tftpboot/cfg.X.X.X.X, it will try both) where X.X.X.X is the IP address of the client. The contents of this file can be any valid netboot commands. Under 2.0, netboot has the following commands: help print help list ip print/set client's IP address server print/set bootp/tftp server address netmask print/set netmask hostname name print/set hostname kernel print/set kernel name rootfs print/set root filesystem swapfs print/set swap filesystem swapsize set diskless swapsize in KBytes diskboot boot from disk autoboot continue boot process trans | turn transceiver on|off flags set boot flags A typical completely diskless config file might contain: rootfs 192.1.2.3:/rootfs/myclient swapfs 192.1.2.3:/swapfs swapsize 20000 hostname myclient.mydomain A config file for a machine with local swap might contain: rootfs 192.1.2.3:/rootfs/myclient hostname myclient.mydomain Ensure that your NFS server has exported the root (and swap if applicable) filesystems to your client, and that the client has root access to these filesystems A typical /etc/exports file on FreeBSD might look like: /rootfs/myclient -maproot=0:0 myclient.mydomain /swapfs -maproot=0:0 myclient.mydomain And on HP-UX: /rootfs/myclient -root=myclient.mydomain /swapfs -root=myclient.mydomain NFS swapping over If you are swapping over NFS (completely diskless configuration) create a swap file for your client using dd. If your swapfs command has the arguments /swapfs and the size 20000 as in the example above, the swapfile for myclient will be called /swapfs/swap.X.X.X.X where X.X.X.X is the client's IP address, e.g.: &prompt.root; dd if=/dev/zero of=/swapfs/swap.192.1.2.4 bs=1k count=20000 Also, the client's swap space might contain sensitive information once swapping starts, so make sure to restrict read and write access to this file to prevent unauthorized access: &prompt.root; chmod 0600 /swapfs/swap.192.1.2.4 Unpack the root filesystem in the directory the client will use for its root filesystem (/rootfs/myclient in the example above). On HP-UX systems: The server should be running HP-UX 9.04 or later for HP9000/800 series machines. Prior versions do not allow the creation of device files over NFS. When extracting /dev in /rootfs/myclient, beware that some systems (HPUX) will not create device files that FreeBSD is happy with. You may have to go to single user mode on the first bootup (press control-c during the bootup phase), cd /dev and do a sh ./MAKEDEV all from the client to fix this. Run netboot.com on the client or make an EPROM from the netboot.rom file Using Shared <filename>/</filename> and <filename>/usr</filename> filesystems Although this is not an officially sanctioned or supported way of doing this, some people report that it works quite well. If anyone has any suggestions on how to do this cleanly, please tell &a.doc;. Compiling netboot for specific setups Netboot can be compiled to support NE1000/2000 cards by changing the configuration in /sys/i386/boot/netboot/Makefile. See the comments at the top of this file. ISDN A good resource for information on ISDN technology and hardware is Dan Kegel's ISDN Page. A quick simple road map to ISDN follows: If you live in Europe you might want to investigate the ISDN card section. If you are planning to use ISDN primarily to connect to the Internet with an Internet Provider on a dial-up non-dedicated basis, you might look into Terminal Adapters. This will give you the most flexibility, with the fewest problems, if you change providers. If you are connecting two LANs together, or connecting to the Internet with a dedicated ISDN connection, you might consider the stand alone router/bridge option. Cost is a significant factor in determining what solution you will choose. The following options are listed from least expensive to most expensive. Hellmuth Michaelis - Contributed + Contributed by ISDN Cards ISDN cards This section is really only relevant to ISDN users in countries where the DSS1/Q.931 ISDN standard is supported. Some growing number of PC ISDN cards are supported under FreeBSD 2.2.X and up by the isdn4bsd driver package. It is still under development but the reports show that it is successfully used all over Europe. isdn4bsd The latest isdn4bsd version is available from ftp://isdn4bsd@ftp.consol.de/pub/, the main isdn4bsd FTP site (you have to log in as user isdn4bsd , give your mail address as the password and change to the pub directory. Anonymous FTP as user ftp or anonymous will not give the desired result). Isdn4bsd allows you to connect to other ISDN routers using either IP over raw HDLC or by using synchronous PPP. A telephone answering machine application is also available. Many ISDN PC cards are supported, mostly the ones with a Siemens ISDN chipset (ISAC/HSCX), support for other chipsets (from Motorola, Cologne Chip Designs) is currently under development. For an up-to-date list of supported cards, please have a look at the README file. In case you are interested in adding support for a different ISDN protocol, a currently unsupported ISDN PC card or otherwise enhancing isdn4bsd, please get in touch with hm@kts.org. A majordomo maintained mailing list is available. To join the list, send mail to &a.majordomo; and specify: subscribe freebsd-isdn in the body of your message. ISDN Terminal Adapters Terminal adapters(TA), are to ISDN what modems are to regular phone lines. modem Most TA's use the standard hayes modem AT command set, and can be used as a drop in replacement for a modem. A TA will operate basically the same as a modem except connection and throughput speeds will be much faster than your old modem. You will need to configure PPP exactly the same as for a modem setup. Make sure you set your serial speed as high as possible. PPP The main advantage of using a TA to connect to an Internet Provider is that you can do Dynamic PPP. As IP address space becomes more and more scarce, most providers are not willing to provide you with a static IP anymore. Most stand-alone routers are not able to accommodate dynamic IP allocation. TA's completely rely on the PPP daemon that you are running for their features and stability of connection. This allows you to upgrade easily from using a modem to ISDN on a FreeBSD machine, if you already have PPP setup. However, at the same time any problems you experienced with the PPP program and are going to persist. If you want maximum stability, use the kernel PPP option, not the user-land iijPPP. The following TA's are know to work with FreeBSD. Motorola BitSurfer and Bitsurfer Pro Adtran Most other TA's will probably work as well, TA vendors try to make sure their product can accept most of the standard modem AT command set. The real problem with external TA's is like modems you need a good serial card in your computer. You should read the FreeBSD Serial Hardware tutorial for a detailed understanding of serial devices, and the differences between asynchronous and synchronous serial ports. A TA running off a standard PC serial port (asynchronous) limits you to 115.2Kbs, even though you have a 128Kbs connection. To fully utilize the 128Kbs that ISDN is capable of, you must move the TA to a synchronous serial card. Do not be fooled into buying an internal TA and thinking you have avoided the synchronous/asynchronous issue. Internal TA's simply have a standard PC serial port chip built into them. All this will do, is save you having to buy another serial cable, and find another empty electrical socket. A synchronous card with a TA is at least as fast as a stand-alone router, and with a simple 386 FreeBSD box driving it, probably more flexible. The choice of sync/TA v.s. stand-alone router is largely a religious issue. There has been some discussion of this in the mailing lists. I suggest you search the archives for the complete discussion. Stand-alone ISDN Bridges/Routers ISDN stand-alone bridges/routers ISDN bridges or routers are not at all specific to FreeBSD or any other operating system. For a more complete description of routing and bridging technology, please refer to a Networking reference book. In the context of this page, the terms router and bridge will be used interchangeably. As the cost of low end ISDN routers/bridges comes down, it will likely become a more and more popular choice. An ISDN router is a small box that plugs directly into your local Ethernet network(or card), and manages its own connection to the other bridge/router. It has all the software to do PPP and other protocols built in. A router will allow you much faster throughput that a standard TA, since it will be using a full synchronous ISDN connection. The main problem with ISDN routers and bridges is that interoperability between manufacturers can still be a problem. If you are planning to connect to an Internet provider, you should discuss your needs with them. If you are planning to connect two LAN segments together, ie: home LAN to the office LAN, this is the simplest lowest maintenance solution. Since you are buying the equipment for both sides of the connection you can be assured that the link will work. For example to connect a home computer or branch office network to a head office network the following setup could be used. Branch office or Home network 10 base 2 Network uses a bus based topology with 10 base 2 Ethernet ("thinnet"). Connect router to network cable with AUI/10BT transceiver, if necessary. ---Sun workstation | ---FreeBSD box | ---Windows 95 (Do not admit to owning it) | Stand-alone router | ISDN BRI line 10 Base 2 Ethernet If your home/branch office is only one computer you can use a twisted pair crossover cable to connect to the stand-alone router directly. Head office or other LAN 10 base T Network uses a star topology with 10 base T Ethernet ("Twisted Pair"). -------Novell Server | H | | ---Sun | | | U ---FreeBSD | | | ---Windows 95 | B | |___---Stand-alone router | ISDN BRI line ISDN Network Diagram One large advantage of most routers/bridges is that they allow you to have 2 separate independent PPP connections to 2 separate sites at the same time. This is not supported on most TA's, except for specific(expensive) models that have two serial ports. Do not confuse this with channel bonding, MPP etc. This can be very useful feature, for example if you have an dedicated ISDN connection at your office and would like to tap into it, but don't want to get another ISDN line at work. A router at the office location can manage a dedicated B channel connection (64Kbs) to the Internet, as well as a use the other B channel for a separate data connection. The second B channel can be used for dial-in, dial-out or dynamically bond(MPP etc.) with the first B channel for more bandwidth. IPX/SPX An Ethernet bridge will also allow you to transmit more than just IP traffic, you can also send IPX/SPX or whatever other protocols you use. Bill Swingle - Written - + Written by + + + Eric Ogren - Enahanced + Enhanced by Udo Erdelhoff - Enhanced NIS/YP What is it? NIS Solaris HP-UX AIX Linux NetBSD OpenBSD NIS, which stands for Network Information Services, was developed by Sun Microsystems to centralize administration of Unix (originally SunOS) systems. It has now essentially become an industry standard; all major Unix systems (Solaris, HP-UX, AIX, Linux, NetBSD, OpenBSD, FreeBSD, etc) support NIS. yellow pagesNIS NIS was formerly known as Yellow Pages, but because of trademark issues, Sun changed the name. The old term (and yp) is still often seen and used. NIS domains It is a RPC-based client/server system that allows a group of machines within an NIS domain to share a common set of configuration files. This permits a system administrator to set up NIS client systems with only minimal configuration data and add, remove or modify configuration data from a single location. Windows NT It is similar to Windows NT's domain system; although the internal implementation of the two aren't at all similar, the basic functionality can be compared. Terms/processes you should know There are several terms and several important user processes that you will come across when attempting to implement NIS on FreeBSD, whether you are trying to create an NIS server or act an NIS client: The NIS domainname. An NIS master server and all of its clients (including its slave servers) have a NIS domainname. Similar to an NT domain name, the NIS domainname does not have anything to do with DNS. portmap portmap. portmap must be running in order to enable RPC (Remote Procedure Call, a network protocol used by NIS). If portmap is not running, it will be impossible to run an NIS server, or to act as an NIS client. ypbind. ypbind “binds” an NIS client to its NIS server. It will take the NIS domainname from the system, and using RPC, connect to the server. ypbind is the core of client-server communication in an NIS environment; if ypbind dies on a client machine, it will not be able to access the NIS server. ypserv. ypserv, which should only be running on NIS servers, is the NIS server process itself. If &man.ypserv.8; dies, then the server will no longer be able to respond to NIS requests (hopefully, there is a slave server to take over for it). There are some implementations of NIS (but not the FreeBSD one), that don't try to reconnect to another server if the server it used before dies. Often, the only thing that helps in this case is to restart the server process (or even the whole server) or the ypbind process on the client. rpc.yppasswdd. rpc.yppasswdd, another process that should only be running on NIS master servers, is a daemon that will allow NIS clients to change their NIS passwords. If this daemon is not running, users will have to login to the NIS master server and change their passwords there. How does it work? There are three types of hosts in an NIS environment; master servers, slave servers, and clients. Servers act as a central repository for host configuration information. Master servers hold the authoritative copy of this information, while slave servers mirror this information for redundancy. Clients rely on the servers to provide this information to them. Information in many files can be shared in this manner. The master.passwd, group, and hosts files are commonly shared via NIS. Whenever a process on a client needs information that would normally be found in these files locally, it makes a query to the server it is bound to, to get this information. Machine types NIS master server A NIS master server. This server, analogous to a Windows NT primary domain controller, maintains the files used by all of the NIS clients. The passwd, group, and other various files used by the NIS clients live on the master server. It is possible for one machine to be an NIS master server for more than one NIS domain. However, this will not be covered in this introduction, which assumes a relatively small-scale NIS environment. NIS slave server NIS slave servers. Similar to NT's backup domain controllers, NIS slave servers maintain copies of the NIS master's data files. NIS slave servers provide the redundancy, which is needed in important environments. They also help to balance the load of the master server: NIS Clients always attach to the NIS server whose response they get first, and this includes slave-server-replies. NIS client NIS clients. NIS clients, like most NT workstations, authenticate against the NIS server (or the NT domain controller in the NT Workstation case) to log on. Using NIS/YP This section will deal with setting up a sample NIS environment. This section assumes that you are running FreeBSD 3.3 or later. The instructions given here will probably work for any version of FreeBSD greater than 3.0, but there are no guarantees that this is true. Planning Let's assume that you are the administrator of a small university lab. This lab, which consists of 15 FreeBSD machines, currently has no centralized point of administration; each machine has its own /etc/passwd and /etc/master.passwd. These files are kept in sync with each other only through manual intervention; currently, when you add a user to the lab, you must run adduser on all 15 machines. Clearly, this has to change, so you have decided to convert the lab to use NIS, using two of the machines as servers. Therefore, the configuration of the lab now looks something like: Machine name IP address Machine role ellington 10.0.0.2 NIS master coltrane 10.0.0.3 NIS slave basie 10.0.0.4 Faculty workstation bird 10.0.0.5 Client machine cli[1-11] 10.0.0.[6-17] Other client machines If you are setting up a NIS scheme for the first time, it is a good idea to think through how you want to go about it. No matter what the size of your network, there are a few decisions that need to be made. Choosing a NIS Domain Name NIS domainname This might not be the domainname that you are used to. It is more accurately called the NIS domainname. When a client broadcasts its requests for info, it includes the name of the NIS domain that it is part of. This is how multiple servers on one network can tell which server should answer which request. Think of the NIS domainname as the name for a group of hosts that are related in some way. Some organizations choose to use their Internet domainname for their NIS domainname. This is not recommended as it can cause confusion when trying to debug network problems. The NIS domainname should be unique within your network and it is helpful if it describes the group of machines it represents. For example, the Art department at Acme Inc. might be in the "acme-art" NIS domain. For this example, assume you have chosen the name test-domain. SunOS However, some operating systems (notably SunOS) use their NIS domain name as their Internet domain name. If one or more machines on your network have this restriction, you must use the Internet domain name as your NIS domain name. Physical Server Requirements There are several things to keep in mind when choosing a machine to use as a NIS server. One of the unfortunate things about NIS is the level of dependency the clients have on the server. If a client cannot contact the server for its NIS domain, very often the machine becomes unusable. The lack of user and group information causes most systems to temporarily freeze up. With this in mind you should make sure to choose a machine that won't be prone to being rebooted regularly, or one that might be used for development. The NIS server should ideally be a stand alone machine whose sole purpose in life is to be an NIS server. If you have a network that is not very heavily used, it is acceptable to put the NIS server on a machine running other services, just keep in mind that if the NIS server becomes unavailable, it will affect all of your NIS clients adversely. NIS Servers The canonical copies of all NIS information are stored on a single machine called the NIS master server. The databases used to store the information are called NIS maps. In FreeBSD, these maps are stored in /var/yp/[domainname] where [domainname] is the name of the NIS domain being served. A single NIS server can support several domains at once, therefore it is possible to have several such directories, one for each supported domain. Each domain will have its own independent set of maps. NIS master and slave servers handle all NIS requests with the ypserv daemon. Ypserv is responsible for receiving incoming requests from NIS clients, translating the requested domain and map name to a path to the corresponding database file and transmitting data from the database back to the client. Setting up a NIS master server NIS server configuration Setting up a master NIS server can be relatively straight forward, depending on your needs. FreeBSD comes with support for NIS out-of-the-box. All you need is to add the following lines to /etc/rc.conf, and FreeBSD will do the rest for you. nisdomainname="test-domain" This line will set the NIS domainname to test-domain upon network setup (e.g. after reboot). nis_server_enable="YES" This will tell FreeBSD to start up the NIS server processes when the networking is next brought up. nis_yppasswdd_enable="YES" This will enable the rpc.yppasswdd daemon, which, as mentioned above, will allow users to change their NIS password from a client machine. Now, all you have to do is to run the command /etc/netstart as superuser. It will setup everything for you, using the values you defined in /etc/rc.conf. Initializing the NIS maps NIS maps The NIS maps are database files, that are kept in the /var/yp directory. They are generated from configuration files in the /etc directory of the NIS master, with one exception: the /etc/master.passwd file. This is for a good reason; you don't want to propagate passwords to your root and other administrative accounts to all the servers in the NIS domain. Therefore, before we initialize the NIS maps, you should: &prompt.root; cp /etc/master.passwd /var/yp/master.passwd &prompt.root; cd /var/yp &prompt.root; vi master.passwd You should remove all entries regarding system accounts (bin, tty, kmem, games, etc), as well as any accounts that you don't want to be propagated to the NIS clients (for example root and any other UID 0 (superuser) accounts). Make sure the /var/yp/master.passwd is neither group nor world readable (mode 600)! Use the chmod command, if appropriate. Tru64 Unix When you have finished, it's time to initialize the NIS maps! FreeBSD includes a script named ypinit to do this for you (see its man page for more information). Note that this script is available on most Unix Operating Systems, but not on all. On Digital Unix/Compaq Tru64 Unix it is called ypsetup. Because we are generating maps for an NIS master, we are going to pass the option to ypinit. To generate the NIS maps, assuming you already performed the steps above, run: ellington&prompt.root; ypinit -m test-domain Server Type: MASTER Domain: test-domain Creating an YP server will require that you answer a few questions. Questions will all be asked at the beginning of the procedure. Do you want this procedure to quit on non-fatal errors? [y/n: n] n Ok, please remember to go back and redo manually whatever fails. If you don't, something might not work. At this point, we have to construct a list of this domains YP servers. rod.darktech.org is already known as master server. Please continue to add any slave servers, one per line. When you are done with the list, type a <control D>. master server : ellington next host to add: coltrane next host to add: ^D The current list of NIS servers looks like this: ellington coltrane Is this correct? [y/n: y] y [..output from map generation..] NIS Map update completed. ellington has been setup as an YP master server without any errors. ypinit should have created /var/yp/Makefile from /var/yp/Makefile.dist. When created, this file assumes that you are operating in a single server NIS environment with only FreeBSD machines. Since test-domain has a slave server as well, you must edit /var/yp/Makefile: ellington&prompt.root; vi /var/yp/Makefile You should comment out the line that says `NOPUSH = "True"' (if it is not commented out already). Setting up a NIS slave server NIS configuring a slave server Setting up an NIS slave server is even more simple than setting up the master. Log on to the slave server and edit the file /etc/rc.conf as you did before. The only difference is that we now must use the option when running ypinit. The option requires the name of the NIS master be passed to it as well, so our command line looks like: coltrane&prompt.root; ypinit -s ellington test-domain Server Type: SLAVE Domain: test-domain Master: ellington Creating an YP server will require that you answer a few questions. Questions will all be asked at the beginning of the procedure. Do you want this procedure to quit on non-fatal errors? [y/n: n] n Ok, please remember to go back and redo manually whatever fails. If you don't, something might not work. There will be no further questions. The remainder of the procedure should take a few minutes, to copy the databases from ellington. Transferring netgroup... ypxfr: Exiting: Map successfully transferred Transferring netgroup.byuser... ypxfr: Exiting: Map successfully transferred Transferring netgroup.byhost... ypxfr: Exiting: Map successfully transferred Transferring master.passwd.byuid... ypxfr: Exiting: Map successfully transferred Transferring passwd.byuid... ypxfr: Exiting: Map successfully transferred Transferring passwd.byname... ypxfr: Exiting: Map successfully transferred Transferring group.bygid... ypxfr: Exiting: Map successfully transferred Transferring group.byname... ypxfr: Exiting: Map successfully transferred Transferring services.byname... ypxfr: Exiting: Map successfully transferred Transferring rpc.bynumber... ypxfr: Exiting: Map successfully transferred Transferring rpc.byname... ypxfr: Exiting: Map successfully transferred Transferring protocols.byname... ypxfr: Exiting: Map successfully transferred Transferring master.passwd.byname... ypxfr: Exiting: Map successfully transferred Transferring networks.byname... ypxfr: Exiting: Map successfully transferred Transferring networks.byaddr... ypxfr: Exiting: Map successfully transferred Transferring netid.byname... ypxfr: Exiting: Map successfully transferred Transferring hosts.byaddr... ypxfr: Exiting: Map successfully transferred Transferring protocols.bynumber... ypxfr: Exiting: Map successfully transferred Transferring ypservers... ypxfr: Exiting: Map successfully transferred Transferring hosts.byname... ypxfr: Exiting: Map successfully transferred coltrane has been setup as an YP slave server without any errors. Don't forget to update map ypservers on ellington. You should now have a directory called /var/yp/test-domain. Copies of the NIS master server's maps should be in this directory. You will need to make sure that these stay updated. The following /etc/crontab entries on your slave servers should do the job: 20 * * * * root /usr/libexec/ypxfr passwd.byname 21 * * * * root /usr/libexec/ypxfr passwd.byuid These two lines force the slave to sync its maps with the maps on the master server. Although this is not mandatory, because the master server tries to make sure any changes to its NIS maps are communicated to its slaves, the password information is so vital to systems that depend on the server, that it is a good idea to force the updates. This is more important on busy networks where map updates might not always complete. Now, run the command /etc/netstart on the slave server as well, which again starts the NIS server. NIS Clients An NIS client establishes what is called a binding to a particular NIS server using the ypbind daemon. ypbind checks the system's default domain (as set by the domainname command), and begins broadcasting RPC requests on the local network. These requests specify the name of the domain for which ypbind is attempting to establish a binding. If a server that has been configured to serve the requested domain receives one of the broadcasts, it will respond to ypbind, which will record the server's address. If there are several servers available (a master and several slaves, for example), ypbind will use the address of the first one to respond. From that point on, the client system will direct all of its NIS requests to that server. Ypbind will occasionally ping the server to make sure it is still up and running. If it fails to receive a reply to one of its pings within a reasonable amount of time, ypbind will mark the domain as unbound and begin broadcasting again in the hopes of locating another server. Setting up an NIS client NIS client configuration Setting up a FreeBSD machine to be a NIS client is fairly straightforward. Edit the file /etc/rc.conf and add the following lines in order to set the NIS domainname and start ypbind upon network startup: nisdomainname="test-domain" nis_client_enable="YES" To import all possible password entries from the NIS server, add this line to your /etc/master.passwd file, using vipw: +::::::::: This line will afford anyone with a valid account in the NIS server's password maps an account. There are many ways to configure your NIS client by changing this line. See the netgroups part below for more information. For more detailed reading see O'Reilly's book on Managing NFS and NIS. To import all possible group entries from the NIS server, add this line to your /etc/group file: +:*:: After completing these steps, you should be able to run ypcat passwd and see the NIS server's passwd map. NIS Security In general, any remote user can issue an RPC to &man.ypserv.8; and retrieve the contents of your NIS maps, provided the remote user knows your domainname. To prevent such unauthorized transactions, &man.ypserv.8; supports a feature called securenets which can be used to restrict access to a given set of hosts. At startup, &man.ypserv.8; will attempt to load the securenets information from a file called /var/yp/securenets. This path varies depending on the path specified with the option. This file contains entries that consist of a network specification and a network mask separated by white space. Lines starting with # are considered to be comments. A sample securenets file might look like this: # allow connections from local host -- mandatory 127.0.0.1 255.255.255.255 # allow connections from any host # on the 192.168.128.0 network 192.168.128.0 255.255.255.0 # allow connections from any host # between 10.0.0.0 to 10.0.15.255 # this includes the machines in the testlab 10.0.0.0 255.255.240.0 If &man.ypserv.8; receives a request from an address that matches one of these rules, it will process the request normally. If the address fails to match a rule, the request will be ignored and a warning message will be logged. If the /var/yp/securenets file does not exist, ypserv will allow connections from any host. The ypserv program also has support for Wietse Venema's tcpwrapper package. This allows the administrator to use the tcpwrapper configuration files for access control instead of /var/yp/securenets. While both of these access control mechanisms provide some security, they, like the privileged port test, are vulnerable to IP spoofing attacks. All NIS-related traffic should be blocked at your firewall. Servers using /var/yp/securenets may fail to serve legitimate NIS clients with archaic TCP/IP implementations. Some of these implementations set all host bits to zero when doing broadcasts and/or fail to observe the subnet mask when calculating the broadcast address. While some of these problems can be fixed by changing the client configuration, other problems may force the retirement of the client systems in question or the abandonment of /var/yp/securenets. Using /var/yp/securenets on a server with such an archaic implementation of TCP/IP is a really bad idea and will lead to loss of NIS functionality for large parts of your network. tcpwrapper The use of the tcpwrapper package increases the latency of your NIS server. The additional delay may be long enough to cause timeouts in client programs, especially in busy networks or with slow NIS servers. If one or more of your client systems suffers from these symptoms, you should convert the client systems in question into NIS slave servers and force them to bind to themselves. Barring some users from logging on In our lab, there is a machine basie that is supposed to be a faculty only workstation. We don't want to take this machine out of the NIS domain, yet the passwd file on the master NIS server contains accounts for both faculty and students. What can we do? There is a way to bar specific users from logging on to a machine, even if they are present in the NIS database. To do this, all you must do is add -username to the end of the /etc/master.passwd file on the client machine, where username is the username of the user you wish to bar from logging in. This should preferably be done using vipw, since vipw will sanity check your changes to /etc/master.passwd, as well as automatically rebuild the password database when you finish editing. For example, if we wanted to bar user bill from logging on to basie we would: basie&prompt.root; vipw [add -bill to the end, exit] vipw: rebuilding the database... vipw: done basie&prompt.root; cat /etc/master.passwd root:[password]:0:0::0:0:The super-user:/root:/bin/csh toor:[password]:0:0::0:0:The other super-user:/root:/bin/sh daemon:*:1:1::0:0:Owner of many system processes:/root:/sbin/nologin operator:*:2:5::0:0:System &:/:/sbin/nologin bin:*:3:7::0:0:Binaries Commands and Source,,,:/:/sbin/nologin tty:*:4:65533::0:0:Tty Sandbox:/:/sbin/nologin kmem:*:5:65533::0:0:KMem Sandbox:/:/sbin/nologin games:*:7:13::0:0:Games pseudo-user:/usr/games:/sbin/nologin news:*:8:8::0:0:News Subsystem:/:/sbin/nologin man:*:9:9::0:0:Mister Man Pages:/usr/share/man:/sbin/nologin bind:*:53:53::0:0:Bind Sandbox:/:/sbin/nologin uucp:*:66:66::0:0:UUCP pseudo-user:/var/spool/uucppublic:/usr/libexec/uucp/uucico xten:*:67:67::0:0:X-10 daemon:/usr/local/xten:/sbin/nologin pop:*:68:6::0:0:Post Office Owner:/nonexistent:/sbin/nologin nobody:*:65534:65534::0:0:Unprivileged user:/nonexistent:/sbin/nologin +::::::::: -bill basie&prompt.root; Udo Erdelhoff - Contributed + Contributed by Using netgroups netgroups The method shown in the previous chapter works reasonably well if you need special rules for a very small number of users and/or machines. On larger networks, you will forget to bar some users from logging onto sensitive machines, or you may even have to modify each machine separately, thus losing the main benefit of NIS, centralized administration. The NIS developers' solution for this problem is called netgroups. Their purpose and semantics can be compared to the normal groups used by Unix file systems. The main differences are the lack of a numeric id and the ability to define a netgroup by including both user accounts and other netgroups. Netgroups were developed to handle large, complex networks with hundreds of users and machines. On one hand, this is a Good Thing if you are forced to deal with such a situation. On the other hand, this complexity makes it almost impossible to explain netgroups with really simple examples. The example used in the remainder of this chapter demonstrates this problem. Let us assume that your successful introduction of NIS in your laboratory caught your superiors' interest. Your next job is to extend your NIS domain to cover some of the other machines on campus. The two tables contain the names of the new users and new machines as well as brief descriptions of them. User Name(s) Description alpha, beta Normal employees of the IT department charlie, delta The new apprentices of the IT department echo, foxtrott, golf, ... Ordinary employees able, baker, ... The current interns Machine Name(s) Description war, death, famine, pollution Your most important servers. Only the IT employees are allowed to log onto these machines. pride, greed, envy, wrath, lust, sloth Less important servers. All members of the IT department are allowed to login onto these machines. one, two, three, four, ... Ordinary workstations. Only the real employees are allowed to use these machines. trashcan A very old machine without any critical data. Even the intern is allowed to use this box. If you tried to implement these restrictions by separately blocking each user, you would have to add one -user line to each system's passwd for each user who is not allowed to login onto that system. If you forget just one entry, you could be in trouble. It may be feasible to do this correctly during the initial setup, however you will eventually forget to add the lines for new users during day-to-day operations. After all, Murphy was an optimist. Handling this situation with netgroups offers several advantages. Each user need not be handled separately; you assign a user to one or more netgroups and allow or forbid logins for all members of the netgroup. If you add a new machine, you will only have to define login restrictions for netgroups. If a new user is added, you will only have to add the user to one or more netgroups. Those changes are independent of each other; no more for each combination of user and machine do... If your NIS setup is planned carefully, you will only have to modify exactly one central configuration file to grant or deny access to machines. The first step is the initialization of the NIS map netgroup. FreeBSD's &man.ypinit.8; does not create this map by default, but its NIS implementation will support it once it has been created. To create an empty map, simply type ellington&prompt.root; vi /var/yp/netgroup and start adding content. For our example, we need at least four netgroups: IT employees, IT apprentices, normal employees and interns. IT_EMP (,alpha,test-domain) (,beta,test-domain) IT_APP (,charlie,test-domain) (,delta,test-domain) USERS (,echo,test-domain) (,foxtrott,test-domain) \ (,golf,test-domain) INTERNS (,able,test-domain) (,baker,test-domain) IT_EMP, IT_APP etc. are the names of the netgroups. Each bracketed group adds one or more user accounts to it. The three fields inside a group are: The name of the host(s) where the following items are valid. If you do not specify a hostname, the entry is valid on all hosts. If you do specify a hostname, you will enter a realm of darkness, horror and utter confusion. The name of the account that belongs to this netgroup. The NIS domain for the account. You can import accounts from other NIS domains into your netgroup if you are one of unlucky fellows with more than one NIS domain. Each of these fields can contain wildcards. See &man.netgroup.5; for details. netgroups Netgroup names longer than 8 characters should not be used, especially if you have machines running other operating systems within your NIS domain. The names are case sensitive; using capital letters for your netgroup names is an easy way to distinguish between user, machine and netgroup names. Some NIS clients (other than FreeBSD) cannot handle netgroups with a large number of entries. For example, some older versions of SunOS start to cause trouble if a netgroup contains more than 15 entries. You can circumvent this limit by creating several sub-netgroups with 15 users or less and a real netgroup that consists of the sub-netgroups: BIGGRP1 (,joe1,domain) (,joe2,domain) (,joe3,domain) [...] BIGGRP2 (,joe16,domain) (,joe17,domain) [...] BIGGRP3 (,joe31,domain) (,joe32,domain) BIGGROUP BIGGRP1 BIGGRP2 BIGGRP3 You can repeat this process if you need more than 225 users within a single netgroup. Activating and distributing your new NIS map is easy: ellington&prompt.root; cd /var/yp ellington&prompt.root; make This will generate the three NIS maps netgroup, netgroup.byhost and netgroup.byuser. Use &man.ypcat.1; to check if your new NIS maps are available: ellington&prompt.user; ypcat -k netgroup ellington&prompt.user; ypcat -k netgroup.byhost ellington&prompt.user; ypcat -k netgroup.byuser The output of the first command should resemble the contents of /var/yp/netgroup. The second command will not produce output if you have not specified host-specific netgroups. The third command can be used to get the list of netgroups for a user. The client setup is quite simple. To configure the server war, you only have to start &man.vipw.8; and replace the line +::::::::: with +@IT_EMP::::::::: Now, only the data for the users defined in the netgroup IT_EMP is imported into war's password database and only these users are allowed to login. Unfortunately, this limitation also applies to the ~ function of the shell and all routines converting between user names and numerical user ids. In other words, cd ~user will not work, ls -l will show the numerical id instead of the username and find . -user joe -print will fail with No such user. To fix this, you will have to import all user entries without allowing them to login onto your servers. This can be achieved by adding another line to /etc/master.passwd. This line should contain +:::::::::/sbin/nologin, meaning Import all entries but replace the shell with /sbin/nologin in the imported entries. You can replace any field in the passwd entry by placing a default value in your /etc/master.passwd. Make sure that the line +:::::::::/sbin/nologin is placed after +@IT_EMP:::::::::. Otherwise, all user accounts imported from NIS will have /sbin/nologin as their login shell. After this change, you will only have to change one NIS map if a new employee joins the IT department. You could use a similar approach for the less important servers by replacing the old +::::::::: in their local version of /etc/master.passwd with something like this: +@IT_EMP::::::::: +@IT_APP::::::::: +:::::::::/sbin/nologin The corresponding lines for the normal workstations could be: +@IT_EMP::::::::: +@USERS::::::::: +:::::::::/sbin/nologin And everything would be fine until there is a policy change a few weeks later: The IT department starts hiring interns. The IT interns are allowed to use the normal workstations and the less important servers; and the IT apprentices are allowed to login onto the main servers. You add a new netgroup IT_INTERN, add the new IT interns to this netgroup and start to change the config on each and every machine... As the old saying goes: Errors in centralized planning lead to global mess. NIS' ability to create netgroups from other netgroups can be used to prevent situations like these. One possibility is the creation of role-based netgroups. For example, you could create a netgroup called BIGSRV to define the login restrictions for the important servers, another netgroup called SMALLSRV for the less important servers and a third netgroup called USERBOX for the normal workstations. Each of these netgroups contains the netgroups that are allowed to login onto these machines. The new entries for your NIS map netgroup should look like this: BIGSRV IT_EMP IT_APP SMALLSRV IT_EMP IT_APP ITINTERN USERBOX IT_EMP ITINTERN USERS This method of defining login restrictions works reasonably well if you can define groups of machines with identical restrictions. Unfortunately, this is the exception and not the rule. Most of the time, you will need the ability to define login restrictions on a per-machine basis. Machine-specific netgroup definitions are the other possibility to deal with the policy change outlined above. In this scenario, the /etc/master.passwd of each box contains two lines starting with ``+''. The first of them adds a netgroup with the accounts allowed to login onto this machine, the second one adds all other accounts with /sbin/nologin as shell. It is a good idea to use the ALL-CAPS version of the machine name as the name of the netgroup. In other words, the lines should look like this: +@BOXNAME::::::::: +:::::::::/sbin/nologin Once you have completed this task for all your machines, you will not have to modify the local versions of /etc/master.passwd ever again. All further changes can be handled by modifying the NIS map. Here is an example of a possible netgroup map for this scenario with some additional goodies. # Define groups of users first IT_EMP (,alpha,test-domain) (,beta,test-domain) IT_APP (,charlie,test-domain) (,delta,test-domain) DEPT1 (,echo,test-domain) (,foxtrott,test-domain) DEPT2 (,golf,test-domain) (,hotel,test-domain) DEPT3 (,india,test-domain) (,juliet,test-domain) ITINTERN (,kilo,test-domain) (,lima,test-domain) D_INTERNS (,able,test-domain) (,baker,test-domain) # # Now, define some groups based on roles USERS DEPT1 DEPT2 DEPT3 BIGSRV IT_EMP IT_APP SMALLSRV IT_EMP IT_APP ITINTERN USERBOX IT_EMP ITINTERN USERS # # And a groups for a special tasks # Allow echo and golf to access our anti-virus-machine SECURITY IT_EMP (,echo,test-domain) (,golf,test-domain) # # machine-based netgroups # Our main servers WAR BIGSRV FAMINE BIGSRV # User india needs access to this server POLLUTION BIGSRV (,india,test-domain) # # This one is really important and needs more access restrictions DEATH IT_EMP # # The anti-virus-machine mentioned above ONE SECURITY # # Restrict a machine to a single user TWO (,hotel,test-domain) # [...more groups to follow] If you are using some kind of database to manage your user accounts, you should be able to create the first part of the map with your database's report tools. This way, new users will automatically have access to the boxes. One last word of caution: It may not always be advisable to use machine-based netgroups. If you are deploying a couple dozen or even hundreds of identical machines for student labs, you should use role-based netgroups instead of machine-based netgroups to keep the size of the NIS map within reasonable limits. Important things to remember There are still a couple of things that you will need to do differently now that you are in an NIS environment. Every time you wish to add a user to the lab, you must add it to the master NIS server only, and you must remember to rebuild the NIS maps. If you forget to do this, the new user will not be able to login anywhere except on the NIS master. For example, if we needed to add a new user “jsmith” to the lab, we would: &prompt.root; pw useradd jsmith &prompt.root; cd /var/yp &prompt.root; make test-domain You could also run adduser jsmith instead of pw useradd jsmith. Keep the administration accounts out of the NIS maps. You don't want to be propagating administrative accounts and passwords to machines that will have users that shouldn't have access to those accounts. Keep the NIS master and slave secure, and minimize their downtime. If somebody either hacks or simply turns off these machines, they have effectively rendered many people without the ability to login to the lab. This is the chief weakness of any centralized administration system, and it is probably the most important weakness. If you do not protect your NIS servers, you will have a lot of angry users! NIS v1 compatibility FreeBSD's ypserv has some support for serving NIS v1 clients. FreeBSD's NIS implementation only uses the NIS v2 protocol, however other implementations include support for the v1 protocol for backwards compatibility with older systems. The ypbind daemons supplied with these systems will try to establish a binding to an NIS v1 server even though they may never actually need it (and they may persist in broadcasting in search of one even after they receive a response from a v2 server). Note that while support for normal client calls is provided, this version of ypserv does not handle v1 map transfer requests; consequently, it cannot be used as a master or slave in conjunction with older NIS servers that only support the v1 protocol. Fortunately, there probably are not any such servers still in use today. NIS servers that are also NIS clients Care must be taken when running ypserv in a multi-server domain where the server machines are also NIS clients. It is generally a good idea to force the servers to bind to themselves rather than allowing them to broadcast bind requests and possibly become bound to each other. Strange failure modes can result if one server goes down and others are dependent upon on it. Eventually all the clients will time out and attempt to bind to other servers, but the delay involved can be considerable and the failure mode is still present since the servers might bind to each other all over again. You can force a host to bind to a particular server by running ypbind with the flag. libscrypt v.s. libdescrypt NIS crypto library One of the most common issues that people run into when trying to implement NIS is crypt library compatibility. If your NIS server is using the DES crypt libraries, it will only support clients that are using DES as well. To check which one your server and clients are using look at the symlinks in /usr/lib. If the machine is configured to use the DES libraries, it will look something like this: &prompt.user; ls -l /usr/lib/*crypt* lrwxrwxrwx 1 root wheel 13 Jul 15 08:55 libcrypt.a@ -> libdescrypt.a lrwxrwxrwx 1 root wheel 14 Jul 15 08:55 libcrypt.so@ -> libdescrypt.so lrwxrwxrwx 1 root wheel 16 Jul 15 08:55 libcrypt.so.2@ -> libdescrypt.so.2 lrwxrwxrwx 1 root wheel 15 Jul 15 08:55 libcrypt_p.a@ -> libdescrypt_p.a -r--r--r-- 1 root wheel 13018 Nov 8 14:27 libdescrypt.a lrwxr-xr-x 1 root wheel 16 Nov 8 14:27 libdescrypt.so@ -> libdescrypt.so.2 -r--r--r-- 1 root wheel 12965 Nov 8 14:27 libdescrypt.so.2 -r--r--r-- 1 root wheel 14750 Nov 8 14:27 libdescrypt_p.a If the machine is configured to use the standard FreeBSD MD5 crypt libraries they will look something like this: &prompt.user; ls -l /usr/lib/*crypt* lrwxrwxrwx 1 root wheel 13 Jul 15 08:55 libcrypt.a@ -> libscrypt.a lrwxrwxrwx 1 root wheel 14 Jul 15 08:55 libcrypt.so@ -> libscrypt.so lrwxrwxrwx 1 root wheel 16 Jul 15 08:55 libcrypt.so.2@ -> libscrypt.so.2 lrwxrwxrwx 1 root wheel 15 Jul 15 08:55 libcrypt_p.a@ -> libscrypt_p.a -r--r--r-- 1 root wheel 6194 Nov 8 14:27 libscrypt.a lrwxr-xr-x 1 root wheel 14 Nov 8 14:27 libscrypt.so@ -> libscrypt.so.2 -r--r--r-- 1 root wheel 7579 Nov 8 14:27 libscrypt.so.2 -r--r--r-- 1 root wheel 6684 Nov 8 14:27 libscrypt_p.a If you have trouble authenticating on an NIS client, this is a pretty good place to start looking for possible problems. If you want to deploy an NIS server for a heterogenous network, you will probably have to use DES on all systems because it is the lowest common standard. Greg Sutter - Written + Written by DHCP What is DHCP? Dynamic Host Configuration Protocol DHCP Internet Software Consortium (ISC) DHCP, the Dynamic Host Configuration Protocol, describes the means by which a system can connect to a network and obtain the necessary information for communication upon that network. FreeBSD uses the ISC (Internet Software Consortium) DHCP implementation, so all implementation-specific information here is for use with the ISC distribution. What This Section Covers This handbook section attempts to describe only the parts of the DHCP system that are integrated with FreeBSD; consequently, the server portions are not described. The DHCP manual pages, in addition to the references below, are useful resources. How it Works UDP When dhclient, the DHCP client, is executed on the client machine, it begins broadcasting requests for configuration information. By default, these requests are on UDP port 68. The server replies on UDP 67, giving the client an IP address and other relevant network information such as netmask, router, and DNS servers. All of this information comes in the form of a DHCP "lease" and is only valid for a certain time (configured by the DHCP server maintainer). In this manner, stale IP addresses for clients no longer connected to the network can be automatically reclaimed. DHCP clients can obtain a great deal of information from the server. An exhaustive list may be found in &man.dhcp-options.5;. FreeBSD Integration FreeBSD fully integrates the ISC DHCP client, dhclient. DHCP client support is provided within both the installer and the base system, obviating the need for detailed knowledge of network configurations on any network that runs a DHCP server. dhclient has been included in all FreeBSD distributions since 3.2. sysinstall DHCP is supported by sysinstall. When configuring a network interface within sysinstall, the first question asked is, "Do you want to try dhcp configuration of this interface?" Answering affirmatively will execute dhclient, and if successful, will fill in the network configuration information automatically. There are two things you must do to have your system use DHCP upon startup: DHCP requirements Make sure that the bpf device is compiled into your kernel. To do this, add pseudo-device bpf to your kernel configuration file, and rebuild the kernel. For more information about building kernels, see . The bpf device is already part of the GENERIC kernel that is supplied with FreeBSD, so if you don't have a custom kernel, you shouldn't need to create one in order to get DHCP working. For those who are particularly security conscious, you should be warned that bpf is also the device that allows packet sniffers to work correctly (although they still have to be run as root). bpf is required to use DHCP, but if you are very sensitive about security, you probably shouldn't add bpf to your kernel in the expectation that at some point in the future you will be using DHCP. Edit your /etc/rc.conf to include the following: ifconfig_fxp0="DHCP" Be sure to replace fxp0 with the designation for the interface that you wish to dynamically configure. If you are using a different location for dhclient, or if you wish to pass additional flags to dhclient, also include the following (editing as necessary): dhcp_program="/sbin/dhclient" dhcp_flags="" DHCP server The DHCP server, dhcpd, is included as part of the isc-dhcp2 port in the ports collection. This port contains the full ISC DHCP distribution, consisting of client, server, relay agent and documentation. Files DHCP configuration files /etc/dhclient.conf dhclient requires a configuration file, /etc/dhclient.conf. Typically the file contains only comments, the defaults being reasonably sane. This configuration file is described by the &man.dhclient.conf.5; man page. /sbin/dhclient dhclient is statically linked and resides in /sbin. The &man.dhclient.8; manual page gives more information about dhclient. /sbin/dhclient-script dhclient-script is the FreeBSD-specific DHCP client configuration script. It is described in &man.dhclient-script.8;, but should not need any user modification to function properly. /var/db/dhclient.leases The DHCP client keeps a database of valid leases in this file, which is written as a log. &man.dhclient.leases.5; gives a slightly longer description. Further Reading The DHCP protocol is fully described in RFC 2131. An informational resource has also been set up at dhcp.org. Chern Lee - Contributed + Contributed by DNS Overview BIND FreeBSD utilizes, by default, a version of BIND (Berkeley Internet Name Domain), which is the most common implementation of the DNS protocol. DNS is the protocol through which names are mapped to IP addresses, and vice versa. For example, a query for www.freebsd.org will receive a reply with the IP address of The FreeBSD Project's webpage, whereas, a query for ftp.freebsd.org will return the IP address of the corresponding FTP machine. Likewise, the opposite can happen. A query for an IP address can resolve its hostname. It is not necessary to run a nameserver to perform DNS lookups on a system. DNS DNS is coordinated across the Internet through a somewhat complex system of authoritative root name servers, and other smaller-scale nameservers who host and cache individual domain information. This document refers to BIND 8.x, as it is the stable version used in FreeBSD. BIND 9.x in FreeBSD can be installed through the net/bind9 port. RFC1034 and RFC1035 dictates the DNS protocol. Currently, BIND is maintained by the Internet Software Consortium (www.isc.org) Terminology To understand this document, some terms related to DNS must be understood. Term Definition forward dns mapping of hostnames to IP addresses origin refers to the domain covered for the particular zone file named, bind, name server common names for the BIND name server package within FreeBSD resolver resolver a system process through which a machine queries a nameserver for zone information reverse dns reverse DNS the opposite of forward DNS, mapping of IP addresses to hostnames root zone root zone literally, a ., refers to the root, or beginning zone. All zones fall under this, as do all files in fall under the root directory. It is the beginning of the Internet zone hierarchy. zone Each individual domain, subdomain, or area dictated by DNS zones examples Examples of zones: . is the root zone org. is a zone under the root zone foobardomain.org is a zone under the org. zone foo.foobardomain.org. is a subdomain, a zone under the foobardomain.org. zone 1.2.3.in-addr.arpa is a zone referencing all IP addresses which fall under the 3.2.1.* IP space. As one can see, the more specific part of a hostname appears to its left. For example, foobardomain.org. is more specific than org., as org. is more specific than the root zone. The layout of each part of a hostname is much like a filesystem: the /dev directory falls within the root, and so on. Reasons to run a name server Name servers usually come in two forms: an authoritative name server, and a caching nameserver. An authoritative name server is needed when: one wants to serve DNS information to the world, replying authoritatively to queries. a domain, such as foobardomain.org, is registered and IP addresses need to be assigned to hostnames under it. an IP address block requires reverse DNS entries (IP to hostname). a backup name server, called a slave, must reply to queries when the primary is down or inaccessible. A caching name server is needed when: a local DNS server may cache and respond more quickly then querying an outside name server. a reduction in overall network traffic is desired. (DNS traffic has been measured to account for 5% or more of total Internet traffic) When one queries for www.freebsd.org, the resolver usually queries the uplink ISP's name server, and retrieves the reply. With a local, caching DNS server, the query only has to be made once to the outside world by the caching DNS server. Every additional query will not have to look to the outside of the local network, since the information is cached locally. How it works In FreeBSD, the BIND daemon is called named for obvious reasons. File Description named the BIND daemon ndc name daemon control program /etc/namedb directory where BIND zone information resides /etc/namedb/named.conf daemon configuration file Zone files are usually contained within the /etc/namedb directory, and contain the DNS zone information served by the name server. Starting BIND BIND starting Since BIND is installed by default, configuring it all is relatively simple. To ensure the named daemon is started at boot, put the following modifications in /etc/rc.conf: named_enable="YES" To start the daemon manually (after configuring it) &prompt.root; ndc start Configuration files BIND configuration files make-localhost Be sure to: &prompt.root; cd /etc/namedb &prompt.root; sh make-localhost to properly create the local reverse dns zone file in /etc/namedb/localhost.rev. <filename>/etc/namedb/named.conf</filename> // $FreeBSD$ // // Refer to the named(8) man page for details. If you are ever going // to setup a primary server, make sure you've understood the hairy // details of how DNS is working. Even with simple mistakes, you can // break connectivity for affected parties, or cause huge amount of // useless Internet traffic. options { directory "/etc/namedb"; // In addition to the "forwarders" clause, you can force your name // server to never initiate queries of its own, but always ask its // forwarders only, by enabling the following line: // // forward only; // If you've got a DNS server around at your upstream provider, enter // its IP address here, and enable the line below. This will make you // benefit from its cache, thus reduce overall DNS traffic in the Internet. /* forwarders { 127.0.0.1; }; */ Just as the comment says, to benefit from an uplink's cache, forwarders can be enabled here. Under normal circumstances, a nameserver will recursively query the Internet looking at certain nameservers until it finds the answer it is looking for. Having this enabled will have it query the uplink's nameserver (or nameserver provided) first, taking advantage of its cache. If the uplink nameserver in question is a heavily trafficked, fast nameserver, enabling this may be worthwhile. 127.0.0.1 will not work here. Change this IP address to a nameserver at your uplink. /* * If there is a firewall between you and nameservers you want * to talk to, you might need to uncomment the query-source * directive below. Previous versions of BIND always asked * questions using port 53, but BIND 8.1 uses an unprivileged * port by default. */ // query-source address * port 53; /* * If running in a sandbox, you may have to specify a different * location for the dumpfile. */ // dump-file "s/named_dump.db"; }; // Note: the following will be supported in a future release. /* host { any; } { topology { 127.0.0.0/8; }; }; */ // Setting up secondaries is way easier and the rough picture for this // is explained below. // // If you enable a local name server, don't forget to enter 127.0.0.1 // into your /etc/resolv.conf so this server will be queried first. // Also, make sure to enable it in /etc/rc.conf. zone "." { type hint; file "named.root"; }; zone "0.0.127.IN-ADDR.ARPA" { type master; file "localhost.rev"; }; zone "0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.IP6.INT" { type master; file "localhost.rev"; }; // NB: Do not use the IP addresses below, they are faked, and only // serve demonstration/documentation purposes! // // Example secondary config entries. It can be convenient to become // a secondary at least for the zone where your own domain is in. Ask // your network administrator for the IP address of the responsible // primary. // // Never forget to include the reverse lookup (IN-ADDR.ARPA) zone! // (This is the first bytes of the respective IP address, in reverse // order, with ".IN-ADDR.ARPA" appended.) // // Before starting to setup a primary zone, better make sure you fully // understand how DNS and BIND works, however. There are sometimes // unobvious pitfalls. Setting up a secondary is comparably simpler. // // NB: Don't blindly enable the examples below. :-) Use actual names // and addresses instead. // // NOTE!!! FreeBSD runs bind in a sandbox (see named_flags in rc.conf). // The directory containing the secondary zones must be write accessible // to bind. The following sequence is suggested: // // mkdir /etc/namedb/s // chown bind:bind /etc/namedb/s // chmod 750 /etc/namedb/s For more information on running BIND in a sandbox, see Running named in a sandbox. /* zone "domain.com" { type slave; file "s/domain.com.bak"; masters { 192.168.1.1; }; }; zone "0.168.192.in-addr.arpa" { type slave; file "s/0.168.192.in-addr.arpa.bak"; masters { 192.168.1.1; }; }; */ In named.conf, these are examples of slave entries for a forward and reverse zone. For each new zone served, a new zone entry must be added to named.conf For example, the simplest zone entry for foobardomain.org can look like: zone "foobardomain.org" { type master; file "foobardomain.org"; }; The zone is a master, as indicated by the statement, holding its zone information in /etc/namedb/foobardomain.org indicated by the statement. zone "foobardomain.org" { type slave; file "foobardomain.org"; }; In the slave case, the zone information is transferred from the master nameserver for the particular zone, and saved in the file specified. If and when the master server dies or is unreachable, the slave nameserver will have the transferred zone information and will be able to serve it. Zone files An example master zone file for foobardomain.org (existing within /etc/namedb/foobardomain.org) is as follows: $TTL 3600 foobardomain.org. IN SOA ns1.foobardomain.org. admin.foobardomain.org. ( 5 ; Serial 10800 ; Refresh 3600 ; Retry 604800 ; Expire 86400 ) ; Minimum TTL ; DNS Servers @ IN NS ns1.foobardomain.org. @ IN NS ns2.foobardomain.org. ; Machine Names localhost IN A 127.0.0.1 ns1 IN A 3.2.1.2 ns2 IN A 3.2.1.3 mail IN A 3.2.1.10 @ IN A 3.2.1.30 ; Aliases www IN CNAME @ ; MX Record @ IN MX 10 mail.foobardomain.org. Note that every hostname ending in a . is an exact hostname, whereas everything without a trailing . is referenced to the origin. For example, www is translated into www + origin. In our fictitious zone file, our origin is foobardomain.org., so www would translate to www.foobardomain.org. The format of a zone file follows: recordname IN recordtype value DNS records The most commonly used DNS records: SOA start of zone authority NS an authoritative nameserver A A host address CNAME the canonical name for an alias MX mail exchange PTR a domain name pointer (used in reverse dns) foobardomain.org. IN SOA ns1.foobardomain.org. admin.foobardomain.org. ( 5 ; Serial 10800 ; Refresh after 3 hours 3600 ; Retry after 1 hour 604800 ; Expire after 1 week 86400 ) ; Minimum TTL of 1 day foobardomain.org. the domain name, also the origin for this zone file. ns1.foobardomain.org. the primary/authoritative nameserver for this zone admin.foobardomain.org. the responsible person for this zone, email address with @ replaced. (admin@foobardomain.org becomes admin.foobardomain.org) 5 the serial number of the file. this must be incremented each time the zone file is modified. Nowadays, many admins prefer a yyyymmddrr format for the serial number. 2001041002 would mean last modified 04/10/2001, the latter 02 being the second time the zone file has been modified this day. The serial number is important as it alerts slave nameservers for a zone when it is updated. @ IN NS ns1.foobardomain.org. This is an NS entry. Every nameserver that is going to reply authoritatively for the zone must have one of these entries. The @ as seen here could have been foobardomain.org. The @ translates to the origin. localhost IN A 127.0.0.1 ns1 IN A 3.2.1.2 ns2 IN A 3.2.1.3 mail IN A 3.2.1.10 @ IN A 3.2.1.30 The A record indicates machine names. As seen above, ns1.foobardomain.org would resolve to 3.2.1.2. Again, the origin symbol, @, is used here, thus meaning foobardomain.org would resolve to 3.2.1.30. www IN CNAME @ The canonical name record is usually used for giving aliases to a machine. In the example, www is aliased to the machine addressed to the origin, or foobardomain.org (3.2.1.30). CNAMEs can be used to provide alias hostnames, or round robin one hostname among multiple machines. @ IN MX 10 mail.foobardomain.org. The MX record indicates which mail servers are responsible for handling incoming mail for the zone. mail.foobardomain.org is the hostname of the mail server, and 10 being the priority of that mailserver. One can have several mailservers, with priorities of 3, 2, 1. A mail server attempting to deliver to foobardomain.org would first try the highest priority MX, then the second highest, etc, until the mail can be properly delivered. For in-addr.arpa zone files (reverse dns), the same format is used, except with PTR entries instead of A or CNAME. $TTL 3600 1.2.3.in-addr.arpa. IN SOA ns1.foobardomain.org. admin.foobardomain.org. ( 5 ; Serial 10800 ; Refresh 3600 ; Retry 604800 ; Expire 3600 ) ; Minimum @ IN NS ns1.foobardomain.org. @ IN NS ns2.foobardomain.org. 2 IN PTR ns1.foobardomain.org. 3 IN PTR ns2.foobardomain.org. 10 IN PTR mail.foobardomain.org. 30 IN PTR foobardomain.org. This file gives the proper IP address to hostname mappings of our above fictitious domain. Caching Name Server BIND caching name server A caching nameserver is a nameserver that is not authoritative for any zones. It simply asks queries of its own, and remembers them for later use. To set one up, just configure the name server as usual, omitting any inclusions of zones. Mike Makonnen - Contributed + Contributed by Running named in a Sandbox BIND running in a sandbox chroot For added security you may want to run &man.named.8; in a sandbox. This will reduce the potential damage should it be compromised. If you include a sandbox directory in its command line, named will &man.chroot.8; into that directory immediately upon finishing processing its command line. It is also a good idea to have named run as a non-privileged user in the sandbox. The default FreeBSD install contains a user bind with group bind. If we wanted the sandbox in the /etc/namedb/sandbox directory the command line for named would look like this: &prompt.root; /usr/sbin/named -u bind -g bind -t /etc/namedb/sandbox <path_to_named.conf> The following steps should be taken in order to successfully run named in a sandbox. Throughout the following discussion we will assume the path to your sandbox is /etc/namedb/sandbox Create the sandbox directory: /etc/namedb/sandbox Create other necessary directories off of the sandbox directory: etc and var/run copy /etc/localtime to sandbox/etc make bind:bind the owner of all files and directories in the sandbox: &prompt.root; chown -R bind:bind /etc/namedb/sandbox &prompt.root; chmod -R 750 /etc/namedb/sandbox There are some issues you need to be aware of when running named in a sandbox. Your &man.named.conf.5; file and all your zone files must be in the sandbox sandbox/etc/localtime is needed in order to have the correct time for your time zone in log messages. &man.named.8; will write its process id to a file in sandbox/var/run The Unix socket used for communication by the &man.ndc.8; utility will be created in sandbox/var/run When using the &man.ndc.8; utility you need to specify the location of the Unix socket created in the sandbox, by &man.named.8;, by using the -c switch: &prompt.root; ndc -c /etc/namedb/sandbox/var/run/ndc If you enable logging to file, the log files must be in the sandbox &man.named.8; can be started in a sandbox properly, if the following is in /etc/rc.conf: named_flags="-u bind -g bind -t /etc/namedb/sandbox <path_to_named.conf>" How to use the nameserver If setup properly, the nameserver should be accessible through the network and locally. /etc/resolv.conf must contain a nameserver entry with the local IP address so it will query the local name server first. To access it over the network, the machine must have the nameserver's IP address set properly in its own nameserver configuration options. Security Although BIND is the most common implementation of DNS, there is always the issue of security. Possible and exploitable security holes are sometimes found. It is a good idea to subscribe to CERT and freebsd-announce to stay up to date with the current Internet and FreeBSD security issues. If a problem arises, keeping sources up to date and having a fresh build of named would not hurt. Further Reading BIND/named man pages: &man.ndc.8; &man.named.8; &man.named.conf.5; Official ISC Bind Page BIND FAQ O'Reilly DNS and BIND 4th Edition RFC1034 - Domain Names - Concepts and Facilities RFC1035 - Domain Names - Implementation and Specification Chern Lee - Contributed + Contributed by Network Address Translation daemon (natd) Overview natd FreeBSD's Network Address Translation daemon, commonly known as &man.natd.8; is a daemon that accepts incoming raw IP packets, changes the source to the local machine and re-injects these packets back into the outgoing IP packet stream. natd does this by changing the source IP address and port such that when data is received back, it is able to determine the original location of the data and forward it back to its original requester. Internet connection sharing IP masquerading The most common use of NAT is to perform what is commonly known as Internet Connection Sharing. Setup Due to the diminishing IP space in ipv4, and the increased number of users on high-speed consumer lines such as cable or DSL, people are in more and more need of an Internet Connection Sharing solution. The ability to connect several computers online through one connection and IP address makes &man.natd.8; a reasonable choice. Most commonly, a user has a machine connected to a cable or DSL line with one IP address and wishes to use this one connected computer to provide Internet access to several more over a LAN. To do this, the FreeBSD machine on the Internet must act as a gateway. This gateway machine must have two NICs--one for connecting to the Internet router, the other connecting to a LAN. All the machines on the LAN are connected through a hub or switch. _______ __________ ________ | | | | | | | Hub |-----| Client B |-----| Router |----- Internet |_______| |__________| |________| | ____|_____ | | | Client A | |__________| Network Layout With this setup, the machine without Internet access can use the machine with access as a gateway to access the outside world. kernel configuration Configuration The following options must be in the kernel configuration file: options IPFIREWALL options IPDIVERT Additionally, at choice, the following may also be suitable: options IPFIREWALL_DEFAULT_TO_ACCEPT options IPFIREWALL_VERBOSE The following must be in /etc/rc.conf: gateway_enable="YES" firewall_enable="YES" firewall_type="OPEN" natd_enable="YES" natd_interface="fxp0" natd_flags="" gateway_enable="YES" Sets up the machine to act as a gateway. Running sysctl -w net.inet.ip.forwarding=1 would have the same effect. firewall_enable="YES" Enables the firewall rules in /etc/rc.firewall at boot. firewall_type="OPEN" This specifies a predefined firewall ruleset that allows anything in. See /etc/rc.firewall for additional types. natd_interface="fxp0" Indicates which interface to forward packets through. (the interface connected to the Internet) natd_flags="" Any additional configuration options passed to &man.natd.8; on boot. Having the previous options defined in /etc/rc.conf would run natd -interface fxp0 at boot. This can also be run manually. Each machine and interface behind the LAN should be assigned IP address numbers in the private network space as defined by RFC 1918 and have a default gateway of the natd machine's internal IP address. For example, client a and b behind the LAN have IP addresses of 192.168.0.2 and 192.168.0.3, while the natd machine's LAN interface has an IP address of 192.168.0.1. Client a and b's default gateway must be set to that of the natd machine, 192.168.0.1. The natd machine's external, or Internet interface does not require any special modification for natd to work. Port Redirection The drawback with natd is that the LAN clients are not accessible from the Internet. Clients on the LAN can make outgoing connections to the world but cannot receive incoming ones. This presents a problem if trying to run Internet services on one of the LAN client machines. A simple way around this is to redirect selected Internet ports on the natd machine to a LAN client. For example, an IRC server runs on Client A, and a web server runs on Client B. For this to work properly, connections received on ports 6667 (irc) and 80 (web) must be redirected to the respective machines. The -redirect_port must be passed to &man.natd.8; with the proper options. The syntax is as follows: -redirect_port proto targetIP:targetPORT[-targetPORT] [aliasIP:]aliasPORT[-aliasPORT] [remoteIP[:remotePORT[-remotePORT]]] In the above example, the argument should be: -redirect_port tcp 192.168.0.2:6667 6667 -redirect_port tcp 192.168.0.3:80 80 This will redirect the proper tcp ports to the LAN client machines. The -redirect_port argument can be used to indicate port ranges over individual ports. For example, tcp 192.168.0.2:2000-3000 2000-3000 would redirect all connections received on ports 2000 to 3000 to ports 2000 to 3000 on Client A. These options can be used when directly running &man.natd.8; or placed within the natd_flags="" option in /etc/rc.conf. For further configuration options, consult &man.natd.8; Address Redirection address redirection Address redirection is useful if several IP addresses are available, yet they must be on one machine. With this, &man.natd.8; can assign each LAN client its own external IP address. &man.natd.8; then rewrites outgoing packets from the LAN clients with the proper external IP address and redirects all traffic incoming on that particular IP address back to the specific LAN client. This is also known as static NAT. For example, the IP addresses 128.1.1.1, 128.1.1.2, and 128.1.1.3 belong to the natd gateway machine. 128.1.1.1 can be used as the natd gateway machine's external IP address, while 128.1.1.2 and 128.1.1.3 are forwarded back to LAN clients A and B. The -redirect_address syntax is as follows: localIP The internal IP address of the LAN client. publicIP The external IP address corresponding to the LAN client. In the example, this argument would read: Like -redirect_port, these arguments are also placed within natd_flags of /etc/rc.conf. With address redirection, there is no need for port redirection since all data received on a particular IP address is redirected. The external IP addresses on the natd machine must be active and aliased to the external interface. Look at &man.rc.conf.5; to do so. Chern Lee - Contributed + Contributed by inetd <quote>Super-Server</quote> Overview &man.inetd.8; is referred to as the Internet Super-Server because it manages connections for several daemons. Programs that provide network service are commonly known as daemons. inetd serves as a managing server for other daemons. When a connection is received by inetd, it determines which daemon the connection is destined for, spawns the particular daemon and delegates the socket to it. Running one instance of inetd reduces the overall system load as compared to running each daemon individually in stand-alone mode. Primarily, inetd is used to spawn other daemons, but several trivial protocols are handled directly, such as chargen, auth, and daytime. This section will cover the basics in configuring inetd through its command-line options and it's configuration file, /etc/inetd.conf. Settings inetd is initialized through the /etc/rc.conf system. The inetd_enable option is set to NO by default, but is often times turned on by sysinstall with the medium security profile. Placing: inetd_enable="YES" or inetd_enable="NO" into /etc/rc.conf can enable or disable inetd starting at boot time. Additionally, different command-line options can be passed to inetd via the inetd_flags option. Command-Line Options inetd sypnosis: -d Turn on debugging. -l Turn on logging of successful connections. -w Turn on TCP Wrapping for external services. (on by default) -W Turn on TCP Wrapping for internal services which are built in to inetd. (on by default) -c maximum Specify the default maximum number of simultaneous invocations of each service; the default is unlimited. May be overridden on a per-service basis with the parameter. -C rate Specify the default maximum number of times a service can be invoked from a single IP address in one minute; the default is unlimited. May be overridden on a per-service basis with the parameter. -R rate Specify the maximum number of times a service can be invoked in one minute; the default is 256. A rate of 0 allows an unlimited number of invocations. -a Specify one specific IP address to bind to. Alternatively, a hostname can be specified, in which case the IPv4 or IPv6 address which corresponds to that hostname is used. Usually a hostname is specified when inetd is run inside a &man.jail.8;, in which case the hostname corresponds to the &man.jail.8; environment. When hostname specification is used and both IPv4 and IPv6 bindings are desired, one entry with the appropriate protocol type for each binding is required for each service in /etc/inetd.conf. For example, a TCP-based service would need two entries, one using ``tcp4'' for the protocol and the other using ``tcp6''. -p Specify an alternate file in which to store the process ID. These options can be passed to inetd using the inetd_flags option in /etc/rc.conf. By default, inetd_flags is set to -wW, which turns on TCP wrapping for inetd's internal and external services. For novice users, these parameters usually do not need to be modified or even entered in /etc/rc.conf An external service is a daemon outside of inetd, which is invoked when a connection is received for it. On the other hand, an internal service is one that inetd has the facility of offering within itself. <filename>inetd.conf</filename> Configuration of inetd is controlled through the /etc/inetd.conf file. When a modification is made to /etc/inetd.conf, inetd can be forced to re-read its configuration file by sending a HangUP signal to the inetd process as shown: Sending <application>inetd</application> a HangUP signal &prompt.root kill -HUP `cat /var/run/inetd.pid` Each line of the configuration file specifies an individual daemon. Comments in the file are preceded by a #. The format of /etc/inetd.conf is as follows: service-name socket-type protocol {wait|nowait}[/max-child[/max-connections-per-ip-per-minute]] user[:group][/login-class] server-program server-program-arguments An example entry for the ftpd daemon using IPv4: ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l service-name This is the service name of the particular daemon. It must correspond to a service listed in /etc/services. This determines which port inetd must listen to. If a new service is being created, it must be placed in /etc/services first. socket-type Either stream, dgram, raw, or seqpacket. stream must be used for connection-based, TCP daemons, while dgram is used for daemons utilizing the UDP transport protocol. protocol One of the following: Protocol Explanation tcp, tcp4 TCP IPv4 udp, udp4 UDP IPv4 tcp6 TCP IPv6 udp6 UDP IPv6 tcp46 Both TCP IPv4 and v6 udp46 Both UDP IPv4 and v6 {wait|nowait}[/max-child[/max-connections-per-ip-per-minute]] indicates whether the daemon invoked from inetd is able to handle its own socket or not. socket types must use the wait option, while stream socket daemons, which are usually multi-threaded, should use . usually hands off multiple sockets to a single daemon, while spawns a child daemon for each new socket. The maximum number of child daemons inetd may spawn can be set using the option. If a limit of ten instances of a particular daemon is needed, a /10 would be placed after . In addition to another option limiting the maximum connections from a single place to a particular daemon can be enabled. does just this. A value of ten here would limit any particular IP address connecting to a particular service to ten attempts per minute. This is useful to prevent intentional or unintentional resource consumption and Denial of Service (DoS) attacks to a machine. In this field, or is mandatory. and are optional. A stream-type multi-threaded daemon without any or limits would simply be: nowait The same daemon with a maximum limit of ten daemons would read: nowait/10 Additionally, the same setup with a limit of twenty connections per IP address per minute and a maximum total limit of ten child daemons would read: nowait/10/20 These options are all utilized by the default settings of the fingerd daemon, as seen here: finger stream tcp nowait/3/10 nobody /usr/libexec/fingerd fingerd -s user The user is the username that the particular daemon should run as. Most commonly, daemons run as the root user. For security purposes, it is common to find some servers running as the daemon user, or the least privileged nobody user. server-program The full path of the daemon to be executed when a connection is received. If the daemon is a service provided by inetd internally, then should be used. server-program-arguments This works in conjunction with by specifying the arguments, starting with argv[0], passed to the daemon on invocation. If mydaemon -d is the command line, mydaemon -d would be the value of . Again, if the daemon is an internal service, use here. Security Depending on the security profile chosen at install, many of inetd's daemons may be enabled by default. If there is no apparent need for a particular daemon, disable it! Place a # in front of the daemon in question, and send a hangup signal to inetd. Some daemons, such as fingerd, may not be desired at all because they provide an attacker with too much information. Some daemons are not security-concious and have long, or non-existent timeouts for connection attempts. This allows an attacker to slowly send connections to a particular daemon, thus saturating available resources. It may be a good idea to place and limitations on certain daemons. By default, TCP wrapping is turned on. Consult the &man.hosts.access.5; man page for more information on placing TCP restrictions on various inetd invoked daemons. Miscellaneous daytime, time, echo, discard, chargen, and auth are all internally provided services of inetd. The auth service provides identity (ident, identd) network services, and is configurable to a certain degree. Consult the &man.inetd.8; man page for more in-depth information. diff --git a/en_US.ISO8859-1/books/handbook/basics/chapter.sgml b/en_US.ISO8859-1/books/handbook/basics/chapter.sgml index 61287866ac..dc9d2a83f6 100644 --- a/en_US.ISO8859-1/books/handbook/basics/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/basics/chapter.sgml @@ -1,885 +1,885 @@ Chris Shumway - Rewritten + Rewritten by Unix Basics Synopsis basics The following chapter will cover the basic commands and functionality of the FreeBSD operating system. If you are new to FreeBSD, you will definitely want to read through this chapter before asking for help. Permissions Unix FreeBSD, having its history rooted in BSD Unix, has its fundamentals based on several key Unix concepts. The first, and most pronounced, is that FreeBSD is a multi-user operating system. The system can handle several users all working simultaneously on completely unrelated tasks. The system is responsible for properly sharing and managing requests for hardware devices, peripherals, memory, and CPU time evenly to each user. Because the system is capable of supporting multiple users, everything the system manages has a set of permissions governing who can read, write, and execute the resource. These permissions are stored as two octets broken into three pieces, one for the owner of the file, one for the group that the file belongs to, and one for everyone else. This numerical representation works like this: permissions file permissions Value Permission Directory Listing 0 No read, no write, no execute --- 1 No read, no write, execute --x 2 No read, write, no execute -w- 3 No read, write, execute -wx 4 Read, no write, no execute r-- 5 Read, no write, execute r-x 6 Read, write, no execute rw- 7 Read, write, execute rwx ls directories For the long directory listing by ls -l, a column will show a file's permissions for the owner, group, and everyone else. Here's how it is broken up: -rw-r--r-- The first character, from left to right, is a special character that tells if this is a regular file, a directory, a special character or block device, a socket, or any other special pseudo-file device. The next three characters, designated as rw- gives the permissions for the owner of the file. The next three characters, r-- gives the permissions for the group that the file belongs to. The final three characters, r--, gives the permissions for the rest of the world. A dash means that the permission is turned off. In the case of this file, the permissions are set so the owner can read and write to the file, the group can read the file, and the rest of the world can only read the file. According to the table above, the permissions for this file would be 644, where each digit represents the three parts of the file's permission. This is all well and good, but how does the system control permissions on devices? FreeBSD actually treats most hardware devices as a file that programs can open, read, and write data to just like any other file. These special device files are stored on the /dev directory. Directories are also treated as files. They have read, write, and execute permissions. The executable bit for a directory has a slightly different meaning than that of files. When a directory is marked executable, it means it can be searched into, for example, a directory listing can be done in that directory. There are more to permissions, but they are primarily used in special circumstances such as setuid binaries and sticky directories. If you want more information on file permissions and how to set them, be sure to look at the &man.chmod.1; man page. Directory Structures directory hierarchy Since FreeBSD uses its file systems to determine many fundamental system operations, the hierarchy of the file system is extremely important. Due to the fact that the &man.hier.7; man page provides a complete description of the directory structure, it will not be duplicated here. Please read &man.hier.7; for more information. Of significant importance is the root of all directories, the / directory. This directory is the first directory mounted at boot time and it contains the base system necessary at boot time. The root directory also contains mount points for every other file system that you want to mount. A mount point is a directory where additional file systems can be grafted onto the root file system. Standard mount points include /usr, /var, /mnt, and /cdrom. These directories are usually referenced to entries in the file /etc/fstab. /etc/fstab is a table of various file systems and mount points for reference by the system. Most of the file systems in /etc/fstab are mounted automatically at boot time from the script &man.rc.8; unless they contain the option. Consult the &man.fstab.5; manual page for more information on the format of the /etc/fstab file and the options it contains. Processes FreeBSD is a multi-tasking operating system. This means that it seems as though more than one program is running at once. Each program running at any one time is called a process. Every command you run will start at least one new process, and there are a number of system processes that run all the time, keeping the system functional. Each process is uniquely identified by a number called a process ID, or PID, and, like files, each process also has one owner and group. The owner and group information is used to determine what files and devices the process can open, using the file permissions discussed earlier. Most processes also have a parent process. The parent process is the process that started them. For example, if you are typing commands to the shell then the shell is a process, and any commands you run are also processes. Each process you run in this way will have your shell as its parent process. The exception to this is a special process called init. init is always the first process, so its PID is always 1. init is started automatically by the kernel when FreeBSD starts. Two commands are particularly useful to see the processes on the system, &man.ps.1; and &man.top.1;. The &man.ps.1; command is used to show a static list of the currently running processes, and can show their PID, how much memory they are using, the command line they were started with, and so on. The &man.top.1; command displays all the running processes, and updates the display every few seconds, so that you can interactively see what your computer is doing. By default, &man.ps.1; only shows you the commands that are running and are owned by you. For example; &prompt.user; ps PID TT STAT TIME COMMAND 298 p0 Ss 0:01.10 tcsh 7078 p0 S 2:40.88 xemacs mdoc.xsl (xemacs-21.1.14) 37393 p0 I 0:03.11 xemacs freebsd.dsl (xemacs-21.1.14) 48630 p0 S 2:50.89 /usr/local/lib/netscape-linux/navigator-linux-4.77.bi 48730 p0 IW 0:00.00 (dns helper) (navigator-linux-) 72210 p0 R+ 0:00.00 ps 390 p1 Is 0:01.14 tcsh 7059 p2 Is+ 1:36.18 /usr/local/bin/mutt -y 6688 p3 IWs 0:00.00 tcsh 10735 p4 IWs 0:00.00 tcsh 20256 p5 IWs 0:00.00 tcsh 262 v0 IWs 0:00.00 -tcsh (tcsh) 270 v0 IW+ 0:00.00 /bin/sh /usr/X11R6/bin/startx -- -bpp 16 280 v0 IW+ 0:00.00 xinit /home/nik/.xinitrc -- -bpp 16 284 v0 IW 0:00.00 /bin/sh /home/nik/.xinitrc 285 v0 S 0:38.45 /usr/X11R6/bin/sawfish As you can see in this example, the output from &man.ps.1; is organized in to a number of columns. PID is the process ID discussed earlier. PIDs are assigned starting from 1, go up to 65536, and wrap around back to the beginning when you run out. TT shows the tty the program is running on, and can safely be ignore for the moment. STAT shows the program's state, and again, can be safely ignored. TIME is the amount of time the program has been running on the CPU—this is not necessarily the elapsed time since you started the program, as some programs spend a lot of time waiting for things to happen before they need to spend time on the CPU. Finally, COMMAND is the command line that was used to run the program. &man.ps.1; supports a number of different options to change the information that is displayed. One of the most useful sets is auxww. displays information about all the running processes, not just your own. displays the username of the process' owner, as well as memory usage. displays information about daemon processes, and causes &man.ps.1; to display the full command line, rather than truncating it once it gets too long to fit on the screen. The output from &man.top.1; is similar. A sample session looks like this; &prompt.user; top last pid: 72257; load averages: 0.13, 0.09, 0.03 up 0+13:38:33 22:39:10 47 processes: 1 running, 46 sleeping CPU states: 12.6% user, 0.0% nice, 7.8% system, 0.0% interrupt, 79.7% idle Mem: 36M Active, 5256K Inact, 13M Wired, 6312K Cache, 15M Buf, 408K Free Swap: 256M Total, 38M Used, 217M Free, 15% Inuse PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND 72257 nik 28 0 1960K 1044K RUN 0:00 14.86% 1.42% top 7078 nik 2 0 15280K 10960K select 2:54 0.88% 0.88% xemacs-21.1.14 281 nik 2 0 18636K 7112K select 5:36 0.73% 0.73% XF86_SVGA 296 nik 2 0 3240K 1644K select 0:12 0.05% 0.05% xterm 48630 nik 2 0 29816K 9148K select 3:18 0.00% 0.00% navigator-linu 175 root 2 0 924K 252K select 1:41 0.00% 0.00% syslogd 7059 nik 2 0 7260K 4644K poll 1:38 0.00% 0.00% mutt ... The output is split in to two sections. The header (the first five lines) shows the PID of the last process to run, the system load averages (which are a measure of how busy the system is), the system uptime (time since the last reboot) and the current time. The other figures in the header relate to how many processes are running (47 in this case), how much memory and swap space has been taken up, and how much time the system is spending in different CPU states. Below that are a series of columns containing similar information to the output from &man.ps.1;. As before you can see the PID, the username, the amount of CPU time taken, and the command that was run. &man.top.1; also defaults to showing you the amount of memory space taken by the process. This is split in to two columns, one for total size, and one for resident size—total size is how much memory the application has needed, and the resident size is how much it is actually using at the moment. In this example you can see that Netscape has needed almost 30MB of RAM, and is currently only needing 9MB. &man.top.1; automatically updates this display every two seconds; this can be changed with the option. Daemons, signals, and killing processes When you run an editor it is easy to control the editor, tell it to load files, and so on. You can do this because the editor provides facilities to do so, and because the editor is attached to a terminal. Some programs are not designed to be run with continuous user input, and so they disconnect from the terminal at the first opportunity. For example, a web server spends all day responding to web requests, it normally does not need any input from you. Programs that transport email from site to site are another example of this class of application. We call these programs daemons. Daemons were characters in Greek mythology; neither good or evil, they were little attendant spirits that, by and large, did useful things for mankind. Much like the web servers and mail servers of today do useful things. This is why the BSD mascot has, for a long time, been the cheerful looking daemon with sneakers and a pitchfork. There is a convention to name programs that normally run as daemons with a trailing d. BIND is the Berkeley Internet Name Daemon (and the program you can is called named), the Apache web server program is called httpd, the line printer spooling daemon is lpd and so on. This is a convention, not a hard and fast rule; for example, the main mail daemon for the Sendmail application is called sendmail, and not maild, as you might imagine. Sometimes you will need to communicate with a daemon process. These communications are called signals, and you can communicate with daemons (or with any running process) by sending it a signal. There are a number if different signals that you can send—some of them have a specific meaning, others are interpreted by the application, and the application's documentation will tell you how that application interprets signals. You can only send a signal to a process that you own. If you try and send a signal to someone else's process it will be ignored. The exception to this is the root user, who can send signals to everyone's processes. FreeBSD will also send applications signals in some cases. If an application is badly written, and tries to access memory that it is not supposed to, FreeBSD sends the process the Segmentation Violation signal (SIGSEGV). If an application has used the &man.alarm.3; system call to be alerted after a period of time has elapsed then it will be sent the Alarm signal (SIGALRM), and so on. Two signals can be used to stop a process, SIGTERM and SIGKILL. SIGTERM is the polite way to kill a process; the process can catch the signal, realize that you want it to shut down, close any log files it may have open, and generally finish whatever it is doing at the time before shutting down. In some cases a process may even ignore SIGTERM if it is in the middle of some task that can not be interrupted. SIGKILL can not be ignored by a process. This is the I don't care what you are doing, stop right now signal. If you send SIGKILL to a process then FreeBSD will stop that process there and then Not quite true—there are a few things that can not be interrupted. For example, if the process is trying to read from a file that is on another computer on the network, and the other computer has gone away for some reason (been turned off, or the network has a fault), then the process is said to be uninterruptible. Eventually the process will time out, typically after two minutes. As soon as this time out occurs the process will be killed. . The other signals you might want to use are SIGHUP, SIGUSR1, and SIGUSR2. These are general purpose signals, and different applications will do different things when they are sent. Suppose that you have changed your web server's configuration file—you would like to tell the web server to re-read its configuration. You could stop and restart httpd, but this would result in a brief outage period on your webserver, which may be undesirable. Most daemons are written to respond to the SIGHUP signal by re-reading their configuration file. So instead of killing and restarting httpd you would send it the SIGHUP signal. Because there is no standard way to respond to these signals, different daemons will have different behavior, so be sure and read the documentation for the daemon in question. Signals are sent using the &man.kill.1; command, as this example shows. Sending a signal to a process This example shows how to send a signal to &man.inetd.8;. The &man.inetd.8; configuration file is /etc/inetd.conf, and &man.inetd.8; will re-read this configuration file when it is sent SIGHUP. Find the process ID of the process you want to send the signal to. Do this using &man.ps.1; and &man.grep.1;. The &man.grep.1; command is used to search through output, looking for the string you specify. This command is run as a normal user, and &man.inetd.8; is run as root, so the options must be given to &man.ps.1;. &prompt.user; ps -ax | grep inetd 198 ?? IWs 0:00.00 inetd -wW So the &man.inetd.8; PID is 198. In some cases the grep inetd command might also occur in this output. This is because of the way &man.ps.1; has to find the list of running processes. Use &man.kill.1; to send the signal. Because &man.inetd.8; is being run by root you must use &man.su.1; to become root first. &prompt.user; su Password: &prompt.root; /bin/kill -s HUP 198 As is common with Unix commands, &man.kill.1; will not print any output if it is successfully. If you try and send a signal to a process that you do not own then you will see kill: PID: Operation not permitted. If you mistype the PID you will either send the signal to the wrong process, which could be bad, or, if you are lucky, you will have sent the signal to a PID that is not currently in use, and you will see kill: PID: No such process. Why use <command>/bin/kill</command>? Many shells provide the kill command as a built in command; that is, the shell will send the signal directly, rather than running /bin/kill. This can be very useful, but different shells have a different syntax for specifying the name of the signal to send. Rather than try to learn all of them, it can be simpler just to use the /bin/kill ... command directly. Sending other signals is very similar, just substitute TERM or KILL in the command line as necessary. Killing random process on the system can be a bad idea. In particular, &man.init.8;, process ID 1, is very special. Running /bin/kill -s KILL 1 is a quick way to shutdown your system. Always double check the arguments you run &man.kill.1; with before you press RETURN. Shells shells command-line In FreeBSD, a lot of everyday work is done in a command line interface called a shell. A shell's main job is to take commands from the input channel and execute them. A lot of shells also have built in functions to help everyday tasks such a file management, file globing, command line editing, command macros, and environment variables. FreeBSD comes with a set of shells, such as sh, the Bourne Shell, and csh, the C-shell. Many other shells are available from the FreeBSD Ports Collection that have much more power, such as tcsh and bash. Which shell do you use? It is really a matter of taste. If you are a C programmer you might feel more comfortable with a C-like shell such as tcsh. If you've come from Linux or are new to a Unix command line interface you might try bash. The point is that each shell has unique properties that may or may not work with your preferred working environment, and that you have a choice of what shell to use. One common feature in a shell is file-name completion. Given the typing of the first few letters of a command or filename, you can usually have the shell automatically complete the rest of the command or filename by hitting the TAB key on the keyboard. Here is an example. Suppose you have two files called foobar and foo.bar. You want to delete foo.bar. So what you would type on the keyboard is: rm fo[TAB].[TAB]. The shell would print out rm foo[BEEP].bar. The [BEEP] is the console bell, which is the shell telling me it was unable to totally complete the filename because there is more than one match. Both foobar and foo.bar start with fo, but it was able to complete to foo. If you type in ., then hit TAB again, the shell would be able to fill in the rest of the filename for you. environment variables Another function of the shell is environment variables. Environment variables are a variable key pair stored in the shell's environment space. This space can be read by any program invoked by the shell, and thus contains a lot of program configuration. Here is a list of common environment variables and what they mean: environment variables Variable Description USER Current logged in user's name. PATH Colon separated list of directories to search for binaries. DISPLAY Network name of the X11 display to connect to, if available. SHELL The current shell. TERM The name of the user's terminal. Used to determine the capabilities of the terminal. TERMCAP Database entry of the terminal escape codes to perform various terminal functions. OSTYPE Type of operating system. E.g., FreeBSD. MACHTYPE The CPU architecture that the system is running on. EDITOR The user's preferred text editor. PAGER The user's preferred text pager. MANPATH Colon separated list of directories to search for manual pages. Bourne shells To view or set an environment variable differs somewhat from shell to shell. For example, in the C-Style shells such as tcsh and csh, you would use setenv to set and view environment variables. Under Bourne shells such as sh and bash, you would use set and export to view and set your current environment variables. For example, to set or modify the EDITOR environment variable, under csh or tcsh a command like this would set EDITOR to /usr/local/bin/emacs: &prompt.user; setenv EDITOR /usr/local/bin/emacs Under Bourne shells: &prompt.user; export EDITOR="/usr/local/bin/emacs" You can also make most shells expand the environment variable by placing a $ character in front of it on the command line. For example, echo $TERM would print out whatever $TERM is set to, because the shell expands $TERM and passes it on to echo. Shells treat a lot of special characters, called meta-characters as special representations of data. The most common one is the * character, which represents any number of characters in a filename. These special meta-characters can be used to do file name globing. For example, typing in echo * is almost the same as typing in ls because the shell takes all the files that match * and puts them on the command line for echo to see. To prevent the shell from interpreting these special characters, they can be escaped from the shell by putting a backslash (\) character in front of them. echo $TERM prints whatever your terminal is set to. echo \$TERM prints $TERM as is. Changing your shell The easiest way to change your shell is to use the chsh command. Running chsh will place you into the editor that is in your EDITOR environment variable; if it is not set, you will be placed in vi. Change the Shell: line accordingly. You can also give chsh the option; this will set your shell for you, without requiring you to enter an editor. For example, if you wanted to change your shell to bash, the following should do the trick: &prompt.user; chsh -s /usr/local/bin/bash Running chsh with no parameters and editing the shell from there would work also. The shell that you wish to use must be present in the /etc/shells file. If you have installed a shell from the ports collection, then this should have been done for you already. If you installed the shell by hand, you must do this. For example, if you installed bash by hand and placed it into /usr/local/bin, you would want to: &prompt.root; echo "/usr/local/bin/bash" >> /etc/shells Then rerun chsh. Text Editors text editors editors A lot of configuration in FreeBSD is done by editing a text file. Because of this, it would be a good idea to become familiar with a text editor. FreeBSD comes with a few as part of the base system, and many more are available in the ports collection. ee The easiest and simplest editor to learn is an editor called ee, which stands for easy editor. To start ee, one would type at the command line ee filename where filename is the name of the file to be edited. For example, to edit /etc/rc.conf, type in ee /etc/rc.conf. Once inside of ee, all of the commands for manipulating the editor's functions are listed at the top of the display. The caret ^ character means the control key on the keyboard, so ^e expands to pressing the control key plus the letter e. To leave ee, hit the escape key, then choose leave editor. The editor will prompt you to save any changes if the file has been modified. vi editors vi emacs editors emacs FreeBSD also comes with more powerful text editors such as vi as part of the base system, and emacs and vim as part of the FreeBSD Ports Collection. These editors offer much more functionality and power at the expense of being a little more complicated to learn. However if you plan on doing a lot of text editing, learning a more powerful editor such as vim or emacs will save you much more time in the long run. For More Information... Manual pages man pages The most comprehensive documentation on FreeBSD is in the form of man pages. Nearly every program on the system comes with a short reference manual explaining the basic operation and various arguments. These manuals can be viewed with the man command. Use of the man command is simple: &prompt.user; man command command is the name of the command you wish to learn about. For example, to learn more about ls command type: &prompt.user; man ls The online manual is divided up into numbered sections: User commands. System calls and error numbers. Functions in the C libraries. Device drivers. File formats. Games and other diversions. Miscellaneous information. System maintenance and operation commands. Kernel developers. In some cases, the same topic may appear in more than one section of the online manual. For example, there is a chmod user command and a chmod() system call. In this case, you can tell the man command which one you want by specifying the section: &prompt.user; man 1 chmod This will display the manual page for the user command chmod. References to a particular section of the online manual are traditionally placed in parenthesis in written documentation, so &man.chmod.1; refers to the chmod user command and &man.chmod.2; refers to the system call. This is fine if you know the name of the command and simply wish to know how to use it, but what if you cannot recall the command name? You can use man to search for keywords in the command descriptions by using the switch: &prompt.user; man -k mail With this command you will be presented with a list of commands that have the keyword mail in their descriptions. This is actually functionally equivalent to using the apropos command. So, you are looking at all those fancy commands in /usr/bin but do not have the faintest idea what most of them actually do? Simply do: &prompt.user; cd /usr/bin &prompt.user; man -f * or &prompt.user; cd /usr/bin &prompt.user; whatis * which does the same thing. GNU Info Files Free Software Foundation FreeBSD includes many applications and utilities produced by the Free Software Foundation (FSF). In addition to man pages, these programs come with more extensive hypertext documents called info files which can be viewed with the info command or, if you installed emacs, the info mode of emacs. To use the &man.info.1; command, simply type: &prompt.user; info For a brief introduction, type h. For a quick command reference, type ?. diff --git a/en_US.ISO8859-1/books/handbook/config/chapter.sgml b/en_US.ISO8859-1/books/handbook/config/chapter.sgml index 1d22f56c7d..85a2043f28 100644 --- a/en_US.ISO8859-1/books/handbook/config/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/config/chapter.sgml @@ -1,890 +1,894 @@ Chern Lee - Written + Written by + + Mike Smith - Based on a tutorial written by + Based on a tutorial written by + + Matt Dillon - and tuning(7) written by + Also based on tuning(7) written by Configuration and Tuning Synopsis system configuration/optimization Configuring a system correctly can substantially reduce the amount of work involved in maintaining and upgrading it in the future. This chapter describes some of the aspects of administrative configuration of FreeBSD systems. This chapter will also describe some of the parameters that can be set to tune a FreeBSD system for optimum performance. Initial Configuration Partition layout Partition layout /etc /var /usr Base Partitions When laying out your filesystem with &man.disklabel.8; or &man.sysinstall.8;, it is important to remember that hard drives can transfer data at a faster rate from the outer tracks than the inner. Knowing this, you should place your smaller, heavily-accessed filesystems, such as root and swap, closer to the outside of the drive, while placing larger partitions, such as /usr, towards the inner. To do so, it is a good idea to create partitions in a similar order: root, swap, /var, /usr. The size of your /var partition reflects the intended use of your machine. /var is primarily used to hold: mailboxes, print spool and log files. Mail boxes and log files, in particular, can grow to unexpected sizes based upon how many users are on your system and how long your log files are kept. If you intend to run a mailserver, a /var partition of over a gigabyte can be suitable. Additionally, /var/tmp must be large enough to contain any packages you may wish to add. The /usr partition holds the bulk of the files required to support the system and a subdirectory within it called /usr/local holds the bulk of the files installed from the &man.ports.7; hierarchy. If you do not use ports all that much and do not intend to keep system source (/usr/src) on the machine, you can get away with a 1 gigabyte /usr partition. However, if you install a lot of ports (especially window managers and Linux binaries), we recommend at least a two gigabyte /usr and if you also intend to keep system source on the machine, we recommend a three gigabyte /usr. Do not underestimate the amount of space you will need in this partition, it can creep up and surprise you! When sizing your partitions, keep in mind the space requirements for your system to grow. Running out of space in one partition while having plenty in another can lead to much frustration. Some users who have used &man.sysinstall.8;'s Auto-defaults partition sizer have found either their root or /var partitions too small later on. Partition wisely and generously. Swap Partition swap sizing swap partition As a rule of thumb, your swap space should typically be double the amount of main memory. For example, if the machine has 128 megabytes of memory, the swap file should be 256 megabytes. Systems with lesser memory may perform better with a lot more swap. It is not recommended that you configure any less than 256 megabytes of swap on a system and you should keep in mind future memory expansion when sizing the swap partition. The kernel's VM paging algorithms are tuned to perform best when the swap partition is at least two times the size of main memory. Configuring too little swap can lead to inefficiencies in the VM page scanning code as well as create issues later on if you add more memory to your machine. Finally, on larger systems with multiple SCSI disks (or multiple IDE disks operating on different controllers), it is strongly recommend that you configure swap on each drive (up to four drives). The swap partitions on the drives should be approximately the same size. The kernel can handle arbitrary sizes but internal data structures scale to 4 times the largest swap partition. Keeping the swap partitions near the same size will allow the kernel to optimally stripe swap space across the disks. Do not worry about overdoing it a little, swap space is the saving grace of Unix. Even if you don't normally use much swap, it can give you more time to recover from a runaway program before being forced to reboot. Why Partition? Why partition at all? Why not create one big root partition and be done with it? Then I don't have to worry about undersizing things! There are several reasons this is not a good idea. First, each partition has different operational characteristics and separating them allows the filesystem to tune itself to those characteristics. For example, the root and /usr partitions are read-mostly, with very little writing, while a lot of reading and writing could occur in /var and /var/tmp. By properly partitioning your system, fragmentation introduced in the smaller more heavily write-loaded partitions will not bleed over into the mostly-read partitions. Additionally, keeping the write-loaded partitions closer to the edge of the disk, for example before the really big partition instead of after in the partition table, will increase I/O performance in the partitions where you need it the most. Now it is true that you might also need I/O performance in the larger partitions, but they are so large that shifting them more towards the edge of the disk will not lead to a significant performance improvement whereas moving /var to the edge can have a huge impact. Finally, there are safety concerns. Having a small neat root partition that is essentially read-only gives it a greater chance of surviving a bad crash intact. Core Configuration rc files rc.conf The principal location for system configuration information is within /etc/rc.conf. This file contains a wide range of configuration information, principally used at system startup to configure the system. Its name directly implies this; it is configuration information for the rc* files. An administrator should make entries in the rc.conf file to override the default settings from /etc/defaults/rc.conf. The defaults file should not be copied verbatim to /etc - it contains default values, not examples. All system-specific changes should be made in the rc.conf file itself. A number of strategies may be applied in clustered applications to separate site-wide configuration from system-specific configuration in order to keep administration overheads down. The recommended approach is to place site-wide configuration into another file, such as /etc/rc.conf.site, and then include this file into /etc/rc.conf, which will contain only system-specific information. As rc.conf is read by &man.sh.1; it is trivial to achieve this. For example: rc.conf: . rc.conf.site hostname="node15.webcompany.com" network_interfaces="fxp0 lo0" ifconfig_fxp0="inet 10.1.1.1" rc.conf.site: defaultrouter="10.1.1.254" saver="daemon" blanktime="100" The rc.conf.site file can then be distributed to every system using rsync or similar program, whilst the rc.conf file remains unique. Upgrading the system using &man.sysinstall.8; or 'make world' will not overwrite the rc.conf file, so system configuration information will not be lost. Application Configuration Typically, installed applications have their own configuration files, with their own syntax, etc. It is important that these files be kept separate from the base system, so that they may be easily located and managed by the package management tools. /usr/local/etc Typically, these files are installed in /usr/local/etc. In the case where an application has a large number of configuration files, a subdirectory will be created to hold them. Normally, when a port or package is installed, sample configuration files are also installed. These are usually identified with a ".default" suffix. If there are no existing configuration files for the application, they will be created by copying the .default files. For example, here is /usr/local/etc/apache: -rw-r--r-- 1 root wheel 2184 May 20 1998 access.conf -rw-r--r-- 1 root wheel 2184 May 20 1998 access.conf.default -rw-r--r-- 1 root wheel 9555 May 20 1998 httpd.conf -rw-r--r-- 1 root wheel 9555 May 20 1998 httpd.conf.default -rw-r--r-- 1 root wheel 12205 May 20 1998 magic -rw-r--r-- 1 root wheel 12205 May 20 1998 magic.default -rw-r--r-- 1 root wheel 2700 May 20 1998 mime.types -rw-r--r-- 1 root wheel 2700 May 20 1998 mime.types.default -rw-r--r-- 1 root wheel 7980 May 20 1998 srm.conf -rw-r--r-- 1 root wheel 7933 May 20 1998 srm.conf.default It can be quickly seen that only the srm.conf file has been changed. A later update of the apache port would not overwrite this changed file. Starting Services services It is common for a system to host a number of services. These may be started in several different fashions, each having different advantages. /usr/local/etc/rc.d Software installed from a port or the packages collection will often place a script in /usr/local/etc/rc.d which is invoked at system startup with a 'start' argument, and at system shutdown with a 'stop' argument. This is the recommended way for starting system-wide services that are to be run as root, or that expect to be started as root. These scripts are registered as part of the installation of the package, and will be removed when the package is removed. A generic startup script in /usr/local/etc/rc.d looks like: #!/bin/sh echo -n ' FooBar' case "$1" in start) /usr/local/bin/foobar ;; stop) kill -9 `cat /var/run/foobar.pid` ;; *) echo "Usage: `basename $0` {start|stop}" >&2 exit 64 ;; esac exit 0 This script is called with at startup, and the at shutdown to allow it to carry out its purpose. Some services expect to be invoked by &man.inetd.8; when a connection is received on a suitable port. This is common for mail reader servers (POP and IMAP, etc.). These services are enabled by editing the file /etc/inetd.conf. See &man.inetd.8; for details on editing this file. Some additional system services may not be covered by the toggles in /etc/rc.conf. These are traditionally enabled by placing the command(s) to invoke them in /etc/rc.local. As of FreeBSD 3.1 there is no default /etc/rc.local; if it is created by the administrator it will however be honored in the normal fashion. Note that rc.local is generally regarded as the location of last resort; if there is a better place to start a service, do it there. Do not place any commands in /etc/rc.conf. To start daemons, or run any commands at boot time, place a script in /usr/local/etc/rc.d instead. It is also possible to use the &man.cron.8; daemon to start system services. This approach has a number of advantages, not least being that because &man.cron.8; runs these processes as the owner of the crontab, services may be started and maintained by non-root users. This takes advantage of an undocumented feature of &man.cron.8; the time specification may be replaced by '@reboot', which will cause the job to be run when &man.cron.8; is started shortly after system boot. Virtual Hosts virtual hosts ip aliases A very common use of FreeBSD is virtual site hosting, where one server appears to the network as many servers. This is achieved by assigning multiple network addresses to a single interface. A given network interface has one "real" address, and may have any number of "alias" addresses. These aliases are normally added by placing alias entries in /etc/rc.conf. An alias entry for the interface 'fxp0' looks like: ifconfig_fxp0_alias0="inet xxx.xxx.xxx.xxx netmask xxx.xxx.xxx.xxx" Note that alias entries must start with alias0 and proceed upwards in order, (for example, _alias1, _alias2, and so on). The configuration process will stop at the first missing number. The calculation of alias netmasks is important, but fortunately quite simple. For a given interface, there must be one address which correctly represents the network's netmask. Any other addresses which fall within this network must have a netmask of all 1's. For example, consider the case where the fxp0 interface is connected to two networks, the 10.1.1.0 network with a netmask of 255.255.255.0 and the 202.0.75.16 network with a netmask of 255.255.255.240. We want the system to appear at 10.1.1.1 through 10.1.1.5 and at 202.0.75.17 through 202.0.75.20. The following entries configure the adapter correctly for this arrangement: ifconfig_fxp0="inet 10.1.1.1 netmask 255.255.255.0" ifconfig_fxp0_alias0="inet 10.1.1.2 netmask 255.255.255.255" ifconfig_fxp0_alias1="inet 10.1.1.3 netmask 255.255.255.255" ifconfig_fxp0_alias2="inet 10.1.1.4 netmask 255.255.255.255" ifconfig_fxp0_alias3="inet 10.1.1.5 netmask 255.255.255.255" ifconfig_fxp0_alias4="inet 202.0.75.17 netmask 255.255.255.240" ifconfig_fxp0_alias5="inet 202.0.75.18 netmask 255.255.255.255" ifconfig_fxp0_alias6="inet 202.0.75.19 netmask 255.255.255.255" ifconfig_fxp0_alias7="inet 202.0.75.20 netmask 255.255.255.255" Configuration Files <filename>/etc</filename> Layout There are a number of directories in which configuration information is kept. These include: /etc Generic system configuration information; data here is system-specific. /etc/defaults Default versions of system configuration files. /etc/mail Extra sendmail configuration, other MTA configuration files. /etc/ppp Configuration for both user- and kernel-ppp programs. /etc/namedb Default location for bind(8) data. Normally the boot file is located here, and contains a directive to refer to other data in /var/db. /usr/local/etc Configuration files for installed applications. May contain per-application subdirectories. /usr/local/etc/rc.d Start/stop scripts for installed applications. /var/db Persistent system-specific data files, such as bind zone files, database files, and so on. Hostnames hostname DNS <filename>/etc/resolv.conf</filename> resolv.conf /etc/resolv.conf dictates how FreeBSD's resolver accesses the Internet Domain Name System (DNS). The most common entries to resolv.conf are: nameserver The IP address of a nameserver the resolver should query. The servers are queried in the order listed with a maximum of three. search Search list hostname lookup. This is normally determined by the domain of the local hostname. domain The local domain name. A typical resolv.conf: search foobar.com nameserver 147.11.1.11 nameserver 147.11.100.30 If you are using DHCP, &man.dhclient.8; usually rewrites resolv.conf with information received from the DHCP server. <filename>/etc/hosts</filename> hosts /etc/hosts is a simple text database reminiscent of the old Internet. It works in conjunction with DNS and NIS providing name to IP address mappings. Local computers connected via a LAN can be placed in here for simplistic naming purposes instead of setting up a &man.named.8; server. Additionally, /etc/hosts can be used to provide a local record of Internet names, reducing the need to query externally for commonly accessed names. # $FreeBSD$ # # Host Database # This file should contain the addresses and aliases # for local hosts that share this file. # In the presence of the domain name service or NIS, this file may # not be consulted at all; see /etc/nsswitch.conf for the resolution order. # # ::1 localhost localhost.my.domain myname.my.domain 127.0.0.1 localhost localhost.my.domain myname.my.domain # # Imaginary network. #10.0.0.2 myname.my.domain myname #10.0.0.3 myfriend.my.domain myfriend # # According to RFC 1918, you can use the following IP networks for # private nets which will never be connected to the Internet: # # 10.0.0.0 - 10.255.255.255 # 172.16.0.0 - 172.31.255.255 # 192.168.0.0 - 192.168.255.255 # # In case you want to be able to connect to the Internet, you need # real official assigned numbers. PLEASE PLEASE PLEASE do not try # to invent your own network numbers but instead get one from your # network provider (if any) or from the Internet Registry (ftp to # rs.internic.net, directory `/templates'). # /etc/hosts takes on the simple format of: [Internet address] [official hostname] [alias1] [alias2] ... For example: 10.0.0.1 myRealHostname.foobar.com myRealHostname foobar1 foobar2 Consult &man.hosts.5; for more information. Log File Configuration log files <filename>syslog.conf</filename> syslog.conf syslog.conf is the configuration file for the &man.syslogd.8; program. It indicates which types of syslog messages are logged to particular log files. # $FreeBSD$ # # Spaces ARE valid field separators in this file. However, # other *nix-like systems still insist on using tabs as field # separators. If you are sharing this file between systems, you # may want to use only tabs as field separators here. # Consult the syslog.conf(5) manpage. *.err;kern.debug;auth.notice;mail.crit /dev/console *.notice;kern.debug;lpr.info;mail.crit;news.err /var/log/messages security.* /var/log/security mail.info /var/log/maillog lpr.info /var/log/lpd-errs cron.* /var/log/cron *.err root *.notice;news.err root *.alert root *.emerg * # uncomment this to log all writes to /dev/console to /var/log/console.log #console.info /var/log/console.log # uncomment this to enable logging of all log messages to /var/log/all.log #*.* /var/log/all.log # uncomment this to enable logging to a remote loghost named loghost #*.* @loghost # uncomment these if you're running inn # news.crit /var/log/news/news.crit # news.err /var/log/news/news.err # news.notice /var/log/news/news.notice !startslip *.* /var/log/slip.log !ppp *.* /var/log/ppp.log Consult the &man.syslog.conf.5; manpage for more information. <filename>newsyslog.conf</filename> newsyslog.conf newsyslog.conf is the configuration file for &man.newsyslog.8;, a program that is scheduled to run normally by &man.cron.8; &man.newsyslog.8; determines when log files require archiving or rearranging. logfile is moved to logfile.1, logfile.1 is moved to logfile.2, and so on. Additionally, the log files may be archived in &man.gzip.1; format causing them to be named: logfile.0.gz, logfile.1.gz, and so on. newsyslog.conf indicates which log files are to be managed, how many are to be kept, and when they are to be touched. Log files can be rearranged and/or archived when they have either reached a certain size, or at a certain periodic time/date. # configuration file for newsyslog # $FreeBSD$ # # filename [owner:group] mode count size when [ZB] [/pid_file] [sig_num] /var/log/cron 600 3 100 * Z /var/log/amd.log 644 7 100 * Z /var/log/kerberos.log 644 7 100 * Z /var/log/lpd-errs 644 7 100 * Z /var/log/maillog 644 7 * @T00 Z /var/log/sendmail.st 644 10 * 168 B /var/log/messages 644 5 100 * Z /var/log/all.log 600 7 * @T00 Z /var/log/slip.log 600 3 100 * Z /var/log/ppp.log 600 3 100 * Z /var/log/security 600 10 100 * Z /var/log/wtmp 644 3 * @01T05 B /var/log/daily.log 640 7 * @T00 Z /var/log/weekly.log 640 5 1 $W6D0 Z /var/log/monthly.log 640 12 * $M1D0 Z /var/log/console.log 640 5 100 * Z Consult the &man.newsyslog.8; manpage for more information. <filename>sysctl.conf</filename> sysctl.conf sysctl sysctl.conf looks much like rc.conf. Values are set in a variable=value form. The specified values are set after the system goes into multi-user mode. Not all variables are settable in this mode. A sample sysctl.conf turning off logging of fatal signal exits and letting Linux programs know they are really running under FreeBSD. kern.logsigexit=0 # Do not log fatal signal exits (e.g. sig 11) compat.linux.osname=FreeBSD compat.linux.osrelease=4.3-STABLE Tuning with sysctl sysctl Tuning with sysctl &man.sysctl.8; is an interface that allows you to make changes to a running FreeBSD system. This includes many advanced options of the TCP/IP stack and virtual memory system that can dramatically improve performance for an experienced system administrator. Over five hundred system variables can be read and set using &man.sysctl.8;. At its core, &man.sysctl.8; serves to do two functions: read and modify system settings. To view all readable variables: &prompt.user; sysctl -a To read a particular variable, for example, kern.maxproc: &prompt.user; sysctl kern.maxproc kern.maxproc: 1044 To set a particular variable, use the = option: &prompt.root; sysctl kern.maxfiles=5000 kern.maxfiles: 2088 -> 5000 Settings of sysctl variables are usually either strings, numbers, or booleans. A boolean being 1 for yes or a 0 for no. Tuning disks Sysctl Variables <varname>vfs.vmiodirenable</varname> vfs.vmiodirenable The vfs.vmiodirenable sysctl variable defaults to 0 (off) (though soon it will default to 1) and may be set to 0 (off) or 1 (on). This parameter controls how directories are cached by the system. Most directories are small and use but a single fragment (typically 1K) in the filesystem and even less (typically 512 bytes) in the buffer cache. However, when operating in the default mode the buffer cache will only cache a fixed number of directories even if you have a huge amount of memory. Turning on this sysctl allows the buffer cache to use the VM Page Cache to cache the directories. The advantage is that all of memory is now available for caching directories. The disadvantage is that the minimum in-core memory used to cache a directory is the physical page size (typically 4K) rather than 512 bytes. We recommend turning this option on if you are running any services which manipulate large numbers of files. Such services can include web caches, large mail systems, and news systems. Turning on this option will generally not reduce performance even with the wasted memory but you should experiment to find out. <varname>hw.ata.wc</varname> hw.ata.wc FreeBSD 4.3 flirted with turning off IDE write caching. This reduced write bandwidth to IDE disks but was considered necessary due to serious data consistency issues introduced by hard drive vendors. Basically the problem is that IDE drives lie about when a write completes. With IDE write caching turned on, IDE hard drives will not only write data to disk out of order, they will sometimes delay some of the blocks indefinitely when under heavy disk loads. A crash or power failure can result in serious filesystem corruption. So our default was changed to be safe. Unfortunately, the result was such a huge loss in performance that we caved in and changed the default back to on after the release. You should check the default on your system by observing the hw.ata.wc sysctl variable. If IDE write caching is turned off, you can turn it back on by setting the kernel variable back to 1. This must be done from the boot loader at boot time. Attempting to do it after the kernel boots will have no effect. For more information, please see &man.ata.4;. Soft Updates Soft Updates tunefs The &man.tunefs.8; program can be used to fine-tune a filesystem. This program has many different options, but for now we are only concerned with toggling Soft Updates on and off, which is done by : &prompt.root; tunefs -n enable /filesystem &prompt.root; tunefs -n disable /filesystem A filesystem cannot be modified with &man.tunefs.8; while it is mounted. A good time to enable Soft Updates is before any partitions have been mounted, in single-user mode. Soft Updates drastically improves meta-data performance, mainly file creation and deletion, through the use of a memory cache. We recommend turning Soft Updates on on all of your filesystems. There are two downsides to Soft Updates that you should be aware of: First, Soft Updates guarantees filesystem consistency in the case of a crash but could very easily be several seconds (even a minute!) behind updating the physical disk. If you crash you may lose more work than otherwise. Secondly, Soft Updates delays the freeing of filesystem blocks. If you have a filesystem (such as the root filesystem) which is close to full, doing a major update of it, e.g. make installworld, can run it out of space and cause the update to fail. Tuning kernel limits Tuning kernel limits File/process limits <varname>kern.maxfiles</varname> kern.maxfiles kern.maxfiles can be raised or lowered based upon your system requirements. This variable indicates the maximum number of file descriptors on your system. When the file descriptor table is full, file: table is full will show up repeatedly in the system message buffer, which can be viewed with the dmesg command. Each open file, socket, or fifo uses one file descriptor. A large-scale production server may easily require many thousands of file descriptors, depending on the kind and number of services running concurrently. kern.maxfile's default value is dictated by the option in your kernel config. kern.maxfiles grows proportionally to the value of . diff --git a/en_US.ISO8859-1/books/handbook/contrib/chapter.sgml b/en_US.ISO8859-1/books/handbook/contrib/chapter.sgml index a9c7965141..b86deecb84 100644 --- a/en_US.ISO8859-1/books/handbook/contrib/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/contrib/chapter.sgml @@ -1,469 +1,477 @@ + + + + Jordan + Hubbard + Contributed by + + + + Contributing to FreeBSD - Contributed by &a.jkh;. - contributing So you want to contribute something to FreeBSD? That is great! We can always use the help, and FreeBSD is one of those systems that relies on the contributions of its user base in order to survive. Your contributions are not only appreciated, they are vital to FreeBSD's continued growth! Contrary to what some people might also have you believe, you do not need to be a hot-shot programmer or a close personal friend of the FreeBSD core team in order to have your contributions accepted. The FreeBSD Project's development is done by a large and growing number of international contributors whose ages and areas of technical expertise vary greatly, and there is always more work to be done than there are people available to do it. Since the FreeBSD project is responsible for an entire operating system environment (and its installation) rather than just a kernel or a few scattered utilities, our TODO list also spans a very wide range of tasks, from documentation, beta testing and presentation to highly specialized types of kernel development. No matter what your skill level, there is almost certainly something you can do to help the project! Commercial entities engaged in FreeBSD-related enterprises are also encouraged to contact us. Need a special extension to make your product work? You will find us receptive to your requests, given that they are not too outlandish. Working on a value-added product? Please let us know! We may be able to work cooperatively on some aspect of it. The free software world is challenging a lot of existing assumptions about how software is developed, sold, and maintained throughout its life cycle, and we urge you to at least give it a second look. What is Needed The following list of tasks and sub-projects represents something of an amalgam of the various core team TODO lists and user requests we have collected over the last couple of months. Where possible, tasks have been ranked by degree of urgency. If you are interested in working on one of the tasks you see here, send mail to the coordinator listed by clicking on their names. If no coordinator has been appointed, maybe you would like to volunteer? Ongoing tasks Most of the tasks listed in the previous sections require either a considerable investment of time or an in-depth knowledge of the FreeBSD kernel (or both). However, there are also many useful tasks which are suitable for "weekend hackers", or people without programming skills. If you run FreeBSD-current and have a good Internet connection, there is a machine current.FreeBSD.org which builds a full release once a day — every now and again, try and install the latest release from it and report any failures in the process. Read the freebsd-bugs mailing list. There might be a problem you can comment constructively on or with patches you can test. Or you could even try to fix one of the problems yourself. Read through the FAQ and Handbook periodically. If anything is badly explained, out of date or even just completely wrong, let us know. Even better, send us a fix (SGML is not difficult to learn, but there is no objection to ASCII submissions). Help translate FreeBSD documentation into your native language (if not already available) — just send an email to &a.doc; asking if anyone is working on it. Note that you are not committing yourself to translating every single FreeBSD document by doing this — in fact, the documentation most in need of translation is the installation instructions. Read the freebsd-questions mailing list and &ng.misc occasionally (or even regularly). It can be very satisfying to share your expertise and help people solve their problems; sometimes you may even learn something new yourself! These forums can also be a source of ideas for things to work on. If you know of any bug fixes which have been successfully applied to -current but have not been merged into -stable after a decent interval (normally a couple of weeks), send the committer a polite reminder. Move contributed software to src/contrib in the source tree. Make sure code in src/contrib is up to date. Build the source tree (or just part of it) with extra warnings enabled and clean up the warnings. Fix warnings for ports which do deprecated things like using gets() or including malloc.h. If you have contributed any ports, send your patches back to the original author (this will make your life easier when they bring out the next version) Suggest further tasks for this list! Work through the PR database problem reports database The FreeBSD PR list shows all the current active problem reports and requests for enhancement that have been submitted by FreeBSD users. Look through the open PRs, and see if anything there takes your interest. Some of these might be very simple tasks, that just need an extra pair of eyes to look over them and confirm that the fix in the PR is a good one. Others might be much more complex. Start with the PRs that have not been assigned to anyone else, but if one them is assigned to someone else, but it looks like something you can handle, email the person it is assigned to and ask if you can work on it—they might already have a patch ready to be tested, or further ideas that you can discuss with them. How to Contribute Contributions to the system generally fall into one or more of the following 6 categories: Bug reports and general commentary An idea or suggestion of general technical interest should be mailed to the &a.hackers;. Likewise, people with an interest in such things (and a tolerance for a high volume of mail!) may subscribe to the hackers mailing list by sending mail to &a.majordomo;. See mailing lists for more information about this and other mailing lists. If you find a bug or are submitting a specific change, please report it using the &man.send-pr.1; program or its WEB-based equivalent. Try to fill-in each field of the bug report. Unless they exceed 65KB, include any patches directly in the report. When including patches, do not use cut-and-paste because cut-and-paste turns tabs into spaces and makes them unusable. Consider compressing patches and using &man.uuencode.1; if they exceed 20KB. Upload very large submissions to ftp.FreeBSD.org:/pub/FreeBSD/incoming/. After filing a report, you should receive confirmation along with a tracking number. Keep this tracking number so that you can update us with details about the problem by sending mail to bug-followup@FreeBSD.org. Use the number as the message subject, e.g. "Re: kern/3377". Additional information for any bug report should be submitted this way. If you do not receive confirmation in a timely fashion (3 days to a week, depending on your email connection) or are, for some reason, unable to use the &man.send-pr.1; command, then you may ask someone to file it for you by sending mail to the &a.bugs;. Changes to the documentation documentation submissions Changes to the documentation are overseen by the &a.doc;. Send submissions and changes (even small ones are welcome!) using send-pr as described in Bug Reports and General Commentary. Changes to existing source code FreeBSD-current An addition or change to the existing source code is a somewhat trickier affair and depends a lot on how far out of date you are with the current state of the core FreeBSD development. There is a special on-going release of FreeBSD known as FreeBSD-current which is made available in a variety of ways for the convenience of developers working actively on the system. See Staying current with FreeBSD for more information about getting and using FreeBSD-current. Working from older sources unfortunately means that your changes may sometimes be too obsolete or too divergent for easy re-integration into FreeBSD. Chances of this can be minimized somewhat by subscribing to the &a.announce; and the &a.current; lists, where discussions on the current state of the system take place. Assuming that you can manage to secure fairly up-to-date sources to base your changes on, the next step is to produce a set of diffs to send to the FreeBSD maintainers. This is done with the &man.diff.1; command, with the context diff form being preferred. For example: diff &prompt.user; diff -c oldfile newfile or &prompt.user; diff -c -r olddir newdir would generate such a set of context diffs for the given source file or directory hierarchy. See the man page for &man.diff.1; for more details. Once you have a set of diffs (which you may test with the &man.patch.1; command), you should submit them for inclusion with FreeBSD. Use the &man.send-pr.1; program as described in Bug Reports and General Commentary. Do not just send the diffs to the &a.hackers; or they will get lost! We greatly appreciate your submission (this is a volunteer project!); because we are busy, we may not be able to address it immediately, but it will remain in the pr database until we do. uuencode If you feel it appropriate (e.g. you have added, deleted, or renamed files), bundle your changes into a tar file and run the &man.uuencode.1; program on it. Shar archives are also welcome. If your change is of a potentially sensitive nature, e.g. you are unsure of copyright issues governing its further distribution or you are simply not ready to release it without a tighter review first, then you should send it to &a.core; directly rather than submitting it with &man.send-pr.1;. The core mailing list reaches a much smaller group of people who do much of the day-to-day work on FreeBSD. Note that this group is also very busy and so you should only send mail to them where it is truly necessary. Please refer to &man.intro.9; and &man.style.9; style for some information on coding style. We would appreciate it if you were at least aware of this information before submitting code. New code or major value-added packages In the case of a significant contribution of a large body work, or the addition of an important new feature to FreeBSD, it becomes almost always necessary to either send changes as uuencoded tar files or upload them to a web or FTP site for other people to access. If you do not have access to a web or FTP site, ask on an appropriate FreeBSD mailing list for someone to host the changes for you. When working with large amounts of code, the touchy subject of copyrights also invariably comes up. Acceptable copyrights for code included in FreeBSD are: BSD copyright The BSD copyright. This copyright is most preferred due to its no strings attached nature and general attractiveness to commercial enterprises. Far from discouraging such commercial use, the FreeBSD Project actively encourages such participation by commercial interests who might eventually be inclined to invest something of their own into FreeBSD. GPLGNU General Public License GNU General Public License The GNU General Public License, or GPL. This license is not quite as popular with us due to the amount of extra effort demanded of anyone using the code for commercial purposes, but given the sheer quantity of GPL'd code we currently require (compiler, assembler, text formatter, etc) it would be silly to refuse additional contributions under this license. Code under the GPL also goes into a different part of the tree, that being /sys/gnu or /usr/src/gnu, and is therefore easily identifiable to anyone for whom the GPL presents a problem. Contributions coming under any other type of copyright must be carefully reviewed before their inclusion into FreeBSD will be considered. Contributions for which particularly restrictive commercial copyrights apply are generally rejected, though the authors are always encouraged to make such changes available through their own channels. To place a BSD-style copyright on your work, include the following text at the very beginning of every source code file you wish to protect, replacing the text between the %% with the appropriate information. Copyright (c) %%proper_years_here%% %%your_name_here%%, %%your_state%% %%your_zip%%. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer as the first lines of this file unmodified. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY %%your_name_here%% ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL %%your_name_here%% BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. $Id$ For your convenience, a copy of this text can be found in /usr/share/examples/etc/bsd-style-copyright. Money, Hardware or Internet access We are always very happy to accept donations to further the cause of the FreeBSD Project and, in a volunteer effort like ours, a little can go a long way! Donations of hardware are also very important to expanding our list of supported peripherals since we generally lack the funds to buy such items ourselves. <anchor id="donations">Donating funds The FreeBSD Foundation is a non-profit, tax-exempt foundation established to further the goals of the FreeBSD Project. As a 501(c)3 entity, the Foundation is generally exempt from US federal income tax as well as Colorado State income tax. Donations to a tax-exempt entity are often deductible from taxable federal income. Donations may be sent in check form to:
The FreeBSD Foundation 7321 Brockway Dr. Boulder, CO 80303 USA
The Foundation is not yet able to accept other forms of payment such as credit cards and PayPal.
More information about the FreeBSD Foundation can be found in The FreeBSD Foundation -- an Introduction. To contact the Foundation by email, write to bod@FreeBSDFoundation.org.
Donating hardware donations Donations of hardware in any of the 3 following categories are also gladly accepted by the FreeBSD Project: General purpose hardware such as disk drives, memory or complete systems should be sent to the FreeBSD, Inc. address listed in the donating funds section. Hardware for which ongoing compliance testing is desired. We are currently trying to put together a testing lab of all components that FreeBSD supports so that proper regression testing can be done with each new release. We are still lacking many important pieces (network cards, motherboards, etc) and if you would like to make such a donation, please contact &a.dg; for information on which items are still required. Hardware currently unsupported by FreeBSD for which you would like to see such support added. Please contact the &a.core; before sending such items as we will need to find a developer willing to take on the task before we can accept delivery of new hardware. Donating Internet access We can always use new mirror sites for FTP, WWW or cvsup. If you would like to be such a mirror, please contact the FreeBSD project administrators hubs@FreeBSD.org for more information.
diff --git a/en_US.ISO8859-1/books/handbook/disks/chapter.sgml b/en_US.ISO8859-1/books/handbook/disks/chapter.sgml index c63b10dff4..3f226ece20 100644 --- a/en_US.ISO8859-1/books/handbook/disks/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/disks/chapter.sgml @@ -1,1257 +1,1275 @@ Disks Synopsis This chapter covers how to use disks, whether physical, memory, or networked, on FreeBSD. BIOS Drive Numbering Before you install and configure FreeBSD on your system, there is an important subject that you should be aware of, especially if you have multiple hard drives. DOS Microsoft Windows In a PC running DOS or any of the BIOS-dependent operating systems (WINxxx), the BIOS is able to abstract the normal disk drive order, and the operating system goes along with the change. This allows the user to boot from a disk drive other than the so-called primary master. This is especially convenient for some users who have found that the simplest and cheapest way to keep a system backup is to buy an identical second hard drive, and perform routine copies of the first drive to the second drive using Ghost or XCOPY . Then, if the first drive fails, or is attacked by a virus, or is scribbled upon by an operating system defect, he can easily recover by instructing the BIOS to logically swap the drives. It's like switching the cables on the drives, but without having to open the case. SCSI BIOS More expensive systems with SCSI controllers often include BIOS extensions which allow the SCSI drives to be re-ordered in a similar fashion for up to seven drives. A user who is accustomed to taking advantage of these features may become surprised when the results with FreeBSD are not as expected. FreeBSD does not use the BIOS, and does not know the logical BIOS drive mapping. This can lead to very perplexing situations, especially when drives are physically identical in geometry, and have also been made as data clones of one another. When using FreeBSD, always restore the BIOS to natural drive numbering before installing FreeBSD, and then leave it that way. If you need to switch drives around, then do so, but do it the hard way, and open the case and move the jumpers and cables. An illustration from the files of Bill and Fred's Exceptional Adventures: Bill breaks-down an older Wintel box to make another FreeBSD box for Fred. Bill installs a single SCSI drive as SCSI unit zero, and installs FreeBSD on it. Fred begins using the system, but after several days notices that the older SCSI drive is reporting numerous soft errors, and reports this fact to Bill. After several more days, Bill decides it's time to address the situation, so he grabs an identical SCSI drive from the disk drive "archive" in the back room. An initial surface scan indicates that this drive is functioning well, so Bill installs this drive as SCSI unit four, and makes an image copy from drive zero to drive four. Now that the new drive is installed and functioning nicely, Bill decides that it's a good idea to start using it, so he uses features in the SCSI BIOS to re-order the disk drives so that the system boots from SCSI unit four. FreeBSD boots and runs just fine. Fred continues his work for several days, and soon Bill and Fred decide that it's time for a new adventure -- time to upgrade to a newer version of FreeBSD. Bill removes SCSI unit zero because it was a bit flaky, and replaces it with another identical disk drive from the "archive." Bill then installs the new version of FreeBSD onto the new SCSI unit zero using Fred's magic Internet FTP floppies. The installation goes well. Fred uses the new version of FreeBSD for a few days, and certifies that it is good enough for use in the engineering department...it's time to copy all of his work from the old version. So Fred mounts SCSI unit four (the latest copy of the older FreeBSD version). Fred is dismayed to find that none of his precious work is present on SCSI unit four. Where did the data go? When Bill made an image copy of the original SCSI unit zero onto SCSI unit four, unit four became the "new clone," When Bill re-ordered the SCSI BIOS so that he could boot from SCSI unit four, he was only fooling himself. FreeBSD was still running on SCSI unit zero. Making this kind of BIOS change will cause some or all of the Boot and Loader code to be fetched from the selected BIOS drive, but when the FreeBSD kernel drivers take-over, the BIOS drive numbering will be ignored, and FreeBSD will transition back to normal drive numbering. In the illustration at hand, the system continued to operate on the original SCSI unit zero, and all of Fred's data was there, not on SCSI unit four. The fact that the system appeared to be running on SCSI unit four was simply an artifact of human expectations. We are delighted to mention that no data bytes were killed or harmed in any way by our discovery of this phenomenon. The older SCSI unit zero was retrieved from the bone pile, and all of Fred's work was returned to him, (and now Bill knows that he can count as high as zero). Although SCSI drives were used in this illustration, the concepts apply equally to IDE drives. Disk Naming IDE SCSI RAID fash memory Physical drives come in two main flavors, IDE, or SCSI; but there are also drives backed by RAID controllers, flash memory, and so forth. Since these behave quite differently, they have their own drivers and devices. Physical Disk Naming Conventions Drive type Drive device name IDE hard drives ad in 4.0-RELEASE, wd before 4.0-RELEASE. IDE CDROM drives acd from 4.1-RELEASE, wcd before 4.0-RELEASE. SCSI hard drives da from 3.0-RELEASE, sd before 3.0-RELEASE. SCSI CDROM drives cd Assorted non-standard CDROM drives mcd for Mitsumi CD-ROM, scd for Sony CD-ROM, matcd for Matsushita/Panasonic CD-ROM Floppy drives fd SCSI tape drives sa from 3.0-RELEASE, st before 3.0-RELEASE. IDE tape drives ast from 4.0-RELEASE, wst before 4.0-RELEASE. Flash drives fla for DiskOnChip Flash device from 3.3-RELEASE. RAID drives myxd for Mylex, and amrd for AMI MegaRAID, idad for Compaq Smart RAID. from 4.0-RELEASE. id between 3.2-RELEASE and 4.0-RELEASE.
Slices and Partitions slices partitions dangerously dedicated Physical disks usually contain slices, unless they are dangerously dedicated. Slice numbers follow the device name, prefixed with an s: da0s1. Slices, dangerously dedicated physical drives, and other drives contain partitions, which represented as letters from a to h. b is reserved for swap partitions, and c is an unused partition the size of the entire slice or drive. This is explained in .
Mounting and Unmounting Filesystems The filesystem is best visualized as a tree, rooted, as it were, at /. /dev, /usr, and the other directories in the root directory are branches, which may have their own branches, such as /usr/local, and so on. root filesystem There are various reasons to house some of these directories on separate filesystems. /var contains the directories log/, spool/, and various types of temporary files, and as such, may get filled up. Filling up the root filesystem isn't a good idea, so splitting /var from / is often favorable. Another common reason to contain certain directory trees on other filesystems is if they are to be housed on separate physical disks, or are separate virtual disks, such as Network File System mounts, or CDROM drives. The <filename>fstab</filename> File filesystems mounted with fstab During the boot process, filesystems listed in /etc/fstab are automatically mounted (unless they are listed with ). The /etc/fstab file contains a list of lines of the following format: device /mount-point fstype options dumpfreq passno device A device name (which should exist), as explained in the Disk naming conventions above. mount-point A directory (which should exist), on which to mount the filesystem. fstype The filesystem type to pass to &man.mount.8;. The default FreeBSD filesystem is ufs. options Either for read-write filesystems, or for read-only filesystems, followed by any other options that may be needed. A common option is for filesystems not normally mounted during the boot sequence. Other options in the &man.mount.8; manual page. dumpfreq The number of days the filesystem should be dumped, and passno is the pass number during which the filesystem is checked during the boot sequence. The mount Command filesystems mounting The &man.mount.8; command is what is ultimately used to mount filesystems. In its most basic form, you use: &prompt.root; mount device mountpoint There are plenty of options, as mentioned in the &man.mount.8; manual page, but the most common are: Mount Options Mount all filesystems in /etc/fstab, as modified by , if given. Do everything but actually mount the filesystem. Force the mounting the filesystem. Mount the filesystem read-only. fstype Mount the given filesystem as the given filesystem type, or mount only filesystems of the given type, if given the option. ufs is the default filesystem type. Update mount options on the filesystem. Be verbose. Mount the filesystem read-write. The takes a comma-separated list of the options, including the following: nodev Do not interpret special devices on the filesystem. Useful security option. noexec Do not allow execution of binaries on this filesystem. Useful security option. nosuid Do not interpret setuid or setgid flags on the filesystem. Useful security option. The umount Command filesystems unmounting The &man.umount.8; command takes, as a parameter, one of a mountpoint, a device name, or the or option. All forms take to force unmounting, and for verbosity. and are used to unmount all mounted filesystems, possibly modified by the filesystem types listed after . , however, doesn't attempt to unmount the root filesystem. + + + + David + O'Brien + Originally contributed by + + + + + Adding Disks + disks adding - Originally contributed by &a.obrien; 26 April - 1998 - Lets say we want to add a new SCSI disk to a machine that currently only has a single drive. First turn off the computer and install the drive in the computer following the instructions of the computer, controller, and drive manufacturer. Due the wide variations of procedures to do this, the details are beyond the scope of this document. Login as user root. After you've installed the drive, inspect /var/run/dmesg.boot to ensure the new disk was found. Continuing with our example, the newly added drive will be da1 and we want to mount it on /1 (if you are adding an IDE drive, the device name will be wd1 in pre-4.0 systems, or ad1 in most 4.X systems). partitions slices fdisk Because FreeBSD runs on IBM-PC compatible computers, it must take into account the PC BIOS partitions. These are different from the traditional BSD partitions. A PC disk has up to four BIOS partition entries. If the disk is going to be truly dedicated to FreeBSD, you can use the dedicated mode. Otherwise, FreeBSD will have to live within one of the PC BIOS partitions. FreeBSD calls the PC BIOS partitions slices so as not to confuse them with traditional BSD partitions. You may also use slices on a disk that is dedicated to FreeBSD, but used in a computer that also has another operating system installed. This is to not confuse the fdisk utility of the other operating system. In the slice case the drive will be added as /dev/da1s1e. This is read as: SCSI disk, unit number 1 (second SCSI disk), slice 1 (PC BIOS partition 1), and e BSD partition. In the dedicated case, the drive will be added simply as /dev/da1e. Using &man.sysinstall.8; sysinstall adding disks Navigating <application>Sysinstall</application> You may use /stand/sysinstall to partition and label a new disk using its easy to use menus. Either login as user root or use the su command. Run /stand/sysinstall and enter the Configure menu. Within the FreeBSD Configuration Menu, scroll down and select the Partition item. Next you should be presented with a list of hard drives installed in your system. If you do not see da1 listed, you need to recheck your physical installation and dmesg output in the file /var/run/dmesg.boot. FDISK Partition Editor Select da1 to enter the FDISK Partition Editor. Type A to use the entire disk for FreeBSD. When asked if you want to remain cooperative with any future possible operating systems, answer YES. Write the changes to the disk using W. Now exit the FDISK editor by typing q. Next you will be asked about the Master Boot Record. Since you are adding a disk to an already running system, choose None. Disk Label Editor BSD partitions Next, Sysinstall will enter the Disk Label Editor. This is where you will create the traditional BSD partitions. A disk can have up to eight partitions, labeled a-h. A few of the partition labels have special uses. The a partition is used for the root partition (/). Thus only your system disk (e.g, the disk you boot from) should have an a partition. The b partition is used for swap partitions, and you may have many disks with swap partitions. The c partition addresses the entire disk in dedicated mode, or the entire FreeBSD slice in slice mode. The other partitions are for general use. Sysinstall's Label editor favors the e partition for non-root, non-swap partitions. Within the Label editor, create a single file system by typing C. When prompted if this will be a FS (file system) or swap, choose FS and type in a mount point (e.g, /mnt). When adding a disk in post-install mode, Sysinstall will not create entries in /etc/fstab for you, so the mount point you specify isn't important. You are now ready to write the new label to the disk and create a file system on it. Do this by typing W. Ignore any errors from Sysinstall that it could not mount the new partition. Exit the Label Editor and Sysinstall completely. Finish The last step is to edit /etc/fstab to add an entry for your new disk. Using Command Line Utilities Using Slices This setup will allow your disk to work correctly with other operating systems that might be installed on your computer and will not confuse other operating systems' fdisk utilities. It is recommended to use this method for new disk installs. Only use dedicated mode if you have a good reason to do so! &prompt.root; dd if=/dev/zero of=/dev/rda1 bs=1k count=1 &prompt.root; fdisk -BI da1 #Initialize your new disk &prompt.root; disklabel -B -w -r da1s1 auto #Label it. &prompt.root; disklabel -e da1s1 # Edit the disklabel just created and add any partitions. &prompt.root; mkdir -p /1 &prompt.root; newfs /dev/da1s1e # Repeat this for every partition you created. &prompt.root; mount -t ufs /dev/da1s1e /1 # Mount the partition(s) &prompt.root; vi /etc/fstab # Add the appropriate entry/entries to your /etc/fstab. If you have an IDE disk, substitute ad for da. On pre-4.X systems use wd. Dedicated OS/2 If you will not be sharing the new drive with another operating system, you may use the dedicated mode. Remember this mode can confuse Microsoft operating systems; however, no damage will be done by them. IBM's OS/2 however, will appropriate any partition it finds which it doesn't understand. &prompt.root; dd if=/dev/zero of=/dev/rda1 bs=1k count=1 &prompt.root; disklabel -Brw da1 auto &prompt.root; disklabel -e da1 # create the `e' partition &prompt.root; newfs -d0 /dev/rda1e &prompt.root; mkdir -p /1 &prompt.root; vi /etc/fstab # add an entry for /dev/da1e &prompt.root; mount /1 An alternate method is: &prompt.root; dd if=/dev/zero of=/dev/rda1 count=2 &prompt.root; disklabel /dev/rda1 | disklabel -BrR da1 /dev/stdin &prompt.root; newfs /dev/rda1e &prompt.root; mkdir -p /1 &prompt.root; vi /etc/fstab # add an entry for /dev/da1e &prompt.root; mount /1 Virtual Disks: Network, Memory, and File-Based Filesystems virtual disks disks virtual Aside from the disks you physically insert into your computer: floppies, CDs, hard drives, and so forth; other forms of disks are understood by FreeBSD - the virtual disks. NFS Coda disks memory These include network filesystems such as the Network Filesystem and Coda, memory-based filesystems such as md and file-backed filesystems created by vnconfig. vnconfig: File-Backed Filesystem disks file-backed &man.vnconfig.8; configures and enables vnode pseudo-disk devices. A vnode is a representation of a file, and is the focus of file activity. This means that &man.vnconfig.8; uses files to create and operate a filesystem. One possible use is the mounting of floppy or CD images kept in files. To mount an existing filesystem image: Using vnconfig to mount an existing filesystem image &prompt.root; vnconfig vn0 diskimage &prompt.root; mount /dev/vn0c /mnt To create a new filesystem image with vnconfig: Creating a New File-Backed Disk with vnconfig &prompt.root; dd if=/dev/zero of=newimage bs=1k count=5k 5120+0 records in 5120+0 records out &prompt.root; vnconfig -s labels -c vn0 newimage &prompt.root; disklabel -r -w vn0 auto &prompt.root; newfs vn0c Warning: 2048 sector(s) in last cylinder unallocated /dev/rvn0c: 10240 sectors in 3 cylinders of 1 tracks, 4096 sectors 5.0MB in 1 cyl groups (16 c/g, 32.00MB/g, 1280 i/g) super-block backups (for fsck -b #) at: 32 &prompt.root; mount /dev/vn0c /mnt &prompt.root; df /mnt Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/vn0c 4927 1 4532 0% /mnt md: Memory Filesystem disks memory filesystem md is a simple, efficient means to do memory filesystems. Simply take a filesystem you've prepared with, for example, &man.vnconfig.8;, and: md memory disk &prompt.root; dd if=newimage of=/dev/md0 5120+0 records in 5120+0 records out &prompt.root; mount /dev/md0c /mnt &prompt.root; df /mnt Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/md0c 4927 1 4532 0% /mnt Disk Quotas accounting disk space disk quotas Quotas are an optional feature of the operating system that allow you to limit the amount of disk space and/or the number of files a user, or members of a group, may allocate on a per-file system basis. This is used most often on timesharing systems where it is desirable to limit the amount of resources any one user or group of users may allocate. This will prevent one user from consuming all of the available disk space. Configuring Your System to Enable Disk Quotas Before attempting to use disk quotas it is necessary to make sure that quotas are configured in your kernel. This is done by adding the following line to your kernel configuration file: options QUOTA The stock GENERIC kernel does not have this enabled by default, so you will have to configure, build and install a custom kernel in order to use disk quotas. Please refer to the Configuring the FreeBSD Kernel section for more information on kernel configuration. Next you will need to enable disk quotas in /etc/rc.conf. This is done by adding the line: enable_quotas=YES disk quotas checking For finer control over your quota startup, there is an additional configuration variable available. Normally on bootup, the quota integrity of each file system is checked by the quotacheck program. The quotacheck facility insures that the data in the quota database properly reflects the data on the file system. This is a very time consuming process that will significantly affect the time your system takes to boot. If you would like to skip this step, a variable in /etc/rc.conf is made available for the purpose: check_quotas=NO If you are running FreeBSD prior to 3.2-RELEASE, the configuration is simpler, and consists of only one variable. Set the following in your /etc/rc.conf: check_quotas=YES Finally you will need to edit /etc/fstab to enable disk quotas on a per-file system basis. This is where you can either enable user or group quotas or both for all of your file systems. To enable per-user quotas on a file system, add the userquota option to the options field in the /etc/fstab entry for the file system you want to enable quotas on. For example: /dev/da1s2g /home ufs rw,userquota 1 2 Similarly, to enable group quotas, use the groupquota option instead of the userquota keyword. To enable both user and group quotas, change the entry as follows: /dev/da1s2g /home ufs rw,userquota,groupquota 1 2 By default the quota files are stored in the root directory of the file system with the names quota.user and quota.group for user and group quotas respectively. See &man.fstab.5; for more information. Even though the &man.fstab.5; man page says that you can specify an alternate location for the quota files, this is not recommended because the various quota utilities do not seem to handle this properly. At this point you should reboot your system with your new kernel. /etc/rc will automatically run the appropriate commands to create the initial quota files for all of the quotas you enabled in /etc/fstab, so there is no need to manually create any zero length quota files. In the normal course of operations you should not be required to run the quotacheck, quotaon, or quotaoff commands manually. However, you may want to read their man pages just to be familiar with their operation. Setting Quota Limits disk quotas limits Once you have configured your system to enable quotas, verify that they really are enabled. An easy way to do this is to run: &prompt.root; quota -v You should see a one line summary of disk usage and current quota limits for each file system that quotas are enabled on. You are now ready to start assigning quota limits with the edquota command. You have several options on how to enforce limits on the amount of disk space a user or group may allocate, and how many files they may create. You may limit allocations based on disk space (block quotas) or number of files (inode quotas) or a combination of both. Each of these limits are further broken down into two categories; hard and soft limits. hard limit A hard limit may not be exceeded. Once a user reaches his hard limit he may not make any further allocations on the file system in question. For example, if the user has a hard limit of 500 blocks on a file system and is currently using 490 blocks, the user can only allocate an additional 10 blocks. Attempting to allocate an additional 11 blocks will fail. soft limit Soft limits, on the other hand, can be exceeded for a limited amount of time. This period of time is known as the grace period, which is one week by default. If a user stays over his or her soft limit longer than the grace period, the soft limit will turn into a hard limit and no further allocations will be allowed. When the user drops back below the soft limit, the grace period will be reset. The following is an example of what you might see when you run the edquota command. When the edquota command is invoked, you are placed into the editor specified by the EDITOR environment variable, or in the vi editor if the EDITOR variable is not set, to allow you to edit the quota limits. &prompt.root; edquota -u test Quotas for user test: /usr: blocks in use: 65, limits (soft = 50, hard = 75) inodes in use: 7, limits (soft = 50, hard = 60) /usr/var: blocks in use: 0, limits (soft = 50, hard = 75) inodes in use: 0, limits (soft = 50, hard = 60) You will normally see two lines for each file system that has quotas enabled. One line for the block limits, and one line for inode limits. Simply change the value you want updated to modify the quota limit. For example, to raise this users block limit from a soft limit of 50 and a hard limit of 75 to a soft limit of 500 and a hard limit of 600, change: /usr: blocks in use: 65, limits (soft = 50, hard = 75) to: /usr: blocks in use: 65, limits (soft = 500, hard = 600) The new quota limits will be in place when you exit the editor. Sometimes it is desirable to set quota limits on a range of uids. This can be done by use of the option on the edquota command. First, assign the desired quota limit to a user, and then run edquota -p protouser startuid-enduid. For example, if user test has the desired quota limits, the following command can be used to duplicate those quota limits for uids 10,000 through 19,999: &prompt.root; edquota -p test 10000-19999 See the &man.edquota.8; for more detailed information. Checking Quota Limits and Disk Usage disk quotas checking You can use either the quota or the repquota commands to check quota limits and disk usage. The quota command can be used to check individual user and group quotas and disk usage. Only the super-user may examine quotas and usage for other users, or for groups that they are not a member of. The repquota command can be used to get a summary of all quotas and disk usage for file systems with quotas enabled. The following is some sample output from the quota -v command for a user that has quota limits on two file systems. Disk quotas for user test (uid 1002): Filesystem blocks quota limit grace files quota limit grace /usr 65* 50 75 5days 7 50 60 /usr/var 0 50 75 0 50 60 grace period On the /usr file system in the above example this user is currently 15 blocks over the soft limit of 50 blocks and has 5 days of the grace period left. Note the asterisk * which indicates that the user is currently over his quota limit. Normally file systems that the user is not using any disk space on will not show up in the output from the quota command, even if he has a quota limit assigned for that file system. The option will display those file systems, such as the /usr/var file system in the above example. Quotas over NFS NFS Quotas are enforced by the quota subsystem on the NFS server. The &man.rpc.rquotad.8; daemon makes quota information available to the &man.quota.1; command on NFS clients, allowing users on those machines to see their quota statistics. Enable rpc.rquotad in /etc/inetd.conf like so: rquotad/1 dgram rpc/udp wait root /usr/libexec/rpc.rquotad rpc.rquotad Now restart inetd: &prompt.root; kill -HUP `cat /var/run/inetd.pid` + + + + Mike + Meyer + Contributed by + + + + + + Creating CDs CDROMs creating - Contributed by Mike Meyer - mwm@mired.org, April 2001. - Introduction CDs have a number of features that differentiate them from conventional disks. Initially, they weren't writable by the user. They are designed so that they can be read continuously without delays to move the head between tracks. They are also much easier to transport between systems than similarly sized media were at the time. CDs do have tracks, but this refers to a section of data to be read continuously and not a physical property of the disk. To produce a CD on FreeBSD, you prepare the data files that are going to make up the tracks on the CD, then write the tracks to the CD. ISO 9660 filesystems ISO-9660 The ISO 9660 file system was designed to deal with these differences. It unfortunately codifies file system limits that were common then. Fortunately, it provides an extension mechanism that allows properly written CDs to exceed those limits while still working with systems that do not support those extensions. mkisofs The mkisofs program is used to produce a data file containing an ISO 9660 file system. It has options that support various extensions, and is described below. You can install it with the sysutils/mkisofs port. CD burner ATAPI Which tool to use to burn the CD depends on whether your CD burner is ATAPI or something else. ATAPI CD burners use the burncd program that is part of the base system. SCSI and USB CD burners should use the cdrecord from the sysutils/cdrtools port. burncd has a limited number of supported drives. To find out if a drive is supported, see CD-R/RW supported drives. mkisofs mkisofs produces an ISO 9660 file system that is an image of a directory tree in the Unix file system name space. The simplest usage is: &prompt.root; mkisofs imagefile.iso /path/to/tree filesystems ISO-9660 This command will create an imagefile containing an ISO 9660 file system that is a copy of the tree at /path/to/tree. In the process, it will map the file names to names that fit the limitations of the standard ISO 9660 file system, and will exclude files that have names uncharacteristic of ISO file systems. filesystems HFS filesystems Joliet A number of options are available to overcome those restrictions. In particular, enables the Rock Ridge extensions common to Unix systems, enables Joliet extensions used by Microsoft systems, and can be used to create HFS file systems used by MacOS. For CDs that are going to be used only on FreeBSD systems, can be used to disable all filename restrictions. When used with , it produces a file system image that is identical to the FreeBSD tree you started from, though it may violate the ISO 9660 standard in a number of ways. CDROMs creating bootable The last option of general use is . This is used to specify the location of the boot image for use in producing an El Torito bootable CD. This option takes an argument which is the path to a boot image from the top of the tree being written to the CD. So, given that /tmp/myboot holds a bootable FreeBSD system with the boot image in /tmp/myboot/boot/cdboot, you could produce the image of an ISO 9660 file system in /tmp/bootable.iso like so: &prompt.root; mkisofs boot/cdboot /tmp/bootable.iso /tmp/myboot Having done that, if you have vn configured in your kernel, you can mount the file system with: &prompt.root; vnconfig vn0c /tmp/bootable.iso &prompt.root; mount cd9660 /dev/vn0c /mnt At which point you can verify that /mnt and /tmp/myboot are identical. There are many other options you can use with mkisofs to fine-tune its behavior. In particular: modifications to an ISO 9660 layout and the creation of Joilet and HFS discs. See the &man.mkisofs.8; man page for details. burncd CDROMs burning If you have an ATAPI CD burner, you can use the burncd command to burn an ISO image onto a CD. burncd is part of the base system, installed as /usr/sbin/burncd. Usage is very simple, as it has few options: &prompt.root; burncd cddevice data imagefile.iso fixate Will burn a copy of imagefile.iso on cddevice. The default device is /dev/acd0. See &man.burncd.8; for options to set the write speed, eject the CD after burning, and write audio data. cdrecord If you do not have an ATAPI CD burner, you will have to use cdrecord to burn your CDs. cdrecord is not part of the base system; you must install it from either the port at sysutils/cdrtools or the appropriate package. Changes to the base system can cause binary versions of this program to fail, possibly resulting in a coaster. You should therefore either upgrade the port when you upgrade your system, or if you are tracking -STABLE, upgrade the port when a new version becomes available. While cdrecord has many options, basic usage is even simpler than burncd. Burning an ISO 9660 image is done with: &prompt.root; cdrecord device imagefile.iso The tricky part of using cdrecord is finding the to use. To find the proper setting, use the flag of cdrecord, which might produce results like this: CDROMs burning &prompt.root; cdrecord Cdrecord 1.9 (i386-unknown-freebsd4.2) Copyright (C) 1995-2000 Jörg Schilling Using libscg version 'schily-0.1' scsibus0: 0,0,0 0) 'SEAGATE ' 'ST39236LW ' '0004' Disk 0,1,0 1) 'SEAGATE ' 'ST39173W ' '5958' Disk 0,2,0 2) * 0,3,0 3) 'iomega ' 'jaz 1GB ' 'J.86' Removable Disk 0,4,0 4) 'NEC ' 'CD-ROM DRIVE:466' '1.26' Removable CD-ROM 0,5,0 5) * 0,6,0 6) * 0,7,0 7) * scsibus1: 1,0,0 100) * 1,1,0 101) * 1,2,0 102) * 1,3,0 103) * 1,4,0 104) * 1,5,0 105) 'YAMAHA ' 'CRW4260 ' '1.0q' Removable CD-ROM 1,6,0 106) 'ARTEC ' 'AM12S ' '1.06' Scanner 1,7,0 107) * This lists the appropriate value for the devices on the list. Locate your CD burner, and use the three numbers separated by commas as the value for . In this case, the CRW device is 1,5,0, so the appropriate input would be =1,5,0. There are easier ways to specify this value; see &man.cdrecord.1; for details. That is also the place to look for information on writing audio tracks, controlling the speed, and other things.
diff --git a/en_US.ISO8859-1/books/handbook/install/chapter.sgml b/en_US.ISO8859-1/books/handbook/install/chapter.sgml index d6f0698638..3855287e37 100644 --- a/en_US.ISO8859-1/books/handbook/install/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/install/chapter.sgml @@ -1,2121 +1,2130 @@ Jim Mock Restructured, reorganized, and parts - rewritten + rewritten by Installing FreeBSD Synopsis installation The following chapter will attempt to guide you through the installation of FreeBSD on your system. It can be installed through a variety of methods, including anonymous FTP (assuming you have network connectivity via modem or local network), CDROM, floppy disk, tape, an MS-DOS partition, or even NFS. No matter which method you choose, you will need to get started by creating the installation disks as described in the next section. Booting into the FreeBSD installer, even if you are not planning on installing FreeBSD right away, will provide important information about compatibility with your hardware. This information may dictate which installation options are even possible for you. It can also provide clues early-on in the process to potential problems you may come across later. installation network anonymous FTP If you plan to install FreeBSD via anonymous FTP, the only things you will need are the installation floppies. The installation program itself will handle anything else that is required. For more information about obtaining FreeBSD, see the Obtaining FreeBSD section of the Appendix. By now, you are probably wondering what exactly it is you need to do. Continue on to the installation guide. Installation Guide The following sections will guide you through preparing for and actually installing FreeBSD. If you find something missing, please let us know about it by sending email to the &a.doc;. Preparing for the Installation There are various things you should do in preparation for the installation. The following describes what needs to be done prior to each type of installation. The first thing to do is to make sure your hardware is supported by FreeBSD. The list of supported hardware should come in handy here. It would also be a good idea to make a list of any special cards you have installed, such as SCSI controllers, Ethernet cards, sound cards, etc.. The list should include their IRQs and IO port addresses. Creating the Installation Floppies installation boot floppies installation CDROM You may need to prepare some floppy disks. These disks will be used to boot your computer in to the FreeBSD install process. This step is not necessary if you are installing from CDROM, and your computer supports booting from the CDROM. If you do not meet these requirements then you will need to create some floppies to boot from. If you are not sure whether your computer can boot from the CDROM it does not hurt to try. Just insert the CDROM as normal and restart your computer. You might need to adjust some options in your BIOS so that your computer will try and boot from the CDROM drive before the hard disk. Even if you have the CDROM it might make sense for you to download the files. There have been occasions where bugs in the FreeBSD installer have been discovered after the CDs have been released. When this happens the copies of the images on the FTP site will be fixed as soon as possible. Obviously, it is not possible to update the CDs after they have been pressed. Acquire the boot floppy images These are files with a .flp extension. If you have a CDROM release of FreeBSD then you will find the files in the floppies subdirectory. Alternatively, you can download the images from the floppies directory of the FreeBSD FTP site or your local mirror. The names of the files you will need varies between FreeBSD releases (sometimes) and the architecture you will be installing on. The installation boot image information on the FTP site provides up-to-the-minute information about the specific files you will need. Prepare the floppy disks You must prepare one floppy disk per image file you had to download. It is imperative that these disks are free from defects. The easiest way to test this is to format the disks for yourself. Do not trust pre-formatted floppies. If you try to install FreeBSD and the installation program crashes, freezes, or otherwise misbehaves one of the first things to suspect is the floppies. Try writing the floppy image files to some other disks, and try again. Write the image files to the floppy disks. The image files, such as kern.flp, are not regular files you copy to the disk. Instead, they are images of the complete contents of the disk. This means that you can not use commands like DOS' copy to write the files. Instead, you must use specific tools to write the images directly to the disk. DOS If you are creating the floppies on a computer running DOS then we provide a tool to do this called fdimage. If you are using the floppies from the CDROM, and your CDROM is the E: drive then you would run this: E:\> tools\fdimage floppies\kern.flp A: Repeat this command for each .flp file, replacing the floppy disk each time. Adjust the command line as necessary, depending on where you have placed the .flp files. If you do not have the CDROM then fdimage can be downloaded from the tools directory on the FreeBSD FTP site. If you are writing the floppies on a Unix system (such as another FreeBSD system) you can use the &man.dd.1; command to write the image files directly to disk. On FreeBSD you would run: &prompt.root; dd if=kern.flp of=/dev/fd0 On FreeBSD /dev/fd0 refers to the first floppy disk (the A: drive). /dev/fd1 would be the B: drive, and so on. Other Unix variants might have different names for the floppy disk devices, and you will need to check the documentation for the system as necessary. Before Installing from CDROM If your CDROM is of an unsupported type, please skip ahead to the MS-DOS Preparation section. There is not a whole lot of preparation needed if you are installing from a FreeBSD CDROM. You can either boot into the CD installation directly from DOS using the install.bat or you can make floppies with the makeflp.bat command. If the CD has El Torito boot support and your system supports booting directly from the CDROM drive (many older systems do NOT), simply insert the first CD of the set into the drive and reboot your system. You will be put into the installation menu directly from the CD. DOS If you are installing from an MS-DOS partition and have the proper drivers to access your CD, run the install.bat script provided on the CDROM. This will attempt to boot the FreeBSD installation directly from DOS. You must do this from actual DOS (i.e., boot in DOS mode) and not from a DOS window under Windows. For the easiest interface of all (from DOS), type view. This will bring up a DOS menu utility that leads you through all of the available options. Unix If you are creating the boot floppies from a Unix machine, see the Creating the Boot Floppies section of this guide for examples. Once you have booted from DOS or floppy, you should then be able to select CDROM as the media type during the install process and load the entire distribution from CDROM. No other types of installation media should be required. After your system is fully installed and you have rebooted (from the hard disk), you can mount the CDROM at any time by typing: &prompt.root; mount /cdrom Before removing the CD from the drive again, you must first unmount it. This is done with the following command: &prompt.root; umount /cdrom Do not just remove it from the drive! Before invoking the installation, be sure that the CDROM is in the drive so that the install probe can find it. This is also true if you wish the CDROM to be added to the default system configuration automatically during the installation (whether or not you actually use it as the installation media). installation network FTP Finally, if you would like people to be able to FTP install FreeBSD directly from the CDROM in your machine, you will find it quite easy. After the machine is fully installed, you simply need to add the following line to the password file (using the vipw command): ftp:*:99:99::0:0:FTP:/cdrom:/nonexistent Anyone with network connectivity to your machine can now chose a media type of FTP and type in ftp://your machine after picking Other in the FTP sites menu during the install. If you choose to enable anonymous FTP during the installation of your system, the installation program will do the above for you. Before installing from Floppies installation floppies If you must install from floppy disk (which we suggest you do NOT do), either due to unsupported hardware or simply because you insist on doing things the hard way, you must first prepare some floppies for the installation. At a minimum, you will need as many 1.44MB or 1.2MB floppies as it takes to hold all the files in the bin (binary distribution) directory. If you are preparing the floppies from DOS, then they MUST be formatted using the MS-DOS FORMAT command. If you are using Windows, use Explorer to format the disks (right-click on the A: drive, and select "Format". Do NOT trust factory pre-formatted floppies! Format them again yourself, just to be sure. Many problems reported by our users in the past have resulted from the use of improperly formatted media, which is why we are making a point of it now. If you are creating the floppies on another FreeBSD machine, a format is still not a bad idea, though you do not need to put a DOS filesystem on each floppy. You can use the disklabel and newfs commands to put a UFS filesystem on them instead, as the following sequence of commands (for a 3.5" 1.44MB floppy) illustrates: &prompt.root; fdformat -f 1440 fd0.1440 &prompt.root; disklabel -w -r fd0.1440 floppy3 &prompt.root; newfs -t 2 -u 18 -l 1 -i 65536 /dev/fd0 Use fd0.1200 and floppy5 for 5.25" 1.2MB disks. Then you can mount and write to them like any other filesystem. After you have formatted the floppies, you will need to copy the files to them. The distribution files are split into chunks conveniently sized so that 5 of them will fit on a conventional 1.44MB floppy. Go through all your floppies, packing as many files as will fit on each one, until you have all of the distributions you want packed up in this fashion. Each distribution should go into a subdirectory on the floppy, e.g.: a:\bin\bin.aa, a:\bin\bin.ab, and so on. Once you come to the Media screen during the install process, select Floppy and you will be prompted for the rest. Before Installing from MS-DOS installation from MS-DOS To prepare for an installation from an MS-DOS partition, copy the files from the distribution into a directory named, for example, c:\FreeBSD. The directory structure of the CDROM or FTP site must be partially reproduced within this directory, so we suggest using the DOS xcopy command if you are copying it from a CD. For example, to prepare for a minimal installation of FreeBSD: C:\> md c:\FreeBSD C:\> xcopy e:\bin c:\FreeBSD\bin\ /s C:\> xcopy e:\manpages c:\FreeBSD\manpages\ /s Assuming that C: is where you have free space and E: is where your CDROM is mounted. If you do not have a CDROM drive, you can download the distribution from ftp.FreeBSD.org. Each distribution is in its own directory; for example, the bin distribution can be found in the &rel.current;/bin directory. For as many distributions you wish to install from an MS-DOS partition (and you have the free space for), install each one under c:\FreeBSD — the BIN distribution is the only one required for a minimum installation. Before Installing from QIC/SCSI Tape installation from QIC/SCSI Tape Installing from tape is probably the easiest method, short of an online FTP install or CDROM install. The installation program expects the files to be simply tarred onto the tape, so after getting all of the distribution files you are interested in, simply tar them onto the tape like so: &prompt.root; cd /freebsd/distdir &prompt.root; tar cvf /dev/rwt0 dist1 ... dist2 When you go to do the installation, you should also make sure that you leave enough room in some temporary directory (which you will be allowed to choose) to accommodate the full contents of the tape you have created. Due to the non-random access nature of tapes, this method of installation requires quite a bit of temporary storage. You should expect to require as much temporary storage as you have stuff written on tape. When starting the installation, the tape must be in the drive before booting from the boot floppy. The installation probe may otherwise fail to find it. Before Installing over a Network installation network serial (SLIP or PPP) installation network parallel (PLIP) installation network Ethernet There are three types of network installations you can do. Serial port (SLIP or PPP), Parallel port (PLIP (laplink cable)), or Ethernet (a standard Ethernet controller (includes some PCMCIA)). The SLIP support is rather primitive, and limited primarily to hard-wired links, such as a serial cable running between a laptop computer and another computer. The link should be hard-wired as the SLIP installation does not currently offer a dialing capability; that facility is provided with the PPP utility, which should be used in preference to SLIP whenever possible. If you are using a modem, then PPP is almost certainly your only choice. Make sure that you have your service provider's information handy as you will need to know it fairly early in the installation process. If you use PAP or CHAP to connect your ISP (in other words, if you can connect to the ISP in Windows without using a script), then all you will need to do is type in dial at the ppp prompt. Otherwise, you will need to know how to dial your ISP using the AT commands specific to your modem, as the PPP dialer provides only a very simple terminal emulator. Please refer to the user-ppp handbook and FAQ entries for further information. If you have problems, logging can be directed to the screen using the command set log local .... If a hard-wired connection to another FreeBSD (2.0-R or later) machine is available, you might also consider installing over a laplink parallel port cable. The data rate over the parallel port is much higher than what is typically possible over a serial line (up to 50kbytes/sec), thus resulting in a quicker installation. Finally, for the fastest possible network installation, an Ethernet adapter is always a good choice! FreeBSD supports most common PC Ethernet cards; a table of supported cards (and their required settings) is provided in the Supported Hardware list. If you are using one of the supported PCMCIA Ethernet cards, also be sure that it is plugged in before the laptop is powered on! FreeBSD does not, unfortunately, currently support hot insertion of PCMCIA cards during installation. You will also need to know your IP address on the network, the netmask value for your address class, and the name of your machine. If you are installing over a PPP connection and do not have a static IP, fear not, the IP address can be dynamically assigned by your ISP. Your system administrator can tell you which values to use for your particular network setup. If you will be referring to other hosts by name rather than IP address, you will also need a name server and possibly the address of a gateway (if you are using PPP, it is your provider's IP address) to use in talking to it. If you want to install by FTP via a HTTP proxy (see below), you will also need the proxy's address. If you do not know the answers to all or most of these questions, then you should really probably talk to your system administrator or ISP before trying this type of installation. Before Installing via NFS installation network NFS The NFS installation is fairly straight-forward. Simply copy the FreeBSD distribution files you want onto a server somewhere and then point the NFS media selection at it. If this server supports only privileged port (as is generally the default for Sun workstations), you will need to set this option in the Options menu before installation can proceed. If you have a poor quality Ethernet card which suffers from very slow transfer rates, you may also wish to toggle the appropriate Options flag. In order for NFS installation to work, the server must support subdir mounts, e.g., if your FreeBSD 3.4 distribution directory lives on:ziggy:/usr/archive/stuff/FreeBSD, then ziggy will have to allow the direct mounting of /usr/archive/stuff/FreeBSD, not just /usr or /usr/archive/stuff. In FreeBSD's /etc/exports file, this is controlled by the . Other NFS servers may have different conventions. If you are getting permission denied messages from the server, then it is likely that you do not have this enabled properly. Before Installing via FTP installation network FTP FTP installation may be done from any FreeBSD mirror site containing a reasonably up-to-date version of FreeBSD. A full list of FTP mirrors located all over the world is provided during the install process. If you are installing from an FTP site not listed in this menu, or are having trouble getting your name server configured properly, you can also specify a URL to use by selecting the choice labeled Other in that menu. You can also use the IP address of a machine you wish to install from, so the following would work in the absence of a name server: ftp://209.55.82.20/pub/FreeBSD/&rel.current;-RELEASE There are three FTP installation modes you can choose from: active or passive FTP or via a HTTP proxy. FTP Active This option will make all FTP transfers use Active mode. This will not work through firewalls, but will often work with older FTP servers that do not support passive mode. If your connection hangs with passive mode (the default), try active! FTP Passive FTP Passive mode This option instructs FreeBSD to use Passive mode for all FTP operations. This allows the user to pass through firewalls that do not allow incoming connections on random port addresses. FTP via a HTTP proxy FTP via a HTTP proxy This option instructs FreeBSD to use the HTTP protocol (like a web browser) to connect to a proxy for all FTP operations. The proxy will translate the requests and send them to the FTP server. This allows the user to pass through firewalls that do not allow FTP at all, but offer a HTTP proxy. In this case, you have to specify the proxy in addition to the FTP server. There is another type of FTP proxy other tha HTTP proxies. This type is very uncommon, though. If you are not absolutely certain, you can assume that you have a HTTP proxy as described above. For a proxy FTP server, you should usually give the name of the server you really want as a part of the username, after an @ sign. The proxy server then fakes the real server. For example, assuming you want to install from ftp.FreeBSD.org, using the proxy FTP server foo.bar.com, listening on port 1024. In this case, you go to the options menu, set the FTP username to ftp@ftp.FreeBSD.org, and the password to your email address. As your installation media, you specify FTP (or passive FTP, if the proxy supports it), and the URL ftp://foo.bar.com:1234/pub/FreeBSD. Since /pub/FreeBSD from ftp.FreeBSD.org is proxied under foo.bar.com, you are able to install from that machine (which will fetch the files from ftp.FreeBSD.org as your installation requests them. Check your BIOS drive numbering If you have used features in your BIOS to renumber your disk drives without re-cabling them then you should read first to avoid confusion. Installing FreeBSD Once you have completed the pre-installation step relevant to your situation, you are ready to install FreeBSD! Although you should not experience any difficulty, there is always the chance that you may, no matter how slight it is. If this is the case in your situation, then you may wish to go back and re-read the relevant preparation section or sections. Perhaps you will come across something you missed the first time. If you are having hardware problems, or FreeBSD refuses to boot at all, read the Hardware Guide for a list of possible solutions. sysinstall The FreeBSD boot floppies contain all of the online documentation you should need to be able to navigate through an installation. If it does not, please let us know what you found to be the most confusing or most lacking. Send your comments to the &a.doc;. It is the objective of the installation program (sysinstall) to be self-documenting enough that painful step-by-step guides are no longer necessary. It may take us a little while to reach that objective, but nonetheless, it is still our objective. Meanwhile, you may also find the following typical installation sequence to be helpful: Boot the kern.flp floppy and when asked, remove it and insert the mfsroot.flp and hit return. After a boot sequence which can take anywhere from 30 seconds to 3 minutes, depending on your hardware, you should be presented with a menu of initial choices. If the kern.flp floppy does not boot at all or the boot hangs at some stage, read the Q&A section of the Hardware Guide for possible causes. Press F1. You should see some basic usage instructions on the menu screen and general navigation. If you have not used this menu system before then please read this thoroughly. Select the Options item and set any special preferences you may have. installation standard installation express installation custom Select a Standard, Express, or Custom install, depending on whether or not you would like the installation to help you through a typical installation, give you a high degree of control over each step, or simply whiz through it (using reasonable defaults when possible) as fast as possible. If you have never used FreeBSD before, the Standard installation method is most recommended. The final configuration menu choice allows you to further configure your FreeBSD installation by giving you menu-driven access to various system defaults. Some items, like networking, may be especially important if you did a CDROM, tape, or floppy install and have not yet configured your network interfaces (assuming you have any). Properly configuring such interfaces here will allow FreeBSD to come up on the network when you first reboot from the hard disk. Supported Hardware hardware FreeBSD currently runs on a wide variety of ISA, VLB, EISA, and PCI bus based PCs, ranging from the 386SX to Pentium class machines (though the 386SX is not recommended). Support for generic IDE or ESDI drive configurations, various SCSI controllers, and network and serial cards is also provided. FreeBSD also supports IBM's microchannel (MCA) bus. In order to run FreeBSD, a recommended minimum of eight megabytes of RAM is suggested. Sixteen megabytes is the preferred amount of RAM as you may have some trouble with anything less than sixteen depending on your hardware. What follows is a list of hardware currently known to work with FreeBSD. There may be other hardware that works as well, but we have simply not received any confirmation of it. Disk Controllers disk controllers WD1003 (any generic MFM/RLL) WD1007 (any generic IDE/ESDI) IDE ATA Adaptec 1535 ISA SCSI controllers Adaptec 154X series ISA SCSI controllers Adaptec 174X series EISA SCSI controllers in standard and enhanced mode Adaptec 274X/284X/2920C/294X/2950/3940/3950 (Narrow/Wide/Twin) series EISA/VLB/PCI SCSI controllers Adaptec AIC-7850, AIC-7860, AIC-7880, AIC-789X on-board SCSI controllers Adaptec 1510 series ISA SCSI controllers (not for bootable devices) Adaptec 152X series ISA SCSI controllers Adaptec AIC-6260 and AIC-6360 based boards, which include the AHA-152X and SoundBlaster SCSI cards AdvanSys SCSI controllers (all models) BusLogic MultiMaster W Series Host Adapters including BT-948, BT-958, BT-9580 BusLogic MultiMaster C Series Host Adapters including BT-946C, BT-956C, BT-956CD, BT-445C, BT-747C, BT-757C, BT-757CD, BT-545C, BT-540CF BusLogic MultiMaster S Series Host Adapters including BT-445S, BT-747S, BT-747D, BT-757S, BT-757D, BT-545S, BT-542D, BT-742A, BT-542B BusLogic MultiMaster A Series Host Adapters including BT-742A, BT-542B AMI FastDisk controllers that are true BusLogic MultiMaster clones are also supported. BusLogic/Mylex Flashpoint adapters are NOT yet supported. DPT SmartCACHE Plus, SmartCACHE III, SmartRAID III, SmartCACHE IV, and SmartRAID IV SCSI/RAID are supported. The DPT SmartRAID/CACHE V is not yet supported. The DPT PM3754U2-16M SCSI RAID Controller is also supported. Compaq Intelligent Disk Array Controllers: IDA, IDA-2, IAES, SMART, SMART-2/E, Smart-2/P, SMART-2SL, Integrated Array, and Smart Arrays 3200, 3100ES, 221, 4200, 4200, 4250ES. SymBios (formerly NCR) 53C810, 53C810a, 53C815, 53C820, 53C825a, 53C860, 53C875, 53C875j, 53C885, and 53C896 PCI SCSI controllers including ASUS SC-200, Data Technology DTC3130 (all variants), Diamond FirePort (all), NCR cards (all), SymBios cards (all), Tekram DC390W, 390U, and 390F, and Tyan S1365 QLogic 1020, 1040, 1040B, and 2100 SCSI and Fibre Channel Adapters DTC 3290 EISA SCSI controller in 1542 evaluation mode With all supported SCSI controllers, full support is provided for SCSI-I and SCSI-II peripherals, including hard disks, optical disks, tape drives (including DAT and 8mm Exabyte), medium changers, processor target devices, and CDROM drives. WORM devices that support CDROM commands are supported for read-only access by the CDROM driver. WORM/CD-R/CD-RW writing support is provided by cdrecord, which is in the ports tree. The following CDROM type systems are supported at this time: cd - SCSI interface (includes ProAudio Spectrum and SoundBlaster SCSI) matcd - Matsushita/Panasonic (Creative SoundBlaster) proprietary interface (562/563 models) scd - Sony proprietary interface (all models) acd - ATAPI IDE interface The following drivers were supported under the old SCSI subsystem, but are NOT YET supported under the new CAM SCSI subsystem: NCR5380/NCR53400 (ProAudio Spectrum) SCSI controller UltraStor 14F, 24F, and 34F SCSI controllers Seagate ST01/02 SCSI controllers Future Domain 8XX/950 series SCSI controllers WD7000 SCSI controller There is work-in-progress to port the UltraStor driver to the new CAM framework, but no estimates on when or if it will be completed. Unmaintained drivers, which might or might not work for your hardware: Floppy tape interface (Colorado/Mountain/Insight) mcd - Mitsumi proprietary CDROM interface (all models) Network Cards network cards Adaptec Duralink PCI fast ethernet adapters based on the Adaptec AIC-6195 fast ethernet controller chip, including the following: ANA-62011 64-bit single port 10/100baseTX adapter ANA-62022 64-bit dual port 10/100baseTX adapter ANA-62044 64-bit quad port 10/100baseTX adapter ANA-69011 32-bit single port 10/100baseTX adapter ANA-62020 64-bit single port 100baseFX adapter Allied-Telesyn AT1700 and RE2000 cards Alteon Networks PCI gigabit ethernet NICs based on the Tigon 1 and Tigon 2 chipsets including the Alteon AceNIC (Tigon 1 and 2), 3Com 3c985-SX (Tigon 1 and 2), Netgear GA620 (Tigon 2), Silicon Graphics Gigabit Ethernet, DEC/Compaq EtherWORKS 1000, NEC Gigabit Ethernet AMD PCnet/PCI (79c970 and 53c974 or 79c974) RealTek 8129/8139 fast ethernet NICs including the following: Allied-Telesyn AT2550 Allied-Telesyn AT2500TX Genius GF100TXR (RTL8139) NDC Communications NE100TX-E OvisLink LEF-8129TX OvisLink LEF-8139TX Netronix Inc. EA-1210 NetEther 10/100 KTX-9130TX 10/100 Fast Ethernet Accton Cheetah EN1207D (MPX 5030/5038; RealTek 8139 clone) SMC EZ Card 10/100 PCI 1211-TX Lite-On 98713, 98713A, 98715, and 98725 fast ethernet NICs, including the LinkSys EtherFast LNE100TX, NetGear FA310-TX Rev. D1, Matrox FastNIC 10/100, Kingston KNE110TX Macronix 98713, 98713A, 98715, 98715A, and 98725 fast ethernet NICs including the NDC Communications SFA100A (98713A), CNet Pro120A (98713 or 98713A), CNet Pro120B (98715), SVEC PN102TX (98713) Macronix/Lite-On PNIC II LC82C115 fast ethernet NICs including the LinkSys EtherFast LNE100TX version 2 Winbond W89C840F fast ethernet NICs including the Trendware TE100-PCIE VIA Technologies VT3043 Rhine I and VT86C100A Rhine II fast ethernet NICs including the Hawking Technologies PN102TX and D-Link DFE-530TX Silicon Integrated Systems SiS 900 and SiS 7016 PCI fast ethernet NICs Sundance Technologies ST201 PCI fast ethernet NICs including the D-Link DFE-550TX SysKonnect SK-984x PCI gigabit ethernet cards including the SK-9841 1000baseLX (single mode fiber, single port), the SK-9842 1000baseSX (multimode fiber, single port), the SK-9843 1000baseLX (single mode fiber, dual port), and the SK-9844 1000baseSX (multimode fiber, dual port). Texas Instruments ThunderLAN PCI NICs, including the Compaq Netelligent 10, 10/100, 10/100 Proliant, 10/100 Dual-Port, 10/100 TX Embedded UTP, 10 T PCI UTP/Coax, and 10/100 TX UTP, the Compaq NetFlex 3P, 3P Integrated, and 3P w/BNC, the Olicom OC-2135/2138, OC-2325, OC-2326 10/100 TX UTP, and the Racore 8165 10/100baseTX and 8148 10baseT/100baseTX/100baseFX multi-personality cards ADMtek AL981-based and AN985-based PCI fast ethernet NICs ASIX Electronics AX88140A PCI NICs including the Alfa Inc. GFC2204 and CNet Pro110B DEC EtherWORKS III NICs (DE203, DE204, and DE205) DEC EtherWORKS II NICs (DE200, DE201, DE202, and DE422) DEC DC21040, DC21041, or DC21140 based NICs (SMC Etherpower 8432T, DE245, etc.) DEC FDDI (DEFPA/DEFEA) NICs Efficient ENI-155p ATM PCI FORE PCA-200E ATM PCI Fujitsu MB86960A/MB86965A HP PC Lan+ cards (model numbers: 27247B and 27252A) Intel EtherExpress ISA (not recommended due to driver instability) Intel EtherExpress Pro/10 Intel EtherExpress Pro/100B PCI Fast Ethernet Isolan AT 4141-0 (16 bit) Isolink 4110 (8 bit) Novell NE1000, NE2000, and NE2100 Ethernet interfaces PCI network cards emulating the NE2000, including the RealTek 8029, NetVin 5000, Winbond W89C940, Surecom NE-34, VIA VT86C926 3Com 3C501, 3C503 Etherlink II, 3C505 Etherlink/+, 3C507 Etherlink 16/TP, 3C509, 3C579, 3C589 (PCMCIA), 3C590/592/595/900/905/905B/905C PCI and EISA (Fast) Etherlink III / (Fast) Etherlink XL, 3C980/3C980B Fast Etherlink XL server adapter, 3CSOHO100-TX OfficeConnect adapter Toshiba ethernet cards PCMCIA ethernet cards from IBM and National Semiconductor are also supported USB Peripherals USB Peripherals A wide range of USB peripherals are supported. Owing to the generic nature of most USB devices, with some exceptions any device of a given class will be supported even if not explicitly listed here. USB keyboards USB mice USB printers and USB to parallel printer conversion cables USB hubs Motherboard chipsets: ALi Aladdin-V Intel 82371SB (PIIX3) and 82371AB and EB (PIIX4) chipsets NEC uPD 9210 Host Controller VIA 83C572 USB Host Controller and any other UHCI or OHCI compliant motherboard chipset (no exceptions known). PCI plug-in USB host controllers ADS Electronics PCI plug-in card (2 ports) Entrega PCI plug-in card (4 ports) Specific USB devices reported to be working: Agiler Mouse 29UO Andromeda hub Apple iMac mouse and keyboard ATen parallel printer adapter Belkin F4U002 parallel printer adapter and Belkin mouse BTC BTC7935 keyboard with mouse port Cherry G81-3504 Chic mouse Cypress mouse Entrega USB-to-parallel printer adapter Genius Niche mouse Iomega USB Zip 100 MB Kensington Mouse-in-a-Box Logitech M2452 keyboard Logitech wheel mouse (3 buttons) Logitech PS/2 / USB mouse (3 buttons) MacAlly mouse (3 buttons) MacAlly self-powered hub (4 ports) Microsoft Intellimouse (3 buttons) Microsoft keyboard NEC hub Trust Ami Mouse (3 buttons) ISDN (European DSS1 [Q.921/Q.931] protocol) ISDN Asuscom I-IN100-ST-DV (experimental, may work) Asuscom ISDNlink 128K AVM A1 AVM Fritz!Card classic AVM Fritz!Card PCI AVM Fritz!Card PCMCIA (currently FreeBSD 3.X only) AVM Fritz!Card PnP (currently FreeBSD 3.X only) Creatix ISDN-S0/8 Creatix ISDN-S0/16 Creatix ISDN-S0 PnP Dr.Neuhaus Niccy 1008 Dr.Neuhaus Niccy 1016 Dr.Neuhaus Niccy GO@ (ISA PnP) Dynalink IS64PH (no longer maintained) ELSA 1000pro ISA ELSA 1000pro PCI ELSA PCC-16 ITK ix1 micro (currently FreeBSD 3.X only) ITK ix1 micro V.3 (currently FreeBSD 3.X only) Sagem Cybermod (ISA PnP, may work) Sedlbauer Win Speed Siemens I-Surf 2.0 Stollman Tina-pp (under development) Teles S0/8 Teles S0/16 Teles S0/16.3 (the c Versions - like 16.3c - are unsupported!) Teles S0 PnP (experimental, may work) 3Com/USRobotics Sportster ISDN TA intern (non-PnP version) Sound Devices The following soundcards or codecs are supported (devices marked 'experimental' are only supported in FreeBSD-CURRENT and might work only unstably): sound cards 16550 UART (Midi) (experimental, needs a trick in the hints file) Advance Asound 100, 110 and Logic ALS120 Aureal Vortex1/Vortex2 and Vortex Advantage based soundcards by a third party driver Creative Labs SB16, SB32, SB AWE64 (including Gold), Vibra16, SB PCI (experimental), SB Live! (experimental) and most SoundBlaster compatible cards Creative Labs SB Midi Port (experimental), SB OPL3 Synthesizer (experimental) Crystal Semiconductor CS461x/462x Audio Accelerator, the support for the CS461x Midi port is experimental Crystal Semiconductor CS428x Audio Controller CS4237, CS4236, CS4232, CS4231 (ISA) ENSONIQ AudioPCI ES1370/1371 ESS ES1868, ES1869, ES1879, ES1888 Gravis UltraSound PnP, MAX NeoMagic 256AV/ZX (PCI) OPTi931 (ISA) OSS-compatible sequencer (Midi) (experimental) Trident 4DWave DX/NX (PCI) Yahama OPL-SAx (ISA) Miscellaneous Devices AST 4 port serial card using shared IRQ ARNET 8 port serial card using shared IRQ ARNET (now Digiboard) Sync 570/i high-speed serial Boca BB1004 4-Port serial card (Modems NOT supported) Boca IOAT66 6-Port serial card (Modems supported) Boca BB1008 8-Port serial card (Modems NOT supported) Boca BB2016 16-Port serial card (Modems supported) Cyclades Cyclom-y Serial Board Moxa SmartIO CI-104J 4-Port serial card STB 4 port card using shared IRQ SDL Communications RISCom/8 Serial Board SDL Communications RISCom/N2 and N2pci high-speed sync serial boards Specialix SI/XIO/SX multiport serial cards, with both the older SIHOST2.x and the new enhanced (transputer based, aka JET) host cards; ISA, EISA and PCI are supported Stallion multiport serial boards: EasyIO, EasyConnection 8/32 & 8/64, ONboard 4/16 and Brumby Adlib, SoundBlaster, SoundBlaster Pro, ProAudioSpectrum, Gravis UltraSound, and Roland MPU-401 sound cards Connectix QuickCam Matrox Meteor Video frame grabber Creative Labs Video Spigot frame grabber Cortex1 frame grabber Various frame grabbers based on the Brooktree Bt848 and Bt878 chip HP4020, HP6020, Philips CDD2000/CDD2660 and Plasmon CD-R drives Bus mice PS/2 mice Standard PC Joystick X-10 power controllers GPIB and Transputer drives Genius and Mustek hand scanners Floppy tape drives (some rather old models only, driver is rather stale) Lucent Technologies WaveLAN/IEEE 802.11 PCMCIA and ISA standard speed (2Mbps) and turbo speed (6Mbps) wireless network adapters and workalikes (NCR WaveLAN/IEEE 802.11, Cabletron RoamAbout 802.11 DS) The ISA versions of these adapters are actually PCMCIA cards combined with an ISA to PCMCIA bridge card, so both kinds of devices work with the same driver. Troubleshooting installation troubleshooting The following section covers basic installation troubleshooting, such as common problems people have reported. There are also a few questions and answers for people wishing to dual-boot FreeBSD with MS-DOS. What to do if something goes wrong... Due to various limitations of the PC architecture, it is impossible for probing to be 100% reliable, however, there are a few things you can do if it fails. Check the supported hardware list to make sure your hardware is supported. If your hardware is supported and you still experience lock-ups or other problems, reset your computer, and when the visual kernel configuration option is given, choose it. This will allow you to go through your hardware and supply information to the system about it. The kernel on the boot disks is configured assuming that most hardware devices are in their factory default configuration in terms of IRQs, IO addresses, and DMA channels. If your hardware has been reconfigured, you will most likely need to use the configuration editor to tell FreeBSD where to find things. It is also possible that a probe for a device not present will cause a later probe for another device that is present to fail. In that case, the probes for the conflicting driver(s) should be disabled. Do not disable any drivers you will need during the installation, such as your screen (sc0). If the installation wedges or fails mysteriously after leaving the configuration editor, you have probably removed or changed something you should not have. Reboot and try again. In configuration mode, you can: List the device drivers installed in the kernel. Change device drivers for hardware that is not present in your system. Change IRQs, DRQs, and IO port addresses used by a device driver. After adjusting the kernel to match your hardware configuration, type Q to boot with the new settings. Once the installation has completed, any changes you made in the configuration mode will be permanent so you do not have to reconfigure every time you boot. It is still highly likely that you will eventually want to build a custom kernel. MS-DOS User's Questions and Answers DOS Many users wish to install FreeBSD on PCs inhabited by MS-DOS. Here are some commonly asked questions about installing FreeBSD on such systems. Help, I have no space! Do I need to delete everything first? If your machine is already running MS-DOS and has little or no free space available for the FreeBSD installation, all hope is not lost! You may find the FIPS utility, provided in the tools directory on the FreeBSD CDROM or various FreeBSD FTP sites to be quite useful. FIPS FIPS allows you to split an existing MS-DOS partition into two pieces, preserving the original partition and allowing you to install onto the second free piece. You first defragment your MS-DOS partition using the Windows DEFRAG utility (go into Explorer, right-click on the hard drive, and choose to defrag your hard drive), or Norton Disk Tools. You then must run FIPS. It will prompt you for the rest of the information it needs. Afterwards, you can reboot and install FreeBSD on the new free slice. See the Distributions menu for an estimate of how much free space you will need for the kind of installation you want. Partition Magic There is also a very useful product from PowerQuest called Partition Magic. This application has far more functionality than FIPS, and is highly recommended if you plan to often add/remove operating systems (like me). However, it does cost money, and if you plan to install FreeBSD once and then leave it there, FIPS will probably be fine for you. Can I use compressed MS-DOS filesystems from FreeBSD? No. If you are using a utility such as Stacker(tm) or DoubleSpace(tm), FreeBSD will only be able to use whatever portion of the filesystem you leave uncompressed. The rest of the filesystem will show up as one large file (the stacked/double spaced file!). Do not remove that file or you will probably regret it greatly! It is probably better to create another uncompressed primary MS-DOS partition and use this for communications between MS-DOS and FreeBSD. Can I mount my extended MS-DOS partition? partitions slices Yes. DOS extended partitions are mapped in at the end of the other slices in FreeBSD, e.g., your D: drive might be /dev/da0s5, your E: drive, /dev/da0s6, and so on. This example assumes, of course, that your extended partition is on SCSI drive 0. For IDE drives, substitute ad for da appropriately if installing 4.0-RELEASE or later, and substitute wd for da if you are installing a version of FreeBSD prior to 4.0. You otherwise mount extended partitions exactly like you would any other DOS drive, for example: &prompt.root; mount -t msdos /dev/ad0s5 /dos_d - Advanced Installation Guide + + + + Valentino + Vaschetto + Contributed by + + + + - Written by &a.logo;, May 2001. + Advanced Installation Guide This section describes how to install FreeBSD in exceptional cases. Installing FreeBSD on a system without a monitor or keyboard installation headless (serial console) serial console This type of installation is called a "headless install", because the machine that you are trying to install FreeBSD on either doesnt have a monitor attached to it, or doesnt even have a VGA output. How is this possible you ask? Using a serial console. A serial console is basically using another machine to act as the main display and keyboard for a system. To do this, just follow these steps: Fetch the right boot floppy images First you will need to get the right disk images so that you can boot into the install program. The secret with using a serial console is that you tell the boot loader to send I/O through a serial port instead of displaying console output to the VGA device and trying to read input from a local keyboard. Enough of that now, let's get back to getting these disk images. You will need to get kern.flp and mfsroot.flp from the floppies directory. Write the image files to the floppy disks. The image files, such as kern.flp, are not regular files that you copy to the disk. Instead, they are images of the complete contents of the disk. This means that you can not use commands like DOS' copy to write the files. Instead, you must use specific tools to write the images directly to the disk. fdimage If you are creating the floppies on a computer running DOS then we provide a tool to do this called fdimage. If you are using the floppies from the CDROM, and your CDROM is the E: drive then you would run this: E:\> tools\fdimage floppies\kern.flp A: Repeat this command for each .flp file, replacing the floppy disk each time. Adjust the command line as necessary, depending on where you have placed the .flp files. If you do not have the CDROM then fdimage can be downloaded from the tools directory on the FreeBSD FTP site. If you are writing the floppies on a Unix system (such as another FreeBSD system) you can use the &man.dd.1; command to write the image files directly to disk. On FreeBSD you would run: &prompt.root; dd if=kern.flp of=/dev/fd0 On FreeBSD /dev/fd0 refers to the first floppy disk (the A: drive). /dev/fd1 would be the B: drive, and so on. Other Unix variants might have different names for the floppy disk devices, and you will need to check the documentation for the system as necessary. Enabling the boot floppies to boot into a serial console Do not try to mount the floppy if it is write-protected mount If you were to boot into the floppies that you just made, FreeBSD would boot into its normal install mode. We want FreeBSD to boot into a serial console for our install. To do this, you have to mount the kern.flp floppy onto your FreeBSD system using the &man.mount.8; command. &prompt.root; mount /dev/fd0 /mnt Now that you have the floppy mounted, you must change into the floppy directory &prompt.root; cd /mnt Here is where you must set the floppy to boot into a serial console. You have to make a file called boot.config containing "/boot/loader -h". All this does is pass a flag to the bootloader to boot into a serial console. &prompt.root; echo "/boot/loader -h" > boot.config Now that you have your floppy configured correctly, you must unmount the floppy using the &man.umount.8; command &prompt.root; cd / &prompt.root; umount /mnt Now you can remove the floppy from the floppy drive Connecting your null modem cable null-modem cable You now need to connect a null modem cable between the two machines. Just connect the cable to the serial ports of the 2 machines. A normal serial cable will not work here, you need a null modem cable because it has some of the wires inside crossed over. Booting up for the install It's now time to go ahead and start the install. Put the kern.flp floppy in the floppy drive of the machine you're doing the headless install on, and power on the machine. Connecting to your headless machine cu Now you have to connect to that machine with &man.cu.1;: &prompt.root; cu -l /dev/cuaa0 That's it! You should be able to control the headless machine through your cu session now. It will ask you to put in the mfsroot.flp, and then it will come up with a selection of what kind of terminal to use. Just select the FreeBSD color console and proceed with your install! diff --git a/en_US.ISO8859-1/books/handbook/introduction/chapter.sgml b/en_US.ISO8859-1/books/handbook/introduction/chapter.sgml index 178b6e7766..d384aa241b 100644 --- a/en_US.ISO8859-1/books/handbook/introduction/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/introduction/chapter.sgml @@ -1,882 +1,890 @@ Jim Mock Restructured, reorganized, and parts - rewritten + rewritten by Introduction Synopsis Thank you for your interest in FreeBSD! The following chapter covers various items about the FreeBSD Project, such as its history, goals, development model, and so on. 4.4BSD-Lite FreeBSD is a 4.4BSD-Lite based operating system for the Intel architecture (x86) and DEC Alpha based systems. Ports to other architectures are also underway. For a brief overview of FreeBSD, see the next section. You can also read about the history of FreeBSD, or the current release. If you are interested in contributing something to the Project (code, hardware, unmarked bills), see the contributing to FreeBSD section. Welcome to FreeBSD! Since you are still here reading this, you most likely have some idea as to what FreeBSD is and what it can do for you. If you are new to FreeBSD, read on for more information. What is FreeBSD? Intel architecture (x86) DEC Alpha architecture In general, FreeBSD is a state-of-the-art operating system based on 4.4BSD-Lite. It runs on computer systems based on the Intel architecture (x86), and also the DEC Alpha architecture. FreeBSD is used to power some of the biggest sites on the Internet, including: Yahoo! Yahoo! Apache Apache Be, Inc. Be, Inc. Blue Mountain Arts Blue Mountain Arts Pair Networks Pair Networks Whistle Communications Whistle Communications Microsoft Microsoft Hotmail Hotmail Sony Japan Sony Japan and many more. What can FreeBSD do? FreeBSD has many noteworthy features. Some of these are: preemptive multitasking Preemptive multitasking with dynamic priority adjustment to ensure smooth and fair sharing of the computer between applications and users, even under the heaviest of loads. multi-user facilities Multi-user facilities which allow many people to use a FreeBSD system simultaneously for a variety of things. This means, for example, that system peripherals such as printers and tape drives are properly shared between all users on the system or the network and that individual resource limits can be placed on users or groups of users, protecting critical system resources from over-use. TCP/IP networking Strong TCP/IP networking with support for industry standards such as SLIP, PPP, NFS, DHCP, and NIS. This means that your FreeBSD machine can interoperate easily with other systems as well as act as an enterprise server, providing vital functions such as NFS (remote file access) and email services or putting your organization on the Internet with WWW, FTP, routing and firewall (security) services. memory protection Memory protection ensures that applications (or users) cannot interfere with each other. One application crashing will not affect others in any way. FreeBSD is a 32-bit operating system (64-bit on the Alpha) and was designed as such from the ground up. X Window System XFree86 The industry standard X Window System (X11R6) provides a graphical user interface (GUI) for the cost of a common VGA card and monitor and comes with full sources. binary compatibility Linux binary compatibility SCO binary compatibility SVR4 binary compatibility BSD/OS binary compatibility NetBSD Binary compatibility with many programs built for Linux, SCO, SVR4, BSDI and NetBSD. Thousands of ready-to-run applications are available from the FreeBSD ports and packages collection. Why search the net when you can find it all right here? Thousands of additional and easy-to-port applications are available on the Internet. FreeBSD is source code compatible with most popular commercial Unix systems and thus most applications require few, if any, changes to compile. virtual memory Demand paged virtual memory and merged VM/buffer cache design efficiently satisfies applications with large appetites for memory while still maintaining interactive response to other users. Symetric Multi-Processing (SMP) SMP support for machines with multiple CPUs. compilers C compilers C++ compilers Fortran A full complement of C, C++, Fortran, and Perl development tools. Many additional languages for advanced research and development are also available in the ports and packages collection. source code Source code for the entire system means you have the greatest degree of control over your environment. Why be locked into a proprietary solution at the mercy of your vendor when you can have a truly open system? Extensive online documentation. And many more! 4.4BSD-Lite Computer Systems Resarch Group (CSRG) U.C. Berkeley FreeBSD is based on the 4.4BSD-Lite release from Computer Systems Research Group (CSRG) at the University of California at Berkeley, and carries on the distinguished tradition of BSD systems development. In addition to the fine work provided by CSRG, the FreeBSD Project has put in many thousands of hours in fine tuning the system for maximum performance and reliability in real-life load situations. As many of the commercial giants struggle to field PC operating systems with such features, performance and reliability, FreeBSD can offer them now! The applications to which FreeBSD can be put are truly limited only by your own imagination. From software development to factory automation, inventory control to azimuth correction of remote satellite antennae; if it can be done with a commercial Unix product then it is more than likely that you can do it with FreeBSD too! FreeBSD also benefits significantly from the literally thousands of high quality applications developed by research centers and universities around the world, often available at little to no cost. Commercial applications are also available and appearing in greater numbers every day. Because the source code for FreeBSD itself is generally available, the system can also be customized to an almost unheard of degree for special applications or projects, and in ways not generally possible with operating systems from most major commercial vendors. Here is just a sampling of some of the applications in which people are currently using FreeBSD: Internet Services: The robust TCP/IP networking built into FreeBSD makes it an ideal platform for a variety of Internet services such as: FTP servers FTP servers web servers World Wide Web servers (standard or secure [SSL]) firewall IP masquerading Firewalls and NAT (IP masquerading) gateways electronic mail Electronic Mail servers USENET USENET News or Bulletin Board Systems And more... With FreeBSD, you can easily start out small with an inexpensive 386 class PC and upgrade all the way up to a quad-processor Xeon with RAID storage as your enterprise grows. Education: Are you a student of computer science or a related engineering field? There is no better way of learning about operating systems, computer architecture and networking than the hands on, under the hood experience that FreeBSD can provide. A number of freely available CAD, mathematical and graphic design packages also make it highly useful to those whose primary interest in a computer is to get other work done! Research: With source code for the entire system available, FreeBSD is an excellent platform for research in operating systems as well as other branches of computer science. FreeBSD's freely available nature also makes it possible for remote groups to collaborate on ideas or shared development without having to worry about special licensing agreements or limitations on what may be discussed in open forums. router DNS Server Networking: Need a new router? A name server (DNS)? A firewall to keep people out of your internal network? FreeBSD can easily turn that unused 386 or 486 PC sitting in the corner into an advanced router with sophisticated packet-filtering capabilities. X Window System XFree86 X Window System Accellerated-X X Window workstation: FreeBSD is a fine choice for an inexpensive X terminal solution, either using the freely available XFree86 server or one of the excellent commercial servers provided by X Inside. Unlike an X terminal, FreeBSD allows many applications to be run locally, if desired, thus relieving the burden on a central server. FreeBSD can even boot diskless, making individual workstations even cheaper and easier to administer. GNU Compiler Collection Software Development: The basic FreeBSD system comes with a full complement of development tools including the renowned GNU C/C++ compiler and debugger. FreeBSD is available in both source and binary form on CDROM and via anonymous FTP. Please see for more information about obtaining FreeBSD. About the FreeBSD Project The following section provides some background information on the project, including a brief history, project goals, and the development model of the project. - A Brief History of FreeBSD + + + + Jordan + Hubbard + Contributed by + + + - Contributed by &a.jkh;. + A Brief History of FreeBSD 386BSD Patchkit Hubbard, Jordan Williams, Nate Grimes, Rod FreeBSD Project History The FreeBSD project had its genesis in the early part of 1993, partially as an outgrowth of the Unofficial 386BSD Patchkit by the patchkit's last 3 coordinators: Nate Williams, Rod Grimes and myself. 386BSD Our original goal was to produce an intermediate snapshot of 386BSD in order to fix a number of problems with it that the patchkit mechanism just was not capable of solving. Some of you may remember the early working title for the project being 386BSD 0.5 or 386BSD Interim in reference to that fact. Jolitz, Bill 386BSD was Bill Jolitz's operating system, which had been up to that point suffering rather severely from almost a year's worth of neglect. As the patchkit swelled ever more uncomfortably with each passing day, we were in unanimous agreement that something had to be done and decided to try and assist Bill by providing this interim cleanup snapshot. Those plans came to a rude halt when Bill Jolitz suddenly decided to withdraw his sanction from the project without any clear indication of what would be done instead. Greenman, David Walnut Creek CDROM It did not take us long to decide that the goal remained worthwhile, even without Bill's support, and so we adopted the name FreeBSD, coined by David Greenman. Our initial objectives were set after consulting with the system's current users and, once it became clear that the project was on the road to perhaps even becoming a reality, I contacted Walnut Creek CDROM with an eye towards improving FreeBSD's distribution channels for those many unfortunates without easy access to the Internet. Walnut Creek CDROM not only supported the idea of distributing FreeBSD on CD but also went so far as to provide the project with a machine to work on and a fast Internet connection. Without Walnut Creek CDROM's almost unprecedented degree of faith in what was, at the time, a completely unknown project, it is quite unlikely that FreeBSD would have gotten as far, as fast, as it has today. 4.3BSD-Lite Net/2 U.C. Berkeley 386BSD Free Software Foundation The first CDROM (and general net-wide) distribution was FreeBSD 1.0, released in December of 1993. This was based on the 4.3BSD-Lite (Net/2) tape from U.C. Berkeley, with many components also provided by 386BSD and the Free Software Foundation. It was a fairly reasonable success for a first offering, and we followed it with the highly successful FreeBSD 1.1 release in May of 1994. Novell U.C. Berkeley Net/2 AT&amp;T Around this time, some rather unexpected storm clouds formed on the horizon as Novell and U.C. Berkeley settled their long-running lawsuit over the legal status of the Berkeley Net/2 tape. A condition of that settlement was U.C. Berkeley's concession that large parts of Net/2 were encumbered code and the property of Novell, who had in turn acquired it from AT&T some time previously. What Berkeley got in return was Novell's blessing that the 4.4BSD-Lite release, when it was finally released, would be declared unencumbered and all existing Net/2 users would be strongly encouraged to switch. This included FreeBSD, and the project was given until the end of July 1994 to stop shipping its own Net/2 based product. Under the terms of that agreement, the project was allowed one last release before the deadline, that release being FreeBSD 1.1.5.1. FreeBSD then set about the arduous task of literally re-inventing itself from a completely new and rather incomplete set of 4.4BSD-Lite bits. The Lite releases were light in part because Berkeley's CSRG had removed large chunks of code required for actually constructing a bootable running system (due to various legal requirements) and the fact that the Intel port of 4.4 was highly incomplete. It took the project until November of 1994 to make this transition, at which point it released FreeBSD 2.0 to the net and on CDROM (in late December). Despite being still more than a little rough around the edges, the release was a significant success and was followed by the more robust and easier to install FreeBSD 2.0.5 release in June of 1995. We released FreeBSD 2.1.5 in August of 1996, and it appeared to be popular enough among the ISP and commercial communities that another release along the 2.1-STABLE branch was merited. This was FreeBSD 2.1.7.1, released in February 1997 and capping the end of mainstream development on 2.1-STABLE. Now in maintenance mode, only security enhancements and other critical bug fixes will be done on this branch (RELENG_2_1_0). FreeBSD 2.2 was branched from the development mainline (-CURRENT) in November 1996 as the RELENG_2_2 branch, and the first full release (2.2.1) was released in April 1997. Further releases along the 2.2 branch were done in the summer and fall of '97, the last of which (2.2.8) appeared in November 1998. The first official 3.0 release appeared in October 1998 and spelled the beginning of the end for the 2.2 branch. The tree branched again on Jan 20, 1999, leading to the 4.0-CURRENT and 3.X-STABLE branches. From 3.X-STABLE, 3.1 was released on February 15, 1999, 3.2 on May 15, 1999, 3.3 on September 16, 1999, 3.4 on December 20, 1999, and 3.5 on June 24, 2000, which was followed a few days later by a minor point release update to 3.5.1, to incorporate some last-minute security fixes to Kerberos. This will be the final release in the 3.X branch. There was another branch on March 13, 2000, which saw the emergence of the 4.X-STABLE branch, now considered to be the "current -stable branch". There have been several releases from it so far: 4.0-RELEASE came out in March 2000, 4.1 was released in July 2000, 4.2 in November 2000, and 4.3 in April 2001. There will be more releases along the 4.X-stable (RELENG_4) branch throughout 2001. Long-term development projects continue to take place in the 5.0-CURRENT (trunk) branch, and SNAPshot releases of 5.0 on CDROM (and, of course, on the net) are continually made available from the snapshot server as work progresses. Jordan Hubbard - Contributed + Contributed by FreeBSD Project Goals FreeBSD Project Goals The goals of the FreeBSD Project are to provide software that may be used for any purpose and without strings attached. Many of us have a significant investment in the code (and project) and would certainly not mind a little financial compensation now and then, but we are definitely not prepared to insist on it. We believe that our first and foremost mission is to provide code to any and all comers, and for whatever purpose, so that the code gets the widest possible use and provides the widest possible benefit. This is, I believe, one of the most fundamental goals of Free Software and one that we enthusiastically support. GNU General Public License (GPL) GNU Lesser General Public License (LGPL) BSD Copyright That code in our source tree which falls under the GNU General Public License (GPL) or Library General Public License (LGPL) comes with slightly more strings attached, though at least on the side of enforced access rather than the usual opposite. Due to the additional complexities that can evolve in the commercial use of GPL software we do, however, prefer software submitted under the more relaxed BSD copyright when it's a reasonable option to do so. Satoshi Asami - Contributed + Contributed by The FreeBSD Development Model FreeBSD Project Development Model The development of FreeBSD is a very open and flexible process, FreeBSD being literally built from the contributions of hundreds of people around the world, as can be seen from our our list of contributors. We are constantly on the lookout for new developers and ideas, and those interested in becoming more closely involved with the project need simply contact us at the &a.hackers;. The &a.announce; is also available to those wishing to make other FreeBSD users aware of major areas of work. Useful things to know about the FreeBSD project and its development process, whether working independently or in close cooperation: The CVS repository CVS repository Concurrent Versions System CVS The central source tree for FreeBSD is maintained by CVS (Concurrent Versions System), a freely available source code control tool that comes bundled with FreeBSD. The primary CVS repository resides on a machine in Santa Clara CA, USA from where it is replicated to numerous mirror machines throughout the world. The CVS tree, as well as the -CURRENT and -STABLE trees which are checked out of it, can be easily replicated to your own machine as well. Please refer to the Synchronizing your source tree section for more information on doing this. The committers list committers The committers are the people who have write access to the CVS tree, and are thus authorized to make modifications to the FreeBSD source (the term committer comes from the &man.cvs.1; commit command, which is used to bring new changes into the CVS repository). The best way of making submissions for review by the committers list is to use the &man.send-pr.1; command, though if something appears to be jammed in the system then you may also reach them by sending mail to cvs-committers@FreeBSD.org. The FreeBSD core team core team The FreeBSD core team would be equivalent to the board of directors if the FreeBSD Project were a company. The primary task of the core team is to make sure the project, as a whole, is in good shape and is heading in the right directions. Inviting dedicated and responsible developers to join our group of committers is one of the functions of the core team, as is the recruitment of new core team members as others move on. The current core team was elected from a pool of committer candidates in October 2000. Elections are held every 2 years. Some core team members also have specific areas of responsibility, meaning that they are committed to ensuring that some large portion of the system works as advertised. For a complete list of FreeBSD developers and their areas of responsibility, please see the Contributors List Most members of the core team are volunteers when it comes to FreeBSD development and do not benefit from the project financially, so commitment should also not be misconstrued as meaning guaranteed support. The board of directors analogy above is not actually very accurate, and it may be more suitable to say that these are the people who gave up their lives in favor of FreeBSD against their better judgment! Outside contributors contributors Last, but definitely not least, the largest group of developers are the users themselves who provide feedback and bug fixes to us on an almost constant basis. The primary way of keeping in touch with FreeBSD's more non-centralized development is to subscribe to the &a.hackers; (see mailing list info) where such things are discussed. The FreeBSD Contributors List is a long and growing one, so why not join it by contributing something back to FreeBSD today? Providing code is not the only way of contributing to the project; for a more complete list of things that need doing, please refer to the how to contribute section in this handbook. In summary, our development model is organized as a loose set of concentric circles. The centralized model is designed for the convenience of the users of FreeBSD, who are thereby provided with an easy way of tracking one central code base, not to keep potential contributors out! Our desire is to present a stable operating system with a large set of coherent application programs that the users can easily install and use, and this model works very well in accomplishing that. All we ask of those who would join us as FreeBSD developers is some of the same dedication its current people have to its continued success! The Current FreeBSD Release NetBSD OpenBSD 386BSD Free Software Foundation U.C. Berkeley Computer Systems Resarch Group (CSRG) FreeBSD is a freely available, full source 4.4BSD-Lite based release for Intel i386, i486, Pentium, Pentium Pro, Celeron, Pentium II, Pentium III (or compatible) and DEC Alpha based computer systems. It is based primarily on software from U.C. Berkeley's CSRG group, with some enhancements from NetBSD, OpenBSD, 386BSD, and the Free Software Foundation. Since our release of FreeBSD 2.0 in late 94, the performance, feature set, and stability of FreeBSD has improved dramatically. The largest change is a revamped virtual memory system with a merged VM/file buffer cache that not only increases performance, but also reduces FreeBSD's memory footprint, making a 5MB configuration a more acceptable minimum. Other enhancements include full NIS client and server support, transaction TCP support, dial-on-demand PPP, integrated DHCP support, an improved SCSI subsystem, ISDN support, support for ATM, FDDI, Fast and Gigabit Ethernet (1000Mbit) adapters, improved support for the latest Adaptec controllers, and many hundreds of bug fixes. We have also taken the comments and suggestions of many of our users to heart and have attempted to provide what we hope is a more sane and easily understood installation process. Your feedback on this (constantly evolving) process is especially welcome! In addition to the base distributions, FreeBSD offers a ported software collection with thousands of commonly sought-after programs. At the time of this printing, there were over &os.numports; ports! The list of ports ranges from http (WWW) servers, to games, languages, editors, and almost everything in between. The entire ports collection requires approximately 100MB of storage, all ports being expressed as deltas to their original sources. This makes it much easier for us to update ports, and greatly reduces the disk space demands made by the older 1.0 ports collection. To compile a port, you simply change to the directory of the program you wish to install, type make install, and let the system do the rest. The full original distribution for each port you build is retrieved dynamically off the CDROM or a local FTP site, so you need only enough disk space to build the ports you want. Almost every port is also provided as a pre-compiled package, which can be installed with a simple command (pkg_add) by those who do not wish to compile their own ports from source. A number of additional documents which you may find very helpful in the process of installing and using FreeBSD may now also be found in the /usr/share/doc directory on any machine running FreeBSD 2.1 or later. You may view the locally installed manuals with any HTML capable browser using the following URLs: The FreeBSD Handbook /usr/share/doc/handbook/index.html The FreeBSD FAQ /usr/share/doc/faq/index.html You can also view the master (and most frequently updated) copies at http://www.FreeBSD.org/. diff --git a/en_US.ISO8859-1/books/handbook/kernelconfig/chapter.sgml b/en_US.ISO8859-1/books/handbook/kernelconfig/chapter.sgml index 62e8b82459..2030c3bc00 100644 --- a/en_US.ISO8859-1/books/handbook/kernelconfig/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/kernelconfig/chapter.sgml @@ -1,1311 +1,1327 @@ + + + + Jim + Mock + Updated and restructured by + + + + + + Jake + Hamby + Originally contributed by + + + + + Configuring the FreeBSD Kernel Synopsis - Updated and restructured by &a.jim;, March 2000. - Originally contributed by &a.jehamby;, 6 October - 1995. kernel building a custom kernel The kernel is the core of the FreeBSD operating system. It is responsible for managing memory, enforcing security controls, networking, disk access, and much more. While more and more of FreeBSD becomes dynamically configurable it is still occasionally necessary to reconfigure and recompile your kernel. After reading this chapter you will know: Why you might need to build a custom kernel How to write a kernel configuration file, or alter an existing configuration file How to use the kernel configuration file to create and build a new kernel How to install the new kernel How to create any entries in /dev that may be required How to troubleshoot if things go wrong Why Build a Custom Kernel? Traditionally FreeBSD has had what is called a monolithic kernel. This means that the kernel was one large program, supported a fixed list of devices, and if you wanted to change the kernel's behavior then you had to compile a new kernel, and then reboot your computer with the new kernel. Today, FreeBSD is rapidly moving to a model where much of the kernel's functionality is contained in modules which can be dynamically loaded and unloaded from the kernel as necessary. This allows the kernel to adapt to new hardware suddenly becoming available (such as PCMCIA cards in a laptop), or for new functionality to be bought in to the kernel that was not necessary when the kernel was originally compiled. Colloquially these are called KLDs. Despite this, it is still necessary to carry out some static kernel configuration. In some cases this is because the functionality is so tied to the kernel that it can not be made dynamically loadable. In others it may simply be because no one has yet taken the time to write a dynamic loadable kernel module for that functionality yet. Building a custom kernel is one of the most important rites of passage nearly every Unix user must endure. This process, while time consuming, will provide many benefits to your FreeBSD system. Unlike the GENERIC kernel, which must support a wide range of hardware, a custom kernel only contains support for your PC's hardware. This has a number of benefits, such as: Faster boot time. Since the kernel will only probe the hardware you have on your system, the time it takes your system to boot will decrease dramatically. Less memory use. A custom kernel often uses less memory than the GENERIC kernel, which is important because the kernel is one process that must always be present in memory. For this reason, a custom kernel is especially useful on a system with a small amount of RAM. Additional hardware support. A custom kernel allows you to add in support for devices such as sound cards, which are not present in the GENERIC kernel. Building and Installing a Custom Kernel kernel building / installing First, let us take a quick tour of the kernel build directory. All directories mentioned will be relative to the main /usr/src/sys directory, which is also accessible through /sys. There are a number of subdirectories here representing different parts of the kernel, but the most important, for our purposes, are arch/conf, where you will edit your custom kernel configuration, and compile, which is the staging area where your kernel will be built. arch represents either i386, alpha, or pc98 (an alternative development branch of PC hardware, popular in Japan). Everything inside a particular architecture's directory deals with that architecture only; the rest of the code is common to all platforms to which FreeBSD could potentially be ported. Notice the logical organization of the directory structure, with each supported device, filesystem, and option in its own subdirectory. If there is not a /usr/src/sys directory on your system, then the kernel source has not been installed. The easiest way to do this is by running /stand/sysinstall as root, choosing Configure, then Distributions, then src, then sys. Next, move to the arch/conf directory and copy the GENERIC configuration file to the name you want to give your kernel. For example: &prompt.root; cd /usr/src/sys/i386/conf &prompt.root; cp GENERIC MYKERNEL Traditionally, this name is in all capital letters and, if you are maintaining multiple FreeBSD machines with different hardware, it is a good idea to name it after your machine's hostname. We will call it MYKERNEL for the purpose of this example. Storing your kernel config file directly under /usr/src can be a bad idea. If you are experiencing problems it can be tempting to just delete /usr/src and start again. Five seconds after you do that you realize that you have deleted your custom kernel config file. You might want to keep your kernel config file elsewhere, and then create a symbolic link to the file in the i386 directory. For example: &prompt.root; cd /usr/src/sys/i386/conf &prompt.root; mkdir /root/kernels &prompt.root; cp GENERIC /root/kernels/MYKERNEL &prompt.root; ln -s /root/kernels/MYKERNEL You must execute these and all of the following commands under the root account or you will get permission denied errors. Now, edit MYKERNEL with your favorite text editor. If you are just starting out, the only editor available will probably be vi, which is too complex to explain here, but is covered well in many books in the bibliography. However, FreeBSD does offer an easier editor called ee which, if you are a beginner, should be your editor of choice. Feel free to change the comment lines at the top to reflect your configuration or the changes you have made to differentiate it from GENERIC. SunOS If you have built a kernel under SunOS or some other BSD operating system, much of this file will be very familiar to you. If you are coming from some other operating system such as DOS, on the other hand, the GENERIC configuration file might seem overwhelming to you, so follow the descriptions in the Configuration File section slowly and carefully. Be sure to always check the file /usr/src/UPDATING, before you perform any update steps, in the case you sync your source-tree with the latest sources of the FreeBSD project. In this file all important issues with updating FreeBSD are written down. /usr/src/UPDATING always fits to your version of the FreeBSD source, and is therefore more accurate for those information than the handbook. You must now compile the source code for the kernel. There are two procedures you can use to do this, and the one you will use depends on why you are rebuilding the kernel, and the version of FreeBSD you are running. If you have installed only the kernel source code, use procedure 1. If you are running a FreeBSD version prior to 4.0, and you are not upgrading to FreeBSD 4.0 or higher using the make world procedure, use procedure 1. If you are building a new kernel without updating the source code (perhaps just to add a new option, such as IPFIREWALL) you can use either procedure. If you are rebuilding the kernel as part of a make world process, use procedure 2. Procedure 1. Building a kernel the <quote>traditional</quote> way Run &man.config.8; to generate the kernel source code. &prompt.root; /usr/sbin/config MYKERNEL Change in to the build directory. &prompt.root; cd ../../compile/MYKERNEL Compile the kernel. &prompt.root; make depend &prompt.root; make Install the new kernel. &prompt.root; make install Procedure 2. Building a kernel the <quote>new</quote> way Change to the /usr/src directory &prompt.root; cd /usr/src Compile the kernel. &prompt.root; make buildkernel KERNCONF=MYKERNEL Install the new kernel. &prompt.root; make installkernel KERNCONF=MYKERNEL In FreeBSD 4.2 and older you must replace KERNCONF= with KERNEL=. 4.2-STABLE that was fetched after Feb 2nd, 2001 does recognize KERNCONF= cvsup anonymous CVS CTM CVS anonymous If you have not upgraded your source tree in any way (you have not run CVSup, CTM, or used anoncvs), then you should use the config, make depend, make, make install sequence. kernel.old The new kernel will be copied to the root directory as /kernel and the old kernel will be moved to /kernel.old. Now, shutdown the system and reboot to use your kernel. In case something goes wrong, there are some troubleshooting instructions at the end of this document. Be sure to read the section which explains how to recover in case your new kernel does not boot. If you have added any new devices (such as sound cards) you may have to add some device nodes to your /dev directory before you can use them. The Configuration File kernel LINT LINT kernel config file The general format of a configuration file is quite simple. Each line contains a keyword and one or more arguments. For simplicity, most lines only contain one argument. Anything following a # is considered a comment and ignored. The following sections describe each keyword, generally in the order they are listed in GENERIC, although some related keywords have been grouped together in a single section (such as Networking) even though they are actually scattered throughout the GENERIC file. An exhaustive list of options and more detailed explanations of the device lines is present in the LINT configuration file, located in the same directory as GENERIC. If you are in doubt as to the purpose or necessity of a line, check first in LINT. Quoting numbers In all versions of FreeBSD up to and including 3.X, &man.config.8; required that any strings in the configuration file that contained numbers used as text had to be enclosed in double quotes. This requirement was removed in the 4.X branch, which this book covers, so if you are on a pre-4.X system, see the /usr/src/sys/i386/conf/LINT and /usr/src/sys/i386/conf/GENERIC files on your system for examples. kernel example config file The following is an example GENERIC kernel configuration file with various additional comments where needed for clarity. This example should match your copy in /usr/src/sys/i386/conf/GENERIC fairly closely. For details of all the possible kernel options, see /usr/src/sys/i386/conf/LINT. # # GENERIC -- Generic kernel configuration file for FreeBSD/i386 # # For more information on this file, please read the handbook section on # Kernel Configuration Files: # # http://www.freebsd.org/handbook/kernelconfig-config.html # # The handbook is also available locally in /usr/share/doc/handbook # if you've installed the doc distribution, otherwise always see the # FreeBSD World Wide Web server (http://www.FreeBSD.ORG/) for the # latest information. # # An exhaustive list of options and more detailed explanations of the # device lines is also present in the ./LINT configuration file. If you are # in doubt as to the purpose or necessity of a line, check first in LINT. # # $FreeBSD: src/sys/i386/conf/GENERIC,v 1.246 2000/03/09 16:32:55 jlemon Exp $ The following are the mandatory keywords required in every kernel you build: kernel options machine machine i386 This is the machine architecture. It must be either i386, alpha, or pc98. kernel options cpu cpu I386_CPU cpu I486_CPU cpu I586_CPU cpu I686_CPU The above specifies the type of CPU you have in your system. You may have multiple instances of the CPU line (i.e., you are not sure whether you should use I586_CPU or I686_CPU), however, for a custom kernel, it is best to specify only the CPU you have. If you are unsure of your CPU type, you can use the dmesg command to view your boot up messages. kernel options cpu type The Alpha architecture has different values for cpu_type. They include: cpu EV4 cpu EV5 If you are using an Alpha machine, you should be using one of the above CPU types. kernel options ident ident GENERIC This is the identification of the kernel. You should change this to whatever you named your kernel, in our previous example, MYKERNEL. The value you put in the ident string will print when you boot up the kernel, so it is useful to give a kernel a different name if you want to keep it separate from your usual kernel (i.e., you want to build an experimental kernel). kernel options maxusers maxusers 32 The maxusers option sets the size of a number of important system tables. This number is supposed to be roughly equal to the number of simultaneous users you expect to have on your machine. However, under normal circumstances, you will want to set maxusers to at least 4, especially if you are using the X Window System or compiling software. The reason is that the most important table set by maxusers is the maximum number of processes, which is set to 20 + 16 * maxusers, so if you set maxusers to 1, then you can only have 36 simultaneous processes, including the 18 or so that the system starts up at boot time, and the 15 or so you will probably create when you start the X Window System. Even a simple task like reading a man page will start up nine processes to filter, decompress, and view it. Setting maxusers to 64 will allow you to have up to 1044 simultaneous processes, which should be enough for nearly all uses. If, however, you see the dreaded proc table full error when trying to start another program, or are running a server with a large number of simultaneous users (like ftp.FreeBSD.org), you can always increase the number and rebuild. maxusers does not limit the number of users which can log into your machine. It simply sets various table sizes to reasonable values considering the maximum number of users you will likely have on your system and how many processes each of them will be running. One keyword which does limit the number of simultaneous remote logins is pseudo-device pty 16. Everything that follows is more or less optional. See the notes underneath or next to each option for more information. #makeoptions DEBUG=-g #Build kernel with gdb(1) debug symbols options MATH_EMULATE #Support for x87 emulation This line allows the kernel to simulate a math co-processor if your computer does not have one (386 or 486SX). If you have a 486DX, or a 386 or 486SX (with a separate 387 or 487 chip), or higher (Pentium, Pentium II, etc.), you can comment this line out. The normal math co-processor emulation routines that come with FreeBSD are not very accurate. If you do not have a math co-processor, and you need the best accuracy, it is recommended that you change this option to GPL_MATH_EMULATION to use the GNU math support, which is not included by default for licensing reasons. options INET #InterNETworking Networking support. Leave this in, even if you do not plan to be connected to a network. Most programs require at least loopback networking (i.e., making network connections within your PC), so this is essentially mandatory. options INET6 #IPv6 communications protocols This enables the IPv6 communication protocols. options FFS #Berkeley Fast Filesystem options FFS_ROOT #FFS usable as root device [keep this!] This is the basic hard drive filesystem. Leave it in if you boot from the hard disk. options MFS #Memory Filesystem options MD_ROOT #MD is a potential root device This is the memory-mapped filesystem. This is basically a RAM disk for fast storage of temporary files, useful if you have a lot of swap space that you want to take advantage of. A perfect place to mount an MFS partition is on the /tmp directory, since many programs store temporary data here. To mount an MFS RAM disk on /tmp, add the following line to /etc/fstab: /dev/ad1s2b /tmp mfs rw 0 0 Now you simply need to either reboot, or run the command mount /tmp. kernel options NFS kernel options NFS_ROOT options NFS #Network Filesystem options NFS_ROOT #NFS usable as root device, NFS required The network filesystem. Unless you plan to mount partitions from a Unix file server over TCP/IP, you can comment these out. kernel options MSDOSFS options MSDOSFS #MSDOS Filesystem The MS-DOS filesystem. Unless you plan to mount a DOS formatted hard drive partition at boot time, you can safely comment this out. It will be automatically loaded the first time you mount a DOS partition, as described above. Also, the excellent mtools software (in the ports collection) allows you to access DOS floppies without having to mount and unmount them (and does not require MSDOSFS at all). options CD9660 #ISO 9660 Filesystem options CD9660_ROOT #CD-ROM usable as root, CD9660 required The ISO 9660 filesystem for CDROMs. Comment it out if you do not have a CDROM drive or only mount data CDs occasionally (since it will be dynamically loaded the first time you mount a data CD). Audio CDs do not need this filesystem. options PROCFS #Process filesystem The process filesystem. This is a pretend filesystem mounted on /proc which allows programs like &man.ps.1; to give you more information on what processes are running. options COMPAT_43 #Compatible with BSD 4.3 [KEEP THIS!] Compatibility with 4.3BSD. Leave this in; some programs will act strangely if you comment this out. options SCSI_DELAY=15000 #Delay (in ms) before probing SCSI This causes the kernel to pause for 15 seconds before probing each SCSI device in your system. If you only have IDE hard drives, you can ignore this, otherwise you will probably want to lower this number, perhaps to 5 seconds, to speed up booting. Of course, if you do this, and FreeBSD has trouble recognizing your SCSI devices, you will have to raise it back up. options UCONSOLE #Allow users to grab the console Allow users to grab the console, which is useful for X users. For example, you can create a console xterm by typing xterm -C, which will display any write, talk, and any other messages you receive, as well as any console messages sent by the kernel. options USERCONFIG #boot -c editor This option allows you to boot the configuration editor from the boot menu. options VISUAL_USERCONFIG #visual boot -c editor This option allows you to boot the visual configuration editor from the boot menu. options KTRACE #ktrace(1) support This enables kernel process tracing, which is useful in debugging. options SYSVSHM #SYSV-style shared memory This option provides for System V shared memory. The most common use of this is the XSHM extension in X, which many graphics-intensive programs will automatically take advantage of for extra speed. If you use X, you'll definitely want to include this. options SYSVSEM #SYSV-style semaphores Support for System V semaphores. Less commonly used but only adds a few hundred bytes to the kernel. options SYSVMSG #SYSV-style message queues Support for System V messages. Again, only adds a few hundred bytes to the kernel. The &man.ipcs.1; command will list any processes using each of these System V facilities. options P1003_1B #Posix P1003_1B real-time extensions options _KPOSIX_PRIORITY_SCHEDULING Real-time extensions added in the 1993 POSIX. Certain applications in the ports collection use these (such as Star Office). kernel options ICMP_BANDLIM options ICMP_BANDLIM #Rate limit bad replies This option enables ICMP error response bandwidth limiting. You typically want this option as it will help protect the machine from denial of service packet attacks. kernel options SMP # To make an SMP kernel, the next two are needed #options SMP # Symmetric MultiProcessor Kernel #options APIC_IO # Symmetric (APIC) I/O The above are both required for SMP support. device isa All PCs supported by FreeBSD have one of these. If you have an IBM PS/2 (Micro Channel Architecture), you cannot run FreeBSD at this time (support is being worked on). device eisa Include this if you have an EISA motherboard. This enables auto-detection and configuration support for all devices on the EISA bus. device pci Include this if you have a PCI motherboard. This enables auto-detection of PCI cards and gatewaying from the PCI to ISA bus. # Floppy drives device fdc0 at isa? port IO_FD1 irq 6 drq 2 device fd0 at fdc0 drive 0 device fd1 at fdc0 drive 1 This is the floppy drive controller. fd0 is the A: floppy drive, and fd1 is the B: drive. device ata This driver supports all ATA and ATAPI devices. You only need one device ata line for the kernel to detect all PCI ATA/ATAPI devices on modern machines. device atadisk # ATA disk drives This is needed along with device ata for ATAPI disk drives. device atapicd # ATAPI CDROM drives This is needed along with device ata for ATAPI CDROM drives. device atapifd # ATAPI floppy drives This is needed along with device ata for ATAPI floppy drives. device atapist # ATAPI tape drives This is needed along with device ata for ATAPI tape drives. options ATA_STATIC_ID #Static device numbering This makes the controller number static (like the old driver) or else the device numbers are dynamically allocated. # ATA and ATAPI devices device ata0 at isa? port IO_WD1 irq 14 device ata1 at isa? port IO_WD2 irq 15 Use the above for older, non-PCI systems. # SCSI Controllers device ahb # EISA AHA1742 family device ahc # AHA2940 and onboard AIC7xxx devices device amd # AMD 53C974 (Teckram DC-390(T)) device dpt # DPT Smartcache - See LINT for options! device isp # Qlogic family device ncr # NCR/Symbios Logic device sym # NCR/Symbios Logic (newer chipsets) device adv0 at isa? device adw device bt0 at isa? device aha0 at isa? device aic0 at isa? SCSI controllers. Comment out any you do not have in your system. If you have an IDE only system, you can remove these altogether. # SCSI peripherals device scbus # SCSI bus (required) device da # Direct Access (disks) device sa # Sequential Access (tape etc) device cd # CD device pass # Passthrough device (direct SCSI access) SCSI peripherals. Again, comment out any you do not have, or if you have only IDE hardware, you can remove them completely. # RAID controllers device ida # Compaq Smart RAID device amr # AMI MegaRAID device mlx # Mylex DAC960 family Supported RAID controllers. If you do not have any of these, you can comment them out or remove them. # atkbdc0 controls both the keyboard and the PS/2 mouse device atkbdc0 at isa? port IO_KBD The keyboard controller (atkbdc) provides I/O services for the AT keyboard and PS/2 style pointing devices. This controller is required by the keyboard driver (atkbd) and the PS/2 pointing device driver (psm). device atkbd0 at atkbdc? irq 1 The atkbd driver, together with atkbdc controller, provides access to the AT 84 keyboard or the AT enhanced keyboard which is connected to the AT keyboard controller. device psm0 at atkbdc? irq 12 Use this device if your mouse plugs into the PS/2 mouse port. device vga0 at isa? The video card driver. # splash screen/screen saver pseudo-device splash Splash screen at start up! Screen savers require this too. # syscons is the default console driver, resembling an SCO console device sc0 at isa? sc0 is the default console driver, which resembles a SCO console. Since most full-screen programs access the console through a terminal database library like termcap, it should not matter whether you use this or vt0, the VT220 compatible console driver. When you log in, set your TERM variable to scoansi if full-screen programs have trouble running under this console. # Enable this and PCVT_FREEBSD for pcvt vt220 compatible console driver #device vt0 at isa? #options XSERVER # support for X server on a vt console #options FAT_CURSOR # start with block cursor # If you have a ThinkPAD, uncomment this along with the rest of the PCVT lines #options PCVT_SCANSET=2 # IBM keyboards are non-std This is a VT220-compatible console driver, backward compatible to VT100/102. It works well on some laptops which have hardware incompatibilities with sc0. Also set your TERM variable to vt100 or vt220 when you log in. This driver might also prove useful when connecting to a large number of different machines over the network, where termcap or terminfo entries for the sc0 device are often not available — vt100 should be available on virtually any platform. # Floating point support - do not disable. device npx0 at nexus? port IO_NPX irq 13 npx0 is the interface to the floating point math unit in FreeBSD, which is either the hardware co-processor or the software math emulator. This is not optional. # Power management support (see LINT for more options) device apm0 at nexus? disable flags 0x20 # Advanced Power Management Advanced Power Management support. Useful for laptops. # PCCARD (PCMCIA) support device card device pcic0 at isa? irq 10 port 0x3e0 iomem 0xd0000 device pcic1 at isa? irq 11 port 0x3e2 iomem 0xd4000 disable PCMCIA support. You need this if you are installing on a laptop. # Serial (COM) ports device sio0 at isa? port IO_COM1 flags 0x10 irq 4 device sio1 at isa? port IO_COM2 irq 3 device sio2 at isa? disable port IO_COM3 irq 5 device sio3 at isa? disable port IO_COM4 irq 9 These are the four serial ports referred to as COM1 through COM4 in the MS-DOS/Windows world. If you have an internal modem on COM4 and a serial port at COM2, you will have to change the IRQ of the modem to 2 (for obscure technical reasons, IRQ2 = IRQ 9) in order to access it from FreeBSD. If you have a multiport serial card, check the manual page for &man.sio.4; for more information on the proper values for these lines. Some video cards (notably those based on S3 chips) use IO addresses in the form of 0x*2e8, and since many cheap serial cards do not fully decode the 16-bit IO address space, they clash with these cards making the COM4 port practically unavailable. Each serial port is required to have a unique IRQ (unless you are using one of the multiport cards where shared interrupts are supported), so the default IRQs for COM3 and COM4 cannot be used. # Parallel port device ppc0 at isa? irq 7 This is the ISA-bus parallel port interface. device ppbus # Parallel port bus (required) Provides support for the parallel port bus. device lpt # Printer Support for parallel port printers. All three of the above are required to enable parallel printer support. device plip # TCP/IP over parallel This is the driver for the parallel network interface. device ppi # Parallel port interface device The general-purpose I/O (geek port) + IEEE1284 I/O. #device vpo # Requires scbus and da zip drive This is for an Iomega Zip drive. It requires scbus and da support. Best performance is achieved with ports in EPP 1.9 mode. # PCI Ethernet NICs. device de # DEC/Intel DC21x4x (Tulip) device fxp # Intel EtherExpress PRO/100B (82557, 82558) device tx # SMC 9432TX (83c170 EPIC) device vx # 3Com 3c590, 3c595 (Vortex) device wx # Intel Gigabit Ethernet Card (Wiseman) Various PCI network card drivers. Comment out or remove any of these not present in your system. # PCI Ethernet NICs that use the common MII bus controller code. device miibus # MII bus support MII bus support is required for some PCI 10/100 Ethernet NICs, namely those which use MII-compliant transceivers or implement transceiver control interfaces that operate like an MII. Adding device miibus to the kernel config pulls in support for the generic miibus API and all of the PHY drivers, including a generic one for PHYs that are not specifically handled by an individual driver device dc # DEC/Intel 21143 and various workalikes device rl # RealTek 8129/8139 device sf # Adaptec AIC-6915 (Starfire) device sis # Silicon Integrated Systems SiS 900/SiS 7016 device ste # Sundance ST201 (D-Link DFE-550TX) device tl # Texas Instruments ThunderLAN device vr # VIA Rhine, Rhine II device wb # Winbond W89C840F device xl # 3Com 3c90x (Boomerang, Cyclone) Drivers that use the MII bus controller code. # ISA Ethernet NICs. device ed0 at isa? port 0x280 irq 10 iomem 0xd8000 device ex device ep # WaveLAN/IEEE 802.11 wireless NICs. Note: the WaveLAN/IEEE really # exists only as a PCMCIA device, so there is no ISA attachment needed # and resources will always be dynamically assigned by the pccard code. device wi # Aironet 4500/4800 802.11 wireless NICs. Note: the declaration below will # work for PCMCIA and PCI cards, as well as ISA cards set to ISA PnP # mode (the factory default). If you set the switches on your ISA # card for a manually chosen I/O address and IRQ, you must specify # those parameters here. device an # The probe order of these is presently determined by i386/isa/isa_compat.c. device ie0 at isa? port 0x300 irq 10 iomem 0xd0000 device fe0 at isa? port 0x300 device le0 at isa? port 0x300 irq 5 iomem 0xd0000 device lnc0 at isa? port 0x280 irq 10 drq 0 device cs0 at isa? port 0x300 device sn0 at isa? port 0x300 irq 10 # requires PCCARD (PCMCIA) support to be activated #device xe0 at isa? ISA Ethernet drivers. See /usr/src/sys/i386/conf/LINT for which cards are supported by which driver. # Pseudo devices - the number indicates how many units to allocate. pseudo-device loop # Network loopback This is the generic loopback device for TCP/IP. If you telnet or FTP to localhost (a.k.a., 127.0.0.1) it will come back at you through this pseudo-device. This is mandatory. pseudo-device ether # Ethernet support ether is only needed if you have an Ethernet card. It includes generic Ethernet protocol code. pseudo-device sl 1 # Kernel SLIP sl is for SLIP support. This has been almost entirely supplanted by PPP, which is easier to set up, better suited for modem-to-modem connection, and more powerful. The number after sl specifies how many simultaneous SLIP sessions to support. pseudo-device ppp 1 # Kernel PPP This is for kernel PPP support for dial-up connections. There is also a version of PPP implemented as a userland application that uses tun and offers more flexibility and features such as demand dialing. The number after ppp specifies how many simultaneous PPP connections to support. pseudo-device tun # Packet tunnel. This is used by the userland PPP software. A number after tun specifies the number of simultaneous PPP sessions to support. See the PPP section of this book for more information. pseudo-device pty # Pseudo-ttys (telnet etc) This is a pseudo-terminal or simulated login port. It is used by incoming telnet and rlogin sessions, xterm, and some other applications such as emacs. A number after pty indicates the number of ptys to create. If you need more than the default of 16 simultaneous xterm windows and/or remote logins, be sure to increase this number accordingly, up to a maximum of 256. pseudo-device md # Memory disks Memory disk pseudo-devices. pseudo-device gif 4 # IPv6 and IPv4 tunneling This implements IPv6 over IPv4 tunneling, IPv4 over IPv6 tunneling, IPv4 over IPv4 tunneling, and IPv6 over IPv6 tunneling. pseudo-device faith 1 # IPv6-to-IPv4 relaying (translation) This pseudo-device captures packets that are sent to it and diverts them to the IPv4/IPv6 translation daemon. # The `bpf' pseudo-device enables the Berkeley Packet Filter. # Be aware of the administrative consequences of enabling this! pseudo-device bpf # Berkeley packet filter This is the Berkeley Packet Filter. This pseudo-device allows network interfaces to be placed in promiscuous mode, capturing every packet on a broadcast network (e.g., an Ethernet). These packets can be captured to disk and or examined with the &man.tcpdump.1; program. The bpf pseudo-device is also used by &man.dhclient.8; to obtain the IP address of the default router (gateway) and so on. If you use DHCP, leave this uncommented. # USB support #device uhci # UHCI PCI->USB interface #device ohci # OHCI PCI->USB interface #device usb # USB Bus (required) #device ugen # Generic #device uhid # Human Interface Devices #device ukbd # Keyboard #device ulpt # Printer #device umass # Disks/Mass storage - Requires scbus and da #device ums # Mouse # USB Ethernet, requires mii #device aue # ADMtek USB ethernet #device cue # CATC USB ethernet #device kue # Kawasaki LSI USB ethernet Support for various USB devices. For more information and additional devices supported by FreeBSD, see /usr/src/sys/i386/conf/LINT. Making Device Nodes device nodes MAKEDEV Almost every device in the kernel has a corresponding node entry in the /dev directory. These nodes look like regular files, but are actually special entries into the kernel which programs use to access the device. The shell script /dev/MAKEDEV, which is executed when you first install the operating system, creates nearly all of the device nodes supported. However, it does not create all of them, so when you add support for a new device, it pays to make sure that the appropriate entries are in this directory, and if not, add them. Here is a simple example: Suppose you add the IDE CD-ROM support to the kernel. The line to add is: device acd0 This means that you should look for some entries that start with acd0 in the /dev directory, possibly followed by a letter, such as c, or preceded by the letter r, which means a raw device. It turns out that those files are not there, so you must change to the /dev directory and type: MAKEDEV &prompt.root; sh MAKEDEV acd0 When this script finishes, you will find that there are now acd0c and racd0c entries in /dev so you know that it executed correctly. For sound cards, the following command creates the appropriate entries: &prompt.root; sh MAKEDEV snd0 When creating device nodes for devices such as sound cards, if other people have access to your machine, it may be desirable to protect the devices from outside access by adding them to the /etc/fbtab file. See &man.fbtab.5; for more information. Follow this simple procedure for any other non-GENERIC devices which do not have entries. All SCSI controllers use the same set of /dev entries, so you do not need to create these. Also, network cards and SLIP/PPP pseudo-devices do not have entries in /dev at all, so you do not have to worry about these either. If Something Goes Wrong There are four categories of trouble that can occur when building a custom kernel. They are: config fails If the config command fails when you give it your kernel description, you have probably made a simple error somewhere. Fortunately, config will print the line number that it had trouble with, so you can quickly skip to it with vi. For example, if you see: config: line 17: syntax error You can skip to the problem in vi by typing 17G in command mode. Make sure the keyword is typed correctly, by comparing it to the GENERIC kernel or another reference. make fails If the make command fails, it usually signals an error in your kernel description, but not severe enough for config to catch it. Again, look over your configuration, and if you still cannot resolve the problem, send mail to the &a.questions; with your kernel configuration, and it should be diagnosed very quickly. The kernel will not boot If your new kernel does not boot, or fails to recognize your devices, do not panic! Fortunately, BSD has an excellent mechanism for recovering from incompatible kernels. Simply choose the kernel you want to boot from at the FreeBSD boot loader (i.e., boot kernel.old). When reconfiguring a kernel, it is always a good idea to keep a kernel that is known to work on hand. After booting with a good kernel you can check over your configuration file and try to build it again. One helpful resource is the /var/log/messages file which records, among other things, all of the kernel messages from every successful boot. Also, the &man.dmesg.8; command will print the kernel messages from the current boot. If you are having trouble building a kernel, make sure to keep a GENERIC, or some other kernel that is known to work on hand as a different name that will not get erased on the next build. You cannot rely on kernel.old because when installing a new kernel, kernel.old is overwritten with the last installed kernel which may be non-functional. Also, as soon as possible, move the working kernel to the proper kernel location or commands such as &man.ps.1; will not work properly. The proper command to unlock the kernel file that make installs (in order to move another kernel back permanently) is: &prompt.root; chflags noschg /kernel If you find you cannot do this, you are probably running at a &man.securelevel.8; greater than zero. Edit kern_securelevel in /etc/rc.conf and set it to -1, then reboot. You can change it back to its previous setting when you are happy with your new kernel. And, if you want to lock your new kernel into place, or any file for that matter, so that it cannot be moved or tampered with: &prompt.root; chflags schg /kernel The kernel works, but ps does not work any more! If you have installed a different version of the kernel from the one that the system utilities have been built with, for example, a 4.X kernel on a 3.X system, many system-status commands like &man.ps.1; and &man.vmstat.8; will not work any more. You must recompile the libkvm library as well as these utilities. This is one reason it is not normally a good idea to use a different version of the kernel from the rest of the operating system. diff --git a/en_US.ISO8859-1/books/handbook/kernelopts/chapter.sgml b/en_US.ISO8859-1/books/handbook/kernelopts/chapter.sgml index e091d006fd..1957bbb647 100644 --- a/en_US.ISO8859-1/books/handbook/kernelopts/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/kernelopts/chapter.sgml @@ -1,160 +1,168 @@ + + + + Jörg + Wunsch + Contributed by + + + + Adding New Kernel Configuration Options - Contributed by &a.joerg; - You should be familiar with the section about kernel configuration before reading here. What's a <emphasis>Kernel Option</emphasis>, Anyway? The use of kernel options is basically described in the kernel configuration section. There's also an explanation of historic and new-style options. The ultimate goal is to eventually turn all the supported options in the kernel into new-style ones, so for people who correctly did a make depend in their kernel compile directory after running &man.config.8;, the build process will automatically pick up modified options, and only recompile those files where it is necessary. Wiping out the old compile directory on each run of &man.config.8; as it is still done now can then be eliminated again. Basically, a kernel option is nothing else than the definition of a C preprocessor macro for the kernel compilation process. To make the build truly optional, the corresponding part of the kernel source (or kernel .h file) must be written with the option concept in mind, i.e., the default can be overridden by the config option. This is usually done with something like: #ifndef THIS_OPTION #define THIS_OPTION (some_default_value) #endif /* THIS_OPTION */ This way, an administrator mentioning another value for the option in his config file will take the default out of effect, and replace it with his new value. Clearly, the new value will be substituted into the source code during the preprocessor run, so it must be a valid C expression in whatever context the default value would have been used. It is also possible to create value-less options that simply enable or disable a particular piece of code by embracing it in #ifdef THAT_OPTION [your code here] #endif Simply mentioning THAT_OPTION in the config file (with or without any value) will then turn on the corresponding piece of code. People familiar with the C language will immediately recognize that everything could be counted as a config option where there is at least a single #ifdef referencing it... However, it's unlikely that many people would put options notyet,notdef in their config file, and then wonder why the kernel compilation falls over. Clearly, using arbitrary names for the options makes it very hard to track their usage throughout the kernel source tree. That is the rationale behind the new-style option scheme, where each option goes into a separate .h file in the kernel compile directory, which is by convention named opt_foo.h. This way, the usual Makefile dependencies could be applied, and make can determine what needs to be recompiled once an option has been changed. The old-style option mechanism still has one advantage for local options or maybe experimental options that have a short anticipated lifetime: since it is easy to add a new #ifdef to the kernel source, this has already made it a kernel config option. In this case, the administrator using such an option is responsible himself for knowing about its implications (and maybe manually forcing the recompilation of parts of his kernel). Once the transition of all supported options has been done, &man.config.8; will warn whenever an unsupported option appears in the config file, but it will nevertheless include it into the kernel Makefile. Now What Do I Have to Do for it? First, edit sys/conf/options (or sys/<arch>/conf/options.<arch>, e. g. sys/i386/conf/options.i386), and select an opt_foo.h file where your new option would best go into. If there is already something that comes close to the purpose of the new option, pick this. For example, options modifying the overall behavior of the SCSI subsystem can go into opt_scsi.h. By default, simply mentioning an option in the appropriate option file, say FOO, implies its value will go into the corresponding file opt_foo.h. This can be overridden on the right-hand side of a rule by specifying another filename. If there is no opt_foo.h already available for the intended new option, invent a new name. Make it meaningful, and comment the new section in the options[.<arch>] file. &man.config.8; will automagically pick up the change, and create that file next time it is run. Most options should go in a header file by themselves.. Packing too many options into a single opt_foo.h will cause too many kernel files to be rebuilt when one of the options has been changed in the config file. Finally, find out which kernel files depend on the new option. Unless you have just invented your option, and it does not exist anywhere yet, &prompt.user; find /usr/src/sys -type f | xargs fgrep NEW_OPTION is your friend in finding them. Go and edit all those files, and add #include "opt_foo.h" on top before all the #include <xxx.h> stuff. This sequence is most important as the options could override defaults from the regular include files, if the defaults are of the form #ifndef NEW_OPTION #define NEW_OPTION (something) #endif in the regular header. Adding an option that overrides something in a system header file (i.e., a file sitting in /usr/include/sys/) is almost always a mistake. opt_foo.h cannot be included into those files since it would break the headers more seriously, but if it is not included, then places that include it may get an inconsistent value for the option. Yes, there are precedents for this right now, but that does not make them more correct. diff --git a/en_US.ISO8859-1/books/handbook/l10n/chapter.sgml b/en_US.ISO8859-1/books/handbook/l10n/chapter.sgml index 70a032d27a..147543afa5 100644 --- a/en_US.ISO8859-1/books/handbook/l10n/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/l10n/chapter.sgml @@ -1,1014 +1,1035 @@ - Localization - I18N/L10N Usage and Setup - - Contributed by &a.ache; + + + + Andrey A. + Chernov + Contributed by + + + + + Michael C. + Wu + Rewritten by + + + + - Rewritten by &a.keichii;, 30 Nov 2000. + Localization - I18N/L10N Usage and Setup Synopsis This section of the handbook discusses the internationalization and localization of FreeBSD to different countries and different settings. If the users wish to use languages other than the system default English, he/she will have to setup the system accordingly. Please note that language support for each language varies in level. Hence, the user should contact the respective FreeBSD local group that is responsible for each language. The author realizes that he may have been incomplete in the description of the I18N process in FreeBSD. Due to the various levels of I18N implementation in both the system and application levels, we advise you to refer to individual documentation, man pages, READMEs, and so forth. Should you have any questions or suggestions regarding this chapter, please email the author. The Basics What is I18N/L10N? internationalization localization Developers shortened internationalization into the term I18N, counting the number of letters between the first and the last letters of internationalization. L10N uses the same naming scheme, coming from "localization". Combined together, I18N/L10N methods, protocols, and applications allow users to use languages of their choice. I18N applications are programmed using I18N kits under libraries. It allows for developers to write a simple file and translate displayed menus and texts to each language. We strongly encourage programmers to follow this convention. Why should I use I18N/L10N? I18N/L10N is used whenever you wish to either view, input, or process data in non-English languages. What languages are supported in the I18N effort? I18N and L10N are not FreeBSD specific. Currently, one can choose from most of the major languages of the World, including but not limited to: Chinese, German, Japanese, Korean, French, Russian, Vietnamese and others. Using Localization In all its splendor, I18N is not FreeBSD-specific and is a convention. We encourage you to help FreeBSD in following this convention. locale Localization settings are based on three main terms: Language Code, Country Code, and Encoding. Locale names are constructed from these parts as follows: LanguageCode_CountryCode.Encoding Language and Country Codes language codes country codes In order to localize a FreeBSD system to a specific language (or any other I18N-supporting Unixes), the user needs to find out the codes for the specify country and language (country codes tell applications what variation of given language to use). In addition, web browsers, SMTP/POP servers, web servers, etc. make decisions based on them. The following are examples of language/country codes: Language/Country Code Description en_US English - United States ru_RU Russian for Russia zh_TW Traditional Chinese for Taiwan Encodings encodings ASCII Some languages use non-ASCII encodings that are 8-bit, wide or multibyte characters, see &man.multibyte.3; for more details. Older applications do not recognize them and mistake them for control characters. Newer applications usually do recognize 8-bit characters. Depending on the implementation, users may be required to compile an application with wide or multibyte characters support, or configure it correctly. To be able to input and process wide or multibyte characters, the FreeBSD Ports collection has provided each language with different programs. Refer to the I18N documentation in the respective FreeBSD Port. Specifically, the user needs to look at the application documentation to decide on how to configure it correctly or to pass correct values into the configure/Makefile/compiler. Some things to keep in mind are: Language specific single C chars character sets (see &man.multibyte.3;), i.e., ISO-8859-1, ISO-8859-15, KOI8-R, CP437. Wide or multibyte encodings, f.e. EUC, Big5. You can check the active list of character sets at the IANA Registry. FreeBSD versions 5.0 and up use X11-compatible locale encodings instead. I18N applications In the FreeBSD Ports and Package system, I18N applications have been named with I18N in their names for easy identification. However, they do not always support the language needed. Setting Locale Theoretically, one only needs to export the value of his/her locale name as LANG in the login shell and is usually done through the user's ~/.login_conf or the user login shell configuration (~/.profile, ~/.bashrc, ~/.cshrc). This should set all of the locale subsets (such as LC_CTYPE, LC_CTIME, etc.). Please refer to language-specific FreeBSD documentation for more information. You should set the following two values in your configuration files: POSIX LANG for POSIX &man.setlocale.3; family functions MIME MM_CHARSET for applications' MIME character set This includes the user shell config, the specific application config, and the X11 config. Setting Locale Methods locale login class There are two methods for setting locale, and both are described below. The first (recommended one) is by assigning the environment variables in login class, and the second is by adding the environment variable assignments to the system's shell startup file. Login Classes Method This method allows environment variables needed for locale name and MIME character sets to be assigned once for every possible shell instead of adding specific shell assignments to each shell's startup file. User Level Setup can be done by an user himself and Administrator Level Setup require superuser privileges. User Level Setup Here is a minimal example of a .login_conf file in user's home directory which has both variables set for Latin-1 encoding: german:German User:\ :charset=ISO-8859-1:\ :lang=de_DE.ISO_8859-1: de_DE.ISO8859-1 for FreeBSD versions 5.0 and up. Traditional Chinese / BIG-5 encoding Here is an example of a .login_conf that sets the variables for Traditional Chinese in BIG-5 encoding. Notice the many more variables set because some software does not respect locale variables correctly for Chinese, Japanese, and Korean. #Users who do not wish to use monetary units or time formats #of Taiwan can manually change each variable taiwan:Taiwanese User:\ lang=zh_TW.Big5:\ lc_all=zh_TW.Big:\ lc_collate=zh_TW.Big5:\ lc_ctype=zh_TW.Big5:\ lc_messages=zh_TW.Big5:\ lc_monetary=zh_TW.Big5:\ lc_numeric=zh_TW.Big5:\ lc_time=zh_TW.Big5:\ charset=big5:\ xmodifiers="@im=xcin": #Setting the XIM Input Server See Administrator Level Setup and &man.login.conf.5; for more details. Administrator Level Setup Check that /etc/login.conf have the correct language user's class. Make sure these settings appear in /etc/login.conf: language_name:accounts_title:\ :charset=MIME_charset:\ :lang=locale_name:\ :tc=default: So sticking with our previous example using Latin-1, it would look like this: german:German Users Accounts:\ :charset=ISO-8859-1:\ :lang=de_DE.ISO_8859-1:\ :tc=default: de_DE.ISO8859-1 for FreeBSD versions 5.0 and up. Changing Login Classes with &man.vipw.8; vipw Use vipw to add new users, and make the entry look like this: user:password:1111:11:language:0:0:User Name:/home/user:/bin/sh Changing Login Classes with &man.adduser.8; adduser login class Use adduser to add new users, and do the following: Set defaultclass = language in /etc/adduser.conf. Keep in mind you must enter a default class for all users of other languages in this case. An alternative variant is answering the specified language each time that Enter login class: default []: appears from &man.adduser.8; Another alternative is to use the following for each user of a different language that you wish to add: &prompt.root; adduser -class language Changing Login Classes with &man.pw.8; pw If you use &man.pw.8; for adding new users, call it in this form: &prompt.root; pw useradd user_name -L language Shell Startup File Method This method is not recommended because it requires a different setup for each possible login program chosen. Use the Login Class Method instead. MIME locale To add the locale name and MIME character set, just set the two environment variables shown below in the /etc/profile and/or /etc/csh.login shell startup files. We will use the German language as an example below: In /etc/profile: LANG=de_DE.ISO_8859-1; export LANG MM_CHARSET=ISO-8859-1; export MM_CHARSET Or in /etc/csh.login: setenv LANG de_DE.ISO_8859-1 setenv MM_CHARSET ISO-8859-1 de_DE.ISO8859-1 for FreeBSD versions 5.0 and up. Alternatively, you can add the above instructions to /usr/share/skel/dot.profile (similar to what was used in /etc/profile above), or /usr/share/skel/dot.login (similar to what was used in /etc/csh.login above). For X11: In $HOME/.xinitrc: LANG=de_DE.ISO_8859-1; export LANG Or: setenv LANG de_DE.ISO_8859-1 Depending on your shell (see above). de_DE.ISO8859-1 for FreeBSD versions 5.0 and up. Console Setup For all single C chars character sets, set the correct console fonts in /etc/rc.conf for the language in question with: font8x16=font_name font8x14=font_name font8x8=font_name The font_name here is taken from the /usr/share/syscons/fonts directory, without the .fnt suffix. sysinstall keymap screenmap Also be sure to set the correct keymap and screenmap for your single C chars character set through /stand/sysinstall. Once inside sysinstall, choose Configure, then Console. Alternatively, you can add the following to /etc/rc.conf: scrnmap=screenmap_name keymap=keymap_name keychange="fkey_number sequence" The screenmap_name here is taken from the /usr/share/syscons/scrnmaps directory, without the .scm suffix. A screenmap with a corresponding mapped font is usually needed as a workaround for expanding bit 8 to bit 9 on a VGA adapter's font character matrix in pseudographics area, i.e., to move letters out of that area if screen font uses a bit 8 column. If you have the moused daemon enabled by setting the following in your /etc/rc.conf: moused_enable="YES" then examine the mouse cursor information in the next paragraph. moused By default the mouse cursor of the syscons driver occupies the 0xd0-0xd3 range in the character set. If your language uses this range, you need to move the cursor's range outside of it. To enable the workaround for FreeBSD versions before 5.0, insert the following line into your kernel config: options SC_MOUSE_CHAR=0x03 For the FreeBSD versions 5.0 and up insert the following line into /etc/rc.conf: mousechar_start=3 The keymap_name here is taken from the /usr/share/syscons/keymaps directory, without the .kbd suffix. The keychange is usually needed to program function keys to match the selected terminal type because function key sequences cannot be defined in the key map. Also be sure to set the correct console terminal type in /etc/ttys for all ttyv* entries. Current pre-defined correspondences are: Character Set Terminal Type ISO-8859-1 or ISO-8859-15 cons25l1 ISO-8859-2 cons25l2 KOI8-R cons25r KOI8-U cons25u CP437 (hardware default) or US-ASCII cons25 For wide or multibyte characters languages, use the correct FreeBSD port in your /usr/ports/language directory. Some ports appear as console while the system sees it as serial vtty's, hence you must reserve enough vtty's for both X11 and the pseudo-serial console. Here is a partial list of applications for using other languages in console: Language Location Traditional Chinese (BIG-5) chinese/big5con Japanese japanese/ja-kon2-* or japanese/Mule_Wnn Korean korean/ko-han X11 Setup Although X11 is not part of the FreeBSD Project, we have included some information here for FreeBSD users. For more details, refer to the XFree86 web site or whichever X11 Server you use. In ~/.Xresources, you can additionally tune application specific I18N settings (e.g., fonts, menus, etc.). Displaying Fonts X11 True Type font server Install the X11 True Type-Common server (XTT-common) and install the language truetype fonts. Setting the correct locale should allow you to view your selected language in menus and such. Inputting Non-English Characters X11 Input Method (XIM) The X11 Input Method (XIM) Protocol is a new standard for all X11 clients. All X11 applications should be written as XIM clients that take input from XIM Input servers. There are several XIM servers available for different languages. Printer Setup Some single C chars character sets are usually hardware coded into printers. Wide or multibyte character sets require special setup and we recommend using apsfilter. You may also convert the document to PostScript or PDF formats using language specific converters. Kernel and File Systems The FreeBSD FFS filesystem is 8-bit clean, so it can be used with any single C chars character set (see &man.multibyte.3;), but there is no character set name stored in the filesystem; i.e., it is raw 8-bit and does not know anything about encoding order. Officially, FFS does not support any form of wide or multibyte character sets yet. However, some wide or multibyte character sets have independent patches for FFS enabling such support. They are only temporary unportable solutions or hacks and we have decided to not include them in the source tree. Refer to respective languages' web sites for more informations and the patch files. DOS Unicode The FreeBSD MS-DOS filesystem has the configurable ability to convert between MS-DOS, Unicode character sets and chosen FreeBSD filesystem character sets. See &man.mount.msdos.8; for details. Advanced Topics If you wish to compile I18N applications or program I18N compliant applications, please read this section. Compiling I18N Programs Many FreeBSD Ports have been ported with I18N support. Some of them are marked with -I18N in the port name. These and many other programs have built in support for I18N and need no special consideration. MySQL However, some applications such as MySQL need to be have the Makefile configured with the specific charset. This is usually done in the Makefile or done by passing a value to configure in the source. Programming I18N Compliant Applications Qt GTK To make your application more useful for speakers of other languages, we hope that you will program I18N compliant. The GNU gcc compiler, GUI Libraries like QT and GTK support I18N through special handling of strings. Making a program I18N compliant is very easy. It allows contributors to port your application to other languages quickly. Refer to library specific I18N documentation for more details. To the contrary of common perception, I18N compliant code is easy to write. Usually, it only involves wrapping your strings with library specific functions. In addition, please be sure to allow for wide or multibyte characters support. A Call to Unify the I18N effort It has come to our attention that the individual I18N/L10N efforts for each country has been repeating each others' efforts. Many of us have been reinventing the wheel repeatedly and inefficiently. We hope that the various major groups in I18N could congregate into a group effort similar to the Core Team's responsibility. Currently, we hope that, when you write or port I18N programs, you would send it out to each country's related FreeBSD mailing lists for testing. In the future, we hope to create applications that work in all the languages out-of-the-box without dirty hacks. The mailing list FreeBSD-I18N@FreeBSD.org has been established. If you are an I18N/L10N developer, please send your comments, ideas, questions, and anything you deem related to it. Michael C. Wu will be maintaining an I18N works in progress homepage at http://www.FreeBSD.org/~keichii/i18n/index.html Please also read the BSDCon2000 I18N paper and presentations by Clive Lin, Chia-Liang Kao, and Michael C. Wu at http://www.FreeBSD.org/~keichii/papers/ Perl and Python Perl Python Perl and Python have I18N and wide characters handling libraries. Please use them for I18N compliance. In older FreeBSD versions, Perl may gives warning about not having a wide characters locale that is already installed in your system. You can set the environmental variable LD_PRELOAD to /usr/lib/libxpg4.so in your shell. In sh-based shells: LD_PRELOAD=/usr/lib/libxpg4.so In C-based shells: setenv LD_PRELOAD /usr/lib/libxpg4.so - + Localizing FreeBSD to Specific Languages + + + + Andrey A. + Chernov + Originally contributed by + + + Russian Language (KOI8-R encoding) Russian localization - Originally contributed by - &a.ache;. For more information about KOI8-R encoding, see the KOI8-R References (Russian Net Character Set). Locale Setup Put the following lines into your ~/.login_conf file: me:My Account:\ :charset=KOI8-R:\ :lang=ru_RU.KOI8-R: See earlier in this chapter for examples of setting up the locale. Console Setup For the FreeBSD versions before 5.0 add the following line to your kernel configuration file: options SC_MOUSE_CHAR=0x03 For the FreeBSD versions 5.0 and up insert the following line into /etc/rc.conf: mousechar_start=3 Use following settings in /etc/rc.conf: keymap="ru.koi8-r" scrnmap="koi8-r2cp866" font8x16="cp866b-8x16" font8x14="cp866-8x14" font8x8="cp866-8x8" For each ttyv* entry in /etc/ttys, use cons25r as the terminal type. See earlier in this chapter for examples of setting up the console. Printer Setup printers Since most printers with Russian characters come with hardware code page CP866, a special output filter is needed for KOI8-R -> CP866 conversion. Such a filter is installed by default as /usr/libexec/lpr/ru/koi2alt. A Russian printer /etc/printcap entry should look like: lp|Russian local line printer:\ :sh:of=/usr/libexec/lpr/ru/koi2alt:\ :lp=/dev/lpt0:sd=/var/spool/output/lpd:lf=/var/log/lpd-errs: See &man.printcap.5; for a detailed description. MS-DOS FS and Russian Filenames The following example &man.fstab.5; entry enables support for Russian filenames in mounted MS-DOS filesystems: /dev/ad0s2 /dos/c msdos rw,-Wkoi2dos,-Lru_RU.KOI8-R 0 0 See &man.mount.msdos.8; for a detailed description of the and options. X11 Setup Do non-X locale setup first as described. The Russian KOI8-R locale may not work with old XFree86 releases (lower than 3.3). The XFree86 port from x11/XFree86 already is the most recent XFree86 version, so it will work if you install XFree86 from the port. This should not be an issue unless you are using an old version of FreeBSD. Go to the russian/X.language directory and issue the following command: &prompt.root; make install The above port installs the latest version of the KOI8-R fonts. XFree86 3.3 already has some KOI8-R fonts, but these are scaled better. Check the "Files" section in your /etc/XF86Config file. The following lines must be added before any other FontPath entries: FontPath "/usr/X11R6/lib/X11/fonts/cyrillic/misc" FontPath "/usr/X11R6/lib/X11/fonts/cyrillic/75dpi" FontPath "/usr/X11R6/lib/X11/fonts/cyrillic/100dpi" If you use a high resolution video mode, swap the 75 dpi and 100 dpi lines. To activate a Russian keyboard, add the following to the "Keyboard" section of your XF86Config file. For XFree86 v3.*: XkbLayout "ru" XkbOptions "grp:caps_toggle" For XFree86 v4.*: Option "XkbLayout" "ru" Option "XkbOptions" "grp:caps_toggle" Also make sure that XkbDisable is turned off (commented out) there. The RUS/LAT switch will be CapsLock. The old CapsLock function is still available via Shift+CapsLock (in LAT mode only). If you have Windows keys on your keyboard, and notice that some non-alphabetical keys are mapped incorrectly in RUS mode, add the following line in your XF86Config file. For XFree86 v3.*: XkbVariant "winkeys" For XFree86 v4.*: Option "XkbVariant" "winkeys" The Russian XKB keyboard may not work with old XFree86 versions, see the above note for more information. The Russian XKB keyboard may also not work with non-localized applications as well. Minimally localized applications should call a XtSetLanguageProc (NULL, NULL, NULL); function early in the program. See KOI8-R for X-Window for more instructions on localizing X11 applications. Traditional Chinese Localization for Taiwan Traditional Chinese localization The FreeBSD-Taiwan Project has an I18N/L10N tutorial for FreeBSD at http://freebsd.sinica.edu.tw/~ncvs/zh-l10n-tut/index.html using many chinese/* applications. The editor for the zh-L10N-tut is Clive Lin Clive@CirX.org. You can also cvsup the following collections at freebsd.sinica.edu.tw: Collection Description outta-port tag=. Beta-quality ports collection for Chinese zh-L10N-tut tag=. Localizing FreeBSD Tutorial in BIG-5 Traditional Chinese zh-doc tag=. FreeBSD Documentation Translation to BIG-5 Traditional Chinese Chuan-Hsing Shen s874070@mail.yzu.edu.tw has created the Chinese FreeBSD Collection (CFC) using FreeBSD-Taiwan's zh-L10N-tut. The packages and the script files are available at ftp://ftp.csie.ncu.edu.tw/OS/FreeBSD/taiwan/CFC/. German Language Localization (For All ISO 8859-1 Languages) German localization Slaven Rezic eserte@cs.tu-berlin.de wrote a tutorial how to use umlauts on a FreeBSD machine. The tutorial is written in German and available at http://www.de.FreeBSD.org/de/umlaute/. Japanese and Korean Language Localization Japanese localization Korean localization For Japanese, refer to http://www.jp.FreeBSD.org/, and for Korean, refer to http://www.kr.FreeBSD.org/. Non-English FreeBSD Documentation Some FreeBSD contributors have translated parts of FreeBSD to other languages. They are available through links on the main site or in /usr/share/doc. diff --git a/en_US.ISO8859-1/books/handbook/linuxemu/chapter.sgml b/en_US.ISO8859-1/books/handbook/linuxemu/chapter.sgml index a57611ac60..78144c8eae 100644 --- a/en_US.ISO8859-1/books/handbook/linuxemu/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/linuxemu/chapter.sgml @@ -1,2286 +1,2325 @@ - Linux Binary Compatibility + + + + Jim + Mock + Restructured and parts updated by + + + + + + Brian N. + Handy + Originally contributed by + + + - Restructured and parts updated by &a.jim;, 22 March - 2000. Originally contributed by &a.handy; and - &a.rich; + Linux Binary Compatibility Synopsis Linux binary compatibility binary compatibility Linux The following chapter will cover FreeBSD's Linux binary compatibility features, how to install it, and how it works. At this point, you may be asking yourself why exactly, does FreeBSD need to be able to run Linux binaries? The answer to that question is quite simple. Many companies and developers develop only for Linux, since it is the latest hot thing in the computing world. That leaves the rest of us FreeBSD users bugging these same companies and developers to put out native FreeBSD versions of their applications. The problem is, that most of these companies do not really realize how many people would use their product if there were FreeBSD versions too, and most continue to only develop for Linux. So what is a FreeBSD user to do? This is where the Linux binary compatibility of FreeBSD comes into play. In a nutshell, the compatibility allows FreeBSD users to run about 90% of all Linux applications without modification. This includes applications such as Star Office, the Linux version of Netscape, Adobe Acrobat, RealPlayer 5 and 7, VMWare, Oracle, WordPerfect, Doom, Quake, and more. It is also reported that in some situations, Linux binaries perform better on FreeBSD than they do under Linux. Linux /proc filesystem There are, however, some Linux-specific operating system features that are not supported under FreeBSD. Linux binaries will not work on FreeBSD if they overly use the Linux /proc filesystem (which is different from FreeBSD's /proc filesystem), or i386-specific calls, such as enabling virtual 8086 mode. For information on installing the Linux binary compatibility mode, see the next section. Installation With the advent of 3.0-RELEASE, it is no longer necessary to specify options LINUX or options COMPAT_LINUX in your kernel configuration. KLD (kernel loadable object) The Linux binary compatibility is now done via a KLD object (Kernel LoaDable object), so it can be installed on-the-fly without having to reboot. You will, however, need to have the following in /etc/rc.conf: linux_enable=YES This, in turn, triggers the following action in /etc/rc.i386: # Start the Linux binary compatibility if requested. # case ${linux_enable} in [Yy][Ee][Ss]) echo -n ' linux'; linux > /dev/null 2>&1 ;; esac If you wish to verify that the KLD is loaded, kldstat will do that: &prompt.user; kldstat Id Refs Address Size Name 1 2 0xc0100000 16bdb8 kernel 7 1 0xc24db000 d000 linux.ko kernel options LINUX If for some reason you do not want to or cannot load the KLD, then you may statically link the binary compatibility in the kernel by adding options LINUX to your kernel configuration file. Then install your new kernel as described in the kernel configuration section of this handbook. Installing Linux Runtime Libraries Linux installing Linux libraries This can be done one of two ways, either by using the linux_base port, or by installing them manually. Installing using the linux_base port ports collection This is by far the easiest method to use when installing the runtime libraries. It is just like installing any other port from the ports collection. Simply do the following: &prompt.root; cd /usr/ports/emulators/linux_base &prompt.root; make install distclean You should now have working Linux binary compatibility. Some programs may complain about incorrect minor versions of the system libraries. In general, however, this does not seem to be a problem. Installing libraries manually If you do not have the ports collection installed, you can install the libraries by hand instead. You will need the Linux shared libraries that the program depends on and the runtime linker. Also, you will need to create a shadow root directory, /compat/linux, for Linux libraries on your FreeBSD system. Any shared libraries opened by Linux programs run under FreeBSD will look in this tree first. So, if a Linux program loads, for example, /lib/libc.so, FreeBSD will first try to open /compat/linux/lib/libc.so, and if that does not exist, it will then try /lib/libc.so. Shared libraries should be installed in the shadow tree /compat/linux/lib rather than the paths that the Linux ld.so reports. Generally, you will need to look for the shared libraries that Linux binaries depend on only the first few times that you install a Linux program on your FreeBSD system. After a while, you will have a sufficient set of Linux shared libraries on your system to be able to run newly imported Linux binaries without any extra work. How to install additional shared libraries shared libraries What if you install the linux_base port and your application still complains about missing shared libraries? How do you know which shared libraries Linux binaries need, and where to get them? Basically, there are 2 possibilities (when following these instructions you will need to be root on your FreeBSD system). If you have access to a Linux system, see what shared libraries the application needs, and copy them to your FreeBSD system. Look at the following example: Let us assume you used FTP to get the Linux binary of Doom, and put it on a Linux system you have access to. You then can check which shared libraries it needs by running ldd linuxdoom, like so: &prompt.user; ldd linuxdoom libXt.so.3 (DLL Jump 3.1) => /usr/X11/lib/libXt.so.3.1.0 libX11.so.3 (DLL Jump 3.1) => /usr/X11/lib/libX11.so.3.1.0 libc.so.4 (DLL Jump 4.5pl26) => /lib/libc.so.4.6.29 symbolic links You would need to get all the files from the last column, and put them under /compat/linux, with the names in the first column as symbolic links pointing to them. This means you eventually have these files on your FreeBSD system: /compat/linux/usr/X11/lib/libXt.so.3.1.0 /compat/linux/usr/X11/lib/libXt.so.3 -> libXt.so.3.1.0 /compat/linux/usr/X11/lib/libX11.so.3.1.0 /compat/linux/usr/X11/lib/libX11.so.3 -> libX11.so.3.1.0 /compat/linux/lib/libc.so.4.6.29 /compat/linux/lib/libc.so.4 -> libc.so.4.6.29
Note that if you already have a Linux shared library with a matching major revision number to the first column of the ldd output, you will not need to copy the file named in the last column to your system, the one you already have should work. It is advisable to copy the shared library anyway if it is a newer version, though. You can remove the old one, as long as you make the symbolic link point to the new one. So, if you have these libraries on your system: /compat/linux/lib/libc.so.4.6.27 /compat/linux/lib/libc.so.4 -> libc.so.4.6.27 and you find a new binary that claims to require a later version according to the output of ldd: libc.so.4 (DLL Jump 4.5pl26) -> libc.so.4.6.29 If it is only one or two versions out of date in the in the trailing digit then do not worry about copying /lib/libc.so.4.6.29 too, because the program should work fine with the slightly older version. However, if you like, you can decide to replace the libc.so anyway, and that should leave you with: /compat/linux/lib/libc.so.4.6.29 /compat/linux/lib/libc.so.4 -> libc.so.4.6.29
The symbolic link mechanism is only needed for Linux binaries. The FreeBSD runtime linker takes care of looking for matching major revision numbers itself and you do not need to worry about it.
Installing Linux ELF binaries Linux ELF binaries ELF binaries sometimes require an extra step of branding. If you attempt to run an unbranded ELF binary, you will get an error message like the following; &prompt.user; ./my-linux-elf-binary ELF binary type not known Abort To help the FreeBSD kernel distinguish between a FreeBSD ELF binary from a Linux binary, use the &man.brandelf.1; utility. &prompt.user; brandelf -t Linux my-linux-elf-binary GNU toolchain The GNU toolchain now places the appropriate branding information into ELF binaries automatically, so you this step should become increasingly more rare in the future. Configuring the host name resolver If DNS does not work or you get this message: resolv+: "bind" is an invalid keyword resolv+: "hosts" is an invalid keyword You will need to configure a /compat/linux/etc/host.conf file containing: order hosts, bind multi on The order here specifies that /etc/hosts is searched first and DNS is searched second. When /compat/linux/etc/host.conf is not installed, Linux applications find FreeBSD's /etc/host.conf and complain about the incompatible FreeBSD syntax. You should remove bind if you have not configured a name server using the /etc/resolv.conf file.
Installing Mathematica Updated for Mathematica version 4.X by &a.murray and merged with work by Bojan Bistrovic bojanb@physics.odu.edu. applications Mathematica This document describes the process of installing the Linux version of Mathematica 4.X onto a FreeBSD system. The Linux version of Mathematica runs perfectly under FreeBSD however the binaries shipped by Wolfram need to be branded so that FreeBSD knows to use the Linux ABI to execute them. The Linux version of Mathematica or Mathematica for Students can be ordered directly from Wolfram at http://www.wolfram.com/. Branding the Linux binaries The Linux binaries are located in the Unix directory of the Mathematica CDROM distributed by Wolfram. You need to copy this directory tree to your local hard drive so that you can brand the Linux binaries with &man.brandelf.1; before running the installer: &prompt.root; mount /cdrom &prompt.root; cp -rp /cdrom/Unix/ /localdir/ &prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/Kernel/Binaries/Linux/* &prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/FrontEnd/Binaries/Linux/* &prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/Installation/Binaries/Linux/* &prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/Graphics/Binaries/Linux/* &prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/Converters/Binaries/Linux/* &prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/LicenseManager/Binaries/Linux/mathlm &prompt.root; cd /localdir/Installers/Linux/ &prompt.root; ./MathInstaller Alternatively, you can simply set the default ELF brand to Linux for all unbranded binaries with the command: &prompt.root; sysctl -w kern.fallback_elf_brand=3 This will make FreeBSD assume that unbranded ELF binaries use the Linux ABI and so you should be able to run the installer straight from the CDROM. Obtaining your Mathematica Password Before you can run Mathematica you will have to obtain a password from Wolfram that corresponds to your machine ID. Ethernet MAC address Once you have installed the Linux compatibility runtime libraries and unpacked Mathematica you can obtain the machine ID by running the program mathinfo in the Install directory. This machine ID is based solely on the MAC address of your first Ethernet card. &prompt.root; cd /localdir/Files/SystemFiles/Installation/Binaries/Linux &prompt.root; mathinfo disco.example.com 7115-70839-20412 When you register with Wolfram, either by email, phone or fax, you will give them the machine ID and they will respond with a corresponding password consisting of groups of numbers. You can then enter this information when you attempt to run Mathematica for the first time exactly as you would for any other Mathematica platform. Running the Mathematica front end over a network Mathematica uses some special fonts to display characters not present in any of the standard font sets (integrals, sums, Greek letters, etc.). The X protocol requires these fonts to be install locally. This means you will have to copy these fonts from the CDROM or from a host with Mathematica installed to your local machine. These fonts are normally stored in /cdrom/Unix/Files/SystemFiles/Fonts on the CDROM, or /usr/local/mathematica/SystemFiles/Fonts on your hard drive. The actual fonts are in the subdirectories Type1 and X. There are several ways to use them, as described below. The first way is to copy them into one of the existing font directories in /usr/X11R6/lib/X11/fonts. This will require editing the fonts.dir file, adding the font names to it, and changing the number of fonts on the first line. Alternatively, you should also just be able to run mkfontdir in the directory you have copied them to. The second way to do this is to copy the directories to /usr/X11R6/lib/X11/fonts: &prompt.root; cd /usr/X11R6/lib/X11/fonts &prompt.root; mkdir X &prompt.root; mkdir MathType1 &prompt.root; cd /cdrom/Unix/Files/SystemFiles/Fonts &prompt.root; cp X/* /usr/X11R6/lib/X11/fonts/X &prompt.root; cp Type1/* /usr/X11R6/lib/X11/fonts/MathType1 &prompt.root; cd /usr/X11R6/lib/X11/fonts/X &prompt.root; mkfontdir &prompt.root; cd ../MathType1 &prompt.root; mkfontdir Now add the new font directories to your font path: &prompt.root; xset fp+ /usr/X11R6/lib/X11/fonts/X &prompt.root; xset fp+ /usr/X11R6/lib/X11/fonts/MathType1 &prompt.root; xset fp rehash If you are using the XFree86 server, you can have these font directories loaded automatically by adding them to your XF86Config file. fonts If you do not already have a directory called /usr/X11R6/lib/X11/fonts/Type1, you can change the name of the MathType1 directory in the example above to Type1. + + + + Marcel + Moolenaar + Contributed by + + + + Installing Oracle - - Contributed by Marcel Moolenaar - marcel@cup.hp.com + applications Oracle Preface This document describes the process of installing Oracle 8.0.5 and Oracle 8.0.5.1 Enterprise Edition for Linux onto a FreeBSD machine Installing the Linux environment Make sure you have both linux_base and linux_devtools from the ports collection installed. These ports are added to the collection after the release of FreeBSD 3.2. If you are using FreeBSD 3.2 or an older version for that matter, update your ports collection. You may want to consider updating your FreeBSD version too. If you run into difficulties with linux_base-6.1 or linux_devtools-6.1 you may have to use version 5.2 of these packages. If you want to run the intelligent agent, you'll also need to install the Red Hat Tcl package: tcl-8.0.3-20.i386.rpm. The general command for installing packages with the official RPM port is : &prompt.root; rpm -i --ignoreos --root /compat/linux --dbpath /var/lib/rpm package Installation of the package should not generate any errors. Creating the Oracle environment Before you can install Oracle, you need to set up a proper environment. This document only describes what to do specially to run Oracle for Linux on FreeBSD, not what has been described in the Oracle installation guide. Kernel Tuning kernel tuning As described in the Oracle installation guide, you need to set the maximum size of shared memory. Don't use SHMMAX under FreeBSD. SHMMAX is merely calculated out of SHMMAXPGS and PGSIZE. Therefore define SHMMAXPGS. All other options can be used as described in the guide. For example: options SHMMAXPGS=10000 options SHMMNI=100 options SHMSEG=10 options SEMMNS=200 options SEMMNI=70 options SEMMSL=61 Set these options to suit your intended use of Oracle. Also, make sure you have the following options in your kernel config-file: options SYSVSHM #SysV shared memory options SYSVSEM #SysV semaphores options SYSVMSG #SysV interprocess communication Oracle account Create an Oracle account just as you would create any other account. The Oracle account is special only that you need to give it a Linux shell. Add /compat/linux/bin/bash to /etc/shells and set the shell for the Oracle account to /compat/linux/bin/bash. Environment Besides the normal Oracle variables, such as ORACLE_HOME and ORACLE_SID you must set the following environment variables: Variable Value LD_LIBRARY_PATH $ORACLE_HOME/lib CLASSPATH $ORACLE_HOME/jdbc/lib/classes111.zip PATH /compat/linux/bin /compat/linux/sbin /compat/linux/usr/bin /compat/linux/usr/sbin /bin /sbin /usr/bin /usr/sbin /usr/local/bin $ORACLE_HOME/bin It is advised to set all the environment variables in .profile. A complete example is: ORACLE_BASE=/oracle; export ORACLE_BASE ORACLE_HOME=/oracle; export ORACLE_HOME LD_LIBRARY_PATH=$ORACLE_HOME/lib export LD_LIBRARY_PATH ORACLE_SID=ORCL; export ORACLE_SID ORACLE_TERM=386x; export ORACLE_TERM CLASSPATH=$ORACLE_HOME/jdbc/lib/classes111.zip export CLASSPATH PATH=/compat/linux/bin:/compat/linux/sbin:/compat/linux/usr/bin:/compat/linux/usr/sbin:/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:$ORACLE_HOME/bin export PATH Installing Oracle Due to a slight inconsistency in the Linux emulator, you need to create a directory named .oracle in /var/tmp before you start the installer. Either make it world writable or let it be owner by the oracle user. You should be able to install Oracle without any problems. If you have problems, check your Oracle distribution and/or configuration first! After you have installed Oracle, apply the patches described in the next two subsections. A frequent problem is that the TCP protocol adapter is not installed right. As a consequence, you cannot start any TCP listeners. The following actions help solve this problem: &prompt.root; cd $ORACLE_HOME/network/lib &prompt.root; make -f ins_network.mk ntcontab.o &prompt.root; cd $ORACLE_HOME/lib &prompt.root; ar r libnetwork.a ntcontab.o &prompt.root; cd $ORACLE_HOME/network/lib &prompt.root; make -f ins_network.mk install Don't forget to run root.sh again! Patching root.sh When installing Oracle, some actions, which need to be performed as root, are recorded in a shell script called root.sh. root.sh is written in the orainst directory. Apply the following patch to root.sh, to have it use to proper location of chown or alternatively run the script under a Linux native shell. *** orainst/root.sh.orig Tue Oct 6 21:57:33 1998 --- orainst/root.sh Mon Dec 28 15:58:53 1998 *************** *** 31,37 **** # This is the default value for CHOWN # It will redefined later in this script for those ports # which have it conditionally defined in ss_install.h ! CHOWN=/bin/chown # # Define variables to be used in this script --- 31,37 ---- # This is the default value for CHOWN # It will redefined later in this script for those ports # which have it conditionally defined in ss_install.h ! CHOWN=/usr/sbin/chown # # Define variables to be used in this script When you don't install Oracle from CD, you can patch the source for root.sh. It is called rthd.sh and is located in the orainst directory in the source tree. Patching genclntsh The script genclntsh is used to create a single shared client library. It is used when building the demos. Apply the following patch to comment out the definition of PATH: *** bin/genclntsh.orig Wed Sep 30 07:37:19 1998 --- bin/genclntsh Tue Dec 22 15:36:49 1998 *************** *** 32,38 **** # # Explicit path to ensure that we're using the correct commands #PATH=/usr/bin:/usr/ccs/bin export PATH ! PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin export PATH # # each product MUST provide a $PRODUCT/admin/shrept.lst --- 32,38 ---- # # Explicit path to ensure that we're using the correct commands #PATH=/usr/bin:/usr/ccs/bin export PATH ! #PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin export PATH # # each product MUST provide a $PRODUCT/admin/shrept.lst Running Oracle When you have followed the instructions, you should be able to run Oracle as if it was run on Linux itself. + + + + Holger + Kill + Contributed by + + + + + + Valentino + Vaschetto + Converted to SGML by + + + + Installing SAP R/3 (4.6B - IDES) - Contributed by Holger Kipp holger.kipp@alogis.com - Converted to SGML by &a.logo; + applications SAP R/3 Preface This document describes a possible way of installing a SAP R/3 4.6B IDES-System with Oracle 8.0.5 for Linux onto a FreeBSD 4.3 machine, including the installation of FreeBSD 4.3-STABLE and Oracle 8.0.5. Even though this document tries to describe all important steps in a greater detail, it is not intended as a replacement for the Oracle and SAP R/3 installation guides. Please see the documentation that comes with the SAP R/3 Linux edition for SAP- and Oracle-specific questions, as well as resources from Oracle and SAP OSS. Software The following CDROMs have been used for SAP-installation: Name Number Description KERNEL 51009113 SAP Kernel Oracle / Installation / AIX, Linux, Solaris RDBMS 51007558 Oracle / RDBMS 8.0.5.X / Linux EXPORT1 51010208 IDES / DB-Export / Disc 1 of 6 EXPORT2 51010209 IDES / DB-Export / Disc 2 of 6 EXPORT3 51010210 IDES / DB-Export / Disc3 of 6 EXPORT4 51010211 IDES / DB-Export / Disc4 of 6 EXPORT5 51010212 IDES / DB-Export / Disc5 of 6 EXPORT6 51010213 IDES / DB-Export / Disc6 of 6 Additionally, I used the Oracle 8 Server (Pre-production version 8.0.5 for Linux, Kernel Version 2.0.33) CD which is not really necessary, and of course FreeBSD 4.3 stable (it was only a few days past 4.3 RELEASE). SAP-Notes The following notes should be read before installing SAP R/3 or proved to be useful during installation: Number Title 0171356 SAP Software auf Linux: grundlegenden Anmerkungen 0201147 INST: 4.6C R/3 Inst. on UNIX - Oracle 0373203 Update / Migration Oracle 8.0.5 --> 8.0.6/8.1.6 LINUX 0072984 Release of Digital UNIX 4.0B for Oracle 0130581 R3SETUP step DIPGNTAB terminates 0144978 Your system has not been installed correctly 0162266 Questions and tips for R3SETUP on Windows NT / W2K Hardware-Requirements The following equipment is sufficient for a SAP R/3 System (4.6B): Component 4.6B 4.6C Processor 2 x 800MHz Pentium III 2 x 800MHz Pentium III Memory 1GB ECC 2GB ECC Hard Disc Space 50-60GB (IDES) 50-60GB (IDES) For use in production, Xeon-Processors with large cache, high-speed disc access (SCSI, RAID hardware controller), USV and ECC-RAM is recommended. The large amount of Hard disc space is due to the preconfigured IDES System, which creates 27 GB of database files during installation. Usually after installation it is then necessary to extend some tablespaces. I used a dual processor board with 2 800MHz Pentium III processors, Adaptec 29160 Ultra160 SCSI adapter (for accessing a 40/80 GB DLT tape drive and CDROM), Mylex AcelleRAID (2 channels, firmware 6.00-1-00 with 32MB RAM). To the Mylex Raid-controller are attached two 17GB hard discs (mirrored) and four 36GB hard discs (RAID level 5). Installation of FreeBSD 4.3 stable First I installed FreeBSD 4.3 stable. I did the default-installation via FTP. Installation via FTP Get the diskimages kern.flp and mfsroot.flp and put them on floppy disks (I got mine from ftp7.de.freebsd.org. Please choose the appropriate mirror). &prompt.root; dd if=kern.flp of=/dev/fd0 &prompt.root; dd if=mfsroot.flp of=/dev/fd0 Don't forget to use different disks for the two images, then boot from the floppy with the kern.flp-image on it and follow instructions. I used the following disk layout: Filesystem Size (1k-blocks) Size (GB) Mounted on /dev/da0s1a 1.016.303 1 / /dev/da0s1b 6 <swap> /dev/da0s1e 2.032.623 2 /var /dev/da0s1f 8.205.339 8 /usr /dev/da1s1e 45.734.361 45 /compat/linux/oracle /dev/da1s1f 2.032.623 2 /compat/linux/sapmnt /dev/da1s1g 2.032.623 2 /compat/linux/usr/sap I had to configure and initialize the two logical drives with the Mylex software beforehand. It is located on the board itself and can be started during the boot phase of the PC. Please note that this disk layout differs slightly from the SAP recommendations, as SAP suggests mounting the oracle-subdirectories (and some others) separately - I decided to just create them as real subdirectories for simplicity. Get the latest stable-sources For FreeBSD 4.3 stable onwards, it is quite easy to get the latest stable sources. With the older versions of FreeBSD, I had my own script located in /etc/cvsup. Setting up CVSup for FreeBSD 4.3 is quite easy. As user root do the following: &prompt.root; cp /etc/defaults/make.conf /etc/make.conf &prompt.root; vi /etc/make.conf The file /etc/make.conf requires the following entries to be active: SUP_UPDATE= yes SUP= /usr/local/bin/cvsup SUPFLAGS= -g -L 2 SUPHOST= cvsup8.FreeBSD.org SUPFILE= /usr/share/examples/cvsup/stable-supfile PORTSSUPFILE= /usr/share/examples/cvsup/ports-supfile DOCSUPFILE= /usr/share/examples/cvsup/doc-supfile Change the SUPHOST-value appropriately. The supfiles in /usr/share/examples/cvsup should be fine. If you don't want to load all the docfiles, leave the corresponding DOCSUPFILE-entry inactive. Starting cvsup to get the latest stable-sources is then very easy: &prompt.root; cd /usr/src &prompt.root; make update Make world and a new kernel The first thing to do is to install the sources. As user root, do the following: &prompt.root; cd /usr/src &prompt.root; make world If this goes through, one can then continue creating and configuring the new kernel. Usually this is where to customize the kernel configuration file. As the computer is named troubadix, the natural name for the config file also is troubadix: &prompt.root; cd /usr/src/sys/i386/conf &prompt.root; cp GENERIC TROUBADIX &prompt.root; vi TROUBADIX At this stage one can define the drivers to use and not to use, etc. See the appropriate documentation or have a look at file LINT for some additional explanations. One can then also include the parameters as described below Creating the new kernel then requires: &prompt.root; cd /usr/src/sys/i386/conf &prompt.root; config TROUBADIX &prompt.root; cd /usr/src/sys/compile/TROUBADIX &prompt.root; make depend &prompt.root; make &prompt.root; make install After make install finished successfully, one should reboot the computer to have the new kernel available. Installing the Linux environment I had some trouble downloading the required RPM-files (for 4.3 stable, 2nd May 2001), so you might try one of the following locations (if all the others fail and the following aren't out of date): ftp7.de.freebsd.org/pub/FreeBSD/distfiles/rpm ftp.redhat.com/pub/redhat/linux/6.1/en/os/i386/RedHat/RPMS Installing Linux base-system First the Linux base-system needs to be installed (as root): &prompt.root; cd /usr/ports/emulators/linux_base &prompt.root; make package Installing Linux development Next, the Linux development is needed: &prompt.root; cd /usr/ports/devel/linux_devtools &prompt.root; make package Installing necessary RPMs RPMs To start the R3SETUP-Program, pam support is needed. As this also requires some other packages, I ended up installing several packages. After that, pam still complained about a missing package, so I forced the installation and it worked. I wonder if the other packages are really needed or if it would have been sufficient to install the pam-package. Anyway, here is the list of packages I installed: cracklib-2.7-5.i386.rpm cracklib-dicts-2.7-5.i386.rpm pwdb-0.60-1.i386.rpm pam-0.68-7.i386.rpm I installed these packages with the following command: &prompt.root; rpm -i --ignoreos --root /compat/linux --dbpath /var/lib/rpm <package_name> except for the pam package, which I forced with &prompt.root; rpm -i --ignoreos --nodeps --root /compat/linux --dbpath /var/lib/rpm pam-0.68-7.i386.rpm For Oracle to run the intelligent agent, I also had to install the following RedHat Tcl package (as is stated in the FreeBSD Handbook): tcl-8.0.5-30.i386.rpm (otherwise the relinking during Oracle install won't work). There are some other issues regarding relinking of Oracle, but that is a Oracle-Linux issue, not FreeBSD specific as far as I understand it. Creating the SAP/R3 environment Creating the necessary filesystems and mountpoints For a simple installation, it is sufficient to create the following filesystems: mountpoint size in GB /compat/linux/oracle 45 GB /compat/linux/sapmnt 2 GB /compat/linux/usr/sap 2 GB I also created some links, so FreeBSD will also find the correct path: &prompt.root; ln -s /compat/linux/oracle /oracle &prompt.root; ln -s /compat/linux/sapmnt /sapmnt &prompt.root; ln -s /compat/linux/usr/sap /usr/sap Creating users and directories SAP R/3 needs two users and three groups. The usernames depend on the SAP system id (SID) which consists of three letters. Some of these SIDs are reserved by SAP (for example SAP and NIX. For a complete list please see the SAP documentation). For the IDES installation I used IDS. We have therefore the following groups (group ids might differ, these are just the values I used with my installation): group id group name description 100 dba Data Base Administrator 101 sapsys SAP System 102 oper Data Base Operator For a default Oracle-Installation, only group dba is used. As oper-group, one also uses group dba (see Oracle- and SAP-documentation for further information). We also need the following users: user id username generic name group additional groups description 1000 idsadm <sid>adm sapsys oper SAP Administrator 1002 oraids ora<sid> dba oper DB Administrator Adding the users with adduser requires the following (please note shell and home directory) entries for SAP-Administrator: Name: idsadm <sid>adm Password: ****** Fullname: SAP IDES Administrator Uid: 1000 Gid: 101 (sapsys) Class: Groups: sapsys dba HOME: /home/idsadm /home/<sid>adm Shell: /bin/sh and for Database-Administrator: Name: oraids ora<sid> Password: ****** Fullname: Oracle IDES Administrator Uid: 1002 Gid: 100 (dba) Class: Groups: dba HOME: /oracle/IDS /oracle/<sid> Shell: /bin/sh This should also include group oper in case you are using both groups dba and oper. Creating directories These directories are usually created as separate filesystems. This depends entirely on your requirements. I choose to create them as simple directories, as they are all located on the same RAID 5 anyway: First we'll set owners and right of some directories (as user root): &prompt.root; chmod 775 /oracle &prompt.root; chmod 777 /sapmnt &prompt.root; chown root:dba /oracle &prompt.root; chown idsadm:sapsys /compat/linux/usr/sap &prompt.root; chmow 775 /compat/linux/usr/sap Second we'll create directories as user ora<sid>. These will all be subdirectories of /oracle/IDS: &prompt.root; su - oraids &prompt.root; mkdir mirrlogA mirrlogB origlogA origlogB &prompt.root; mkdir sapdata1 sapdata2 sapdata3 sapdata4 sapdata5 sapdata6 &prompt.root; mkdir saparch sapreorg &prompt.root; exit In the third step we create directories as user idsadm (<sid>adm): &prompt.root; su - idsadm &prompt.root; cd /usr/sap &prompt.root; mkdir IDS &prompt.root; mkdir trans &prompt.root; exit Entries in /etc/services SAP R/3 requires some entries in file /etc/services , which will not be set correctly during installation under FreeBSD. Please add the following entries (you need at least those entries corresponding to the instance number - in this case, 00. It'll do no harm adding all entries from 00 to 99 for dp, gw, sp and ms); sapdp00 3200/tcp # SAP Dispatcher. 3200 + Instance-Number sapgw00 3300/tcp # SAP Gateway. 3300 + Instance-Number sapsp00 3400/tcp # 3400 + Instance-Number sapms00 3500/tcp # 3500 + Instance-Number sapmsIDS 3600/tcp # SAP Message Server. 3600 + Instance-Number Necessary locales locale SAP requires at least two locales that aren't part of the default RedHat installation. SAP offers the required RPMs as download from their FTP-server (which is only accessible if you are a customer with OSS-access). See note 0171356 for a list of RPMs you need. It is also possible to just create appropriate links (for example from de_DE and en_US ), but I wouldn't recommend this for a production system (so far it worked with the IDES system without any problems, though). The following locales are needed: de_DE.ISO-8859-1 en_US.ISO-8859-1 If they are not present, there will be some problems during the installation. If these are then subsequently ignored (eg by setting the status of the offending steps to OK in file CENTRDB.R3S), it will be impossible to log onto the SAP-system without some additional effort. Kernel Tuning kernel tuning SAP R/3 Systems need a lot of resources. I therefore added the following parameters to my kernel config-file: # Set these for memory pigs (SAP and Oracle): options MAXDSIZ="(1024*1024*1024)" options DFLDSIZ="(1024*1024*1024)" # System V options needed. options SYSVSHM #SYSV-style shared memory options SHMMAXPGS=262144 #max amount of shared mem. pages options SHMMNI=256 #max number of shared memory ident if. options SHMSEG=100 #max shared mem.segs per process options SYSVMSG #SYSV-style message queues options MSGSEG=32767 #max num. of mes.segments in system options MSGSSZ=32 #size of msg-seg. MUST be power of 2 options MSGMNB=65535 #max char. per message queue options MSGTQL=2046 #max amount of msgs in system options SYSVSEM #SYSV-style semaphores options SEMMNU=256 #number of semaphore UNDO structures options SEMMNS=1024 #number of semaphores in system options SEMMNI=520 #number of semaphore indentifiers options SEMUME=100 #number of UNDO keys The minimum values are specified in the documentation that comes from SAP. As there is no description for Linux, see the HP-UX-section (32-bit) for further information. Installing SAP R/3 Preparing SAP CDROMs There are lots of CDROMs to mount and unmount during installation. Assuming you have enough CDROM-drives, you can just mount them all. I decided to copy the CDROM contents to corresponding directories: /oracle/IDS/sapreorg/<cd-name> where <cd-name> was one of KERNEL, RDBMS, EXPORT1, EXPORT2, EXPORT3, EXPORT4, EXPORT5 and EXPORT6. All the filenames should be in capital letters, otherwise use the -g option for mounting. So use the following commands: &prompt.root; mount_cd9660 -g /dev/cd0a /mnt &prompt.root; cp -R /mnt/* /oracle/IDS/sapreorg/<cd-name> &prompt.root; umount /mnt Running the install-script First we need to prepare an install-directory: &prompt.root; cd /oracle/IDS/sapreorg &prompt.root; mkdir install &prompt.root; cd install Then the install-script is started, which will copy nearly all the relevant files into the install-directory: /oracle/IDS/sapreorg/KERNEL/UNIX/INSTTOOL.SH As this is an IDES-Installation with a fully customized SAP R/3 Demo-System, we have six instead of just three EXPORT-CDs. At this point the installation template CENTRDB.R3S is for installing a standard central instance (R/3 and Database), not an IDES central instance, so copy the corresponding CENTRDB.R3S from the EXPORT1 directory, otherwise R3SETUP will only ask for three EXPORT-CDs. Start R3SETUP Make sure LD_LIBRARY_PATH is set correctly: &prompt.root; export LD_LIBRARY_PATH=/oracle/IDS/lib:/sapmnt/IDS/exe:/oracle/805_32/lib Start R3SETUP as user root from installation directory: &prompt.root; cd /oracle/IDS/sapreorg/install &prompt.root; ./R3SETUP -f CENTRDB.R3S The script then asks some questions (defaults in brackets, followed by actual input): Question Default Input Enter SAP System ID [C11] IDS<ret> Enter SAP Instance Number [00] <ret> Enter SAPMOUNT Directory [/sapmnt] <ret> Enter name of SAP central host [troubadix.domain.de] <ret> Enter name of SAP db host [troubadix] <ret> Select character set [1] (WE8DEC) <ret> Enter Oracle server version (1) Oracle 8.0.5, (2) Oracle 8.0.6, (3) Oracle 8.1.5, (4) Oracle 8.1.6 1<ret> Extract Oracle Client archive [1] (Yes, extract) <ret> Enter path to KERNEL CD [/sapcd] /oracle/IDS/sapreorg/KERNEL Enter path to RDBMS CD [/sapcd] /oracle/IDS/sapreorg/RDBMS Enter path to EXPORT1 CD [/sapcd] /oracle/IDS/sapreorg/EXPORT1 Directory to copy EXPORT1 CD [/oracle/IDS/sapreorg/CD4_DIR] <ret> Enter path to EXPORT2 CD [/sapcd] /oracle/IDS/sapreorg/EXPORT2 Directory to copy EXPORT2 CD [/oracle/IDS/sapreorg/CD5_DIR] <ret> Enter path to EXPORT3 CD [/sapcd] /oracle/IDS/sapreorg/EXPORT3 Directory to copy EXPORT3 CD [/oracle/IDS/sapreorg/CD6_DIR] <ret> Enter path to EXPORT4 CD [/sapcd] /oracle/IDS/sapreorg/EXPORT4 Directory to copy EXPORT4 CD [/oracle/IDS/sapreorg/CD7_DIR] <ret> Enter path to EXPORT5 CD [/sapcd] /oracle/IDS/sapreorg/EXPORT5 Directory to copy EXPORT5 CD [/oracle/IDS/sapreorg/CD8_DIR] <ret> Enter path to EXPORT6 CD [/sapcd] /oracle/IDS/sapreorg/EXPORT6 Directory to copy EXPORT6 CD [/oracle/IDS/sapreorg/CD9_DIR] <ret> Enter amount of RAM for SAP + DB 850<ret> (in Megabytes) Service Entry Message Server [3600] <ret> Enter Group-ID of sapsys [101] <ret> Enter Group-ID of oper [102] <ret> Enter Group-ID of dba [100] <ret> Enter User-ID of <sid>adm [1000] <ret> Enter User-ID of ora<sid> [1002] <ret> Number of parallel procs [2] <ret> If I had not copied the CDs to the different locations, then the SAP-Installer can't find the CD needed (identified by the LABEL.ASC-File on CD) and would then ask you to insert / mount the CD and confirm or enter the mount path. The CENTRDB.R3S might not be error-free. In my case, it requested EXPORT4 again (but indicated the correct key (6_LOCATI ON, then 7_LOCATION etc.), so one can just continue with entering the correct values. Don't get irritated. Apart from some problems mentioned below, everything should go straight through up to the point where the Oracle database software needs to be installed. Installing Oracle 8.0.5 Please see the corresponding SAP-Notes and Oracle Readmes regarding Linux and Oracle DB for possible problems. Most if not all problems stem from incompatible libraries For more information on installing Oracle, refer to the Installing Oracle chapter. Installing the Oracle 8.0.5 with orainst If Oracle 8.0.5 is to be used, some additional libraries are needed for successfully relinking, as Oracle 8.0.5 was linked with an old glibc (RedHat 6.0), but RedHat 6.1 already uses a new glibc. So you have to install the following additional packages to ensure that linking will work: compat-libs-5.2-2.i386.rpm compat-glibc-5.2-2.0.7.2.i386.rpm compat-egcs-5.2-1.0.3a.1.i386.rpm compat-egcs-c++-5.2-1.0.3a.1.i386.rpm compat-binutils-5.2-2.9.1.0.23.1.i386.rpm See the corresponding SAP-Notes or Oracle Readmes for further information. If this is no option (at the time of installation I didn't have enough time to check this), one could use the original binaries, or use the relinked binaries from an original RedHat System. For compiling the intelligent agent, the RedHat Tcl package must be installed. If you can't get tcl-8.0.3-20.i386.rpm, a newer one like tcl-8.0.5-30.i386.rpm for RedHat 6.1 should also do. Apart from relinking, the installation is straightforward: &prompt.root; su - oraids &prompt.root; export TERM=xterm &prompt.root; export ORACLE_TERM=xterm &prompt.root; export ORACLE_HOME=/oracle/IDS &prompt.root; cd /ORACLE_HOME/orainst_sap &prompt.root; ./orainst Confirm all Screens with Enter until the software is installed, except that one has to deselect the Oracle On-Line Text Viewer , as this is not currently available for Linux. Oracle then wants to relink with i386-glibc20-linux-gcc instead of the available gcc, egcs or i386-redhat-linux-gcc . Due to time constrains I decided to use the binaries from an Oracle 8.0.5 PreProduction release, after the first attempt at getting the version from the RDBMS-CD working, failed, and finding / accessing the correct RPMs was a nightmare at that time. Installing the Oracle 8.0.5 Pre-Production release for Linux (Kernel 2.0.33) This installation is quite easy. Mount the CD, start the installer. It will then ask for the location of the Oracle home directory, and copy all binaries there. I did not delete the remains of my previous RDBMS-installation tries, though. Afterwards, Oracle Database could be started with no problems. Continue with SAP R/3 installation First check the environment settings of users idsamd (<sid>adm) and oraids (ora<sid>). They should now both have the files .profile , .login and .cshrc which are all using hostname. In case the system's hostname is the fully qualified name, you need to change hostname to hostname -s within all three files. Database load Afterwards, R3SETUP can either be restarted or continued (depending on whether exit was chosen or not). R3SETUP then creates the tablespaces and loads the data from EXPORT1 to EXPORT6 (remember, it is an IDES system, otherwise it would only be EXPORT1 to EXPORT3) with R3load into the database. When the database load is finished (might take a few hours), some passwords are requested. For test installations, one can use the well known default passwords (use different ones if security is an issue!): Question Input Enter Password for sapr3 sap<ret> Confirum Password for sapr3 sap<ret> Enter Password for sys change_on_install<ret> Confirm Password for sys change_on_install<ret> Enter Password for system manager<ret> Confirm Password for system manager<ret> At this point I had a few problems with dipgntab. Listener Start the Oracle-Listener as user oraids (ora<sid>) as follows: umask 0; lsnrctl start Otherwise you might get ORA-12546 as the sockets won't have the correct permissions. See SAP note 072984. Post-installation steps Request SAP R/3 license key This is needed, as the temporary license is only valid for four weeks. Don't forget to enter the correct Operating System: (X) Other: FreeBSD 4.3 Stable. First get the hardware key. Log on as user idsadm and call saplicense: &prompt.root; /sapmnt/IDS/exe/saplicense -get Calling saplicense without options gives a list of options. Upon receiving the license key, it can be installed using &prompt.root; /sapmnt/IDS/exe/saplicense -install You are then required to enter the following values: SAP SYSTEM ID = <SID, 3 chars> CUSTOMER KEY = <hardware key, 11 chars> INSTALLATION NO = <installation, 10 digits> EXPIRATION DATE = <yyyymmdd, usually "99991231"> LICENSE KEY = <license key, 24 chars> Creating Users Create a user within client 000 (for some tasks required to be done within client 000, but with a user different from users sap* and ddic). As a username, I usually choose wartung (or service in English). Profiles required are sap_new and sap_all. For additional safety the passwords of default users within all clients should be changed (this includes users sap* and ddic). Configure Transport System, Profile, Operation Modes, etc. Within client 000, user different from ddic and sap*, do at least the following: Task Transaction Configure Transport System, eg as Stand-Alone Transport Domain Entity STMS Create / Edit Profile for System RZ10 Maintain Operation Modes and Instances RZ04 These and all the other post-installation steps are thoroughly described in SAP installation guides. Edit init<sid>.sap (initIDS.sap) The file /oracle/IDS/dbs/initIDS.sap contains the SAP backup profile. Here the size of the tape to be used, type of compression and so on need to be defined. To get this running with sapdba / brbackup, I changed the following values: compress = hardware archive_function = copy_delete_save cpio_flags = "-ov --format=newc --block-size=128 --quiet" cpio_in_flags = "-iuv --block-size=128 --quiet" tape_size = 38000M tape_address = /dev/nsa0 tape_address_rew = /dev/sa0 Explanations: compress The tape I use is a HP DLT1 which does hardware compression. archive_function This defines the default behavior for saving Oracle archive logs: New logfiles are saved to tape, already saved logfiles are saved again and are then deleted. This prevents lots of trouble if one needs to recover the database, and one of the archive-tapes has gone bad. cpio_flags Default is to use -B which sets blocksize to 5120 Bytes. For DLT-Tapes, HP recommends at least 32K blocksize, so I used --block-size=128 for 64K. --format=newc is needed I have inode numbers greater than 65535. The last option --quiet is needed as otherwise brbackup complains as soon as cpio outputs the numbers of blocks saved. cpio_in_flags Flags needed for loading data back from tape. Format is recognized automagically. tape_size This usually gives the raw storage capability of the tape. For security reason (we use hardware compression), the value is slightly lower than the actual value. tape_address The non-rewindable device to be used with cpio. tape_address_rew The rewindable device to be used with cpio. Problems during installation OSUSERSIDADM_IND_ORA during R3SETUP If R3SETUP complains at this stage, edit file CENTRDB.R3S. Locate [OSUSERSIDADM_IND_ORA] and edit the following values: HOME=/home/idsadm (was empty) STATUS=OK (had status ERROR) Then you can restart R3SETUP with: &prompt.root; ./R3SETUP -f CENTRDB.R3S OSUSERDBSID_IND_ORA during R3SETUP Possibly R3SETUP also complains at this stage. Just edit CENTRDB.R3S. Locate [OSUSERDBSID_IND_ORA] and edit the following value in that section: STATUS=OK Then just restart R3SETUP again: &prompt.root; ./R3SETUP -f CENTRDB.R3S oraview.vrf FILE NOT FOUND during Oracle installation You haven't deselected Oracle On-Line Text Viewer before starting the installation. This is marked for installation even though this option is currently not available for Linux. Deselect this product inside the Oracle installation menu and restart installation. TEXTENV_INVALID during R3SETUP, RFC or SAPGUI start If this error is encountered, the correct locale is missing. SAP note 0171356 lists the necessary RPMs that need be installed (eg saplocales-1.0-3, saposcheck-1.0-1 for RedHat 6.1). In case you ignored all the related errors and set the corresponding status from ERROR to OK (in CENTRDB.R3S) every time R3SETUP complained and just restarted R3SETUP, the SAP-System will not be properly configured and you will then not be able to connect to the system with a sapgui, even though the system can be started. Trying to connect with the old Linux sapgui gave the following messages: Sat May 5 14:23:14 2001 *** ERROR => no valid userarea given [trgmsgo. 0401] Sat May 5 14:23:22 2001 *** ERROR => ERROR NR 24 occured [trgmsgi. 0410] *** ERROR => Error when generating text environment. [trgmsgi. 0435] *** ERROR => function failed [trgmsgi. 0447] *** ERROR => no socket operation allowed [trxio.c 3363] Speicherzugriffsfehler This behavior is due to SAP R/3 being unable to correctly assign a locale and also not being properly configured itself (missing entries in some database tables). To be able to connect to SAP, add the following entries to file DEFAULT.PFL (see note 0043288): abap/set_etct_env_at_new_mode =0 install/collate/active =0 rscp/TCP0B =TCP0B Restart the SAP system. Now one can connect to the system, even though country-specific language settings might not work as expected. After correcting country-settings (and providing the correct locales), these entries can be removed from DEFAULT.PFL and the SAP system can be restarted. ORA-12546. Start Listener with correct permissions Start the Oracle Listener as user oraids with the following commands: &prompt.root; umask 0; lsnrctl start Otherwise one might get ORA-12546 as the sockets won't have the correct permissions. See SAP note 0072984. [DIPGNTAB_IND_IND] during R3SETUP In general, see SAP note 0130581 (R3SETUP step DIPGNTAB terminates). During this specific installation, for some reasons the installation process was not using the proper SAP system name "IDS", but the empty string "" instead. This lead to some minor problems with accessing directories, as the paths are generated dynamically using <sid> (in this case IDS). So instead of accessing: /usr/sap/IDS/SYS/... /usr/sap/IDS/DVMGS00 the following path were used: /usr/sap//SYS/... /usr/sap/D00i To continue with the installation, I created a link and an additional directory: &prompt.root; pwd /compat/linux/usr/sap &prompt.root; ls -l total 4 drwxr-xr-x 3 idsadm sapsys 512 May 5 11:20 D00 drwxr-x--x 5 idsadm sapsys 512 May 5 11:35 IDS lrwxr-xr-x 1 root sapsys 7 May 5 11:35 SYS -> IDS/SYS drwxrwxr-x 2 idsadm sapsys 512 May 5 13:00 tmp drwxrwxr-x 11 idsadm sapsys 512 May 4 14:20 trans I also found SAP notes (0029227 and 0008401) describing this behavior. [RFCRSWBOINI_IND_IND] during R3SETUP Set STATUS of the offending step from ERROR to OK (file CENTRDB.R3S) and restart R3SETUP. After installation, you have to execute the report RSWBOINS from transaction SE38. See SAP note 0162266 for additional information about phase RFCRSWBOINI and RFCRADDBDIF. [RFCRADDBDIF_IND_IND] during R3SETUP Set STATUS of the offending step from ERROR to OK (file CENTRDB.R3S) and restart R3SETUP. After installation, you have to execute the report RADDBDIF from transaction SE38. See SAP note 0162266 for further information. Advanced Topics If you are curious as to how the Linux binary compatibility works, this is the section you want to read. Most of what follows is based heavily on an email written to &a.chat; by Terry Lambert tlambert@primenet.com (Message ID: <199906020108.SAA07001@usr09.primenet.com>). How Does It Work? execution class loader FreeBSD has an abstraction called an execution class loader. This is a wedge into the &man.execve.2; system call. What happens is that FreeBSD has a list of loaders, instead of a single loader with a fallback to the #! loader for running any shell interpreters or shell scripts. Historically, the only loader on the Unix platform examined the magic number (generally the first 4 or 8 bytes of the file) to see if it was a binary known to the system, and if so, invoked the binary loader. If it was not the binary type for the system, the &man.execve.2; call returned a failure, and the shell attempted to start executing it as shell commands. The assumption was a default of whatever the current shell is. Later, a hack was made for &man.sh.1; to examine the first two characters, and if they were :\n, then it invoked the &man.csh.1; shell instead (we believe SCO first made this hack). What FreeBSD does now is go through a list of loaders, with a generic #! loader that knows about interpreters as the characters which follow to the next whitespace next to last, followed by a fallback to /bin/sh. ELF For the Linux ABI support, FreeBSD sees the magic number as an ELF binary (it makes no distinction between FreeBSD, Solaris, Linux, or any other OS which has an ELF image type, at this point). Solaris The ELF loader looks for a specialized brand, which is a comment section in the ELF image, and which is not present on SVR4/Solaris ELF binaries. For Linux binaries to function, they must be branded as type Linux; from &man.brandelf.1;: &prompt.root; brandelf -t Linux file When this is done, the ELF loader will see the Linux brand on the file. ELF branding When the ELF loader sees the Linux brand, the loader replaces a pointer in the proc structure. All system calls are indexed through this pointer (in a traditional Unix system, this would be the sysent[] structure array, containing the system calls). In addition, the process flagged for special handling of the trap vector for the signal trampoline code, and sever other (minor) fix-ups that are handled by the Linux kernel module. The Linux system call vector contains, among other things, a list of sysent[] entries whose addresses reside in the kernel module. When a system call is called by the Linux binary, the trap code dereferences the system call function pointer off the proc structure, and gets the Linux, not the FreeBSD, system call entry points. In addition, the Linux mode dynamically reroots lookups; this is, in effect, what the union option to FS mounts (not the unionfs!) does. First, an attempt is made to lookup the file in the /compat/linux/original-path directory, then only if that fails, the lookup is done in the /original-path directory. This makes sure that binaries that require other binaries can run (e.g., the Linux toolchain can all run under Linux ABI support). It also means that the Linux binaries can load and exec FreeBSD binaries, if there are no corresponding Linux binaries present, and that you could place a &man.uname.1; command in the /compat/linux directory tree to ensure that the Linux binaries could not tell they were not running on Linux. In effect, there is a Linux kernel in the FreeBSD kernel; the various underlying functions that implement all of the services provided by the kernel are identical to both the FreeBSD system call table entries, and the Linux system call table entries: file system operations, virtual memory operations, signal delivery, System V IPC, etc… The only difference is that FreeBSD binaries get the FreeBSD glue functions, and Linux binaries get the Linux glue functions (most older OS's only had their own glue functions: addresses of functions in a static global sysent[] structure array, instead of addresses of functions dereferenced off a dynamically initialized pointer in the proc structure of the process making the call). Which one is the native FreeBSD ABI? It does not matter. Basically the only difference is that (currently; this could easily be changed in a future release, and probably will be after this) the FreeBSD glue functions are statically linked into the kernel, and the Linux glue functions can be statically linked, or they can be accessed via a kernel module. Yeah, but is this really emulation? No. It is an ABI implementation, not an emulation. There is no emulator (or simulator, to cut off the next question) involved. So why is it sometimes called Linux emulation? To make it hard to sell FreeBSD! Really, it is because the historical implementation was done at a time when there was really no word other than that to describe what was going on; saying that FreeBSD ran Linux binaries was not true, if you did not compile the code in or load a module, and there needed to be a word to describe what was being loaded—hence the Linux emulator.
diff --git a/en_US.ISO8859-1/books/handbook/mail/chapter.sgml b/en_US.ISO8859-1/books/handbook/mail/chapter.sgml index 55eb5369e3..c7b80f6751 100644 --- a/en_US.ISO8859-1/books/handbook/mail/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/mail/chapter.sgml @@ -1,528 +1,543 @@ + + + + Bill + Lloyd + Original work by + + + + + Jim + Mock + Rewritten by + + + + + Electronic Mail - Rewritten by &a.jim;, 02 December 1999. Original work - done by &a.wlloyd;. - Synopsis email electronic mail Electronic Mail, better known as email, is one of the most widely used forms of communication today. Millions of people use email every day, and chances are if you are reading this online, you fall into that category and probably even have more than one email address. Electronic Mail configuration is the subject of many System Administration books. If you plan on doing anything beyond setting up one mailhost for your network, you need industrial strength help. DNS Some parts of email configuration are controlled in the Domain Name System (DNS). If you are going to run your own DNS server, be sure to read through the files in /etc/namedb and man -k named. Using Electronic Mail POP IMAP There are five major parts involved in an email exchange. They are: the user program, the server daemon, DNS, a pop or IMAP daemon, and of course, the mailhost itself. The User Program This includes command line programs such as mutt, pine, elm, and mail, and GUI programs such as balsa, xfmail to name a few, and something more sophisticated like a WWW browser. These programs simply pass off the email transactions to the local mailhost, either by calling one of the server daemons available or delivering it over TCP. Mailhost Server Daemon mail server daemons sendmail mail server daemons postfix mail server daemons qmail mail server daemons exim This is usually sendmail (by default with FreeBSD) or one of the other mail server daemons such as qmail, postfix, or exim. There are others, but those are the most widely used. The server daemon usually has two functions—it looks after receiving incoming mail and delivers outgoing mail. It does not allow you to connect to it via POP or IMAP to read your mail. You need an additional daemon for that. Be aware that some older versions of sendmail have some serious security problems, however as long as you run a current version of it you should not have any problems. As always, it is a good idea to stay up-to-date with any software you run. Email and DNS The Domain Name System (DNS) and its daemon named play a large role in the delivery of email. In order to deliver mail from your site to another, the server daemon will look up the site in the DNS to determine the host that will receive mail for the destination. It works the same way when you have mail sent to you. The DNS contains the database mapping hostname to an IP address, and a hostname to mailhost. The IP address is specified in an A record. The MX (Mail eXchanger) record specifies the mailhost that will receive mail for you. If you do not have an MX record for your hostname, the mail will be delivered directly to your host. Receiving Mail email receiving Receiving mail for your domain is done by the mail host. It will collect mail sent to you and store it for reading or pickup. In order to pick the stored mail up, you will need to connect to the mail host. This is done by either using POP or IMAP. If you want to read mail directly on the mail host, then a POP or IMAP server is not needed. POP IMAP If you want to run a POP or IMAP server, there are two things you need to do: Get a POP or IMAP daemon from the ports collection and install it on your system. Modify /etc/inetd.conf to load the POP or IMAP server. The Mail Host mail host The mail host is the name given to a server that is responsible for delivering and receiving mail for your host, and possibly your network. Troubleshooting email troubleshooting Here are some frequently asked questions and answers. These have been migrated from the FAQ. Why do I have to use the FQDN for hosts on my site? You will probably find that the host is actually in a different domain; for example, if you are in foo.bar.edu and you wish to reach a host called mumble in the bar.edu domain, you will have to refer to it by the fully-qualified domain name, mumble.bar.edu, instead of just mumble. BIND Traditionally, this was allowed by BSD BIND resolvers. However the current version of BIND that ships with FreeBSD no longer provides default abbreviations for non-fully qualified domain names other than the domain you are in. So an unqualified host mumble must either be found as mumble.foo.bar.edu, or it will be searched for in the root domain. This is different from the previous behavior, where the search continued across mumble.bar.edu, and mumble.edu. Have a look at RFC 1535 for why this was considered bad practice, or even a security hole. As a good workaround, you can place the line: search foo.bar.edu bar.edu instead of the previous: domain foo.bar.edu into your /etc/resolv.conf. However, make sure that the search order does not go beyond the boundary between local and public administration, as RFC 1535 calls it. Sendmail says mail loops back to myself This is answered in the sendmail FAQ as follows: * I am getting Local configuration error messages, such as: 553 relay.domain.net config error: mail loops back to myself 554 <user@domain.net>... Local configuration error How can I solve this problem? You have asked mail to the domain (e.g., domain.net) to be forwarded to a specific host (in this case, relay.domain.net) by using an MX record, but the relay machine does not recognize itself as domain.net. Add domain.net to /etc/sendmail.cw (if you are using FEATURE(use_cw_file)) or add Cw domain.net to /etc/sendmail.cf. The sendmail FAQ is in /usr/src/usr.sbin/sendmail and is recommended reading if you want to do any tweaking of your mail setup. PPP How can I do email with a dial-up PPP host? You want to connect a FreeBSD box on a lan, to the Internet. The FreeBSD box will be a mail gateway for the lan. The PPP connection is non-dedicated. There are at least two ways to do this. UUCP The other is to use UUCP. The key is to get a Internet site to provide secondary MX service for your domain. For example: bigco.com. MX 10 bigco.com. MX 20 smalliap.com. Only one host should be specified as the final recipient (add Cw bigco.com in /etc/sendmail.cf on bigco.com). When the senders' sendmail is trying to deliver the mail it will try to connect to you over the modem link. It will most likely time out because you are not online. sendmail will automatically deliver it to the secondary MX site, i.e., your Internet provider. The secondary MX site will try every (sendmail_flags = -bd -q15m in /etc/rc.conf) 15 minutes to connect to your host to deliver the mail to the primary MX site. You might want to use something like this as a login script. #!/bin/sh # Put me in /usr/local/bin/pppbigco ( sleep 60 ; /usr/sbin/sendmail -q ) & /usr/sbin/ppp -direct pppbigco If you are going to create a separate login script for a user you could use sendmail -qRbigco.com instead in the script above. This will force all mail in your queue for bigco.com to be processed immediately. A further refinement of the situation is as follows. Message stolen from the &a.isp;. > we provide the secondary MX for a customer. The customer connects to > our services several times a day automatically to get the mails to > his primary MX (We do not call his site when a mail for his domains > arrived). Our sendmail sends the mailqueue every 30 minutes. At the > moment he has to stay 30 minutes online to be sure that all mail is > gone to the primary MX. > > Is there a command that would initiate sendmail to send all the mails > now? The user has not root-privileges on our machine of course. In the privacy flags section of sendmail.cf, there is a definition Opgoaway,restrictqrun Remove restrictqrun to allow non-root users to start the queue processing. You might also like to rearrange the MXs. We are the 1st MX for our customers like this, and we have defined: # If we are the best MX for a host, try directly instead of generating # local config error. OwTrue That way a remote site will deliver straight to you, without trying the customer connection. You then send to your customer. Only works for hosts, so you need to get your customer to name their mail machine customer.com as well as hostname.customer.com in the DNS. Just put an A record in the DNS for customer.com. Advanced Topics The following section covers more involved topics such as mail configuration and setting up mail for your entire domain. Basic Configuration email configuration Out of the box, you should be able to send email to external hosts as long as you have set up /etc/resolv.conf or are running your own name server. If you would like to have mail for your host delivered to that specific host, there are two methods: Run your own name server and have your own domain. For example, FreeBSD.org Get mail delivered directly to your host. This is done by delivering mail directly to the current DNS name for your machine. For example, example.FreeBSD.org. SMTP Regardless of which of the above you choose, in order to have mail delivered directly to your host, you must have a permanent (static) IP address (no dynamic PPP dial-up). If you are behind a firewall, it must pass SMTP traffic on to you. If you want to receive mail at your host itself, you need to be sure of one of two things: MX record Make sure that the MX record in your DNS points to your host's IP address. Make sure there is no MX entry in your DNS for your host. Either of the above will allow you to receive mail directly at your host. Try this: &prompt.root; hostname example.FreeBSD.org &prompt.root; host example.FreeBSD.org example.FreeBSD.org has address 204.216.27.XX If that is what you see, mail directly to yourlogin@example.FreeBSD.org should work without problems. If instead you see something like this: &prompt.root; host example.FreeBSD.org example.FreeBSD.org has address 204.216.27.XX example.FreeBSD.org mail is handled (pri=10) by hub.FreeBSD.org All mail sent to your host (example.FreeBSD.org) will end up being collected on hub under the same username instead of being sent directly to your host. The above information is handled by your DNS server. The DNS record that carries mail routing information is the Mail eXchange entry. If no MX record exists, mail will be delivered directly to the host by way of its IP address. The MX entry for freefall.FreeBSD.org at one time looked like this: freefall MX 30 mail.crl.net freefall MX 40 agora.rdrop.com freefall MX 10 freefall.FreeBSD.org freefall MX 20 who.cdrom.com As you can see, freefall had many MX entries. The lowest MX number is the host that ends up receiving the mail in the end while the others will queue mail temporarily if freefall is busy or down. Alternate MX sites should have separate Internet connections from your own in order to be the most useful. Your ISP or other friendly site should have no problem providing this service for you. Mail for your Domain In order to set up a mailhost (a.k.a., mail server) you need to have any mail sent to various workstations directed to it. Basically, you want to hijack any mail for your domain (in this case *.FreeBSD.org) and divert it to your mail server so your users can check their mail via POP or directly on the server. DNS To make life easiest, a user account with the same username should exist on both machines. Use adduser to do this. The mailhost you will be using must be the designated mail exchange for each workstation on the network. This is done in your DNS configuration like so: example.FreeBSD.org A 204.216.27.XX ; Workstation MX 10 hub.FreeBSD.org ; Mailhost This will redirect mail for the workstation to the mailhost no matter where the A record points. The mail is sent to the MX host. You cannot do this yourself unless you are running a DNS server. If you are not, or cannot, run your own DNS server, talk to your ISP or whoever does your DNS for you. If you're doing virtual email hosting, the following information will come in handy. For the sake of an example, we will assume you have a customer with their own domain, in this case customer1.org and you want all the mail for customer1.org sent to your mailhost, which is named mail.myhost.com. The entry in your DNS should look like this: customer1.org MX 10 mail.myhost.com You do not need an A record if you only want to handle email for the domain. Be aware that this means pinging customer1.org will not work unless an A record exists for it. The last thing that you must do is tell sendmail on your mailhost what domains and/or hostnames it should be accepting mail for. There are a few different ways this can be done. Either of the following will work: Add the hosts to your /etc/sendmail.cw file if you are using the FEATURE(use_cw_file). If you are using sendmail 8.10 or higher, the file is /etc/mail/local-host-names. Add a Cwyour.host.com line to your /etc/sendmail.cf or /etc/mail/sendmail.cf if you are using sendmail 8.10 or higher. diff --git a/en_US.ISO8859-1/books/handbook/multimedia/chapter.sgml b/en_US.ISO8859-1/books/handbook/multimedia/chapter.sgml index e242a377f7..1675e6e19e 100644 --- a/en_US.ISO8859-1/books/handbook/multimedia/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/multimedia/chapter.sgml @@ -1,368 +1,368 @@ Moses Moore - Contributed + Contributed by Sound Synopsis FreeBSD supports a wide variety of sound cards, allowing you to enjoy high fidelity output from your computer. This includes the ability to record and playback audio in the MPEG Audio Layer 3 (MP3), WAV, and Ogg Vorbis formats as well as many other formats. The FreeBSD Ports Collection also contains applications allowing you to edit your recorded audio, add sound effects, and control attached MIDI devices. After reading this chapter you will know: How to locate your sound card. How to configure your system so that your sound card is recognized. Methods to test that your card is working using sample applications. How to troubleshoot your sound setup. Before reading this chapter you should: Know how to configure and install a new kernel () Locating the Correct Device PCI ISA sound cards Before you begin, you should know the model of the card you have, the chip it uses, and whether it is a PCI or ISA card. FreeBSD supports a wide variety of both PCI and ISA cards. If you do not see your card in the following list, check the &man.pcm.4; manual page. This is not a complete list; however, it does list some of the most common cards. Crystal 4237, 4236, 4232, 4231 Yamaha OPL-SAx OPTi931 Ensoniq AudioPCI 1370/1371 ESS Solo-1/1E NeoMagic 256AV/ZX Sound Blaster Pro, 16, 32, AWE64, AWE128, Live Creative ViBRA16 Advanced Asound 100, 110, and Logic ALS120 ES 1868, 1869, 1879, 1888 Gravis UltraSound Aureal Vortex 1 or 2 kernel configuration The driver you use in your kernel depends on the kind of card you have. The sections below provide more information and what you will need to add to your kernel configuration. Creative, Advance, and ESS Sound Cards If you have one of the above cards, you will need to add device pcm to your kernel. If you have a PnP ISA card, you will also need to add device sbc to your kernel. For a non-PnP ISA card, add device pcm and device sbc0 at isa? port0x220 irq 5 drq 1 flags 0x15 to your kernel. Those are the default settings. You may need to change the IRQ, etc. See the &man.sbc.4; man page for more information. The Sound Blaster Live is not supported under FreeBSD 4.0 without a patch, which this document will not cover. It is recommended that you update to the latest -STABLE before trying to use this card. Gravis UltraSound Cards For a PnP ISA card, you will need to add device pcm and device gusc to your kernel. If you have a non-PnP ISA card, you will need to add device pcm and device gus0 at isa? port 0x220 irq 5 drq 1 flags 0x13 to your kernel. You may need to change the IRQ, etc. See the &man.gusc.4; man page for more information. Crystal Sound Cards For Crystal cards, you will need both device pcm and device csa in your kernel. Generic Support For PnP ISA or PCI cards, you will need to add device pcm to your kernel configuration. If you have a non-PnP ISA sound card that does not have a bridge driver, you will need to add device pcm0 at isa? irq 10 drq 1 flags 0x0 to your kernel configuration. You may need to change the IRQ, etc., to match your hardware configuration. Recompiling the Kernel After adding the driver(s) you need to your kernel configuration, you will need to recompile your kernel. Please see of the handbook for more information. Creating and Testing the Device Nodes device nodes After you reboot, log in and run cat /dev/sndstat. You should see output similar to the following: FreeBSD Audio Driver (newpcm) Sep 21 2000 18:29:53 Installed devices: pcm0: <Aureal Vortex 8830> at memory 0xfeb40000 irq 5 (4p/1r +channels duplex) If you see an error message, something went wrong earlier. If that happens, go through your kernel configuration file again and make sure you chose the correct device. If it reported no errors and returned pcm0, su to root and do the following: &prompt.root; cd /dev &prompt.root; sh MAKEDEV snd0 If it reported no errors and returned pcm1, su to root and do the following: &prompt.root; cd /dev &prompt.root; sh MAKEDEV snd1 Please note that either of the above commands will not create a /dev/snd device! Instead it creates a group of device nodes including: Device Description /dev/audio SPARC-compatible audio device /dev/dsp Digitized voice device /dev/dspW Like /dev/dsp, but 16 bits per sample /dev/midi Raw midi access device /dev/mixer Control port mixer device /dev/music Level 2 sequencer interface /dev/sequencer Sequencer device /dev/pss Programmable device interface If all goes well, you should now have a functioning sound card. If you do not, see the next section. Common Problems device node I get an unsupported subdevice XX error! One or more of the device nodes wasn't created correctly. Repeat the steps above. I/O port I get a sb_dspwr(XX) timed out error! The I/O port is not set correctly. IRQ I get a bad irq XX error! The IRQ is set incorrectly. Make sure that the set IRQ and the sound IRQ are the same. I get a xxx: gus pcm not attached, out of memory error. What causes that? If this happens, it is because there is not enough available memory to use the device. diff --git a/en_US.ISO8859-1/books/handbook/policies/chapter.sgml b/en_US.ISO8859-1/books/handbook/policies/chapter.sgml index 8731f45abe..f9fcbba896 100644 --- a/en_US.ISO8859-1/books/handbook/policies/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/policies/chapter.sgml @@ -1,403 +1,437 @@ + + + Poul-Henning + Kamp + Contributed by + + + Source Tree Guidelines and Policies - Contributed by &a.phk;. - This chapter documents various guidelines and policies in force for the FreeBSD source tree. <makevar>MAINTAINER</makevar> on Makefiles ports maintainer June 1996. If a particular portion of the FreeBSD distribution is being maintained by a person or group of persons, they can communicate this fact to the world by adding a MAINTAINER= email-addresses line to the Makefiles covering this portion of the source tree. The semantics of this are as follows: The maintainer owns and is responsible for that code. This means that he is responsible for fixing bugs and answer problem reports pertaining to that piece of the code, and in the case of contributed software, for tracking new versions, as appropriate. Changes to directories which have a maintainer defined shall be sent to the maintainer for review before being committed. Only if the maintainer does not respond for an unacceptable period of time, to several emails, will it be acceptable to commit changes without review by the maintainer. However, it is suggested that you try and have the changes reviewed by someone else if at all possible. It is of course not acceptable to add a person or group as maintainer unless they agree to assume this duty. On the other hand it doesn't have to be a committer and it can easily be a group of people. + + + + Poul-Henning + Kamp + Contributed by + + + David + O'Brien + + + + + Contributed Software contributed software - Contributed by &a.phk; and &a.obrien;. - - June 1996. - + Some parts of the FreeBSD distribution consist of software that is actively being maintained outside the FreeBSD project. For historical reasons, we call this contributed software. Some examples are perl, gcc and patch. Over the last couple of years, various methods have been used in dealing with this type of software and all have some number of advantages and drawbacks. No clear winner has emerged. Since this is the case, after some debate one of these methods has been selected as the official method and will be required for future imports of software of this kind. Furthermore, it is strongly suggested that existing contributed software converge on this model over time, as it has significant advantages over the old method, including the ability to easily obtain diffs relative to the official versions of the source by everyone (even without cvs access). This will make it significantly easier to return changes to the primary developers of the contributed software. Ultimately, however, it comes down to the people actually doing the work. If using this model is particularly unsuited to the package being dealt with, exceptions to these rules may be granted only with the approval of the core team and with the general consensus of the other developers. The ability to maintain the package in the future will be a key issue in the decisions. Because of some unfortunate design limitations with the RCS file format and CVS's use of vendor branches, minor, trivial and/or cosmetic changes are strongly discouraged on files that are still tracking the vendor branch. Spelling fixes are explicitly included here under the cosmetic category and are to be avoided for files with revision 1.1.x.x. The repository bloat impact from a single character change can be rather dramatic. The Tcl embedded programming language will be used as example of how this model works: src/contrib/tcl contains the source as distributed by the maintainers of this package. Parts that are entirely not applicable for FreeBSD can be removed. In the case of Tcl, the mac, win and compat subdirectories were eliminated before the import src/lib/libtcl contains only a "bmake style" Makefile that uses the standard bsd.lib.mk makefile rules to produce the library and install the documentation. src/usr.bin/tclsh contains only a bmake style Makefile which will produce and install the tclsh program and its associated man-pages using the standard bsd.prog.mk rules. src/tools/tools/tcl_bmake contains a couple of shell-scripts that can be of help when the Tcl software needs updating. These are not part of the built or installed software. The important thing here is that the src/contrib/tcl directory is created according to the rules: It is supposed to contain the sources as distributed (on a proper CVS vendor-branch and without RCS keyword expansion) with as few FreeBSD-specific changes as possible. The 'easy-import' tool on freefall will assist in doing the import, but if there are any doubts on how to go about it, it is imperative that you ask first and not blunder ahead and hope it works out. CVS is not forgiving of import accidents and a fair amount of effort is required to back out major mistakes. Because of the previously mentioned design limitations with CVS's vendor branches, it is required that official patches from the vendor be applied to the original distributed sources and the result re-imported onto the vendor branch again. Official patches should never be patched into the FreeBSD checked out version and "committed", as this destroys the vendor branch coherency and makes importing future versions rather difficult as there will be conflicts. Since many packages contain files that are meant for compatibility with other architectures and environments that FreeBSD, it is permissible to remove parts of the distribution tree that are of no interest to FreeBSD in order to save space. Files containing copyright notices and release-note kind of information applicable to the remaining files shall not be removed. If it seems easier, the bmake Makefiles can be produced from the dist tree automatically by some utility, something which would hopefully make it even easier to upgrade to a new version. If this is done, be sure to check in such utilities (as necessary) in the src/tools directory along with the port itself so that it is available to future maintainers. In the src/contrib/tcl level directory, a file called FREEBSD-upgrade should be added and it should states things like: Which files have been left out Where the original distribution was obtained from and/or the official master site. Where to send patches back to the original authors Perhaps an overview of the FreeBSD-specific changes that have been made. However, please do not import FREEBSD-upgrade with the contributed source. Rather you should cvs add FREEBSD-upgrade ; cvs ci after the initial import. Example wording from src/contrib/cpio is below: This directory contains virgin sources of the original distribution files on a "vendor" branch. Do not, under any circumstances, attempt to upgrade the files in this directory via patches and a cvs commit. New versions or official-patch versions must be imported. Please remember to import with "-ko" to prevent CVS from corrupting any vendor RCS Ids. For the import of GNU cpio 2.4.2, the following files were removed: INSTALL cpio.info mkdir.c Makefile.in cpio.texi mkinstalldirs To upgrade to a newer version of cpio, when it is available: 1. Unpack the new version into an empty directory. [Do not make ANY changes to the files.] 2. Remove the files listed above and any others that don't apply to FreeBSD. 3. Use the command: cvs import -ko -m 'Virgin import of GNU cpio v<version>' \ src/contrib/cpio GNU cpio_<version> For example, to do the import of version 2.4.2, I typed: cvs import -ko -m 'Virgin import of GNU v2.4.2' \ src/contrib/cpio GNU cpio_2_4_2 4. Follow the instructions printed out in step 3 to resolve any conflicts between local FreeBSD changes and the newer version. Do not, under any circumstances, deviate from this procedure. To make local changes to cpio, simply patch and commit to the main branch (aka HEAD). Never make local changes on the GNU branch. All local changes should be submitted to "cpio@gnu.ai.mit.edu" for inclusion in the next vendor release. obrien@FreeBSD.org - 30 March 1997 Encumbered Files It might occasionally be necessary to include an encumbered file in the FreeBSD source tree. For example, if a device requires a small piece of binary code to be loaded to it before the device will operate, and we do not have the source to that code, then the binary file is said to be encumbered. The following policies apply to including encumbered files in the FreeBSD source tree. Any file which is interpreted or executed by the system CPU(s) and not in source format is encumbered. Any file with a license more restrictive than BSD or GNU is encumbered. A file which contains downloadable binary data for use by the hardware is not encumbered, unless (1) or (2) apply to it. It must be stored in an architecture neutral ASCII format (file2c or uuencoding is recommended). Any encumbered file requires specific approval from the Core team before it is added to the CVS repository. Encumbered files go in src/contrib or src/sys/contrib. The entire module should be kept together. There is no point in splitting it, unless there is code-sharing with non-encumbered code. Object files are named arch/filename.o.uu>. Kernel files; Should always be referenced in conf/files.* (for build simplicity). Should always be in LINT, but the Core team decides per case if it should be commented out or not. The Core team can, of course, change their minds later on. The Release Engineer decides whether or not it goes in to the release. User-land files; core team The Core team decides if the code should be part of make world. release engineer The Release Engineer decides if it goes in to the release. + + + + Satoshi + Asami + Contributed by + + + Peter + Wemm + + + David + O'Brien + + + + + Shared Libraries - - Contributed by &a.asami;, &a.peter;, and &a.obrien; 9 - December 1996. If you are adding shared library support to a port or other piece of software that doesn't have one, the version numbers should follow these rules. Generally, the resulting numbers will have nothing to do with the release version of the software. The three principles of shared library building are: Start from 1.0 If there is a change that is backwards compatible, bump minor number (note that ELF systems ignore the minor number) If there is an incompatible change, bump major number For instance, added functions and bugfixes result in the minor version number being bumped, while deleted functions, changed function call syntax etc. will force the major version number to change. Stick to version numbers of the form major.minor (x.y). Our a.out dynamic linker does not handle version numbers of the form x.y.z well. Any version number after the y (ie. the third digit) is totally ignored when comparing shared lib version numbers to decide which library to link with. Given two shared libraries that differ only in the micro revision, ld.so will link with the higher one. Ie: if you link with libfoo.so.3.3.3, the linker only records 3.3 in the headers, and will link with anything starting with libfoo.so.3.(anything >= 3).(highest available). ld.so will always use the highest minor revision. Ie: it will use libc.so.2.2 in preference to libc.so.2.0, even if the program was initially linked with libc.so.2.0. In addition, our ELF dynamic linker does not handle minor version numbers at all. However, one should still specify a major and minor version number as our Makefiles "do the right thing" based on the type of system. For non-port libraries, it is also our policy to change the shared library version number only once between releases. In addition, it is our policy to change the major shared library version number only once between major OS releases. Ie: X.0 to (X+1).0. When you make a change to a system library that requires the version number to be bumped, check the Makefile's commit logs. It is the responsibility of the committer to ensure that the first such change since the release will result in the shared library version number in the Makefile to be updated, and any subsequent changes will not. diff --git a/en_US.ISO8859-1/books/handbook/ports/chapter.sgml b/en_US.ISO8859-1/books/handbook/ports/chapter.sgml index 594b4ca50d..c413036709 100644 --- a/en_US.ISO8859-1/books/handbook/ports/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/ports/chapter.sgml @@ -1,1314 +1,1314 @@ Installing Applications: Packages and Ports Synopsis ports packages There is only so much you can do with FreeBSD. If you are an operating systems developer then the base system likely contains everything you need. If that is not what you are planning to do with FreeBSD then you will probably want to install additional software—perhaps a web server, or a mail reader, or a graphical environment such as KDE or GNOME. If you have used a Unix system before you will know that the typical procedure for installing third party software goes something like this: Download the software, which might be distributed in source code format, or as a binary. Unpack the software from its distribution format (typically a tarball compressed with either &man.compress.1; or &man.gzip.1;). Locate the documentation (perhaps a README file, or some files in a doc/ subdirectory) and read up on how to install the software. If the software was distributed in source format, compile it. This may involve editing a Makefile, or running a configure script, and other work. Test and install the software. And that is only if everything goes well. If you are installing a software package that was not deliberately ported to FreeBSD you may even have to go in and edit the code to make it work properly. Should you want to, you can continue to install software the traditional way with FreeBSD. However, FreeBSD provides two technologies which can save you a lot of effort; packages and ports. At the time of writing, over &os.numports; third party applications have been made available in this way. For any given application, the FreeBSD package for that application is a single file which you must download. The package contains pre-compiled copies of all the commands for the application, as well as any configuration files or documentation. A downloaded package file can be manipulated with FreeBSD package management commands, such as &man.pkg.add.1;, &man.pkg.delete.1;, &man.pkg.info.1;, and so on. Installing a new application can be carried out with a single command. A FreeBSD port for an application is a collection of files designed to automate the process of compiling an application from source code. Remember that there are a number of steps you would normally carry out if you compiled a program yourself (unpacking, patching, compiling, installing). The files that make up a port contain all the necessary information to allow the system to do this for you. You run a handful of simple commands and the source code for the application is automatically downloaded, extracted, patched, compiled, and installed for you. In fact, the ports system can also be used to generate packages which can later be manipulated with the pkg_add and friends commands. Both packages and ports understand dependencies. Suppose you want to install an application that depends on a specific library being installed. Both the application and the library have been made available as FreeBSD ports and packages. If you use the pkg_add command or the ports system to add the application, both will notice that the library has not been installed, and the commands will install the library first. Given that the two technologies are quite similar, you might be wondering why FreeBSD bothers with both. Packages and ports both have their own strengths, and which one you use will depend on your own preference. Package benefits A compressed package tarball is typically smaller than the compressed tarball containing the source code for the application. Packages do not require any additional compilation. For large applications, such as Mozilla, KDE, or GNOME this can be important, particularly if you are on a slow system. Packages do not require you to understand the process involved in compiling software on FreeBSD. Ports benefits Packages are normally compiled with conservative options, because they have to run on the maximum number of systems. By installing from the port, you can tweak the compilation options to (for example) generate code that is specific to a 686 processor. Some packages have compile time options relating to what they can and can't do. For example, Apache can be configured with a wide variety of different builtin options. By building from the port you do not have to accept the default options, and can set them yourself. In some cases, multiple packages will exist for the same application to specify certain settings. For example, Ghostscript is available as a ghostscript package and a ghostscript-nox11 package, depending on whether or not you have installed an X11 server. This sort of rough tweaking is possible with packages, but rapidly becomes impossible if an application has more than one or two different compile time options. The licensing conditions of some software distributions forbid binary distribution. They must be distributed as source code. Some people do not trust binary distributions. At least with source code, you can (in theory) read through it and look for potential problems yourself. If you have local patches, you will need the source in order to apply them. Some people like having code around, so they can read it if they get bored, hack it, borrow from it (license permitting, of course), and so on. To keep track of updated ports, subscribe to the freebsd-ports@freebsd.org mailing list. The remainder of this chapter will explain how to use packages and ports to install and manage third party software on FreeBSD. Finding your application Before you can install any applications you need to know what you want, and what the application is called. FreeBSD's list of available applications is growing all the time. Currently there are over &os.numports; applications available as packages or ports. There are a number of ways to find what you want. The FreeBSD web site maintains an up-to-date searchable list of all the available applications, at http://www.FreeBSD.org/ports/. The name space is divided in to categories, and you may either search for an application by name (if you know it), or you can list all the applications available in a category. FreshPorts Dan Langille maintains FreshPorts, at http://www.freshports.org/. FreshPorts tracks changes to the applications in the ports tree as they happen, and allows you to watch one or more ports, and will send you an email when they are updated. FreshMeat If you do not know the name of the application you want, try using a site like FreshMeat (http://www.freshmeat.net/) or AppWatch (http://www.appwatch.com/) to find an application, then check back at the FreeBSD site to see if the application has been ported yet. Chern Lee - Contributed + Contributed by Using the Packages System Installing a Package packages installing pkg_add You can use the &man.pkg.add.1; utility to install a FreeBSD software package from a local file or from a server on the network. Downloading a package and then installing it locally &prompt.root; ftp -a ftp2.freebsd.org Connected to ftp2.freebsd.org. 220 ftp2.freebsd.org FTP server (Version 6.00LS) ready. 331 Guest login ok, send your email address as password. 230- 230- This machine is in Vienna, VA, USA, hosted by Verio. 230- Questions? E-mail freebsd@vienna.verio.net. 230- 230- 230 Guest login ok, access restrictions apply. Remote system type is UNIX. Using binary mode to transfer files. ftp> cd /pub/FreeBSD/ports/packages/sysutils/ 250 CWD command successful. ftp> get lsof-4.56.4.tgz local: lsof-4.56.4.tgz remote: lsof-4.56.4.tgz 200 PORT command successful. 150 Opening BINARY mode data connection for 'lsof-4.56.4.tgz' (92375 bytes). 100% |**************************************************| 92375 00:00 ETA 226 Transfer complete. 92375 bytes received in 5.60 seconds (16.11 KB/s) ftp> exit &prompt.root; pkg_add lsof-4.56.4.tgz If you don't have a source of local packages (such as a FreeBSD CDROM set) then it will probably be easier to use the -r option to &man.pkg.add.1;. This will cause the utility to automatically determine the correct object format and release and then to fetch and install the package from an FTP site. pkg_add &prompt.root; pkg_add -r lsof-4.56.4 This would download the correct package and add it without any further user intervention. Package files are distributed in .tgz format. You can find them at ftp://ftp.freebsd.org/pub/FreeBSD/ports/packages/, or on the FreeBSD CDROM distribution. Every CD on the FreeBSD 4-CD set (and PowerPak, etc) contains packages in the /packages directory. The layout of the packages is similar to that of the /usr/ports tree. Each category has its own directory, and every package can be found within the All directory. The directory structure of the package system is homologous to that of the ports; they work with each other to form the entire package/port system. Deleting a Package pkg_delete packages deleting To remove a previously installed software package, use the &man.pkg.delete.1; utility. &prompt.root pkg_delete xchat-1.7.1 Managing packages packages managing &man.pkg.info.1; a utility that lists and describes the various packages installed. pkg_info &prompt.root pkg_info cvsup-16.1 A general network file distribution system optimized for CV docbook-1.2 Meta-port for the different versions of the DocBook DTD ... &man.pkg.version.1; a utility that summarizes the versions of all installed packages. It compares the package version to the current version found in the ports tree. &prompt.root pkg_version cvsup = docbook = ... The symbols in the second column indicate the relative age of the installed version and the version available in the local ports tree. Symbol Meaning = The version of the installed package matches that of the one found in the local ports tree. < The installed version is older then the one available in the ports tree. >The installed version is newer than the one found in the local ports tree. (local ports tree is probably out of date) ?The installed package cannot be found in the ports index. *There are multiple versions of the package. Miscellaneous All package information is stored within the /var/db/pkg directory. The listing of contents and descriptions of each package can be found within files in this directory. Using the Ports Collection The following sections provide basic instructions on using the ports collection to install or remove programs from your system. Installing Ports ports installing The first thing that should be explained when it comes to the ports collection is what is actually meant by a skeleton. In a nutshell, a port skeleton is a minimal set of files that are needed for a program to compile and install cleanly on FreeBSD. Each port skeleton includes: A Makefile. The Makefile contains various statements that specify how the application should be compiled and where it should be installed on your system A distinfo file. This file contains information about the files that must be downloaded to build the port, and checksums, to ensure that those files have not been corrupted during the download. A files directory. This directory contains patches to make the program compile and install on your FreeBSD system. Patches are basically small files that specify changes to particular files. They are in plain text format, and basically say Remove line 10 or Change line 26 to this .... Patches are also known as diffs because they are generated by the diff program. This directory may also contain other files used in building the port. A pkg-comment file. This is a one-line description of the program. A pkg-descr file. This is a more detailed, often multiple-line, description of the program. A pkg-plist file. This is a list of all the files that will be installed by the port. It also tells the ports system what files to remove upon deinstallation. Now that you have enough background information to know what the ports collection is used for, you are ready to install your first port. There are two ways this can be done, and each is explained below. Before we get into that however, you will need to choose a port to install. There are a few ways to do this, with the easiest method being the ports listing on the FreeBSD web site. You can browse through the ports listed there or use the search function on the site. Each port also includes a description so you can read a bit about each port before deciding to install it. Another method is to use the whereis command. To use whereis, simply type whereis <program you want to install> at the prompt, and if it is found on your system, you will be told where it is, like so: &prompt.root; whereis lsof lsof: /usr/ports/sysutils/lsof This tells us that lsof (a system utility) can be found in the /usr/ports/sysutils/lsof directory. Yet another way of finding a particular port is by using the ports collection's built-in search mechanism. To use the search feature, you will need to be in the /usr/ports directory. Once in that directory, run make search key=program-name where program-name is the name of the program you want to find. For example, if you were looking for lsof: &prompt.root; cd /usr/ports &prompt.root; make search key=lsof Port: lsof-4.56.4 Path: /usr/ports/sysutils/lsof Info: Lists information about open files (similar to fstat(1)) Maint: obrien@FreeBSD.org Index: sysutils B-deps: R-deps: The part of the output you want to pay particular attention to is the Path: line, since that tells you where to find it. The other information provided is not needed in order to install the port directly, so it will not be covered here. You must be the root user to install ports. Now that you have found a port you would like to install, you are ready to do the actual installation. Installing ports from a CDROM ports installing from CDROM As you may have guessed from the title, everything described in this section assumes you have a FreeBSD CDROM set. If you do not, you can order one from the FreeBSD Mall. Assuming that your FreeBSD CDROM is in the drive and is mounted on /cdrom (and the mount point must be /cdrom), you are ready to install the port. To begin, change to the directory where the port you want to install lives: &prompt.root; cd /usr/ports/sysutils/lsof Once inside the lsof directory, you will see the port skeleton. The next step is to compile (also called build) the port. This is done by simply typing make at the prompt. Once you have done so, you should see something like this: &prompt.root; make >> lsof_4.57D.freebsd.tar.gz doesn't seem to exist in /usr/ports/distfiles/. >> Attempting to fetch from file:/cdrom/ports/distfiles/. ===> Extracting for lsof-4.57 ... [extraction output snipped] ... >> Checksum OK for lsof_4.57D.freebsd.tar.gz. ===> Patching for lsof-4.57 ===> Applying FreeBSD patches for lsof-4.57 ===> Configuring for lsof-4.57 ... [configure output snipped] ... ===> Building for lsof-4.57 ... [compilation snipped] ... &prompt.root; Take notice that once the compile is complete you are returned to your prompt. The next step is to install the port. In order to install it, you simply need to tack one word onto the make command, and that word is install: &prompt.root; make install ===> Installing for lsof-4.57 ... [install routines snipped] ... ===> Generating temporary packing list ===> Compressing manual pages for lsof-4.57 ===> Registering installation for lsof-4.57 ===> SECURITY NOTE: This port has installed the following binaries which execute with increased privileges. &prompt.root; Once you are returned to your prompt, you should be able to run the application you just installed. Since lsof is a program that runs with increased privileges, a security warning is shown. During the building and installation of ports, you should take heed of any other warnings that may appear. You can save an extra step by just running make install instead of make and make install as two separate steps. Please be aware that the licenses of a few ports do not allow for inclusion on the CDROM. This could be for various reasons, including things such as registration form needs to be filled out before downloading, if redistribution is not allowed, and so on. If you wish to install a port not included on the CDROM, you will need to be online in order to do so (see the next section). Installing ports from the Internet As with the last section, this section makes an assumption that you have a working Internet connection. If you do not, you will need to do the CDROM installation. Installing a port from the Internet is done exactly the same way as it would be if you were installing from a CDROM. The only difference between the two is that the program's source code is downloaded from the Internet instead of pulled from the CDROM. The steps involved are identical: &prompt.root; make install >> lsof_4.57D.freebsd.tar.gz doesn't seem to exist in /usr/ports/distfiles/. >> Attempting to fetch from ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/distfiles/. Receiving lsof_4.57D.freebsd.tar.gz (439860 bytes): 100% 439860 bytes transferred in 18.0 seconds (23.90 kBps) ===> Extracting for lsof-4.57 ... [extraction output snipped] ... >> Checksum OK for lsof_4.57D.freebsd.tar.gz. ===> Patching for lsof-4.57 ===> Applying FreeBSD patches for lsof-4.57 ===> Configuring for lsof-4.57 ... [configure output snipped] ... ===> Building for lsof-4.57 ... [compilation snipped] ... ===> Installing for lsof-4.57 ... [install routines snipped] ... ===> Generating temporary packing list ===> Compressing manual pages for lsof-4.57 ===> Registering installation for lsof-4.57 ===> SECURITY NOTE: This port has installed the following binaries which execute with increased privileges. &prompt.root; As you can see, the only difference is the line that tells you where the system is fetching the port from. That about does it for installing ports onto your system. In the next section you will learn how to remove a port from your system. Removing Installed Ports ports removing Now that you know how to install ports, you are probably wondering how to remove them, just in case you install one and later on you decide that you installed the wrong port. The next few paragraphs will cover just that. Now we will remove our previous example (which was lsof for those of you not paying attention). As with installing ports, the first thing you must do is change to the port directory, which if you remember was /usr/ports/irc/lsof. After you change directories, you are ready to uninstall lsof. This is done with the make deinstall command: &prompt.root; cd /usr/ports/irc/lsof &prompt.root; make deinstall ===> Deinstalling for lsof-4.57 That was easy enough. You have now managed to remove lsof from your system. If you would like to reinstall it, you can do so by running make reinstall from the /usr/ports/irc/lsof directory. Troubleshooting The following sections cover some of the more frequently asked questions about the ports collection and some basic troubleshooting techniques, and what do to if a port is broken. Some Questions and Answers I thought this was going to be a discussion about modems??! Ah, you must be thinking of the serial ports on the back of your computer. We are using port here to mean the result of porting a program from one version of Unix to another. What is a patch? A patch is a small file that specifies how to go from one version of a file to another. It contains plain text, and basically says things like delete line 23, add these two lines after line 468, or change line 197 to this. They are also known as diffs because they are generated by the diff program. tarball What is all this about tarballs? It is a file ending in .tar, or with variations such as .tar.gz, .tar.Z, .tar.bz2, and even .tgz. Basically, it is a directory tree that has been archived into a single file (.tar) and optionally compressed (.gz). This technique was originally used for Tape ARchives (hence the name tar), but it is a widely used way of distributing program source code around the Internet. You can see what files are in them, or even extract them yourself by using the standard Unix tar program, which comes with the base FreeBSD system, like this: &prompt.user; tar tvzf foobar.tar.gz &prompt.user; tar xzvf foobar.tar.gz &prompt.user; tar tvf foobar.tar &prompt.user; tar xvf foobar.tar checksum And a checksum? It is a number generated by adding up all the data in the file you want to check. If any of the characters change, the checksum will no longer be equal to the total, so a simple comparison will allow you to spot the difference. I did what you said for compiling ports from a CDROM and it worked great until I tried to install the kermit port. &prompt.root; make install >> cku190.tar.gz doesn't seem to exist on this system. >> Attempting to fetch from ftp://kermit.columbia.edu/kermit/archives/. Why can it not be found? Have I got a dud CDROM? As was explained in the compiling ports from CDROM section, some ports cannot be put on the CDROM set due to licensing restrictions. Kermit is an example of that. The licensing terms for kermit do not allow us to put the tarball for it on the CDROM, so you will have to fetch it by hand—sorry! The reason why you got all those error messages was because you were not connected to the Internet at the time. Once you have downloaded it from any of the MASTER_SITES (listed in the Makefile), you can restart the install process. I did that, but when I tried to put it into /usr/ports/distfiles I got some error about not having permission. The ports mechanism looks for the tarball in /usr/ports/distfiles, but you will not be able to copy anything there because it is symlinked to the CDROM, which is read-only. You can tell it to look somewhere else by doing: &prompt.root; make DISTDIR=/where/you/put/it install Does the ports scheme only work if you have everything in /usr/ports? My system administrator says I must put everything under /u/people/guests/wurzburger, but it does not seem to work. You can use the PORTSDIR and PREFIX variables to tell the ports mechanism to use different directories. For instance, &prompt.root; make PORTSDIR=/u/people/guests/wurzburger/ports install will compile the port in /u/people/guests/wurzburger/ports and install everything under /usr/local. &prompt.root; make PREFIX=/u/people/guests/wurzburger/local install will compile it in /usr/ports and install it in /u/people/guests/wurzburger/local. And of course, &prompt.root; make PORTSDIR=../ports PREFIX=../local install will combine the two (it is too long to write fully on the page, but it should give you the general idea). imake Some ports that use &man.imake.1; (a part of the X Windows System) don't work well with PREFIX, and will insist on installing under /usr/X11R6. Similarly, some Perl ports ignore PREFIX and install in the Perl tree. Making these ports respect PREFIX is a difficult or impossible job. If you do not fancy typing all that in every time you install a port, it is a good idea to put these variables into your environment. Read the man page for your shell for instructions on doing so. I do not have a FreeBSD CDROM, but I would like to have all the tarballs handy on my system so I do not have to wait for a download every time I install a port. Is there any way to get them all at once? To get every single tarball for the ports collection, do: &prompt.root; cd /usr/ports &prompt.root; make fetch For all the tarballs for a single ports directory, do: &prompt.root; cd /usr/ports/directory &prompt.root; make fetch and for just one port—well, you have probably guessed already. I know it is probably faster to fetch the tarballs from one of the FreeBSD mirror sites close by. Is there any way to tell the port to fetch them from servers other than the ones listed in the MASTER_SITES? Yes. If you know, for example, that ftp.FreeBSD.org is much closer to you than the sites listed in MASTER_SITES, do as follows: &prompt.root; cd /usr/ports/directory &prompt.root; make MASTER_SITE_OVERRIDE= \ ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/distfiles/ fetch I want to know what files make is going to need before it tries to pull them down. make fetch-list will display a list of the files needed for a port. Is there any way to stop the port from compiling? I want to do some hacking on the source before I install it, but it is a bit tiresome to watch it and hit control-C every time. Doing make extract will stop it after it has fetched and extracted the source code. I am trying to make my own port and I want to be able to stop it compiling until I have had a chance to see if my patches worked properly. Is there something like make extract, but for patches? Yep, make patch is what you want. You will probably find the PATCH_DEBUG option useful as well. And by the way, thank you for your efforts! I have heard that some compiler options can cause bugs. Is this true? How can I make sure that I compile ports with the right settings? Yes, with version 2.6.3 of gcc (the version shipped with FreeBSD 2.1.0 and 2.1.5), the option could result in buggy code unless you used the option as well. (Most of the ports do not use ). You should be able to specify the compiler options used by something like: &prompt.root; make CFLAGS='-O2 -fno-strength-reduce' install or by editing /etc/make.conf, but unfortunately not all ports respect this. The surest way is to do make configure, then go into the source directory and inspect the Makefiles by hand, but this can get tedious if the source has lots of sub-directories, each with their own Makefiles. The default FreeBSD compiler options are quite conservative, so if you have not changed them you should not have any problems. There are so many ports it is hard to find the one I want. Is there a list anywhere of what ports are available? Look in the INDEX file in /usr/ports. If you would like to search the ports collection for a keyword, you can do that too. For example, you can find ports relevant to the LISP programming language using: &prompt.user; cd /usr/ports &prompt.user; make search key=lisp I went to install the foo port but the system suddenly stopped compiling it and starting compiling the bar port. What is going on? The foo port needs something that is supplied with bar — for instance, if foo uses graphics, bar might have a library with useful graphics processing routines. Or bar might be a tool that is needed to compile the foo port. I installed the grizzle program from the ports and frankly it is a complete waste of disk space. I want to delete it but I do not know where it put all the files. Any clues? No problem, just type: &prompt.root; pkg_delete grizzle-6.5 Alternatively, you can type: &prompt.root; cd /usr/ports/somewhere/grizzle &prompt.root; make deinstall Hang on a minute, you have to know the version number to use that command. You do not seriously expect me to remember that, do you? Not at all, you can find it out by doing: &prompt.root; pkg_info -I 'grizzle*' Information for grizzle-6.5: grizzle-6.5 - the combined piano tutorial, LOGO interpreter and shoot 'em up arcade game. The version number can also be found using the pkg_info or by typing: ls /var/db/pkg Talking of disk space, the ports directory seems to be taking up an awful lot of room. Is it safe to go in there and delete things? Yes, if you have installed the program and are fairly certain you will not need the source again, there is no point in keeping it hanging around. The best way to do this is: &prompt.root; cd /usr/ports &prompt.root; make clean which will go through all the ports subdirectories and delete everything except the skeletons for each port. I tried that and it still left all those tarballs or whatever you called them in the distfiles directory. Can I delete those as well? Yes, if you are sure you have finished with them, those can go as well. They can be removed manually, or by using make distclean. I like having lots and lots of programs to play with. Is there any way of installing all the ports in one go? Just do: &prompt.root; cd /usr/ports &prompt.root; make install Be careful, as some ports may install files with the same name. If you install two graphics ports and they both install /usr/local/bin/plot then you will obviously have problems. OK, I tried that, but I thought it would take a very long time so I went to bed and left it to get on with it. When I looked at the computer this morning, it had only done three and a half ports. Did something go wrong? No, the problem is that some of the ports need to ask you questions that we cannot answer for you (e.g., Do you want to print on A4 or US letter sized paper?) and they need to have someone on hand to answer them. I really do not want to spend all day staring at the monitor. Any better ideas? OK, do this before you go to bed/work/the local park: &prompt.root cd /usr/ports &prompt.root; make -DBATCH install This will install every port that does not require user input. Then, when you come back, do: &prompt.root; cd /usr/ports &prompt.root; make -DINTERACTIVE install to finish the job. At work, we are using frobble, which is in your ports collection, but we have altered it quite a bit to get it to do what we need. Is there any way of making our own packages, so we can distribute it more easily around our sites? No problem, assuming you know how to make patches for your changes: &prompt.root; cd /usr/ports/somewhere/frobble &prompt.root; make extract &prompt.root; cd work/frobble-2.8 [Apply your patches] &prompt.root; cd ../.. &prompt.root; make package This ports stuff is really clever. I am desperate to find out how you did it. What is the secret? Nothing secret about it at all, just look at the bsd.port.mk and bsd.port.subdir.mk files in your makefiles directory. (Readers with an aversion to intricate shell-scripts are advised not to look at the files in this directory.) Help! This port is broken! If you come across a port that doesn't work for you, there are a few things you can do, including: Fix it! The Porter's Handbook should help you do this. Gripe—by email only! Send email to the maintainer of the port first. Type make maintainer or read the Makefile to find the maintainer's email address. Remember to include the name and version of the port (send the $FreeBSD: line from the Makefile) and the output leading up to the error when you email the maintainer. If you do not get a response from the maintainer, you can use send-pr to submit a bug report. Grab the package from an ftp site near you. The master package collection is on ftp.FreeBSD.org in the packages directory, but be sure to check your local mirror first! These are more likely to work than trying to compile from source and are a lot faster as well. Use the &man.pkg.add.1; program to install the package on your system. Advanced Topics The documentation that was here has been moved to its own Porter's Handbook for ease of reference. Please go there if you wish to create and submit your own ports. diff --git a/en_US.ISO8859-1/books/handbook/ppp-and-slip/chapter.sgml b/en_US.ISO8859-1/books/handbook/ppp-and-slip/chapter.sgml index 6984bf7997..05ccabea86 100644 --- a/en_US.ISO8859-1/books/handbook/ppp-and-slip/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/ppp-and-slip/chapter.sgml @@ -1,2901 +1,2976 @@ - PPP and SLIP + + + + Jim + Mock + Restructured, reorganized, and updated by + + + + - Restructured, reorganized, and updated by &a.jim;, - 1 March 2000. + PPP and SLIP Synopsis PPP SLIP If you are connecting to the Internet via modem, or wish to provide dial-up connections to the Internet for others using FreeBSD, you have the option of using PPP or SLIP. PPP user PPP PPP kernel PPP PPP over Ethernet This chapter covers three varieties of PPP; user, kernel, and PPPoE (PPP over Ethernet). It also covers setting up a SLIP client and server. The first variety of PPP that will be covered is User PPP. User PPP was introduced into FreeBSD in 2.0.5-RELEASE as an addition to the already existing kernel implementation of PPP. You may be wondering what the main difference is between User PPP and kernel PPP. The answer is simple; user PPP does not run as a daemon, and can run as and when desired. No PPP interface needs to be compiled into their kernel; it runs as a user process, and uses the tunnel device driver (tun) to get data into and out of the kernel. From here on out in this chapter, user ppp will simply be referred to as ppp unless a distinction needs to be made between it and any other PPP software such as pppd. Unless otherwise stated, all of the commands explained in this section should be executed as root. - Using User PPP + + + + Brian + Somers + Originally contributed by + + + + + Nik + Clayton + With input from + + + Dirk + Frömberg + + + Peter + Childs + + + - Originally contributed by &a.brian;, with input - from &a.nik;, &a.dirkvangulik;, and &a.pjc;. + Using User PPP User PPP Assumptions This document assumes you have the following: ISP PPP An account with an Internet Service Provider (ISP) which you connect to using PPP. Further, you have a modem or other device connected to your system and configured correctly, which allows you to connect to your ISP. The dial-up number(s) of your ISP. PAP CHAP Unix login name password Your login name and password. This can be either a regular Unix-style login and password pair, or a PAP or CHAP login and password pair. nameserver The IP address(es) of one or more name servers. Normally, you will be given two IP addresses by your ISP to use for this. If they have not given you at least one, then you can use the enable dns command in your ppp.conf file to tell ppp to set the name servers for you. The following information may be supplied by your ISP, but is not completely necessary: The IP address of your ISP's gateway. The gateway is the machine to which you will connect and will be set up as your default route. If you do not have this information, we can make one up and your ISP's PPP server will tell us the correct value when we connect. This IP number is referred to as HISADDR by ppp. The netmask you should use. If your ISP has not provided you with one, you can safely use 255.255.255.0. static IP address If your ISP provides you with a static IP address and hostname, you can enter it. Otherwise, we simply let the peer assign whatever IP address it sees fit. If you do not have any of the required information, contact your ISP and make sure they provide it to you. Preparing the Kernel As previously mentioned, ppp uses the tun device, and whichever kernel you are using must have tun configured. The tun device is preconfigured for the default GENERIC kernel that ships with FreeBSD. However, if you have installed a custom kernel, you must make sure your kernel is configured for ppp. kernel compiling To check, go to your kernel compile directory (/sys/i386/conf or /sys/pc98/conf) and examine your configuration file. It should have the following line somewhere in it: pseudo-device tun 1 If this line is not present, you will need to add it to the configuration file and recompile your kernel. The stock GENERIC kernel has this included, so if you have not installed a custom kernel or do not have a /sys directory, you do not have to change anything. If you do need to recompile your kernel, please refer to the kernel configuration section for more information. You can check how many tunnel devices your current kernel has by typing the following: &prompt.root; ifconfig -a tun0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500 inet 200.10.100.1 --> 203.10.100.24 netmask 0xffffffff tun1: flags=8050<POINTOPOINT,RUNNING,MULTICAST> mtu 576 tun2: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500 inet 203.10.100.1 --> 203.10.100.20 netmask 0xffffffff tun3: flags=8010<POINTOPOINT,MULTICAST> mtu 1500 In FreeBSD 4.0 and later releases, you will only see any tun devices which have already been used. This means you might not see any tun devices. If this is the case, do not worry; the device should be created dynamically when ppp attempts to use it. This case shows four tunnel devices, two of which are currently configured and being used. It should be noted that the RUNNING flag above indicates that the interface has been used at some point—it is not an error if your interface does not show up as RUNNING. If for some reason you have a kernel that does not have the tun device in it and cannot recompile the kernel, all is not lost. You should be able to dynamically load the code. Please refer to the appropriate &man.modload.8; and &man.lkm.4; man pages for further details. Check the <devicename>tun</devicename> device Under normal circumstances, most users will only require one tun device (/dev/tun0). If you have specified more than one on the pseudo-device line for tun in your kernel configuration file, then alter all references to tun0 below to reflect whichever device number you are using (e.g., tun2). The easiest way to make sure that the tun0 device is configured correctly, is to remake the device. This process is quite easy. To remake the device, do the following: &prompt.root; cd /dev &prompt.root; ./MAKEDEV tun0 If you need 16 tunnel devices in your kernel, you will need to create them. This can be done by executing the following commands: &prompt.root; cd /dev &prompt.root; ./MAKEDEV tun15 To confirm that the kernel is configured correctly, issue the follow command and compare the results: &prompt.root; ifconfig tun0 tun0: flags=8050<POINTOPOINT,RUNNING,MULTICAST> mut 1500 The RUNNING flag may not yet be set, in which case you will see: &prompt.root; ifconfig tun0 tun0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500 Remember from earlier that you might not see the device if it has not been used yet, as tun devices are created on demand in FreeBSD 4.0 and later releases. Name Resolution Configuration resolver hostname hosts The resolver is the part of the system that turns IP addresses into hostnames and vice versa. It can be configured to look for maps that describe IP to hostname mappings in one of two places. The first is a file called /etc/hosts. Read &man.hosts.5; for more information. The second is the Internet Domain Name Service (DNS), a distributed data base, the discussion of which is beyond the scope of this document. The resolver is a set of system calls that do the name mappings, but you have to tell them where to find their information. You do this by first editing the file /etc/host.conf. Do not call this file /etc/hosts.conf (note the extra s) as the results can be confusing. Edit <filename>/etc/host.conf</filename> This file should contain the following two lines (in this order): hosts bind These instruct the resolver to first look in the file /etc/hosts, and then to consult the DNS if the name was not found. Edit <filename>/etc/hosts</filename> This file should contain the IP addresses and names of machines on your network. At a bare minimum it should contain entries for the machine which will be running ppp. Assuming that your machine is called foo.bar.com with the IP address 10.0.0.1, /etc/hosts should contain: 127.0.0.1 localhost.bar.com localhost 127.0.0.1 localhost.bar.com. 10.0.0.1 foo.bar.com foo 10.0.0.1 foo.bar.com. The first two lines define the alias localhost as a synonym for the current machine. Regardless of your own IP address, the IP address for this line should always be 127.0.0.1. The second two lines map the name foo.bar.com (and the shorthand foo) to the IP address 10.0.0.1. If your provider allocates you a static IP address and name, use them in place of the 10.0.0.1 entry. Edit <filename>/etc/resolv.conf</filename> The /etc/resolv.conf file tells the resolver how to behave. If you are running your own DNS, you may leave this file empty. Normally, you will need to enter the following line(s): domain bar.com nameserver x.x.x.x nameserver y.y.y.y The x.x.x.x and y.y.y.y addresses are those given to you by your ISP. Add as many nameserver lines as your ISP provides. The domain line defaults to your hostname's domain, and is probably unnecessary. Refer to the &man.resolv.conf.5; manual page for details of other possible entries in this file. PPP ISP If you are running PPP version 2 or greater, the enable dns command will tell PPP to request that your ISP confirms the nameserver values. If your ISP supplies different addresses (or if there are no nameserver lines in /etc/resolv.conf), PPP will rewrite the file with the ISP-supplied values. <application>PPP</application> Configuration PPPconfiguration Both ppp and pppd (the kernel level implementation of PPP) use the configuration files located in the /usr/share/examples/ppp directory. The sample configuration files provided are a good reference, so do not delete them. Configuring ppp requires that you edit a number of files, depending on your requirements. What you put in them depends to some extent on whether your ISP allocates IP addresses statically (i.e., you get given one IP address, and always use that one) or dynamically (i.e., your IP address changes each time you connect to your ISP). PPP and Static IP Addresses PPPwith static IP addresses You will need to create a configuration file called /etc/ppp/ppp.conf. It should look similar to the example below. Lines that end in a : start in the first column, all other lines should be indented as shown using spaces or tabs. 1 default: 2 set device /dev/cuaa0 3 set speed 115200 4 set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 5 \"\" ATE1Q0 OK-AT-OK \\dATDT\\TTIMEOUT 40 CONNECT" 5 provider: 6 set phone "(123) 456 7890" 7 set login "TIMEOUT 10 \"\" \"\" gin:--gin: foo word: bar col: ppp" 8 set timeout 300 9 set ifaddr x.x.x.x y.y.y.y 255.255.255.0 0.0.0.0 10 add default HISADDR 11 enable dns Do not include the line numbers, they are just for reference in this discussion. Line 1: Identifies the default entry. Commands in this entry are executed automatically when ppp is run. Line 2: Identifies the device to which the modem is connected. COM1 is /dev/cuaa0 and COM2 is /dev/cuaa1. Line 3: Sets the speed you want to connect at. If 115200 does not work (it should with any reasonably new modem), try 38400 instead. Line 4: PPPuser PPP The dial string. User PPP uses an expect-send syntax similar to the &man.chat.8; program. Refer to the manual page for information on the features of this language. Line 5: Identifies an entry for a provider called provider. Line 6: Sets the phone number for this provider. Multiple phone numbers may be specified using the colon (:) or pipe character (|)as a separator. The difference between the two separators is described in &man.ppp.8;. To summarize, if you want to rotate through the numbers, use a colon. If you want to always attempt to dial the first number first and only use the other numbers if the first number fails, use the pipe character. Always quote the entire set of phone numbers as shown. Line 7: The login string is of the same chat-like syntax as the dial string. In this example, the string works for a service whose login session looks like this: J. Random Provider login: foo password: bar protocol: ppp You will need to alter this script to suit your own needs. When you write this script for the first time, you should enable chat logging to ensure that the conversation is going as expected. PAP CHAP If you are using PAP or CHAP, there will be no login at this point, so your login string can be left blank. See PAP and CHAP authentication for further details. Line 8: timeout Sets the default timeout (in seconds) for the connection. Here, the connection will be closed automatically after 300 seconds of inactivity. If you never want to timeout, set this value to zero. Line 9: ISP Sets the interface addresses. The string x.x.x.x should be replaced by the IP address that your provider has allocated to you. The string y.y.y.y should be replaced by the IP address that your ISP indicated for their gateway (the machine to which you connect). If your ISP hasn't given you a gateway address, use 10.0.0.2/0. If you need to use a guessed address, make sure that you create an entry in /etc/ppp/ppp.linkup as per the instructions for PPP and Dynamic IP addresses. If this line is omitted, ppp cannot run in or mode. Line 10: Adds a default route to your ISP's gateway. The special word HISADDR is replaced with the gateway address specified on line 9. It is important that this line appears after line 9, otherwise HISADDR will not yet be initialized. Line 11: nameserver This line tells PPP to ask your ISP to confirm that your nameserver addresses are correct. If your ISP supports this facility, PPP can then update /etc/resolv.conf with the correct nameserver entries. It is not necessary to add an entry to ppp.linkup when you have a static IP address as your routing table entries are already correct before you connect. You may however wish to create an entry to invoke programs after connection. This is explained later with the sendmail example. Example configuration files can be found in the /usr/share/examples/ppp directory. PPP and Dynamic IP Addresses PPPwith dynamic IP addresses IPCP If your service provider does not assign static IP addresses, ppp can be configured to negotiate the local and remote addresses. This is done by guessing an IP address and allowing ppp to set it up correctly using the IP Configuration Protocol (IPCP) after connecting. The ppp.conf configuration is the same as PPP and Static IP Addresses, with the following change: 9 set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.0 Again, do not include the line numbers, they are just for reference. Indentation of at least one space is required. Line 9: The number after the / character is the number of bits of the address that ppp will insist on. You may wish to use IP numbers more appropriate to your circumstances, but the above example will always work. The last argument (0.0.0.0) tells PPP to negotiate using address 0.0.0.0 rather than 10.0.0.1. Do not use 0.0.0.0 as the first argument to set ifaddr as it prevents PPP from setting up an initial route in mode. If you are running version 1.x of PPP, you will also need to create an entry in /etc/ppp/ppp.linkup. ppp.linkup is used after a connection has been established. At this point, ppp will know what IP addresses should really be used. The following entry will delete the existing bogus routes, and create correct ones: 1 provider: 2 delete ALL 3 add 0 0 HISADDR Line 1: On establishing a connection, ppp will look for an entry in ppp.linkup according to the following rules: First, try to match the same label as we used in ppp.conf. If that fails, look for an entry for the IP address of our gateway. This entry is a four-octet IP style label. If we still have not found an entry, look for the MYADDR entry. Line 2: This line tells ppp to delete all of the existing routes for the acquired tun interface (except the direct route entry). Line 3: This line tells ppp to add a default route that points to HISADDR. HISADDR will be replaced with the IP number of the gateway as negotiated in the IPCP. See the pmdemand entry in the files /usr/share/examples/ppp/ppp.conf.sample and /usr/share/examples/ppp/ppp.linkup.sample for a detailed example. Version 2 of PPP introduces sticky routes. Any add or delete lines that contain MYADDR or HISADDR will be remembered, and any time the actual values of MYADDR or HISADDR change, the routes will be reapplied. This removes the necessity of repeating these lines in ppp.linkup. Receiving Incoming Calls PPPreceiving incoming calls When you configure ppp to receive incoming calls on a machine connected to a LAN, you must decide if you wish to forward packets to the LAN. If you do, you should allocate the peer an IP number from your LAN's subnet, and use the command enable proxy in your /etc/ppp/ppp.conf file. You should also confirm that the /etc/rc.conf file contains the following: gateway="YES" Which getty? Configuring FreeBSD for Dial-up Services provides a good description on enabling dial-up services using &man.getty.8;. An alternative to getty is mgetty, a smarter version of getty designed with dial-up lines in mind. The advantages of using mgetty is that it actively talks to modems, meaning if port is turned off in /etc/ttys then your modem will not answer the phone. Later versions of mgetty (from 0.99beta onwards) also support the automatic detection of PPP streams, allowing your clients script-less access to your server. Refer to Mgetty and AutoPPP for more information on mgetty. <application>PPP</application> Permissions The ppp command must normally be run as user id 0. If however, you wish to allow ppp to run in server mode as a normal user by executing ppp as described below, that user must be given permission to run ppp by adding them to the network group in /etc/group. You will also need to give them access to one or more sections of the configuration file using the allow command: allow users fred mary If this command is used in the default section, it gives the specified users access to everything. PPP Shells for Dynamic-IP Users PPP shells Create a file called /etc/ppp/ppp-shell containing the following: #!/bin/sh IDENT=`echo $0 | sed -e 's/^.*-\(.*\)$/\1/'` CALLEDAS="$IDENT" TTY=`tty` if [ x$IDENT = xdialup ]; then IDENT=`basename $TTY` fi echo "PPP for $CALLEDAS on $TTY" echo "Starting PPP for $IDENT" exec /usr/sbin/ppp -direct $IDENT This script should be executable. Now make a symbolic link called ppp-dialup to this script using the following commands: &prompt.root; ln -s ppp-shell /etc/ppp/ppp-dialup You should use this script as the shell for all of your dialup users. This is an example from /etc/password for a dialup PPP user with username pchilds (remember don't directly edit the password file, use vipw). pchilds:*:1011:300:Peter Childs PPP:/home/ppp:/etc/ppp/ppp-dialup Create a /home/ppp directory that is world readable containing the following 0 byte files: -r--r--r-- 1 root wheel 0 May 27 02:23 .hushlogin -r--r--r-- 1 root wheel 0 May 27 02:22 .rhosts which prevents /etc/motd from being displayed. PPP shells for Static-IP Users PPP shells Create the ppp-shell file as above and for each account with statically assigned IPs create a symbolic link to ppp-shell. For example, if you have three dialup customers fred, sam, and mary, that you route class C networks for, you would type the following: &prompt.root; ln -s /etc/ppp/ppp-shell /etc/ppp/ppp-fred &prompt.root; ln -s /etc/ppp/ppp-shell /etc/ppp/ppp-sam &prompt.root; ln -s /etc/ppp/ppp-shell /etc/ppp/ppp-mary Each of these users dialup accounts should have their shell set to the symbolic link created above (i.e., mary's shell should be /etc/ppp/ppp-mary). Setting up ppp.conf for dynamic-IP users The /etc/ppp/ppp.conf file should contain something along the lines of: default: set debug phase lcp chat set timeout 0 ttyd0: set ifaddr 203.14.100.1 203.14.100.20 255.255.255.255 enable proxy ttyd1: set ifaddr 203.14.100.1 203.14.100.21 255.255.255.255 enable proxy The indenting is important. The default: section is loaded for each session. For each dialup line enabled in /etc/ttys create an entry similar to the one for ttyd0: above. Each line should get a unique IP address from your pool of IP addresses for dynamic users. Setting up <filename>ppp.conf</filename> for static-IP users Along with the contents of the sample /usr/share/examples/ppp/ppp.conf above you should add a section for each of the statically assigned dialup users. We will continue with our fred, sam, and mary example. fred: set ifaddr 203.14.100.1 203.14.101.1 255.255.255.255 sam: set ifaddr 203.14.100.1 203.14.102.1 255.255.255.255 mary: set ifaddr 203.14.100.1 203.14.103.1 255.255.255.255 The file /etc/ppp/ppp.linkup should also contain routing information for each static IP user if required. The line below would add a route for the 203.14.101.0 class C via the client's ppp link. fred: add 203.14.101.0 netmask 255.255.255.0 HISADDR sam: add 203.14.102.0 netmask 255.255.255.0 HISADDR mary: add 203.14.103.0 netmask 255.255.255.0 HISADDR More on <command>mgetty</command>, AutoPPP, and MS extensions <command>mgetty</command> and AutoPPP mgetty AutoPPP LCP Configuring and compiling mgetty with the AUTO_PPP option enabled allows mgetty to detect the LCP phase of PPP connections and automatically spawn off a ppp shell. However, since the default login/password sequence does not occur it is necessary to authenticate users using either PAP or CHAP. This section assumes the user has successfully configured, compiled, and installed a version of mgetty with the AUTO_PPP option (v0.99beta or later). Make sure your /usr/local/etc/mgetty+sendfax/login.config file has the following in it: /AutoPPP/ - - /etc/ppp/ppp-pap-dialup This will tell mgetty to run the ppp-pap-dialup script for detected PPP connections. Create a file called /etc/ppp/ppp-pap-dialup containing the following (the file should be executable): #!/bin/sh exec /usr/sbin/ppp -direct pap$IDENT For each dialup line enabled in /etc/ttys, create a corresponding entry in /etc/ppp/ppp.conf. This will happily co-exist with the definitions we created above. pap: enable pap set ifaddr 203.14.100.1 203.14.100.20-203.14.100.40 enable proxy Each user logging in with this method will need to have a username/password in /etc/ppp/ppp.secret file, or alternatively add the following option to authenticate users via PAP from /etc/password file. enable passwdauth If you wish to assign some users a static IP number, you can specify the number as the third argument in /etc/ppp/ppp.secret. See /usr/share/examples/ppp/ppp.secret.sample for examples. MS extensions DNS NetBIOS PPPMicrosoft extensions It is possible to configure PPP to supply DNS and NetBIOS nameserver addresses on demand. To enable these extensions with PPP version 1.x, the following lines might be added to the relevant section of /etc/ppp/ppp.conf. enable msext set ns 203.14.100.1 203.14.100.2 set nbns 203.14.100.5 And for PPP version 2 and above: accept dns set dns 203.14.100.1 203.14.100.2 set nbns 203.14.100.5 This will tell the clients the primary and secondary name server addresses, and a netbios nameserver host. In version 2 and above, if the set dns line is omitted, PPP will use the values found in /etc/resolv.conf. PAP and CHAP authentication PAP CHAP Some ISPs set their system up so that the authentication part of your connection is done using either of the PAP or CHAP authentication mechanisms. If this is the case, your ISP will not give a login: prompt when you connect, but will start talking PPP immediately. PAP is less secure than CHAP, but security is not normally an issue here as passwords, although being sent as plain text with PAP, are being transmitted down a serial line only. There's not much room for crackers to eavesdrop. Referring back to the PPP and Static IP addresses or PPP and Dynamic IP addresses sections, the following alterations must be made: 7 set login … 12 set authname MyUserName 13 set authkey MyPassword As always, do not include the line numbers, they are just for reference in this discussion. Indentation of at least one space is required. Line 7: Your ISP will not normally require that you log into the server if you're using PAP or CHAP. You must therefore disable your set login string. Line 12: This line specifies your PAP/CHAP user name. You will need to insert the correct value for MyUserName. Line 13: password This line specifies your PAP/CHAP password. You will need to insert the correct value for MyPassword. You may want to add an additional line, such as: 15 accept PAP or 15 accept CHAP to make it obvious that this is the intention, but PAP and CHAP are both accepted by default. Changing your <command>ppp</command> configuration on the fly It is possible to talk to the ppp program while it is running in the background, but only if a suitable diagnostic port has been set up. To do this, add the following line to your configuration: set server /var/run/ppp-tun%d DiagnosticPassword 0177 This will tell PPP to listen to the specified unix-domain socket, asking clients for the specified password before allowing access. The %d in the name is replaced with the tun device number that is in use. Once a socket has been set up, the &man.pppctl.8; program may be used in scripts that wish to manipulate the running program. Final system configuration PPPconfiguration You now have ppp configured, but there are a few more things to do before it is ready to work. They all involve editing the /etc/rc.conf file. Working from the top down in this file, make sure the hostname= line is set, e.g.: hostname="foo.bar.com" If your ISP has supplied you with a static IP address and name, it's probably best that you use this name as your host name. Look for the network_interfaces variable. If you want to configure your system to dial your ISP on demand, make sure the tun0 device is added to the list, otherwise remove it. network_interfaces="lo0 tun0" ifconfig_tun0= The ifconfig_tun0 variable should be empty, and a file called /etc/start_if.tun0 should be created. This file should contain the line: ppp -auto mysystem This script is executed at network configuration time, starting your ppp daemon in automatic mode. If you have a LAN for which this machine is a gateway, you may also wish to use the switch. Refer to the manual page for further details. Set the router program to NO with following line in your /etc/rc.conf: router_enable="NO" routed It is important that the routed daemon is not started (it is started by default), as it routed tends to delete the default routing table entries created by ppp. It is probably worth your while ensuring that the sendmail_flags line does not include the option, otherwise sendmail will attempt to do a network lookup every now and then, possibly causing your machine to dial out. You may try: sendmail_flags="-bd" sendmail The downside of this is that you must force sendmail to re-examine the mail queue whenever the ppp link is up by typing: &prompt.root; /usr/sbin/sendmail -q You may wish to use the !bg command in ppp.linkup to do this automatically: 1 provider: 2 delete ALL 3 add 0 0 HISADDR 4 !bg sendmail -bd -q30m SMTP If you don't like this, it is possible to set up a dfilter to block SMTP traffic. Refer to the sample files for further details. Now the only thing left to do is reboot the machine. All that is left is to reboot the machine. After rebooting, you can now either type: &prompt.root; ppp and then dial provider to start the PPP session, or, if you want ppp to establish sessions automatically when there is outbound traffic (and you have not created the start_if.tun0 script), type: &prompt.root; ppp -auto provider Summary To recap, the following steps are necessary when setting up ppp for the first time: Client side: Ensure that the tun device is built into your kernel. Ensure that the tunX device file is available in the /dev directory. Create an entry in /etc/ppp/ppp.conf. The pmdemand example should suffice for most ISPs. If you have a dynamic IP address, create an entry in /etc/ppp/ppp.linkup. Update your /etc/rc.conf file. Create a start_if.tun0 script if you require demand dialing. Server side: Ensure that the tun device is built into your kernel. Ensure that the tunX device file is available in the /dev directory. Create an entry in /etc/passwd (using the &man.vipw.8; program). Create a profile in this users home directory that runs ppp -direct direct-server or similar. Create an entry in /etc/ppp/ppp.conf. The direct-server example should suffice. Create an entry in /etc/ppp/ppp.linkup. Update your /etc/rc.conf file. - Using Kernel PPP + + + + Gennady B. + Sorokopud + Parts originally contributed by + + + Robert + Huff + + + - Parts originally contributed by &a.gena; and - &a.rhuff;. + Using Kernel PPP Setting up Kernel PPP PPPkernel PPP Before you start setting up PPP on your machine make sure that pppd is located in /usr/sbin and the directory /etc/ppp exists. pppd can work in two modes: As a client, i.e., you want to connect your machine to the outside world via a PPP serial connection or modem line. PPPserver as a server, i.e. your machine is located on the network and used to connect other computers using PPP. In both cases you will need to set up an options file (/etc/ppp/options or ~/.ppprc if you have more than one user on your machine that uses PPP). You also will need some modem/serial software (preferably kermit) so you can dial and establish a connection with the remote host. Using <command>pppd</command> as a client PPPclient Cisco The following /etc/ppp/options might be used to connect to a CISCO terminal server PPP line. crtscts # enable hardware flow control modem # modem control line noipdefault # remote PPP server must supply your IP address. # if the remote host doesn't send your IP during IPCP # negotiation , remove this option passive # wait for LCP packets domain ppp.foo.com # put your domain name here :<remote_ip> # put the IP of remote PPP host here # it will be used to route packets via PPP link # if you didn't specified the noipdefault option # change this line to <local_ip>:<remote_ip> defaultroute # put this if you want that PPP server will be your # default router To connect: kermit modem Dial to the remote host using kermit (or some other modem program), and enter your user name and password (or whatever is needed to enable PPP on the remote host). Exit kermit (without hanging up the line). Enter the following: &prompt.root; /usr/src/usr.sbin/pppd.new/pppd /dev/tty01 19200 Be sure to use the appropriate speed and device name. Now your computer is connected with PPP. If the connection fails, you can add the option to the /etc/ppp/options file and check messages on the console to track the problem. Following /etc/ppp/pppup script will make all 3 stages automatically: #!/bin/sh ps ax |grep pppd |grep -v grep pid=`ps ax |grep pppd |grep -v grep|awk '{print $1;}'` if [ "X${pid}" != "X" ] ; then echo 'killing pppd, PID=' ${pid} kill ${pid} fi ps ax |grep kermit |grep -v grep pid=`ps ax |grep kermit |grep -v grep|awk '{print $1;}'` if [ "X${pid}" != "X" ] ; then echo 'killing kermit, PID=' ${pid} kill -9 ${pid} fi ifconfig ppp0 down ifconfig ppp0 delete kermit -y /etc/ppp/kermit.dial pppd /dev/tty01 19200 kermit /etc/ppp/kermit.dial is a kermit script that dials and makes all necessary authorization on the remote host (an example of such a script is attached to the end of this document). Use the following /etc/ppp/pppdown script to disconnect the PPP line: #!/bin/sh pid=`ps ax |grep pppd |grep -v grep|awk '{print $1;}'` if [ X${pid} != "X" ] ; then echo 'killing pppd, PID=' ${pid} kill -TERM ${pid} fi ps ax |grep kermit |grep -v grep pid=`ps ax |grep kermit |grep -v grep|awk '{print $1;}'` if [ "X${pid}" != "X" ] ; then echo 'killing kermit, PID=' ${pid} kill -9 ${pid} fi /sbin/ifconfig ppp0 down /sbin/ifconfig ppp0 delete kermit -y /etc/ppp/kermit.hup /etc/ppp/ppptest Check to see if PPP is still running by executing /usr/etc/ppp/ppptest, which should look like this: #!/bin/sh pid=`ps ax| grep pppd |grep -v grep|awk '{print $1;}'` if [ X${pid} != "X" ] ; then echo 'pppd running: PID=' ${pid-NONE} else echo 'No pppd running.' fi set -x netstat -n -I ppp0 ifconfig ppp0 To hang up the modem, execute /etc/ppp/kermit.hup, which should contain: set line /dev/tty01 ; put your modem device here set speed 19200 set file type binary set file names literal set win 8 set rec pack 1024 set send pack 1024 set block 3 set term bytesize 8 set command bytesize 8 set flow none pau 1 out +++ inp 5 OK out ATH0\13 echo \13 exit Here is an alternate method using chat instead of kermit. The following two files are sufficient to accomplish a pppd connection. /etc/ppp/options: /dev/cuaa1 115200 crtscts # enable hardware flow control modem # modem control line connect "/usr/bin/chat -f /etc/ppp/login.chat.script" noipdefault # remote PPP serve must supply your IP address. # if the remote host doesn't send your IP during # IPCP negotiation, remove this option passive # wait for LCP packets domain <your.domain> # put your domain name here : # put the IP of remote PPP host here # it will be used to route packets via PPP link # if you didn't specified the noipdefault option # change this line to <local_ip>:<remote_ip> defaultroute # put this if you want that PPP server will be # your default router /etc/ppp/login.chat.script: The following should go on a single line. ABORT BUSY ABORT 'NO CARRIER' "" AT OK ATDT<phone.number> CONNECT "" TIMEOUT 10 ogin:-\\r-ogin: <login-id> TIMEOUT 5 sword: <password> Once these are installed and modified correctly, all you need to do is run pppd, like so: &prompt.root; pppd This sample is based primarily on information provided by: Trev Roydhouse <Trev.Roydhouse@f401.n711.z3.fidonet.org> and used with permission. Using <command>pppd</command> as a server /etc/ppp/options should contain something similar to the following: crtscts # Hardware flow control netmask 255.255.255.0 # netmask ( not required ) 192.114.208.20:192.114.208.165 # ip's of local and remote hosts # local ip must be different from one # you assigned to the ethernet ( or other ) # interface on your machine. # remote IP is ip address that will be # assigned to the remote machine domain ppp.foo.com # your domain passive # wait for LCP modem # modem line The following /etc/ppp/pppserv script will enable tell pppd to behave as a server: #!/bin/sh ps ax |grep pppd |grep -v grep pid=`ps ax |grep pppd |grep -v grep|awk '{print $1;}'` if [ "X${pid}" != "X" ] ; then echo 'killing pppd, PID=' ${pid} kill ${pid} fi ps ax |grep kermit |grep -v grep pid=`ps ax |grep kermit |grep -v grep|awk '{print $1;}'` if [ "X${pid}" != "X" ] ; then echo 'killing kermit, PID=' ${pid} kill -9 ${pid} fi # reset ppp interface ifconfig ppp0 down ifconfig ppp0 delete # enable autoanswer mode kermit -y /etc/ppp/kermit.ans # run ppp pppd /dev/tty01 19200 Use this /etc/ppp/pppservdown script to stop the server: #!/bin/sh ps ax |grep pppd |grep -v grep pid=`ps ax |grep pppd |grep -v grep|awk '{print $1;}'` if [ "X${pid}" != "X" ] ; then echo 'killing pppd, PID=' ${pid} kill ${pid} fi ps ax |grep kermit |grep -v grep pid=`ps ax |grep kermit |grep -v grep|awk '{print $1;}'` if [ "X${pid}" != "X" ] ; then echo 'killing kermit, PID=' ${pid} kill -9 ${pid} fi ifconfig ppp0 down ifconfig ppp0 delete kermit -y /etc/ppp/kermit.noans The following kermit script (/etc/ppp/kermit.ans) will enable/disable autoanswer mode on your modem. It should look like this: set line /dev/tty01 set speed 19200 set file type binary set file names literal set win 8 set rec pack 1024 set send pack 1024 set block 3 set term bytesize 8 set command bytesize 8 set flow none pau 1 out +++ inp 5 OK out ATH0\13 inp 5 OK echo \13 out ATS0=1\13 ; change this to out ATS0=0\13 if you want to disable ; autoanswer mod inp 5 OK echo \13 exit A script named /etc/ppp/kermit.dial is used for dialing and authenticating on the remote host. You will need to customize it for your needs. Put your login and password in this script; you will also need to change the input statement depending on responses from your modem and remote host. ; ; put the com line attached to the modem here: ; set line /dev/tty01 ; ; put the modem speed here: ; set speed 19200 set file type binary ; full 8 bit file xfer set file names literal set win 8 set rec pack 1024 set send pack 1024 set block 3 set term bytesize 8 set command bytesize 8 set flow none set modem hayes set dial hangup off set carrier auto ; Then SET CARRIER if necessary, set dial display on ; Then SET DIAL if necessary, set input echo on set input timeout proceed set input case ignore def \%x 0 ; login prompt counter goto slhup :slcmd ; put the modem in command mode echo Put the modem in command mode. clear ; Clear unread characters from input buffer pause 1 output +++ ; hayes escape sequence input 1 OK\13\10 ; wait for OK if success goto slhup output \13 pause 1 output at\13 input 1 OK\13\10 if fail goto slcmd ; if modem doesn't answer OK, try again :slhup ; hang up the phone clear ; Clear unread characters from input buffer pause 1 echo Hanging up the phone. output ath0\13 ; hayes command for on hook input 2 OK\13\10 if fail goto slcmd ; if no OK answer, put modem in command mode :sldial ; dial the number pause 1 echo Dialing. output atdt9,550311\13\10 ; put phone number here assign \%x 0 ; zero the time counter :look clear ; Clear unread characters from input buffer increment \%x ; Count the seconds input 1 {CONNECT } if success goto sllogin reinput 1 {NO CARRIER\13\10} if success goto sldial reinput 1 {NO DIALTONE\13\10} if success goto slnodial reinput 1 {\255} if success goto slhup reinput 1 {\127} if success goto slhup if < \%x 60 goto look else goto slhup :sllogin ; login assign \%x 0 ; zero the time counter pause 1 echo Looking for login prompt. :slloop increment \%x ; Count the seconds clear ; Clear unread characters from input buffer output \13 ; ; put your expected login prompt here: ; input 1 {Username: } if success goto sluid reinput 1 {\255} if success goto slhup reinput 1 {\127} if success goto slhup if < \%x 10 goto slloop ; try 10 times to get a login prompt else goto slhup ; hang up and start again if 10 failures :sluid ; ; put your userid here: ; output ppp-login\13 input 1 {Password: } ; ; put your password here: ; output ppp-password\13 input 1 {Entering SLIP mode.} echo quit :slnodial echo \7No dialtone. Check the telephone line!\7 exit 1 ; local variables: ; mode: csh ; comment-start: "; " ; comment-start-skip: "; " ; end: + + + + Jim + Mock + Contributed (from http://node.to/freebsd/how-tos/how-to-freebsd-pppoe.html) by + + + + + Using <application>PPP</application> over Ethernet (PPPoE) PPPover Ethernet PPPoE PPP, over Ethernet - Contributed by &a.jim; (from node.to) 10 Jan 2000. - The following describes how to set up PPP over Ethernet, a.k.a, PPPoE. Prerequisites There are a few requirements that your system will need to meet in order for PPPoE to function properly. They are: Kernel source for FreeBSD 3.4 or later ppp from FreeBSD 3.4 or later Kernel Configuration kernelconfiguration You will need to set the following options in your kernel configuration file and then compile a new kernel. Optionally, you can add although if this functionality is not available at runtime, ppp will load the relevant modules on demand Setting up <filename>ppp.conf</filename> Here is an example of a working ppp.conf: default: # or name_of_service_provider set device PPPoE:xl1 # replace xl1 with your ethernet device set mru 1492 set mtu 1492 set authname YOURLOGINNAME set authkey YOURPASSWORD set log Phase tun command # you can add more detailed logging if you wish set dial set login set ifaddr 10.0.0.1/0 10.0.0.2/0 add default HISADDR nat enable yes # if you want to enable nat for your local net papchap: set authname YOURLOGINNAME set authkey YOURPASSWORD Care should be taken when running PPPoE with the option. Running <application>PPP</application> As root, you can run: &prompt.root; ppp -ddial name_of_service_provider Starting <application>PPP</application> at Boot Add the following to your /etc/rc.conf file: ppp_enable="YES" ppp_mode="ddial" ppp_nat="YES" ppp_profile="default" # or your provider - PPPoE with a 3Com HomeConnect ADSL Modem Dual Link + + + + Mário Sérgio Fujikawa + Ferreira + Contributed by + + + + - Contributed by &a.lioux;, 07 Apr - 2001. + PPPoE with a 3Com HomeConnect ADSL Modem Dual Link In short, it does not work. It should, but unfortunately, that is not the case. For whatever reason, this modem does not follow RFC 2516 (A Method for transmitting PPP over Ethernet (PPPoE), written by L. Mamakos, K. Lidl, J. Evarts, D. Carrel, D. Simone, and R. Wheeler). Since it does not follow the specification, FreeBSD's PPPoE implementation will not talk to it. It is very likely that it will not work under other Unix systems for that same reason. Complain to 3Com if you think it should comply with the PPPoE specification. ADSL If you absolutely want to use your ADSL connection with FreeBSD and are stuck with this modem, you can either: DSL Try replacing the modem with a different brand or model if your DSL provider permits you to do so. If you are not sure which brand(s) will work, the &a.questions; is a good place to ask. Try to get it working. Keep in mind that there is no guarantee it will work, your mileage may vary. If you want to try to make it work, you can do the following, but please keep in mind that you do this at your own risk! Just because it worked for me does not mean it will work for you. There are three steps to the process. They are: Make sure you already have ppp.conf set up. See the beginning of this chapter for more details on doing so. Since the modem does not speak the correct protocol, we need to learn how to speak its variant of the protocol. This information was obtained from a DSLreports forum message. The modem speaks 0x3c12 for DISCOVERY, and 0x3c13 for PAYLOAD identifiers instead of 0x8863 and 0x8864 respectively, as mandated by the PPPoE specification. Code RFC's Code Dual Link Modem's Code PAYLOAD 0x8863 0x3c12 PAYLOAD 0x8864 0x3c13 So, now what? You need to recompile the NETGRAPH_PPPOE code with the modem's codes. For this, you should have installed the full kernel sources. Find the /usr/src/sys/netgraph/ng_pppoe.h file. Be careful while editing this file. You have to modify both the little and the big endian entries. For big endian, find the line with 0x8863 in it, and replace the number with 0x3c12. Do the same with 0x8864, replacing it with 0x3c13. For little endian, find the line with 0x6388in it, and replace the number with 0x123c. Do the same with 0x6488, replacing it with 0x133c. Here is a diff of how the new file should look: &prompt.user; diff -u ng_pppoe.h.orig ng_pppoe.h --- ng_pppoe.h.orig Thu Apr 12 13:42:46 2001 +++ ng_pppoe.h Thu Apr 12 13:44:47 2001 @@ -148,8 +148,8 @@ #define PTT_SYS_ERR (0x0202) #define PTT_GEN_ERR (0x0203) -#define ETHERTYPE_PPPOE_DISC 0x8863 /* pppoe discovery packets */ -#define ETHERTYPE_PPPOE_SESS 0x8864 /* pppoe session packets */ +#define ETHERTYPE_PPPOE_DISC 0x3c12 /* pppoe discovery packets */ +#define ETHERTYPE_PPPOE_SESS 0x3c13 /* pppoe session packets */ #else #define PTT_EOL (0x0000) #define PTT_SRV_NAME (0x0101) @@ -162,8 +162,8 @@ #define PTT_SYS_ERR (0x0202) #define PTT_GEN_ERR (0x0302) -#define ETHERTYPE_PPPOE_DISC 0x6388 /* pppoe discovery packets */ -#define ETHERTYPE_PPPOE_SESS 0x6488 /* pppoe session packets */ +#define ETHERTYPE_PPPOE_DISC 0x123c /* pppoe discovery packets */ +#define ETHERTYPE_PPPOE_SESS 0x133c /* pppoe session packets */ #endif struct pppoe_tag { Then do the following as root: &prompt.root; cd /usr/src/sys/modules/netgraph/pppoe &prompt.root; make clean depend all install &prompt.root; make clean Now you can speak the modem's variant of the PPPoE specification. The third step is to figure out the name of the profile your ISP assigned to the modem. The information for this step was obtained from the Roaring Penguin PPPoE program which can be found in the ports collection. If you still are not able to find it, ask your ISP's tech support. If they do not know it either, and you are feeling bold (this may de-program your modem and render it useless, so think twice about doing it). Install the program shipped with the modem by your provider. Then, access the System menu from the program. The name of your profile should be listed there. It is usually ISP. The profile name will be used in the PPPoE configuration inside ppp.conf as the provider parameter. See the &man.ppp.8; manual page for more information. The PPPoE line in your ppp.conf should look like this: set device PPPoE:xl1:ISP Do not forget to change xl1 to the proper device for your Ethernet card. Do not forget to change ISP to the profile you have just found above. For additional information, you can try: Cheaper Broadband with FreeBSD on DSL by Renaud Waldura in Daemon News. Another PPPoE tutorial by Sympatico Users Group. + + + + Satoshi + Asami + Originally contributed by + + + + + Guy + Helmer + With input from + + + Piero + Serini + + + + Using SLIP SLIP - Originally contributed by &a.asami; and - &a.ghelmer;, with input from &a.wilko; and - &a.piero;. Setting up a SLIP Client SLIPclient The following is one way to set up a FreeBSD machine for SLIP on a static host network. For dynamic hostname assignments (i.e., your address changes each time you dial up), you probably need to do something much fancier. First, determine which serial port your modem is connected to. I have a symbolic link to /dev/modem from /dev/cuaa1, and only use the modem name in my configuration files. It can become quite cumbersome when you need to fix a bunch of files in /etc and .kermrc's all over the system! /dev/cuaa0 is COM1, cuaa1 is COM2, etc. Make sure you have the following in your kernel configuration file: pseudo-device sl 1 It is included in the GENERIC kernel, so this should not be a problem unless you have deleted it. Things you have to do only once Add your home machine, the gateway and nameservers to your /etc/hosts file. Mine looks like this: 127.0.0.1 localhost loghost 136.152.64.181 silvia.HIP.Berkeley.EDU silvia.HIP silvia 136.152.64.1 inr-3.Berkeley.EDU inr-3 slip-gateway 128.32.136.9 ns1.Berkeley.edu ns1 128.32.136.12 ns2.Berkeley.edu ns2 Make sure you have before in your /etc/host.conf. Otherwise, funny things may happen. Edit the /etc/rc.conf file. Set your hostname by editing the line that says: hostname=myname.my.domain You should give it your full Internet hostname. Add sl0 to the list of network interfaces by changing the line that says: network_interfaces="lo0" to: network_interfaces=lo0 sl0 Set the startup flags of sl0 by adding a line: ifconfig_sl0="inet ${hostname} slip-gateway netmask 0xffffff00 up" default route Designate the default router by changing the line: defaultrouter=NO to: defaultrouter=slip-gateway Make a file /etc/resolv.conf which contains: domain HIP.Berkeley.EDU nameserver 128.32.136.9 nameserver 128.32.136.12 nameserver domain name As you can see, these set up the nameserver hosts. Of course, the actual domain names and addresses depend on your environment. Set the password for root and toor (and any other accounts that do not have a password). Use passwd or &man.vipw.8;, do not edit the /etc/passwd or /etc/master.passwd files! Reboot your machine and make sure it comes up with the correct hostname. Making a SLIP connection SLIPconnecting with Dial up, type slip at the prompt, enter your machine name and password. The things you need to enter depends on your environment. If you use kermit, you can try a script like this: # kermit setup set modem hayes set line /dev/modem set speed 115200 set parity none set flow rts/cts set terminal bytesize 8 set file type binary # The next macro will dial up and login define slip dial 643-9600, input 10 =>, if failure stop, - output slip\x0d, input 10 Username:, if failure stop, - output silvia\x0d, input 10 Password:, if failure stop, - output ***\x0d, echo \x0aCONNECTED\x0a Of course, you have to change the hostname and password to fit yours. After doing so, you can just type slip from the kermit prompt to get connected. Leaving your password in plain text anywhere in the filesystem is generally a BAD idea. Do it at your own risk. Leave the kermit there (you can suspend it by z) and as root, type: &prompt.root; slattach -h -c -s 115200 /dev/modem If you are able to ping hosts on the other side of the router, you are connected! If it does not work, you might want to try instead of as an argument to slattach. How to shutdown the connection Do the following: &prompt.root; kill -INT `cat /var/run/slattach.modem.pid` to kill slattach. Keep in mind you must be root to do the above. Then go back to kermit (fg if you suspended it) and exit from it (q). The slattach man page says you have to use ifconfig sl0 down to mark the interface down, but this does not seem to make any difference for me. (ifconfig sl0 reports the same thing.) Some times, your modem might refuse to drop the carrier (mine often does). In that case, simply start kermit and quit it again. It usually goes out on the second try. Troubleshooting If it does not work, feel free to ask me. The things that people tripped over so far: Not using or in slattach (I have no idea why this can be fatal, but adding this flag solved the problem for at least one person). Using instead of (might be hard to see the difference on some fonts). Try ifconfig sl0 to see your interface status. For example, you might get: &prompt.root; ifconfig sl0 sl0: flags=10<POINTOPOINT> inet 136.152.64.181 --> 136.152.64.1 netmask ffffff00 Also, netstat -r will give the routing table, in case you get the no route to host messages from ping. Mine looks like: &prompt.root; netstat -r Routing tables Destination Gateway Flags Refs Use IfaceMTU Rtt Netmasks: (root node) (root node) Route Tree for Protocol Family inet: (root node) => default inr-3.Berkeley.EDU UG 8 224515 sl0 - - localhost.Berkel localhost.Berkeley UH 5 42127 lo0 - 0.438 inr-3.Berkeley.E silvia.HIP.Berkele UH 1 0 sl0 - - silvia.HIP.Berke localhost.Berkeley UGH 34 47641234 lo0 - 0.438 (root node) This is after transferring a bunch of files, your numbers should be smaller). Setting up a SLIP Server SLIPserver This document provides suggestions for setting up SLIP Server services on a FreeBSD system, which typically means configuring your system to automatically startup connections upon login for remote SLIP clients. The author has written this document based on his experience; however, as your system and needs may be different, this document may not answer all of your questions, and the author cannot be responsible if you damage your system or lose data due to attempting to follow the suggestions here. Prerequisites TCP/IP networking This document is very technical in nature, so background knowledge is required. It is assumed that you are familiar with the TCP/IP network protocol, and in particular, network and node addressing, network address masks, subnetting, routing, and routing protocols, such as RIP. Configuring SLIP services on a dial-up server requires a knowledge of these concepts, and if you are not familiar with them, please read a copy of either Craig Hunt's TCP/IP Network Administration published by O'Reilly & Associates, Inc. (ISBN Number 0-937175-82-X), or Douglas Comer's books on the TCP/IP protocol. modem It is further assumed that you have already setup your modem(s) and configured the appropriate system files to allow logins through your modems. If you have not prepared your system for this yet, please see the tutorial for configuring dialup services; if you have a World-Wide Web browser available, browse the list of tutorials at http://www.FreeBSD.org/. You may also want to check the manual pages for &man.sio.4; for information on the serial port device driver and &man.ttys.5;, &man.gettytab.5;, &man.getty.8;, & &man.init.8; for information relevant to configuring the system to accept logins on modems, and perhaps &man.stty.1; for information on setting serial port parameters (such as clocal for directly-connected serial interfaces). Quick Overview In its typical configuration, using FreeBSD as a SLIP server works as follows: a SLIP user dials up your FreeBSD SLIP Server system and logs in with a special SLIP login ID that uses /usr/sbin/sliplogin as the special user's shell. The sliplogin program browses the file /etc/sliphome/slip.hosts to find a matching line for the special user, and if it finds a match, connects the serial line to an available SLIP interface and then runs the shell script /etc/sliphome/slip.login to configure the SLIP interface. An Example of a SLIP Server Login For example, if a SLIP user ID were Shelmerg, Shelmerg's entry in /etc/master.passwd would look something like this (except it would be all on one line): Shelmerg:password:1964:89::0:0:Guy Helmer - SLIP:/usr/users/Shelmerg:/usr/sbin/sliplogin When Shelmerg logs in, sliplogin will search /etc/sliphome/slip.hosts for a line that had a matching user ID; for example, there may be a line in /etc/sliphome/slip.hosts that reads: Shelmerg dc-slip sl-helmer 0xfffffc00 autocomp sliplogin will find that matching line, hook the serial line into the next available SLIP interface, and then execute /etc/sliphome/slip.login like this: /etc/sliphome/slip.login 0 19200 Shelmerg dc-slip sl-helmer 0xfffffc00 autocomp If all goes well, /etc/sliphome/slip.login will issue an ifconfig for the SLIP interface to which sliplogin attached itself (slip interface 0,in the above example, which was the first parameter in the list given to slip.login) to set the local IP address (dc-slip), remote IP address (sl-helmer), network mask for the SLIP interface (0xfffffc00), and any additional flags (autocomp). If something goes wrong, sliplogin usually logs good informational messages via the daemon syslog facility, which usually goes into /var/log/messages (see the manual pages for &man.syslogd.8; and &man.syslog.conf.5; and perhaps check /etc/syslog.conf to see to which files syslogd is logging). OK, enough of the examples — let us dive into setting up the system. Kernel Configuration kernelconfiguration FreeBSD's default kernels usually come with two SLIP interfaces defined (sl0 and sl1); you can use netstat -i to see whether these interfaces are defined in your kernel. Sample output from netstat -i: Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll ed0 1500 <Link>0.0.c0.2c.5f.4a 291311 0 174209 0 133 ed0 1500 138.247.224 ivory 291311 0 174209 0 133 lo0 65535 <Link> 79 0 79 0 0 lo0 65535 loop localhost 79 0 79 0 0 sl0* 296 <Link> 0 0 0 0 0 sl1* 296 <Link> 0 0 0 0 0 The sl0 and sl1 interfaces shown in netstat -i's output indicate that there are two SLIP interfaces built into the kernel. (The asterisks after the sl0 and sl1 indicate that the interfaces are down.) However, FreeBSD's default kernels do not come configured to forward packets (ie, your FreeBSD machine will not act as a router) due to Internet RFC requirements for Internet hosts (see RFCs 1009 [Requirements for Internet Gateways], 1122 [Requirements for Internet Hosts — Communication Layers], and perhaps 1127 [A Perspective on the Host Requirements RFCs]), so if you want your FreeBSD SLIP Server to act as a router, you will have to edit the /etc/rc.conf file and change the setting of the gateway_enable variable to . You will then need to reboot for the new settings to take effect. You will notice that near the end of the default kernel configuration file (/sys/i386/conf/GENERIC) is a line that reads: pseudo-device sl 2 SLIP This is the line that defines the number of SLIP devices available in the kernel; the number at the end of the line is the maximum number of SLIP connections that may be operating simultaneously. Please refer to Configuring the FreeBSD Kernel for help in reconfiguring your kernel. Sliplogin Configuration As mentioned earlier, there are three files in the /etc/sliphome directory that are part of the configuration for /usr/sbin/sliplogin (see &man.sliplogin.8; for the actual manual page for sliplogin): slip.hosts, which defines the SLIP users & their associated IP addresses; slip.login, which usually just configures the SLIP interface; and (optionally) slip.logout, which undoes slip.login's effects when the serial connection is terminated. <filename>slip.hosts</filename> Configuration /etc/sliphome/slip.hosts contains lines which have at least four items, separated by whitespace: SLIP user's login ID Local address (local to the SLIP server) of the SLIP link Remote address of the SLIP link Network mask The local and remote addresses may be host names (resolved to IP addresses by /etc/hosts or by the domain name service, depending on your specifications in /etc/host.conf), and the network mask may be a name that can be resolved by a lookup into /etc/networks. On a sample system, /etc/sliphome/slip.hosts looks like this: # # login local-addr remote-addr mask opt1 opt2 # (normal,compress,noicmp) # Shelmerg dc-slip sl-helmerg 0xfffffc00 autocomp At the end of the line is one or more of the options. — no header compression — compress headers — compress headers if the remote end allows it — disable ICMP packets (so any ping packets will be dropped instead of using up your bandwidth) Note that sliplogin under early releases of FreeBSD 2 ignored the options that FreeBSD 1.x recognized, so the options , , , and had no effect until support was added in FreeBSD 2.2 (unless your slip.login script included code to make use of the flags). SLIP TCP/IP networking Your choice of local and remote addresses for your SLIP links depends on whether you are going to dedicate a TCP/IP subnet or if you are going to use proxy ARP on your SLIP server (it is not true proxy ARP, but that is the terminology used in this document to describe it). If you are not sure which method to select or how to assign IP addresses, please refer to the TCP/IP books referenced in the slips-prereqs section and/or consult your IP network manager. gated If you are going to use a separate subnet for your SLIP clients, you will need to allocate the subnet number out of your assigned IP network number and assign each of your SLIP client's IP numbers out of that subnet. Then, you will probably either need to configure a static route to the SLIP subnet via your SLIP server on your nearest IP router, or install gated on your FreeBSD SLIP server and configure it to talk the appropriate routing protocols to your other routers to inform them about your SLIP server's route to the SLIP subnet. Ethernet Otherwise, if you will use the proxy ARP method, you will need to assign your SLIP client's IP addresses out of your SLIP server's Ethernet subnet, and you will also need to adjust your /etc/sliphome/slip.login and /etc/sliphome/slip.logout scripts to use &man.arp.8; to manage the proxy-ARP entries in the SLIP server's ARP table. <filename>slip.login</filename> Configuration The typical /etc/sliphome/slip.login file looks like this: #!/bin/sh - # # @(#)slip.login 5.1 (Berkeley) 7/1/90 # # generic login file for a slip line. sliplogin invokes this with # the parameters: # 1 2 3 4 5 6 7-n # slipunit ttyspeed loginname local-addr remote-addr mask opt-args # /sbin/ifconfig sl$1 inet $4 $5 netmask $6 This slip.login file merely ifconfig's the appropriate SLIP interface with the local and remote addresses and network mask of the SLIP interface. If you have decided to use the proxy ARP method (instead of using a separate subnet for your SLIP clients), your /etc/sliphome/slip.login file will need to look something like this: #!/bin/sh - # # @(#)slip.login 5.1 (Berkeley) 7/1/90 # # generic login file for a slip line. sliplogin invokes this with # the parameters: # 1 2 3 4 5 6 7-n # slipunit ttyspeed loginname local-addr remote-addr mask opt-args # /sbin/ifconfig sl$1 inet $4 $5 netmask $6 # Answer ARP requests for the SLIP client with our Ethernet addr /usr/sbin/arp -s $5 00:11:22:33:44:55 pub The additional line in this slip.login, arp -s $5 00:11:22:33:44:55 pub, creates an ARP entry in the SLIP server's ARP table. This ARP entry causes the SLIP server to respond with the SLIP server's Ethernet MAC address whenever a another IP node on the Ethernet asks to speak to the SLIP client's IP address. EthernetMAC address When using the example above, be sure to replace the Ethernet MAC address (00:11:22:33:44:55) with the MAC address of your system's Ethernet card, or your proxy ARP will definitely not work! You can discover your SLIP server's Ethernet MAC address by looking at the results of running netstat -i; the second line of the output should look something like: ed0 1500 <Link>0.2.c1.28.5f.4a 191923 0 129457 0 116 This indicates that this particular system's Ethernet MAC address is 00:02:c1:28:5f:4a — the periods in the Ethernet MAC address given by netstat -i must be changed to colons and leading zeros should be added to each single-digit hexadecimal number to convert the address into the form that &man.arp.8; desires; see the manual page on &man.arp.8; for complete information on usage. When you create /etc/sliphome/slip.login and /etc/sliphome/slip.logout, the execute bit (ie, chmod 755 /etc/sliphome/slip.login /etc/sliphome/slip.logout) must be set, or sliplogin will be unable to execute it. <filename>slip.logout</filename> Configuration /etc/sliphome/slip.logout is not strictly needed (unless you are implementing proxy ARP), but if you decide to create it, this is an example of a basic slip.logout script: #!/bin/sh - # # slip.logout # # logout file for a slip line. sliplogin invokes this with # the parameters: # 1 2 3 4 5 6 7-n # slipunit ttyspeed loginname local-addr remote-addr mask opt-args # /sbin/ifconfig sl$1 down If you are using proxy ARP, you will want to have /etc/sliphome/slip.logout remove the ARP entry for the SLIP client: #!/bin/sh - # # @(#)slip.logout # # logout file for a slip line. sliplogin invokes this with # the parameters: # 1 2 3 4 5 6 7-n # slipunit ttyspeed loginname local-addr remote-addr mask opt-args # /sbin/ifconfig sl$1 down # Quit answering ARP requests for the SLIP client /usr/sbin/arp -d $5 The arp -d $5 removes the ARP entry that the proxy ARP slip.login added when the SLIP client logged in. It bears repeating: make sure /etc/sliphome/slip.logout has the execute bit set for after you create it (ie, chmod 755 /etc/sliphome/slip.logout). Routing Considerations SLIP routing If you are not using the proxy ARP method for routing packets between your SLIP clients and the rest of your network (and perhaps the Internet), you will probably either have to add static routes to your closest default router(s) to route your SLIP client subnet via your SLIP server, or you will probably need to install and configure gated on your FreeBSD SLIP server so that it will tell your routers via appropriate routing protocols about your SLIP subnet. Static Routes static routes Adding static routes to your nearest default routers can be troublesome (or impossible, if you do not have authority to do so...). If you have a multiple-router network in your organization, some routers, such as Cisco and Proteon, may not only need to be configured with the static route to the SLIP subnet, but also need to be told which static routes to tell other routers about, so some expertise and troubleshooting/tweaking may be necessary to get static-route-based routing to work. Running <command>gated</command> gated An alternative to the headaches of static routes is to install gated on your FreeBSD SLIP server and configure it to use the appropriate routing protocols (RIP/OSPF/BGP/EGP) to tell other routers about your SLIP subnet. You can use gated from the ports collection or retrieve and build it yourself from the GateD anonymous FTP site; the current version as of this writing is gated-R3_5Alpha_8.tar.Z, which includes support for FreeBSD out-of-the-box. Complete information and documentation on gated is available on the Web starting at the Merit GateD Consortium. Compile and install it, and then write a /etc/gated.conf file to configure your gated; here is a sample, similar to what the author used on a FreeBSD SLIP server: # # gated configuration file for dc.dsu.edu; for gated version 3.5alpha5 # Only broadcast RIP information for xxx.xxx.yy out the ed Ethernet interface # # # tracing options # traceoptions "/var/tmp/gated.output" replace size 100k files 2 general ; rip yes { interface sl noripout noripin ; interface ed ripin ripout version 1 ; traceoptions route ; } ; # # Turn on a bunch of tracing info for the interface to the kernel: kernel { traceoptions remnants request routes info interface ; } ; # # Propagate the route to xxx.xxx.yy out the Ethernet interface via RIP # export proto rip interface ed { proto direct { xxx.xxx.yy mask 255.255.252.0 metric 1; # SLIP connections } ; } ; # # Accept routes from RIP via ed Ethernet interfaces import proto rip interface ed { all ; } ; RIP The above sample gated.conf file broadcasts routing information regarding the SLIP subnet xxx.xxx.yy via RIP onto the Ethernet; if you are using a different Ethernet driver than the ed driver, you will need to change the references to the ed interface appropriately. This sample file also sets up tracing to /var/tmp/gated.output for debugging gated's activity; you can certainly turn off the tracing options if gated works OK for you. You will need to change the xxx.xxx.yy's into the network address of your own SLIP subnet (be sure to change the net mask in the proto direct clause as well). When you get gated built and installed and create a configuration file for it, you will need to run gated in place of routed on your FreeBSD system; change the routed/gated startup parameters in /etc/netstart as appropriate for your system. Please see the manual page for gated for information on gated's command-line parameters. diff --git a/en_US.ISO8859-1/books/handbook/printing/chapter.sgml b/en_US.ISO8859-1/books/handbook/printing/chapter.sgml index 1563e6a2b4..9ddd060d1f 100644 --- a/en_US.ISO8859-1/books/handbook/printing/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/printing/chapter.sgml @@ -1,4752 +1,4768 @@ - Printing + + + + Sean + Kelly + Contributed by + + + + + + Jim + Mock + Restructured and updated by + + + + - Contributed by &a.kelly;, 30 September 1995. - Restructured and updated by &a.jim;, March 2000. + Printing Synopsis LPD spooling system printing FreeBSD can be used to print to a wide variety of printers, from the oldest impact printer to the latest laser printers, and everything in between, allowing you to produce high quality printed output from the applications you run. FreeBSD can also be configured to act as a print server on a network; in this capacity FreeBSD can receive print jobs from a variety of other computers, including other FreeBSD computers, Windows and MacOS hosts. FreeBSD will ensure that one job at a time is printed, and can keep statistics on which users and machines are doing the most printing, produce banner pages showing who's printout is who's, and more. After reading this chapter you will know: How to configure the FreeBSD print spooler How to install print filters, to handle special print jobs differently, including converting incoming documents to print formats that your printers understand How to enable header, or banner pages on your printout How to print to printers connected to other computers How to print to printers connected directly to the network How to control printer restrictions, including limiting the size of print jobs, and preventing certain users from printing How to keep printer statistics, and account for printer usage How to troubleshoot printing problems Before reading this chapter you should: Know how to configure and install a new kernel () Introduction In order to use printers with FreeBSD, you will need to set them up to work with the Berkeley line printer spooling system, also known as the LPD spooling system. It is the standard printer control system in FreeBSD. This chapter introduces the LPD spooling system, often simply called LPD, and will guide you through its configuration. If you are already familiar with LPD or another printer spooling system, you may wish to skip to section Setting up the spooling system. LPD controls everything about a host's printers. It is responsible for a number of things: It controls access to attached printers and printers attached to other hosts on the network. print jobs It enables users to submit files to be printed; these submissions are known as jobs. It prevents multiple users from accessing a printer at the same time by maintaining a queue for each printer. It can print header pages (also known as banner or burst pages) so users can easily find jobs they have printed in a stack of printouts. It takes care of communications parameters for printers connected on serial ports. It can send jobs over the network to a LPD spooler on another host. It can run special filters to format jobs to be printed for various printer languages or printer capabilities. It can account for printer usage. Through a configuration file (/etc/printcap), and by providing the special filter programs, you can enable the LPD system to do all or some subset of the above for a great variety of printer hardware. Why You Should Use the Spooler If you are the sole user of your system, you may be wondering why you should bother with the spooler when you do not need access control, header pages, or printer accounting. While it is possible to enable direct access to a printer, you should use the spooler anyway since: LPD prints jobs in the background; you do not have to wait for data to be copied to the printer. TeX LPD can conveniently run a job to be printed through filters to add date/time headers or convert a special file format (such as a TeX DVI file) into a format the printer will understand. You will not have to do these steps manually. Many free and commercial programs that provide a print feature usually expect to talk to the spooler on your system. By setting up the spooling system, you will more easily support other software you may later add or already have. Basic Setup To use printers with the LPD spooling system, you will need to set up both your printer hardware and the LPD software. This document describes two levels of setup: See section Simple Printer Setup to learn how to connect a printer, tell LPD how to communicate with it, and print plain text files to the printer. See section Advanced Printer Setup to find out how to print a variety of special file formats, to print header pages, to print across a network, to control access to printers, and to do printer accounting. Simple Printer Setup This section tells how to configure printer hardware and the LPD software to use the printer. It teaches the basics: Section Hardware Setup gives some hints on connecting the printer to a port on your computer. Section Software Setup shows how to setup the LPD spooler configuration file (/etc/printcap). If you are setting up a printer that uses a network protocol to accept data to print instead of a serial or parallel interface, see Printers With Networked Data Stream Interfaces. Although this section is called Simple Printer Setup, it is actually fairly complex. Getting the printer to work with your computer and the LPD spooler is the hardest part. The advanced options like header pages and accounting are fairly easy once you get the printer working. Hardware Setup This section tells about the various ways you can connect a printer to your PC. It talks about the kinds of ports and cables, and also the kernel configuration you may need to enable FreeBSD to speak to the printer. If you have already connected your printer and have successfully printed with it under another operating system, you can probably skip to section Software Setup. Ports and Cables Nearly all printers you can get for a PC today support one or both of the following interfaces: printer serial Serial interfaces use a serial port on your computer to send data to the printer. Serial interfaces are common in the computer industry and cables are readily available and also easy to construct. Serial interfaces sometimes need special cables and might require you to configure somewhat complex communications options. printer parallel Parallel interfaces use a parallel port on your computer to send data to the printer. Parallel interfaces are common in the PC market. Cables are readily available but more difficult to construct by hand. There are usually no communications options with parallel interfaces, making their configuration exceedingly simple. centronics parallel printers Parallel interfaces are sometimes known as Centronics interfaces, named after the connector type on the printer. In general, serial interfaces are slower than parallel interfaces. Parallel interfaces usually offer just one-way communication (computer to printer) while serial gives you two-way. Many newer parallel ports and printers can communicate in both directions under FreeBSD when a IEEE1284 compliant cable is used. PostScript Usually, the only time you need two-way communication with the printer is if the printer speaks PostScript. PostScript printers can be very verbose. In fact, PostScript jobs are actually programs sent to the printer; they need not produce paper at all and may return results directly to the computer. PostScript also uses two-way communication to tell the computer about problems, such as errors in the PostScript program or paper jams. Your users may be appreciative of such information. Furthermore, the best way to do effective accounting with a PostScript printer requires two-way communication: you ask the printer for its page count (how many pages it has printed in its lifetime), then send the user's job, then ask again for its page count. Subtract the two values and you know how much paper to charge the user. Parallel Ports To hook up a printer using a parallel interface, connect the Centronics cable between the printer and the computer. The instructions that came with the printer, the computer, or both should give you complete guidance. Remember which parallel port you used on the computer. The first parallel port is /dev/lpt0 to FreeBSD; the second is /dev/lpt1, and so on. Serial Ports To hook up a printer using a serial interface, connect the proper serial cable between the printer and the computer. The instructions that came with the printer, the computer, or both should give you complete guidance. If you are unsure what the proper serial cable is, you may wish to try one of the following alternatives: A modem cable connects each pin of the connector on one end of the cable straight through to its corresponding pin of the connector on the other end. This type of cable is also known as a DTE-to-DCE cable. null-modem cable A null-modem cable connects some pins straight through, swaps others (send data to receive data, for example), and shorts some internally in each connector hood. This type of cable is also known as a DTE-to-DTE cable. A serial printer cable, required for some unusual printers, is like the null-modem cable, but sends some signals to their counterparts instead of being internally shorted. baud rate parity flow control protocol You should also set up the communications parameters for the printer, usually through front-panel controls or DIP switches on the printer. Choose the highest bps (bits per second, sometimes baud rate) rate that both your computer and the printer can support. Choose 7 or 8 data bits; none, even, or odd parity; and 1 or 2 stop bits. Also choose a flow control protocol: either none, or XON/XOFF (also known as in-band or software) flow control. Remember these settings for the software configuration that follows. Software Setup This section describes the software setup necessary to print with the LPD spooling system in FreeBSD. Here is an outline of the steps involved: Configure your kernel, if necessary, for the port you are using for the printer; section Kernel Configuration tells you what you need to do. Set the communications mode for the parallel port, if you are using a parallel port; section Setting the Communication Mode for the Parallel Port gives details. Test if the operating system can send data to the printer. Section Checking Printer Communications gives some suggestions on how to do this. Set up LPD for the printer by modifying the file /etc/printcap. You will find out how to do this later in this chapter. Kernel Configuration The operating system kernel is compiled to work with a specific set of devices. The serial or parallel interface for your printer is a part of that set. Therefore, it might be necessary to add support for an additional serial or parallel port if your kernel is not already configured for one. To find out if the kernel you are currently using supports a serial interface, type: &prompt.root; dmesg | grep sioN Where N is the number of the serial port, starting from zero. If you see output similar to the following: sio2 at 0x3e8-0x3ef irq 5 on isa sio2: type 16550A then the kernel supports the port. To find out if the kernel supports a parallel interface, type: &prompt.root; dmesg | grep lptN Where N is the number of the parallel port, starting from zero. If you see output similar to the following lpt0 at 0x378-0x37f on isa then the kernel supports the port. You might have to reconfigure your kernel in order for the operating system to recognize and use the parallel or serial port you are using for the printer. To add support for a serial port, see the section on kernel configuration. To add support for a parallel port, see that section and the section that follows. Adding <filename>/dev</filename> Entries for the Ports Even though the kernel may support communication along a serial or parallel port, you will still need a software interface through which programs running on the system can send and receive data. That is what entries in the /dev directory are for. To add a /dev entry for a port: Become root with the &man.su.1; command. Enter the root password when prompted. Change to the /dev directory: &prompt.root; cd /dev Type: &prompt.root; ./MAKEDEV port Where port is the device entry for the port you want to make. Use lpt0 for the first parallel port, lpt1 for the second, and so on; use ttyd0 for the first serial port, ttyd1 for the second, and so on. Type: &prompt.root; ls -l port to make sure the device entry got created. Setting the Communication Mode for the Parallel Port When you are using the parallel interface, you can choose whether FreeBSD should use interrupt-driven or polled communication with the printer. The interrupt-driven method is the default with the GENERIC kernel. With this method, the operating system uses an IRQ line to determine when the printer is ready for data. The polled method directs the operating system to repeatedly ask the printer if it is ready for more data. When it responds ready, the kernel sends more data. The interrupt-driven method is somewhat faster but uses up a precious IRQ line. You should use whichever one works. You can set the communications mode in two ways: by configuring the kernel or by using the &man.lptcontrol.8; program. To set the communications mode by configuring the kernel: Edit your kernel configuration file. Look for or add an lpt0 entry. If you are setting up the second parallel port, use lpt1 instead. Use lpt2 for the third port, and so on. If you want interrupt-driven mode, add the irq specifier: device lpt0 at isa? port? tty irq N vector lptintr Where N is the IRQ number for your computer's parallel port. If you want polled mode, do not add the irq specifier: device lpt0 at isa? port? tty vector lptintr Save the file. Then configure, build, and install the kernel, then reboot. See kernel configuration for more details. To set the communications mode with &man.lptcontrol.8;: Type: &prompt.root; lptcontrol -i -u N to set interrupt-driven mode for lptN. Type: &prompt.root; lptcontrol -p -u N to set polled-mode for lptN. You could put these commands in your /etc/rc.local file to set the mode each time your system boots. See &man.lptcontrol.8; for more information. Checking Printer Communications Before proceeding to configure the spooling system, you should make sure the operating system can successfully send data to your printer. It is a lot easier to debug printer communication and the spooling system separately. To test the printer, we will send some text to it. For printers that can immediately print characters sent to them, the program &man.lptest.1; is perfect: it generates all 96 printable ASCII characters in 96 lines. PostScript For a PostScript (or other language-based) printer, we will need a more sophisticated test. A small PostScript program, such as the following, will suffice: %!PS 100 100 moveto 300 300 lineto stroke 310 310 moveto /Helvetica findfont 12 scalefont setfont (Is this thing working?) show showpage The above PostScript code can be placed into a file and used as shown in the examples appearing in the following sections. PCL When this document refers to a printer language, it is assuming a language like PostScript, and not Hewlett Packard's PCL. Although PCL has great functionality, you can intermingle plain text with its escape sequences. PostScript cannot directly print plain text, and that is the kind of printer language for which we must make special accommodations. Checking a Parallel Printer printer parallel This section tells you how to check if FreeBSD can communicate with a printer connected to a parallel port. To test a printer on a parallel port: Become root with &man.su.1;. Send data to the printer. If the printer can print plain text, then use &man.lptest.1;. Type: &prompt.root; lptest > /dev/lptN Where N is the number of the parallel port, starting from zero. If the printer understands PostScript or other printer language, then send a small program to the printer. Type: &prompt.root; cat > /dev/lptN Then, line by line, type the program carefully as you cannot edit a line once you have pressed RETURN or ENTER. When you have finished entering the program, press CONTROL+D, or whatever your end of file key is. Alternatively, you can put the program in a file and type: &prompt.root; cat file > /dev/lptN Where file is the name of the file containing the program you want to send to the printer. You should see something print. Do not worry if the text does not look right; we will fix such things later. Checking a Serial Printer printer serial This section tells you how to check if FreeBSD can communicate with a printer on a serial port. To test a printer on a serial port: Become root with &man.su.1;. Edit the file /etc/remote. Add the following entry: printer:dv=/dev/port:br#bps-rate:pa=parity bits-per-second serial port parity Where port is the device entry for the serial port (ttyd0, ttyd1, etc.), bps-rate is the bits-per-second rate at which the printer communicates, and parity is the parity required by the printer (either even, odd, none, or zero). Here is a sample entry for a printer connected via a serial line to the third serial port at 19200 bps with no parity: printer:dv=/dev/ttyd2:br#19200:pa=none Connect to the printer with &man.tip.1;. Type: &prompt.root; tip printer If this step does not work, edit the file /etc/remote again and try using /dev/cuaaN instead of /dev/ttydN. Send data to the printer. If the printer can print plain text, then use &man.lptest.1;. Type: ~$lptest If the printer understands PostScript or other printer language, then send a small program to the printer. Type the program, line by line, very carefully as backspacing or other editing keys may be significant to the printer. You may also need to type a special end-of-file key for the printer so it knows it received the whole program. For PostScript printers, press CONTROL+D. Alternatively, you can put the program in a file and type: ~>file Where file is the name of the file containing the program. After &man.tip.1; sends the file, press any required end-of-file key. You should see something print. Do not worry if the text does not look right; we will fix that later. Enabling the Spooler: The <filename>/etc/printcap</filename> File At this point, your printer should be hooked up, your kernel configured to communicate with it (if necessary), and you have been able to send some simple data to the printer. Now, we are ready to configure LPD to control access to your printer. You configure LPD by editing the file /etc/printcap. The LPD spooling system reads this file each time the spooler is used, so updates to the file take immediate effect. printer capabilities The format of the &man.printcap.5; file is straightforward. Use your favorite text editor to make changes to /etc/printcap. The format is identical to other capability files like /usr/share/misc/termcap and /etc/remote. For complete information about the format, see the &man.cgetent.3;. The simple spooler configuration consists of the following steps: Pick a name (and a few convenient aliases) for the printer, and put them in the /etc/printcap file; see the Naming the Printer section for more information on naming. header pages Turn off header pages (which are on by default) by inserting the sh capability; see the Suppressing Header Pages section for more information. Make a spooling directory, and specify its location with the sd capability; see the Making the Spooling Directory section for more information. Set the /dev entry to use for the printer, and note it in /etc/printcap with the lp capability; see the Identifying the Printer Device for more information. Also, if the printer is on a serial port, set up the communication parameters with the fs, fc, xs, and xc capabilities; which is discussed in the Configuring Spooler Communications Parameters section. Install a plain text input filter; see the Installing the Text Filter section for details. Test the setup by printing something with the &man.lpr.1; command. More details are available in the Trying It Out and Troubleshooting sections. Language-based printers, such as PostScript printers, cannot directly print plain text. The simple setup outlined above and described in the following sections assumes that if you are installing such a printer you will print only files that the printer can understand. Users often expect that they can print plain text to any of the printers installed on your system. Programs that interface to LPD to do their printing usually make the same assumption. If you are installing such a printer and want to be able to print jobs in the printer language and print plain text jobs, you are strongly urged to add an additional step to the simple setup outlined above: install an automatic plain-text-to-PostScript (or other printer language) conversion program. The section entitled Accommodating Plain Text Jobs on PostScript Printers tells how to do this. Naming the Printer The first (easy) step is to pick a name for your printer It really does not matter whether you choose functional or whimsical names since you can also provide a number of aliases for the printer. At least one of the printers specified in the /etc/printcap should have the alias lp. This is the default printer's name. If users do not have the PRINTER environment variable nor specify a printer name on the command line of any of the LPD commands, then lp will be the default printer they get to use. Also, it is common practice to make the last alias for a printer be a full description of the printer, including make and model. Once you have picked a name and some common aliases, put them in the /etc/printcap file. The name of the printer should start in the leftmost column. Separate each alias with a vertical bar and put a colon after the last alias. In the following example, we start with a skeletal /etc/printcap that defines two printers (a Diablo 630 line printer and a Panasonic KX-P4455 PostScript laser printer): # # /etc/printcap for host rose # rattan|line|diablo|lp|Diablo 630 Line Printer: bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4: In this example, the first printer is named rattan and has as aliases line, diablo, lp, and Diablo 630 Line Printer. Since it has the alias lp, it is also the default printer. The second is named bamboo, and has as aliases ps, PS, S, panasonic, and Panasonic KX-P4455 PostScript v51.4. Suppressing Header Pages printing header pages The LPD spooling system will by default print a header page for each job. The header page contains the user name who requested the job, the host from which the job came, and the name of the job, in nice large letters. Unfortunately, all this extra text gets in the way of debugging the simple printer setup, so we will suppress header pages. To suppress header pages, add the sh capability to the entry for the printer in /etc/printcap. Here is an example /etc/printcap with sh added: # # /etc/printcap for host rose - no header pages anywhere # rattan|line|diablo|lp|Diablo 630 Line Printer:\ :sh: bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\ :sh: Note how we used the correct format: the first line starts in the leftmost column, and subsequent lines are indented with a single TAB. Every line in an entry except the last ends in a backslash character. Making the Spooling Directory printer spool print jobs The next step in the simple spooler setup is to make a spooling directory, a directory where print jobs reside until they are printed, and where a number of other spooler support files live. Because of the variable nature of spooling directories, it is customary to put these directories under /var/spool. It is not necessary to backup the contents of spooling directories, either. Recreating them is as simple as running &man.mkdir.1;. It is also customary to make the directory with a name that is identical to the name of the printer, as shown below: &prompt.root; mkdir /var/spool/printer-name However, if you have a lot of printers on your network, you might want to put the spooling directories under a single directory that you reserve just for printing with LPD. We will do this for our two example printers rattan and bamboo: &prompt.root; mkdir /var/spool/lpd &prompt.root; mkdir /var/spool/lpd/rattan &prompt.root; mkdir /var/spool/lpd/bamboo If you are concerned about the privacy of jobs that users print, you might want to protect the spooling directory so it is not publicly accessible. Spooling directories should be owned and be readable, writable, and searchable by user daemon and group daemon, and no one else. We will do this for our example printers: &prompt.root; chown daemon:daemon /var/spool/lpd/rattan &prompt.root; chown daemon:daemon /var/spool/lpd/bamboo &prompt.root; chmod 770 /var/spool/lpd/rattan &prompt.root; chmod 770 /var/spool/lpd/bamboo Finally, you need to tell LPD about these directories using the /etc/printcap file. You specify the pathname of the spooling directory with the sd capability: # # /etc/printcap for host rose - added spooling directories # rattan|line|diablo|lp|Diablo 630 Line Printer:\ :sh:sd=/var/spool/lpd/rattan: bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\ :sh:sd=/var/spool/lpd/bamboo: Note that the name of the printer starts in the first column but all other entries describing the printer should be indented with a tab and each line escaped with a backslash. If you do not specify a spooling directory with sd, the spooling system will use /var/spool/lpd as a default. Identifying the Printer Device In the Adding /dev Entries for the Ports section, we identified which entry in the /dev directory FreeBSD will use to communicate with the printer. Now, we tell LPD that information. When the spooling system has a job to print, it will open the specified device on behalf of the filter program (which is responsible for passing data to the printer). List the /dev entry pathname in the /etc/printcap file using the lp capability. In our running example, let us assume that rattan is on the first parallel port, and bamboo is on a sixth serial port; here are the additions to /etc/printcap: # # /etc/printcap for host rose - identified what devices to use # rattan|line|diablo|lp|Diablo 630 Line Printer:\ :sh:sd=/var/spool/lpd/rattan:\ :lp=/dev/lpt0: bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\ :sh:sd=/var/spool/lpd/bamboo:\ :lp=/dev/ttyd5: If you do not specify the lp capability for a printer in your /etc/printcap file, LPD uses /dev/lp as a default. /dev/lp currently does not exist in FreeBSD. If the printer you are installing is connected to a parallel port, skip to the section entitled, Installing the Text Filter. Otherwise, be sure to follow the instructions in the next section. Configuring Spooler Communication Parameters printer serial For printers on serial ports, LPD can set up the bps rate, parity, and other serial communication parameters on behalf of the filter program that sends data to the printer. This is advantageous since: It lets you try different communication parameters by simply editing the /etc/printcap file; you do not have to recompile the filter program. It enables the spooling system to use the same filter program for multiple printers which may have different serial communication settings. The following /etc/printcap capabilities control serial communication parameters of the device listed in the lp capability: br#bps-rate Sets the communications speed of the device to bps-rate, where bps-rate can be 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, or 38400 bits-per-second. fc#clear-bits Clears the flag bits clear-bits in the sgttyb structure after opening the device. fs#set-bits Sets the flag bits set-bits in the sgttyb structure. xc#clear-bits Clears local mode bits clear-bits after opening the device. xs#set-bits Sets local mode bits set-bits. For more information on the bits for the fc, fs, xc, and xs capabilities, see the file /usr/include/sys/ioctl_compat.h. When LPD opens the device specified by the lp capability, it reads the flag bits in the sgttyb structure; it clears any bits in the fc capability, then sets bits in the fs capability, then applies the resultant setting. It does the same for the local mode bits as well. Let us add to our example printer on the sixth serial port. We will set the bps rate to 38400. For the flag bits, we will set the TANDEM, ANYP, LITOUT, FLUSHO, and PASS8 flags. For the local mode bits, we will set the LITOUT and PASS8 flags: bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\ :sh:sd=/var/spool/lpd/bamboo:\ :lp=/dev/ttyd5:fs#0x82000c1:xs#0x820: Installing the Text Filter print filters We are now ready to tell LPD what text filter to use to send jobs to the printer. A text filter, also known as an input filter, is a program that LPD runs when it has a job to print. When LPD runs the text filter for a printer, it sets the filter's standard input to the job to print, and its standard output to the printer device specified with the lp capability. The filter is expected to read the job from standard input, perform any necessary translation for the printer, and write the results to standard output, which will get printed. For more information on the text filter, see the Filters section. For our simple printer setup, the text filter can be a small shell script that just executes /bin/cat to send the job to the printer. FreeBSD comes with another filter called lpf that handles backspacing and underlining for printers that might not deal with such character streams well. And, of course, you can use any other filter program you want. The filter lpf is described in detail in section entitled lpf: a Text Filter. First, let us make the shell script /usr/local/libexec/if-simple be a simple text filter. Put the following text into that file with your favorite text editor: #!/bin/sh # # if-simple - Simple text input filter for lpd # Installed in /usr/local/libexec/if-simple # # Simply copies stdin to stdout. Ignores all filter arguments. /bin/cat && exit 0 exit 2 Make the file executable: &prompt.root; chmod 555 /usr/local/libexec/if-simple And then tell LPD to use it by specifying it with the if capability in /etc/printcap. We will add it to the two printers we have so far in the example /etc/printcap: # # /etc/printcap for host rose - added text filter # rattan|line|diablo|lp|Diablo 630 Line Printer:\ :sh:sd=/var/spool/lpd/rattan:\ :lp=/dev/lpt0:\ :if=/usr/local/libexec/if-simple: bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\ :sh:sd=/var/spool/lpd/bamboo:\ :lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:\ :if=/usr/local/libexec/if-simple: Turn on LPD &man.lpd.8; is run from /etc/rc, controlled by the lpd_enable variable. This variable defaults to NO. If you have not done so already, add the line: lpd_enable="YES" to /etc/rc.conf, and then either restart your machine, or just run &man.lpd.8;. &prompt.root; lpd Trying It Out You have reached the end of the simple LPD setup. Unfortunately, congratulations are not quite yet in order, since we still have to test the setup and correct any problems. To test the setup, try printing something. To print with the LPD system, you use the command &man.lpr.1;, which submits a job for printing. You can combine &man.lpr.1; with the &man.lptest.1; program, introduced in section Checking Printer Communications to generate some test text. To test the simple LPD setup: Type: &prompt.root; lptest 20 5 | lpr -Pprinter-name Where printer-name is a the name of a printer (or an alias) specified in /etc/printcap. To test the default printer, type &man.lpr.1; without any argument. Again, if you are testing a printer that expects PostScript, send a PostScript program in that language instead of using &man.lptest.1;. You can do so by putting the program in a file and typing lpr file. For a PostScript printer, you should get the results of the program. If you are using &man.lptest.1;, then your results should look like the following: !"#$%&'()*+,-./01234 "#$%&'()*+,-./012345 #$%&'()*+,-./0123456 $%&'()*+,-./01234567 %&'()*+,-./012345678 To further test the printer, try downloading larger programs (for language-based printers) or running &man.lptest.1; with different arguments. For example, lptest 80 60 will produce 60 lines of 80 characters each. If the printer did not work, see the Troubleshooting section. Advanced Printer Setup This section describes filters for printing specially formatted files, header pages, printing across networks, and restricting and accounting for printer usage. Filters print filters Although LPD handles network protocols, queuing, access control, and other aspects of printing, most of the real work happens in the filters. Filters are programs that communicate with the printer and handle its device dependencies and special requirements. In the simple printer setup, we installed a plain text filter—an extremely simple one that should work with most printers (section Installing the Text Filter). However, in order to take advantage of format conversion, printer accounting, specific printer quirks, and so on, you should understand how filters work. It will ultimately be the filter's responsibility to handle these aspects. And the bad news is that most of the time you have to provide filters yourself. The good news is that many are generally available; when they are not, they are usually easy to write. Also, FreeBSD comes with one, /usr/libexec/lpr/lpf, that works with many printers that can print plain text. (It handles backspacing and tabs in the file, and does accounting, but that is about all it does.) There are also several filters and filter components in the FreeBSD Ports Collection. Here is what you will find in this section: Section How Filters Work, tries to give an overview of a filter's role in the printing process. You should read this section to get an understanding of what is happening under the hood when LPD uses filters. This knowledge could help you anticipate and debug problems you might encounter as you install more and more filters on each of your printers. LPD expects every printer to be able to print plain text by default. This presents a problem for PostScript (or other language-based printers) which cannot directly print plain text. Section Accommodating Plain Text Jobs on PostScript Printers tells you what you should do to overcome this problem. You should read this section if you have a PostScript printer. PostScript is a popular output format for many programs. Even some people (myself included) write PostScript code directly. But PostScript printers are expensive. Section Simulating PostScript on Non-PostScript Printers tells how you can further modify a printer's text filter to accept and print PostScript data on a non-PostScript printer. You should read this section if you do not have a PostScript printer. Section Conversion Filters tells about a way you can automate the conversion of specific file formats, such as graphic or typesetting data, into formats your printer can understand. After reading this section, you should be able to set up your printers such that users can type lpr -t to print troff data, or lpr -d to print TeX DVI data, or lpr -v to print raster image data, and so forth. I recommend reading this section. Section Output Filters tells all about a not often used feature of LPD: output filters. Unless you are printing header pages (see Header Pages), you can probably skip that section altogether. Section lpf: a Text Filter describes lpf, a fairly complete if simple text filter for line printers (and laser printers that act like line printers) that comes with FreeBSD. If you need a quick way to get printer accounting working for plain text, or if you have a printer which emits smoke when it sees backspace characters, you should definitely consider lpf. How Filters Work As mentioned before, a filter is an executable program started by LPD to handle the device-dependent part of communicating with the printer. When LPD wants to print a file in a job, it starts a filter program. It sets the filter's standard input to the file to print, its standard output to the printer, and its standard error to the error logging file (specified in the lf capability in /etc/printcap, or /dev/console by default). troff Which filter LPD starts and the filter's arguments depend on what is listed in the /etc/printcap file and what arguments the user specified for the job on the &man.lpr.1; command line. For example, if the user typed lpr -t, LPD would start the troff filter, listed in the tf capability for the destination printer. If the user wanted to print plain text, it would start the if filter (this is mostly true: see Output Filters for details). There are three kinds of filters you can specify in /etc/printcap: The text filter, confusingly called the input filter in LPD documentation, handles regular text printing. Think of it as the default filter. LPD expects every printer to be able to print plain text by default, and it is the text filter's job to make sure backspaces, tabs, or other special characters do not confuse the printer. If you are in an environment where you have to account for printer usage, the text filter must also account for pages printed, usually by counting the number of lines printed and comparing that to the number of lines per page the printer supports. The text filter is started with the following argument list: filter-name -c -wwidth -llength -iindent -n login -h host acct-file where appears if the job's submitted with lpr -l width is the value from the pw (page width) capability specified in /etc/printcap, default 132 length is the value from the pl (page length) capability, default 66 indent is the amount of the indentation from lpr -i, default 0 login is the account name of the user printing the file host is the host name from which the job was submitted acct-file is the name of the accounting file from the af capability. printer filters A conversion filter converts a specific file format into one the printer can render onto paper. For example, ditroff typesetting data cannot be directly printed, but you can install a conversion filter for ditroff files to convert the ditroff data into a form the printer can digest and print. Section Conversion Filters tells all about them. Conversion filters also need to do accounting, if you need printer accounting. Conversion filters are started with the following arguments: filter-name -xpixel-width -ypixel-height -n login -h host acct-file where pixel-width is the value from the px capability (default 0) and pixel-height is the value from the py capability (default 0). The output filter is used only if there is no text filter, or if header pages are enabled. In my experience, output filters are rarely used. Section Output Filters describe them. There are only two arguments to an output filter: filter-name -wwidth -llength which are identical to the text filters and arguments. Filters should also exit with the following exit status: exit 0 If the filter printed the file successfully. exit 1 If the filter failed to print the file but wants LPD to try to print the file again. LPD will restart a filter if it exits with this status. exit 2 If the filter failed to print the file and does not want LPD to try again. LPD will throw out the file. The text filter that comes with the FreeBSD release, /usr/libexec/lpr/lpf, takes advantage of the page width and length arguments to determine when to send a form feed and how to account for printer usage. It uses the login, host, and accounting file arguments to make the accounting entries. If you are shopping for filters, see if they are LPD-compatible. If they are, they must support the argument lists described above. If you plan on writing filters for general use, then have them support the same argument lists and exit codes. Accommodating Plain Text Jobs on PostScript Printers print jobs If you are the only user of your computer and PostScript (or other language-based) printer, and you promise to never send plain text to your printer and to never use features of various programs that will want to send plain text to your printer, then you do not need to worry about this section at all. But, if you would like to send both PostScript and plain text jobs to the printer, then you are urged to augment your printer setup. To do so, we have the text filter detect if the arriving job is plain text or PostScript. All PostScript jobs must start with %! (for other printer languages, see your printer documentation). If those are the first two characters in the job, we have PostScript, and can pass the rest of the job directly. If those are not the first two characters in the file, then the filter will convert the text into PostScript and print the result. How do we do this? printer serial If you have got a serial printer, a great way to do it is to install lprps. lprps is a PostScript printer filter which performs two-way communication with the printer. It updates the printer's status file with verbose information from the printer, so users and administrators can see exactly what the state of the printer is (such as toner low or paper jam). But more importantly, it includes a program called psif which detects whether the incoming job is plain text and calls textps (another program that comes with lprps) to convert it to PostScript. It then uses lprps to send the job to the printer. lprps is part of the FreeBSD Ports Collection (see The Ports Collection). You can fetch, build and install it yourself, of course. After installing lprps, just specify the pathname to the psif program that is part of lprps. If you installed lprps from the ports collection, use the following in the serial PostScript printer's entry in /etc/printcap: :if=/usr/local/libexec/psif: You should also specify the rw capability; that tells LPD to open the printer in read-write mode. If you have a parallel PostScript printer (and therefore cannot use two-way communication with the printer, which lprps needs), you can use the following shell script as the text filter: #!/bin/sh # # psif - Print PostScript or plain text on a PostScript printer # Script version; NOT the version that comes with lprps # Installed in /usr/local/libexec/psif # read first_line first_two_chars=`expr "$first_line" : '\(..\)'` if [ "$first_two_chars" = "%!" ]; then # # PostScript job, print it. # echo "$first_line" && cat && printf "\004" && exit 0 exit 2 else # # Plain text, convert it, then print it. # ( echo "$first_line"; cat ) | /usr/local/bin/textps && printf "\004" && exit 0 exit 2 fi In the above script, textps is a program we installed separately to convert plain text to PostScript. You can use any text-to-PostScript program you wish. The FreeBSD Ports Collection (see The Ports Collection) includes a full featured text-to-PostScript program called a2ps that you might want to investigate. Simulating PostScript on Non-PostScript Printers PostScript emulating Ghostscript PostScript is the de facto standard for high quality typesetting and printing. PostScript is, however, an expensive standard. Thankfully, Alladin Enterprises has a free PostScript work-alike called Ghostscript that runs with FreeBSD. Ghostscript can read most PostScript files and can render their pages onto a variety of devices, including many brands of non-PostScript printers. By installing Ghostscript and using a special text filter for your printer, you can make your non-PostScript printer act like a real PostScript printer. Ghostscript is in the FreeBSD Ports Collection, if you would like to install it from there. You can fetch, build, and install it quite easily yourself, as well. To simulate PostScript, we have the text filter detect if it is printing a PostScript file. If it is not, then the filter will pass the file directly to the printer; otherwise, it will use Ghostscript to first convert the file into a format the printer will understand. Here is an example: the following script is a text filter for Hewlett Packard DeskJet 500 printers. For other printers, substitute the argument to the gs (Ghostscript) command. (Type gs -h to get a list of devices the current installation of Ghostscript supports.) #!/bin/sh # # ifhp - Print Ghostscript-simulated PostScript on a DeskJet 500 # Installed in /usr/local/libexec/hpif # # Treat LF as CR+LF: # printf "\033&k2G" || exit 2 # # Read first two characters of the file # read first_line first_two_chars=`expr "$first_line" : '\(..\)'` if [ "$first_two_chars" = "%!" ]; then # # It is PostScript; use Ghostscript to scan-convert and print it. # # Note that PostScript files are actually interpreted programs, # and those programs are allowed to write to stdout, which will # mess up the printed output. So, we redirect stdout to stderr # and then make descriptor 3 go to stdout, and have Ghostscript # write its output there. Exercise for the clever reader: # capture the stderr output from Ghostscript and mail it back to # the user originating the print job. # exec 3>&1 1>&2 /usr/local/bin/gs -dSAFER -dNOPAUSE -q -sDEVICE=djet500 \ -sOutputFile=/dev/fd/3 - && exit 0 # /usr/local/bin/gs -dSAFER -dNOPAUSE -q -sDEVICE=djet500 -sOutputFile=- - \ && exit 0 else # # Plain text or HP/PCL, so just print it directly; print a form # at the end to eject the last page. # echo $first_line && cat && printf "\033&l0H" && exit 0 fi exit 2 Finally, you need to notify LPD of the filter via the if capability: :if=/usr/local/libexec/hpif: That is it. You can type lpr plain.text and lpr whatever.ps and both should print successfully. Conversion Filters After completing the simple setup described in Simple Printer Setup, the first thing you will probably want to do is install conversion filters for your favorite file formats (besides plain ASCII text). Why Install Conversion Filters? TeX printing dvi files Conversion filters make printing various kinds of files easy. As an example, suppose we do a lot of work with the TeX typesetting system, and we have a PostScript printer. Every time we generate a DVI file from TeX, we cannot print it directly until we convert the DVI file into PostScript. The command sequence goes like this: &prompt.user; dvips seaweed-analysis.dvi &prompt.user; lpr seaweed-analysis.ps By installing a conversion filter for DVI files, we can skip the hand conversion step each time by having LPD do it for us. Now, each time we get a DVI file, we are just one step away from printing it: &prompt.user; lpr -d seaweed-analysis.dvi We got LPD to do the DVI file conversion for us by specifying the option. Section Formatting and Conversion Options lists the conversion options. For each of the conversion options you want a printer to support, install a conversion filter and specify its pathname in /etc/printcap. A conversion filter is like the text filter for the simple printer setup (see section Installing the Text Filter) except that instead of printing plain text, the filter converts the file into a format the printer can understand. Which Conversions Filters Should I Install? You should install the conversion filters you expect to use. If you print a lot of DVI data, then a DVI conversion filter is in order. If you have got plenty of troff to print out, then you probably want a troff filter. The following table summarizes the filters that LPD works with, their capability entries for the /etc/printcap file, and how to invoke them with the lpr command: File type /etc/printcap capability lpr option cifplot cf DVI df plot gf ditroff nf FORTRAN text rf troff rf raster vf plain text if none, , or In our example, using lpr -d means the printer needs a df capability in its entry in /etc/printcap. fortran Despite what others might contend, formats like FORTRAN text and plot are probably obsolete. At your site, you can give new meanings to these or any of the formatting options just by installing custom filters. For example, suppose you would like to directly print Printerleaf files (files from the Interleaf desktop publishing program), but will never print plot files. You could install a Printerleaf conversion filter under the gf capability and then educate your users that lpr -g mean print Printerleaf files. Installing Conversion Filters Since conversion filters are programs you install outside of the base FreeBSD installation, they should probably go under /usr/local. The directory /usr/local/libexec is a popular location, since they are specialized programs that only LPD will run; regular users should not ever need to run them. To enable a conversion filter, specify its pathname under the appropriate capability for the destination printer in /etc/printcap. In our example, we will add the DVI conversion filter to the entry for the printer named bamboo. Here is the example /etc/printcap file again, with the new df capability for the printer bamboo. # # /etc/printcap for host rose - added df filter for bamboo # rattan|line|diablo|lp|Diablo 630 Line Printer:\ :sh:sd=/var/spool/lpd/rattan:\ :lp=/dev/lpt0:\ :if=/usr/local/libexec/if-simple: bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\ :sh:sd=/var/spool/lpd/bamboo:\ :lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:\ :if=/usr/local/libexec/psif:\ :df=/usr/local/libexec/psdf: The DVI filter is a shell script named /usr/local/libexec/psdf. Here is that script: #!bin/sh # # psdf - DVI to PostScript printer filter # Installed in /usr/local/libexec/psdf # # Invoked by lpd when user runs lpr -d # exec /usr/local/bin/dvips -f | /usr/local/libexec/lprps "$@" This script runs dvips in filter mode (the argument) on standard input, which is the job to print. It then starts the PostScript printer filter lprps (see section Accommodating Plain Text Jobs on PostScript Printers) with the arguments LPD passed to this script. lprps will use those arguments to account for the pages printed. More Conversion Filter Examples Since there is no fixed set of steps to install conversion filters, let me instead provide more examples. Use these as guidance to making your own filters. Use them directly, if appropriate. This example script is a raster (well, GIF file, actually) conversion filter for a Hewlett Packard LaserJet III-Si printer: #!/bin/sh # # hpvf - Convert GIF files into HP/PCL, then print # Installed in /usr/local/libexec/hpvf PATH=/usr/X11R6/bin:$PATH; export PATH giftopnm | ppmtopgm | pgmtopbm | pbmtolj -resolution 300 \ && exit 0 \ || exit 2 It works by converting the GIF file into a portable anymap, converting that into a portable graymap, converting that into a portable bitmap, and converting that into LaserJet/PCL-compatible data. Here is the /etc/printcap file with an entry for a printer using the above filter: # # /etc/printcap for host orchid # teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\ :lp=/dev/lpt0:sh:sd=/var/spool/lpd/teak:mx#0:\ :if=/usr/local/libexec/hpif:\ :vf=/usr/local/libexec/hpvf: The following script is a conversion filter for troff data from the groff typesetting system for the PostScript printer named bamboo: #!/bin/sh # # pstf - Convert groff's troff data into PS, then print. # Installed in /usr/local/libexec/pstf # exec grops | /usr/local/libexec/lprps "$@" The above script makes use of lprps again to handle the communication with the printer. If the printer were on a parallel port, we would use this script instead: #!/bin/sh # # pstf - Convert groff's troff data into PS, then print. # Installed in /usr/local/libexec/pstf # exec grops That is it. Here is the entry we need to add to /etc/printcap to enable the filter: :tf=/usr/local/libexec/pstf: Here is an example that might make old hands at FORTRAN blush. It is a FORTRAN-text filter for any printer that can directly print plain text. We will install it for the printer teak: #!/bin/sh # # hprf - FORTRAN text filter for LaserJet 3si: # Installed in /usr/local/libexec/hprf # printf "\033&k2G" && fpr && printf "\033&l0H" && exit 0 exit 2 And we will add this line to the /etc/printcap for the printer teak to enable this filter: :rf=/usr/local/libexec/hprf: Here is one final, somewhat complex example. We will add a DVI filter to the LaserJet printer teak introduced earlier. First, the easy part: updating /etc/printcap with the location of the DVI filter: :df=/usr/local/libexec/hpdf: Now, for the hard part: making the filter. For that, we need a DVI-to-LaserJet/PCL conversion program. The FreeBSD Ports Collection (see The Ports Collection) has one: dvi2xx is the name of the package. Installing this package gives us the program we need, dvilj2p, which converts DVI into LaserJet IIp, LaserJet III, and LaserJet 2000 compatible codes. dvilj2p makes the filter hpdf quite complex since dvilj2p cannot read from standard input. It wants to work with a filename. What is worse, the filename has to end in .dvi so using /dev/fd/0 for standard input is problematic. We can get around that problem by linking (symbolically) a temporary file name (one that ends in .dvi) to /dev/fd/0, thereby forcing dvilj2p to read from standard input. The only other fly in the ointment is the fact that we cannot use /tmp for the temporary link. Symbolic links are owned by user and group bin. The filter runs as user daemon. And the /tmp directory has the sticky bit set. The filter can create the link, but it will not be able clean up when done and remove it since the link will belong to a different user. Instead, the filter will make the symbolic link in the current working directory, which is the spooling directory (specified by the sd capability in /etc/printcap). This is a perfect place for filters to do their work, especially since there is (sometimes) more free disk space in the spooling directory than under /tmp. Here, finally, is the filter: #!/bin/sh # # hpdf - Print DVI data on HP/PCL printer # Installed in /usr/local/libexec/hpdf PATH=/usr/local/bin:$PATH; export PATH # # Define a function to clean up our temporary files. These exist # in the current directory, which will be the spooling directory # for the printer. # cleanup() { rm -f hpdf$$.dvi } # # Define a function to handle fatal errors: print the given message # and exit 2. Exiting with 2 tells LPD to do not try to reprint the # job. # fatal() { echo "$@" 1>&2 cleanup exit 2 } # # If user removes the job, LPD will send SIGINT, so trap SIGINT # (and a few other signals) to clean up after ourselves. # trap cleanup 1 2 15 # # Make sure we are not colliding with any existing files. # cleanup # # Link the DVI input file to standard input (the file to print). # ln -s /dev/fd/0 hpdf$$.dvi || fatal "Cannot symlink /dev/fd/0" # # Make LF = CR+LF # printf "\033&k2G" || fatal "Cannot initialize printer" # # Convert and print. Return value from dvilj2p does not seem to be # reliable, so we ignore it. # dvilj2p -M1 -q -e- dfhp$$.dvi # # Clean up and exit # cleanup exit 0 Automated Conversion: An Alternative To Conversion Filters All these conversion filters accomplish a lot for your printing environment, but at the cost forcing the user to specify (on the &man.lpr.1; command line) which one to use. If your users are not particularly computer literate, having to specify a filter option will become annoying. What is worse, though, is that an incorrectly specified filter option may run a filter on the wrong type of file and cause your printer to spew out hundreds of sheets of paper. Rather than install conversion filters at all, you might want to try having the text filter (since it is the default filter) detect the type of file it has been asked to print and then automatically run the right conversion filter. Tools such as file can be of help here. Of course, it will be hard to determine the differences between some file types—and, of course, you can still provide conversion filters just for them. apsfilter printer filters apsfilter The FreeBSD Ports Collection has a text filter that performs automatic conversion called apsfilter. It can detect plain text, PostScript, and DVI files, run the proper conversions, and print. Output Filters The LPD spooling system supports one other type of filter that we have not yet explored: an output filter. An output filter is intended for printing plain text only, like the text filter, but with many simplifications. If you are using an output filter but no text filter, then: LPD starts an output filter once for the entire job instead of once for each file in the job. LPD does not make any provision to identify the start or the end of files within the job for the output filter. LPD does not pass the user's login or host to the filter, so it is not intended to do accounting. In fact, it gets only two arguments: filter-name -wwidth -llength Where width is from the pw capability and length is from the pl capability for the printer in question. Do not be seduced by an output filter's simplicity. If you would like each file in a job to start on a different page an output filter will not work. Use a text filter (also known as an input filter); see section Installing the Text Filter. Furthermore, an output filter is actually more complex in that it has to examine the byte stream being sent to it for special flag characters and must send signals to itself on behalf of LPD. However, an output filter is necessary if you want header pages and need to send escape sequences or other initialization strings to be able to print the header page. (But it is also futile if you want to charge header pages to the requesting user's account, since LPD does not give any user or host information to the output filter.) On a single printer, LPD allows both an output filter and text or other filters. In such cases, LPD will start the output filter to print the header page (see section Header Pages) only. LPD then expects the output filter to stop itself by sending two bytes to the filter: ASCII 031 followed by ASCII 001. When an output filter sees these two bytes (031, 001), it should stop by sending SIGSTOP to itself. When LPD's done running other filters, it will restart the output filter by sending SIGCONT to it. If there is an output filter but no text filter and LPD is working on a plain text job, LPD uses the output filter to do the job. As stated before, the output filter will print each file of the job in sequence with no intervening form feeds or other paper advancement, and this is probably not what you want. In almost all cases, you need a text filter. The program lpf, which we introduced earlier as a text filter, can also run as an output filter. If you need a quick-and-dirty output filter but do not want to write the byte detection and signal sending code, try lpf. You can also wrap lpf in a shell script to handle any initialization codes the printer might require. <command>lpf</command>: a Text Filter The program /usr/libexec/lpr/lpf that comes with FreeBSD binary distribution is a text filter (input filter) that can indent output (job submitted with lpr -i), allow literal characters to pass (job submitted with lpr -l), adjust the printing position for backspaces and tabs in the job, and account for pages printed. It can also act like an output filter. lpf is suitable for many printing environments. And although it has no capability to send initialization sequences to a printer, it is easy to write a shell script to do the needed initialization and then execute lpf. page accounting accounting printer In order for lpf to do page accounting correctly, it needs correct values filled in for the pw and pl capabilities in the /etc/printcap file. It uses these values to determine how much text can fit on a page and how many pages were in a user's job. For more information on printer accounting, see Accounting for Printer Usage. Header Pages If you have lots of users, all of them using various printers, then you probably want to consider header pages as a necessary evil. banner pages header pages header pages Header pages, also known as banner or burst pages identify to whom jobs belong after they are printed. They are usually printed in large, bold letters, perhaps with decorative borders, so that in a stack of printouts they stand out from the real documents that comprise users' jobs. They enable users to locate their jobs quickly. The obvious drawback to a header page is that it is yet one more sheet that has to be printed for every job, their ephemeral usefulness lasting not more than a few minutes, ultimately finding themselves in a recycling bin or rubbish heap. (Note that header pages go with each job, not each file in a job, so the paper waste might not be that bad.) The LPD system can provide header pages automatically for your printouts if your printer can directly print plain text. If you have a PostScript printer, you will need an external program to generate the header page; see Header Pages on PostScript Printers. Enabling Header Pages In the Simple Printer Setup, we turned off header pages by specifying sh (meaning suppress header) in the /etc/printcap file. To enable header pages for a printer, just remove the sh capability. Sounds too easy, right? You are right. You might have to provide an output filter to send initialization strings to the printer. Here is an example output filter for Hewlett Packard PCL-compatible printers: #!/bin/sh # # hpof - Output filter for Hewlett Packard PCL-compatible printers # Installed in /usr/local/libexec/hpof printf "\033&k2G" || exit 2 exec /usr/libexec/lpr/lpf Specify the path to the output filter in the of capability. See Output Filters for more information. Here is an example /etc/printcap file for the printer teak that we introduced earlier; we enabled header pages and added the above output filter: # # /etc/printcap for host orchid # teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\ :lp=/dev/lpt0:sd=/var/spool/lpd/teak:mx#0:\ :if=/usr/local/libexec/hpif:\ :vf=/usr/local/libexec/hpvf:\ :of=/usr/local/libexec/hpof: Now, when users print jobs to teak, they get a header page with each job. If users want to spend time searching for their printouts, they can suppress header pages by submitting the job with lpr -h; see Header Page Options for more &man.lpr.1; options. LPD prints a form feed character after the header page. If your printer uses a different character or sequence of characters to eject a page, specify them with the ff capability in /etc/printcap. Controlling Header Pages By enabling header pages, LPD will produce a long header, a full page of large letters identifying the user, host, and job. Here is an example (kelly printed the job named outline from host rose): k ll ll k l l k l l k k eeee l l y y k k e e l l y y k k eeeeee l l y y kk k e l l y y k k e e l l y yy k k eeee lll lll yyy y y y y yyyy ll t l i t l oooo u u ttttt l ii n nnn eeee o o u u t l i nn n e e o o u u t l i n n eeeeee o o u u t l i n n e o o u uu t t l i n n e e oooo uuu u tt lll iii n n eeee r rrr oooo ssss eeee rr r o o s s e e r o o ss eeeeee r o o ss e r o o s s e e r oooo ssss eeee Job: outline Date: Sun Sep 17 11:04:58 1995 LPD appends a form feed after this text so the job starts on a new page (unless you have sf (suppress form feeds) in the destination printer's entry in /etc/printcap). If you prefer, LPD can make a short header; specify sb (short banner) in the /etc/printcap file. The header page will look like this: rose:kelly Job: outline Date: Sun Sep 17 11:07:51 1995 Also by default, LPD prints the header page first, then the job. To reverse that, specify hl (header last) in /etc/printcap. Accounting for Header Pages Using LPD's built-in header pages enforces a particular paradigm when it comes to printer accounting: header pages must be free of charge. Why? Because the output filter is the only external program that will have control when the header page is printed that could do accounting, and it is not provided with any user or host information or an accounting file, so it has no idea whom to charge for printer use. It is also not enough to just add one page to the text filter or any of the conversion filters (which do have user and host information) since users can suppress header pages with lpr -h. They could still be charged for header pages they did not print. Basically, lpr -h will be the preferred option of environmentally-minded users, but you cannot offer any incentive to use it. It is still not enough to have each of the filters generate their own header pages (thereby being able to charge for them). If users wanted the option of suppressing the header pages with lpr -h, they will still get them and be charged for them since LPD does not pass any knowledge of the option to any of the filters. So, what are your options? You can: Accept LPD's paradigm and make header pages free. Install an alternative to LPD, such as LPRng. Section Alternatives to the Standard Spooler tells more about other spooling software you can substitute for LPD. Write a smart output filter. Normally, an output filter is not meant to do anything more than initialize a printer or do some simple character conversion. It is suited for header pages and plain text jobs (when there is no text (input) filter). But, if there is a text filter for the plain text jobs, then LPD will start the output filter only for the header pages. And the output filter can parse the header page text that LPD generates to determine what user and host to charge for the header page. The only other problem with this method is that the output filter still does not know what accounting file to use (it is not passed the name of the file from the af capability), but if you have a well-known accounting file, you can hard-code that into the output filter. To facilitate the parsing step, use the sh (short header) capability in /etc/printcap. Then again, all that might be too much trouble, and users will certainly appreciate the more generous system administrator who makes header pages free. Header Pages on PostScript Printers As described above, LPD can generate a plain text header page suitable for many printers. Of course, PostScript cannot directly print plain text, so the header page feature of LPD is useless—or mostly so. One obvious way to get header pages is to have every conversion filter and the text filter generate the header page. The filters should use the user and host arguments to generate a suitable header page. The drawback of this method is that users will always get a header page, even if they submit jobs with lpr -h. Let us explore this method. The following script takes three arguments (user login name, host name, and job name) and makes a simple PostScript header page: #!/bin/sh # # make-ps-header - make a PostScript header page on stdout # Installed in /usr/local/libexec/make-ps-header # # # These are PostScript units (72 to the inch). Modify for A4 or # whatever size paper you are using: # page_width=612 page_height=792 border=72 # # Check arguments # if [ $# -ne 3 ]; then echo "Usage: `basename $0` <user> <host> <job>" 1>&2 exit 1 fi # # Save these, mostly for readability in the PostScript, below. # user=$1 host=$2 job=$3 date=`date` # # Send the PostScript code to stdout. # exec cat <<EOF %!PS % % Make sure we do not interfere with user's job that will follow % save % % Make a thick, unpleasant border around the edge of the paper. % $border $border moveto $page_width $border 2 mul sub 0 rlineto 0 $page_height $border 2 mul sub rlineto currentscreen 3 -1 roll pop 100 3 1 roll setscreen $border 2 mul $page_width sub 0 rlineto closepath 0.8 setgray 10 setlinewidth stroke 0 setgray % % Display user's login name, nice and large and prominent % /Helvetica-Bold findfont 64 scalefont setfont $page_width ($user) stringwidth pop sub 2 div $page_height 200 sub moveto ($user) show % % Now show the boring particulars % /Helvetica findfont 14 scalefont setfont /y 200 def [ (Job:) (Host:) (Date:) ] { 200 y moveto show /y y 18 sub def } forall /Helvetica-Bold findfont 14 scalefont setfont /y 200 def [ ($job) ($host) ($date) ] { 270 y moveto show /y y 18 sub def } forall % % That is it % restore showpage EOF Now, each of the conversion filters and the text filter can call this script to first generate the header page, and then print the user's job. Here is the DVI conversion filter from earlier in this document, modified to make a header page: #!/bin/sh # # psdf - DVI to PostScript printer filter # Installed in /usr/local/libexec/psdf # # Invoked by lpd when user runs lpr -d # orig_args="$@" fail() { echo "$@" 1>&2 exit 2 } while getopts "x:y:n:h:" option; do case $option in x|y) ;; # Ignore n) login=$OPTARG ;; h) host=$OPTARG ;; *) echo "LPD started `basename $0` wrong." 1>&2 exit 2 ;; esac done [ "$login" ] || fail "No login name" [ "$host" ] || fail "No host name" ( /usr/local/libexec/make-ps-header $login $host "DVI File" /usr/local/bin/dvips -f ) | eval /usr/local/libexec/lprps $orig_args Notice how the filter has to parse the argument list in order to determine the user and host name. The parsing for the other conversion filters is identical. The text filter takes a slightly different set of arguments, though (see section How Filters Work). As we have mentioned before, the above scheme, though fairly simple, disables the suppress header page option (the option) to lpr. If users wanted to save a tree (or a few pennies, if you charge for header pages), they would not be able to do so, since every filter's going to print a header page with every job. To allow users to shut off header pages on a per-job basis, you will need to use the trick introduced in section Accounting for Header Pages: write an output filter that parses the LPD-generated header page and produces a PostScript version. If the user submits the job with lpr -h, then LPD will not generate a header page, and neither will your output filter. Otherwise, your output filter will read the text from LPD and send the appropriate header page PostScript code to the printer. If you have a PostScript printer on a serial line, you can make use of lprps, which comes with an output filter, psof, which does the above. Note that psof does not charge for header pages. Networked Printing printer network network printing FreeBSD supports networked printing: sending jobs to remote printers. Networked printing generally refers to two different things: Accessing a printer attached to a remote host. You install a printer that has a conventional serial or parallel interface on one host. Then, you set up LPD to enable access to the printer from other hosts on the network. Section Printers Installed on Remote Hosts tells how to do this. Accessing a printer attached directly to a network. The printer has a network interface in addition (or in place of) a more conventional serial or parallel interface. Such a printer might work as follows: It might understand the LPD protocol and can even queue jobs from remote hosts. In this case, it acts just like a regular host running LPD. Follow the same procedure in section Printers Installed on Remote Hosts to set up such a printer. It might support a data stream network connection. In this case, you attach the printer to one host on the network by making that host responsible for spooling jobs and sending them to the printer. Section Printers with Networked Data Stream Interfaces gives some suggestions on installing such printers. Printers Installed on Remote Hosts The LPD spooling system has built-in support for sending jobs to other hosts also running LPD (or are compatible with LPD). This feature enables you to install a printer on one host and make it accessible from other hosts. It also works with printers that have network interfaces that understand the LPD protocol. To enable this kind of remote printing, first install a printer on one host, the printer host, using the simple printer setup described in Simple Printer Setup. Do any advanced setup in Advanced Printer Setup that you need. Make sure to test the printer and see if it works with the features of LPD you have enabled. Also ensure that the local host has authorization to use the LPD service in the remote host (see Restricting Jobs from Remote Printers). printer network network printing If you are using a printer with a network interface that is compatible with LPD, then the printer host in the discussion below is the printer itself, and the printer name is the name you configured for the printer. See the documentation that accompanied your printer and/or printer-network interface. If you are using a Hewlett Packard Laserjet then the printer name text will automatically perform the LF to CRLF conversion for you, so you will not require the hpif script. Then, on the other hosts you want to have access to the printer, make an entry in their /etc/printcap files with the following: Name the entry anything you want. For simplicity, though, you probably want to use the same name and aliases as on the printer host. Leave the lp capability blank, explicitly (:lp=:). Make a spooling directory and specify its location in the sd capability. LPD will store jobs here before they get sent to the printer host. Place the name of the printer host in the rm capability. Place the printer name on the printer host in the rp capability. That is it. You do not need to list conversion filters, page dimensions, or anything else in the /etc/printcap file. Here is an example. The host rose has two printers, bamboo and rattan. We will enable users on the host orchid to print to those printers. Here is the /etc/printcap file for orchid (back from section Enabling Header Pages). It already had the entry for the printer teak; we have added entries for the two printers on the host rose: # # /etc/printcap for host orchid - added (remote) printers on rose # # # teak is local; it is connected directly to orchid: # teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\ :lp=/dev/lpt0:sd=/var/spool/lpd/teak:mx#0:\ :if=/usr/local/libexec/ifhp:\ :vf=/usr/local/libexec/vfhp:\ :of=/usr/local/libexec/ofhp: # # rattan is connected to rose; send jobs for rattan to rose: # rattan|line|diablo|lp|Diablo 630 Line Printer:\ :lp=:rm=rose:rp=rattan:sd=/var/spool/lpd/rattan: # # bamboo is connected to rose as well: # bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\ :lp=:rm=rose:rp=bamboo:sd=/var/spool/lpd/bamboo: Then, we just need to make spooling directories on orchid: &prompt.root; mkdir -p /var/spool/lpd/rattan /var/spool/lpd/bamboo &prompt.root; chmod 770 /var/spool/lpd/rattan /var/spool/lpd/bamboo &prompt.root; chown daemon:daemon /var/spool/lpd/rattan /var/spool/lpd/bamboo Now, users on orchid can print to rattan and bamboo. If, for example, a user on orchid typed &prompt.user; lpr -P bamboo -d sushi-review.dvi the LPD system on orchid would copy the job to the spooling directory /var/spool/lpd/bamboo and note that it was a DVI job. As soon as the host rose has room in its bamboo spooling directory, the two LPDs would transfer the file to rose. The file would wait in rose's queue until it was finally printed. It would be converted from DVI to PostScript (since bamboo is a PostScript printer) on rose. Printers with Networked Data Stream Interfaces Often, when you buy a network interface card for a printer, you can get two versions: one which emulates a spooler (the more expensive version), or one which just lets you send data to it as if you were using a serial or parallel port (the cheaper version). This section tells how to use the cheaper version. For the more expensive one, see the previous section Printers Installed on Remote Hosts. The format of the /etc/printcap file lets you specify what serial or parallel interface to use, and (if you are using a serial interface), what baud rate, whether to use flow control, delays for tabs, conversion of newlines, and more. But there is no way to specify a connection to a printer that is listening on a TCP/IP or other network port. To send data to a networked printer, you need to develop a communications program that can be called by the text and conversion filters. Here is one such example: the script netprint takes all data on standard input and sends it to a network-attached printer. We specify the hostname of the printer as the first argument and the port number to which to connect as the second argument to netprint. Note that this supports one-way communication only (FreeBSD to printer); many network printers support two-way communication, and you might want to take advantage of that (to get printer status, perform accounting, etc.). #!/usr/bin/perl # # netprint - Text filter for printer attached to network # Installed in /usr/local/libexec/netprint # $#ARGV eq 1 || die "Usage: $0 <printer-hostname> <port-number>"; $printer_host = $ARGV[0]; $printer_port = $ARGV[1]; require 'sys/socket.ph'; ($ignore, $ignore, $protocol) = getprotobyname('tcp'); ($ignore, $ignore, $ignore, $ignore, $address) = gethostbyname($printer_host); $sockaddr = pack('S n a4 x8', &AF_INET, $printer_port, $address); socket(PRINTER, &PF_INET, &SOCK_STREAM, $protocol) || die "Can't create TCP/IP stream socket: $!"; connect(PRINTER, $sockaddr) || die "Can't contact $printer_host: $!"; while (<STDIN>) { print PRINTER; } exit 0; We can then use this script in various filters. Suppose we had a Diablo 750-N line printer connected to the network. The printer accepts data to print on port number 5100. The host name of the printer is scrivener. Here is the text filter for the printer: #!/bin/sh # # diablo-if-net - Text filter for Diablo printer `scrivener' listening # on port 5100. Installed in /usr/local/libexec/diablo-if-net # exec /usr/libexec/lpr/lpf "$@" | /usr/local/libexec/netprint scrivener 5100 Restricting Printer Usage printer restricting access to This section gives information on restricting printer usage. The LPD system lets you control who can access a printer, both locally or remotely, whether they can print multiple copies, how large their jobs can be, and how large the printer queues can get. Restricting Multiple Copies The LPD system makes it easy for users to print multiple copies of a file. Users can print jobs with lpr -#5 (for example) and get five copies of each file in the job. Whether this is a good thing is up to you. If you feel multiple copies cause unnecessary wear and tear on your printers, you can disable the option to &man.lpr.1; by adding the sc capability to the /etc/printcap file. When users submit jobs with the option, they will see: lpr: multiple copies are not allowed Note that if you have set up access to a printer remotely (see section Printers Installed on Remote Hosts), you need the sc capability on the remote /etc/printcap files as well, or else users will still be able to submit multiple-copy jobs by using another host. Here is an example. This is the /etc/printcap file for the host rose. The printer rattan is quite hearty, so we will allow multiple copies, but the laser printer bamboo's a bit more delicate, so we will disable multiple copies by adding the sc capability: # # /etc/printcap for host rose - restrict multiple copies on bamboo # rattan|line|diablo|lp|Diablo 630 Line Printer:\ :sh:sd=/var/spool/lpd/rattan:\ :lp=/dev/lpt0:\ :if=/usr/local/libexec/if-simple: bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\ :sh:sd=/var/spool/lpd/bamboo:sc:\ :lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:\ :if=/usr/local/libexec/psif:\ :df=/usr/local/libexec/psdf: Now, we also need to add the sc capability on the host orchid's /etc/printcap (and while we are at it, let us disable multiple copies for the printer teak): # # /etc/printcap for host orchid - no multiple copies for local # printer teak or remote printer bamboo teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\ :lp=/dev/lpt0:sd=/var/spool/lpd/teak:mx#0:sc:\ :if=/usr/local/libexec/ifhp:\ :vf=/usr/local/libexec/vfhp:\ :of=/usr/local/libexec/ofhp: rattan|line|diablo|lp|Diablo 630 Line Printer:\ :lp=:rm=rose:rp=rattan:sd=/var/spool/lpd/rattan: bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\ :lp=:rm=rose:rp=bamboo:sd=/var/spool/lpd/bamboo:sc: By using the sc capability, we prevent the use of lpr -#, but that still does not prevent users from running &man.lpr.1; multiple times, or from submitting the same file multiple times in one job like this: &prompt.user; lpr forsale.sign forsale.sign forsale.sign forsale.sign forsale.sign There are many ways to prevent this abuse (including ignoring it) which you are free to explore. Restricting Access To Printers You can control who can print to what printers by using the Unix group mechanism and the rg capability in /etc/printcap. Just place the users you want to have access to a printer in a certain group, and then name that group in the rg capability. Users outside the group (including root) will be greeted with lpr: Not a member of the restricted group if they try to print to the controlled printer. As with the sc (suppress multiple copies) capability, you need to specify rg on remote hosts that also have access to your printers, if you feel it is appropriate (see section Printers Installed on Remote Hosts). For example, we will let anyone access the printer rattan, but only those in group artists can use bamboo. Here is the familiar /etc/printcap for host rose: # # /etc/printcap for host rose - restricted group for bamboo # rattan|line|diablo|lp|Diablo 630 Line Printer:\ :sh:sd=/var/spool/lpd/rattan:\ :lp=/dev/lpt0:\ :if=/usr/local/libexec/if-simple: bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\ :sh:sd=/var/spool/lpd/bamboo:sc:rg=artists:\ :lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:\ :if=/usr/local/libexec/psif:\ :df=/usr/local/libexec/psdf: Let us leave the other example /etc/printcap file (for the host orchid) alone. Of course, anyone on orchid can print to bamboo. It might be the case that we only allow certain logins on orchid anyway, and want them to have access to the printer. Or not. There can be only one restricted group per printer. Controlling Sizes of Jobs Submitted print jobs If you have many users accessing the printers, you probably need to put an upper limit on the sizes of the files users can submit to print. After all, there is only so much free space on the filesystem that houses the spooling directories, and you also need to make sure there is room for the jobs of other users. print jobs controlling LPD enables you to limit the maximum byte size a file in a job can be with the mx capability. The units are in BUFSIZ blocks, which are 1024 bytes. If you put a zero for this capability, there will be no limit on file size; however, if no mx capability is specified, then a default limit of 1000 blocks will be used. The limit applies to files in a job, and not the total job size. LPD will not refuse a file that is larger than the limit you place on a printer. Instead, it will queue as much of the file up to the limit, which will then get printed. The rest will be discarded. Whether this is correct behavior is up for debate. Let us add limits to our example printers rattan and bamboo. Since those artists' PostScript files tend to be large, we will limit them to five megabytes. We will put no limit on the plain text line printer: # # /etc/printcap for host rose # # # No limit on job size: # rattan|line|diablo|lp|Diablo 630 Line Printer:\ :sh:mx#0:sd=/var/spool/lpd/rattan:\ :lp=/dev/lpt0:\ :if=/usr/local/libexec/if-simple: # # Limit of five megabytes: # bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\ :sh:sd=/var/spool/lpd/bamboo:sc:rg=artists:mx#5000:\ :lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:\ :if=/usr/local/libexec/psif:\ :df=/usr/local/libexec/psdf: Again, the limits apply to the local users only. If you have set up access to your printers remotely, remote users will not get those limits. You will need to specify the mx capability in the remote /etc/printcap files as well. See section Printers Installed on Remote Hosts for more information on remote printing. There is another specialized way to limit job sizes from remote printers; see section Restricting Jobs from Remote Printers. Restricting Jobs from Remote Printers The LPD spooling system provides several ways to restrict print jobs submitted from remote hosts: Host restrictions You can control from which remote hosts a local LPD accepts requests with the files /etc/hosts.equiv and /etc/hosts.lpd. LPD checks to see if an incoming request is from a host listed in either one of these files. If not, LPD refuses the request. The format of these files is simple: one host name per line. Note that the file /etc/hosts.equiv is also used by the &man.ruserok.3; protocol, and affects programs like &man.rsh.1; and &man.rcp.1;, so be careful. For example, here is the /etc/hosts.lpd file on the host rose: orchid violet madrigal.fishbaum.de This means rose will accept requests from the hosts orchid, violet, and madrigal.fishbaum.de. If any other host tries to access rose's LPD, the job will be refused. Size restrictions You can control how much free space there needs to remain on the filesystem where a spooling directory resides. Make a file called minfree in the spooling directory for the local printer. Insert in that file a number representing how many disk blocks (512 bytes) of free space there has to be for a remote job to be accepted. This lets you insure that remote users will not fill your filesystem. You can also use it to give a certain priority to local users: they will be able to queue jobs long after the free disk space has fallen below the amount specified in the minfree file. For example, let us add a minfree file for the printer bamboo. We examine /etc/printcap to find the spooling directory for this printer; here is bamboo's entry: bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\ :sh:sd=/var/spool/lpd/bamboo:sc:rg=artists:mx#5000:\ :lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:mx#5000:\ :if=/usr/local/libexec/psif:\ :df=/usr/local/libexec/psdf: The spooling directory is the given in the sd capability. We will make three megabytes (which is 6144 disk blocks) the amount of free disk space that must exist on the filesystem for LPD to accept remote jobs: &prompt.root; echo 6144 > /var/spool/lpd/bam boo/minfree User restrictions You can control which remote users can print to local printers by specifying the rs capability in /etc/printcap. When rs appears in the entry for a locally-attached printer, LPD will accept jobs from remote hosts if the user submitting the job also has an account of the same login name on the local host. Otherwise, LPD refuses the job. This capability is particularly useful in an environment where there are (for example) different departments sharing a network, and some users transcend departmental boundaries. By giving them accounts on your systems, they can use your printers from their own departmental systems. If you would rather allow them to use only your printers and not your compute resources, you can give them token accounts, with no home directory and a useless shell like /usr/bin/false. Accounting for Printer Usage accounting printer So, you need to charge for printouts. And why not? Paper and ink cost money. And then there are maintenance costs—printers are loaded with moving parts and tend to break down. You have examined your printers, usage patterns, and maintenance fees and have come up with a per-page (or per-foot, per-meter, or per-whatever) cost. Now, how do you actually start accounting for printouts? Well, the bad news is the LPD spooling system does not provide much help in this department. Accounting is highly dependent on the kind of printer in use, the formats being printed, and your requirements in charging for printer usage. To implement accounting, you have to modify a printer's text filter (to charge for plain text jobs) and the conversion filters (to charge for other file formats), to count pages or query the printer for pages printed. You cannot get away with using the simple output filter, since it cannot do accounting. See section Filters. Generally, there are two ways to do accounting: Periodic accounting is the more common way, possibly because it is easier. Whenever someone prints a job, the filter logs the user, host, and number of pages to an accounting file. Every month, semester, year, or whatever time period you prefer, you collect the accounting files for the various printers, tally up the pages printed by users, and charge for usage. Then you truncate all the logging files, starting with a clean slate for the next period. Timely accounting is less common, probably because it is more difficult. This method has the filters charge users for printouts as soon as they use the printers. Like disk quotas, the accounting is immediate. You can prevent users from printing when their account goes in the red, and might provide a way for users to check and adjust their print quotas. But this method requires some database code to track users and their quotas. The LPD spooling system supports both methods easily: since you have to provide the filters (well, most of the time), you also have to provide the accounting code. But there is a bright side: you have enormous flexibility in your accounting methods. For example, you choose whether to use periodic or timely accounting. You choose what information to log: user names, host names, job types, pages printed, square footage of paper used, how long the job took to print, and so forth. And you do so by modifying the filters to save this information. Quick and Dirty Printer Accounting FreeBSD comes with two programs that can get you set up with simple periodic accounting right away. They are the text filter lpf, described in section lpf: a Text Filter, and &man.pac.8;, a program to gather and total entries from printer accounting files. As mentioned in the section on filters (Filters), LPD starts the text and the conversion filters with the name of the accounting file to use on the filter command line. The filters can use this argument to know where to write an accounting file entry. The name of this file comes from the af capability in /etc/printcap, and if not specified as an absolute path, is relative to the spooling directory. LPD starts lpf with page width and length arguments (from the pw and pl capabilities). lpf uses these arguments to determine how much paper will be used. After sending the file to the printer, it then writes an accounting entry in the accounting file. The entries look like this: 2.00 rose:andy 3.00 rose:kelly 3.00 orchid:mary 5.00 orchid:mary 2.00 orchid:zhang You should use a separate accounting file for each printer, as lpf has no file locking logic built into it, and two lpfs might corrupt each other's entries if they were to write to the same file at the same time. A easy way to insure a separate accounting file for each printer is to use af=acct in /etc/printcap. Then, each accounting file will be in the spooling directory for a printer, in a file named acct. When you are ready to charge users for printouts, run the &man.pac.8; program. Just change to the spooling directory for the printer you want to collect on and type pac. You will get a dollar-centric summary like the following: Login pages/feet runs price orchid:kelly 5.00 1 $ 0.10 orchid:mary 31.00 3 $ 0.62 orchid:zhang 9.00 1 $ 0.18 rose:andy 2.00 1 $ 0.04 rose:kelly 177.00 104 $ 3.54 rose:mary 87.00 32 $ 1.74 rose:root 26.00 12 $ 0.52 total 337.00 154 $ 6.74 These are the arguments &man.pac.8; expects: Which printer to summarize. This option works only if there is an absolute path in the af capability in /etc/printcap. Sort the output by cost instead of alphabetically by user name. Ignore host name in the accounting files. With this option, user smith on host alpha is the same user smith on host gamma. Without, they are different users. Compute charges with price dollars per page or per foot instead of the price from the pc capability in /etc/printcap, or two cents (the default). You can specify price as a floating point number. Reverse the sort order. Make an accounting summary file and truncate the accounting file. name Print accounting information for the given user names only. In the default summary that &man.pac.8; produces, you see the number of pages printed by each user from various hosts. If, at your site, host does not matter (because users can use any host), run pac -m, to produce the following summary: Login pages/feet runs price andy 2.00 1 $ 0.04 kelly 182.00 105 $ 3.64 mary 118.00 35 $ 2.36 root 26.00 12 $ 0.52 zhang 9.00 1 $ 0.18 total 337.00 154 $ 6.74 To compute the dollar amount due, &man.pac.8; uses the pc capability in the /etc/printcap file (default of 200, or 2 cents per page). Specify, in hundredths of cents, the price per page or per foot you want to charge for printouts in this capability. You can override this value when you run &man.pac.8; with the option. The units for the option are in dollars, though, not hundredths of cents. For example, &prompt.root; pac -p1.50 makes each page cost one dollar and fifty cents. You can really rake in the profits by using this option. Finally, running pac -s will save the summary information in a summary accounting file, which is named the same as the printer's accounting file, but with _sum appended to the name. It then truncates the accounting file. When you run &man.pac.8; again, it rereads the summary file to get starting totals, then adds information from the regular accounting file. How Can You Count Pages Printed? In order to perform even remotely accurate accounting, you need to be able to determine how much paper a job uses. This is the essential problem of printer accounting. For plain text jobs, the problem is not that hard to solve: you count how many lines are in a job and compare it to how many lines per page your printer supports. Do not forget to take into account backspaces in the file which overprint lines, or long logical lines that wrap onto one or more additional physical lines. The text filter lpf (introduced in lpf: a Text Filter) takes into account these things when it does accounting. If you are writing a text filter which needs to do accounting, you might want to examine lpf's source code. How do you handle other file formats, though? Well, for DVI-to-LaserJet or DVI-to-PostScript conversion, you can have your filter parse the diagnostic output of dvilj or dvips and look to see how many pages were converted. You might be able to do similar things with other file formats and conversion programs. But these methods suffer from the fact that the printer may not actually print all those pages. For example, it could jam, run out of toner, or explode—and the user would still get charged. So, what can you do? There is only one sure way to do accurate accounting. Get a printer that can tell you how much paper it uses, and attach it via a serial line or a network connection. Nearly all PostScript printers support this notion. Other makes and models do as well (networked Imagen laser printers, for example). Modify the filters for these printers to get the page usage after they print each job and have them log accounting information based on that value only. There is no line counting nor error-prone file examination required. Of course, you can always be generous and make all printouts free. Using Printers printer usage This section tells you how to use printers you have setup with FreeBSD. Here is an overview of the user-level commands: &man.lpr.1; Print jobs &man.lpq.1; Check printer queues &man.lprm.1; Remove jobs from a printer's queue There is also an administrative command, &man.lpc.8;, described in the section Administrating the LPD Spooler, used to control printers and their queues. All three of the commands &man.lpr.1;, &man.lprm.1;, and &man.lpq.1; accept an option to specify on which printer/queue to operate, as listed in the /etc/printcap file. This enables you to submit, remove, and check on jobs for various printers. If you do not use the option, then these commands use the printer specified in the PRINTER environment variable. Finally, if you do not have a PRINTER environment variable, these commands default to the printer named lp. Hereafter, the terminology default printer means the printer named in the PRINTER environment variable, or the printer named lp when there is no PRINTER environment variable. Printing Jobs To print files, type: &prompt.user; lpr filename ... printing This prints each of the listed files to the default printer. If you list no files, &man.lpr.1; reads data to print from standard input. For example, this command prints some important system files: &prompt.user; lpr /etc/host.conf /etc/hosts.equiv To select a specific printer, type: &prompt.user; lpr -P printer-name filename ... This example prints a long listing of the current directory to the printer named rattan: &prompt.user; ls -l | lpr -P rattan Because no files were listed for the &man.lpr.1; command, lpr read the data to print from standard input, which was the output of the ls -l command. The &man.lpr.1; command can also accept a wide variety of options to control formatting, apply file conversions, generate multiple copies, and so forth. For more information, see the section Printing Options. Checking Jobs print jobs When you print with &man.lpr.1;, the data you wish to print is put together in a package called a print job, which is sent to the LPD spooling system. Each printer has a queue of jobs, and your job waits in that queue along with other jobs from yourself and from other users. The printer prints those jobs in a first-come, first-served order. To display the queue for the default printer, type &man.lpq.1;. For a specific printer, use the option. For example, the command &prompt.user; lpq -P bamboo shows the queue for the printer named bamboo. Here is an example of the output of the lpq command: bamboo is ready and printing Rank Owner Job Files Total Size active kelly 9 /etc/host.conf, /etc/hosts.equiv 88 bytes 2nd kelly 10 (standard input) 1635 bytes 3rd mary 11 ... 78519 bytes This shows three jobs in the queue for bamboo. The first job, submitted by user kelly, got assigned job number 9. Every job for a printer gets a unique job number. Most of the time you can ignore the job number, but you will need it if you want to cancel the job; see section Removing Jobs for details. Job number nine consists of two files; multiple files given on the &man.lpr.1; command line are treated as part of a single job. It is the currently active job (note the word active under the Rank column), which means the printer should be currently printing that job. The second job consists of data passed as the standard input to the &man.lpr.1; command. The third job came from user mary; it is a much larger job. The pathname of the files she's trying to print is too long to fit, so the &man.lpq.1; command just shows three dots. The very first line of the output from &man.lpq.1; is also useful: it tells what the printer is currently doing (or at least what LPD thinks the printer is doing). The &man.lpq.1; command also support a option to generate a detailed long listing. Here is an example of lpq -l: waiting for bamboo to become ready (offline ?) kelly: 1st [job 009rose] /etc/host.conf 73 bytes /etc/hosts.equiv 15 bytes kelly: 2nd [job 010rose] (standard input) 1635 bytes mary: 3rd [job 011rose] /home/orchid/mary/research/venus/alpha-regio/mapping 78519 bytes Removing Jobs If you change your mind about printing a job, you can remove the job from the queue with the &man.lprm.1; command. Often, you can even use &man.lprm.1; to remove an active job, but some or all of the job might still get printed. To remove a job from the default printer, first use &man.lpq.1; to find the job number. Then type: &prompt.user; lprm job-number To remove the job from a specific printer, add the option. The following command removes job number 10 from the queue for the printer bamboo: &prompt.user; lprm -P bamboo 10 The &man.lprm.1; command has a few shortcuts: lprm - Removes all jobs (for the default printer) belonging to you. lprm user Removes all jobs (for the default printer) belonging to user. The superuser can remove other users' jobs; you can remove only your own jobs. lprm With no job number, user name, or appearing on the command line, &man.lprm.1; removes the currently active job on the default printer, if it belongs to you. The superuser can remove any active job. Just use the option with the above shortcuts to operate on a specific printer instead of the default. For example, the following command removes all jobs for the current user in the queue for the printer named rattan: &prompt.user; lprm -P rattan - If you are working in a networked environment, &man.lprm.1; will let you remove jobs only from the host from which the jobs were submitted, even if the same printer is available from other hosts. The following command sequence demonstrates this: &prompt.user; lpr -P rattan myfile &prompt.user; rlogin orchid &prompt.user; lpq -P rattan Rank Owner Job Files Total Size active seeyan 12 ... 49123 bytes 2nd kelly 13 myfile 12 bytes &prompt.user; lprm -P rattan 13 rose: Permission denied &prompt.user; logout &prompt.user; lprm -P rattan 13 dfA013rose dequeued cfA013rose dequeued Beyond Plain Text: Printing Options The &man.lpr.1; command supports a number of options that control formatting text, converting graphic and other file formats, producing multiple copies, handling of the job, and more. This section describes the options. Formatting and Conversion Options The following &man.lpr.1; options control formatting of the files in the job. Use these options if the job does not contain plain text or if you want plain text formatted through the &man.pr.1; utility. TeX For example, the following command prints a DVI file (from the TeX typesetting system) named fish-report.dvi to the printer named bamboo: &prompt.user; lpr -P bamboo -d fish-report.dvi These options apply to every file in the job, so you cannot mix (say) DVI and ditroff files together in a job. Instead, submit the files as separate jobs, using a different conversion option for each job. All of these options except and require conversion filters installed for the destination printer. For example, the option requires the DVI conversion filter. Section Conversion Filters gives details. Print cifplot files. Print DVI files. Print FORTRAN text files. Print plot data. Indent the output by number columns; if you omit number, indent by 8 columns. This option works only with certain conversion filters. Do not put any space between the and the number. Print literal text data, including control characters. Print ditroff (device independent troff) data. -p Format plain text with &man.pr.1; before printing. See &man.pr.1; for more information. Use title on the &man.pr.1; header instead of the file name. This option has effect only when used with the option. Print troff data. Print raster data. Here is an example: this command prints a nicely formatted version of the &man.ls.1; manual page on the default printer: &prompt.user; zcat /usr/share/man/man1/ls.1.gz | troff -t -man | lpr -t The &man.zcat.1; command uncompresses the source of the &man.ls.1; manual page and passes it to the &man.troff.1; command, which formats that source and makes GNU troff output and passes it to &man.lpr.1;, which submits the job to the LPD spooler. Because we used the option to &man.lpr.1;, the spooler will convert the GNU troff output into a format the default printer can understand when it prints the job. Job Handling Options The following options to &man.lpr.1; tell LPD to handle the job specially: -# copies Produce a number of copies of each file in the job instead of just one copy. An administrator may disable this option to reduce printer wear-and-tear and encourage photocopier usage. See section Restricting Multiple Copies. This example prints three copies of parser.c followed by three copies of parser.h to the default printer: &prompt.user; lpr -#3 parser.c parser.h -m Send mail after completing the print job. With this option, the LPD system will send mail to your account when it finishes handling your job. In its message, it will tell you if the job completed successfully or if there was an error, and (often) what the error was. -s Do not copy the files to the spooling directory, but make symbolic links to them instead. If you are printing a large job, you probably want to use this option. It saves space in the spooling directory (your job might overflow the free space on the filesystem where the spooling directory resides). It saves time as well since LPD will not have to copy each and every byte of your job to the spooling directory. There is a drawback, though: since LPD will refer to the original files directly, you cannot modify or remove them until they have been printed. If you are printing to a remote printer, LPD will eventually have to copy files from the local host to the remote host, so the option will save space only on the local spooling directory, not the remote. It is still useful, though. -r Remove the files in the job after copying them to the spooling directory, or after printing them with the option. Be careful with this option! Header Page Options These options to &man.lpr.1; adjust the text that normally appears on a job's header page. If header pages are suppressed for the destination printer, these options have no effect. See section Header Pages for information about setting up header pages. -C text Replace the hostname on the header page with text. The hostname is normally the name of the host from which the job was submitted. -J text Replace the job name on the header page with text. The job name is normally the name of the first file of the job, or stdin if you are printing standard input. -h Do not print any header page. At some sites, this option may have no effect due to the way header pages are generated. See Header Pages for details. Administrating Printers As an administrator for your printers, you have had to install, set up, and test them. Using the &man.lpc.8; command, you can interact with your printers in yet more ways. With &man.lpc.8;, you can Start and stop the printers Enable and disable their queues Rearrange the order of the jobs in each queue. First, a note about terminology: if a printer is stopped, it will not print anything in its queue. Users can still submit jobs, which will wait in the queue until the printer is started or the queue is cleared. If a queue is disabled, no user (except root) can submit jobs for the printer. An enabled queue allows jobs to be submitted. A printer can be started for a disabled queue, in which case it will continue to print jobs in the queue until the queue is empty. In general, you have to have root privileges to use the &man.lpc.8; command. Ordinary users can use the &man.lpc.8; command to get printer status and to restart a hung printer only. Here is a summary of the &man.lpc.8; commands. Most of the commands takes a printer-name argument to tell on which printer to operate. You can use all for the printer-name to mean all printers listed in /etc/printcap. abort printer-name Cancel the current job and stop the printer. Users can still submit jobs if the queue's enabled. clean printer-name Remove old files from the printer's spooling directory. Occasionally, the files that make up a job are not properly removed by LPD, particularly if there have been errors during printing or a lot of administrative activity. This command finds files that do not belong in the spooling directory and removes them. disable printer-name Disable queuing of new jobs. If the printer's started, it will continue to print any jobs remaining in the queue. The superuser (root) can always submit jobs, even to a disabled queue. This command is useful while you are testing a new printer or filter installation: disable the queue and submit jobs as root. Other users will not be able to submit jobs until you complete your testing and re-enable the queue with the enable command. down printer-name message Take a printer down. Equivalent to disable followed by stop. The message appears as the printer's status whenever a user checks the printer's queue with &man.lpq.1; or status with lpc status. enable printer-name Enable the queue for a printer. Users can submit jobs but the printer will not print anything until it is started. help command-name Print help on the command command-name. With no command-name, print a summary of the commands available. restart printer-name Start the printer. Ordinary users can use this command if some extraordinary circumstance hangs LPD, but they cannot start a printer stopped with either the stop or down commands. The restart command is equivalent to abort followed by start. start printer-name Start the printer. The printer will print jobs in its queue. stop printer-name Stop the printer. The printer will finish the current job and will not print anything else in its queue. Even though the printer is stopped, users can still submit jobs to an enabled queue. topq printer-name job-or-username Rearrange the queue for printer-name by placing the jobs with the listed job numbers or the jobs belonging to username at the top of the queue. For this command, you cannot use all as the printer-name. up printer-name Bring a printer up; the opposite of the down command. Equivalent to start followed by enable. &man.lpc.8; accepts the above commands on the command line. If you do not enter any commands, &man.lpc.8; enters an interactive mode, where you can enter commands until you type exit, quit, or end-of-file. Alternatives to the Standard Spooler If you have been reading straight through this manual, by now you have learned just about everything there is to know about the LPD spooling system that comes with FreeBSD. You can probably appreciate many of its shortcomings, which naturally leads to the question: What other spooling systems are out there (and work with FreeBSD)? LPRng LPRng LPRng, which purportedly means LPR: the Next Generation is a complete rewrite of PLP. Patrick Powell and Justin Mason (the principal maintainer of PLP) collaborated to make LPRng. The main site for LPRng is http://www.astart.com/lprng/LPRng.html. Troubleshooting After performing the simple test with &man.lptest.1;, you might have gotten one of the following results instead of the correct printout: It worked, after awhile; or, it did not eject a full sheet. The printer printed the above, but it sat for awhile and did nothing. In fact, you might have needed to press a PRINT REMAINING or FORM FEED button on the printer to get any results to appear. If this is the case, the printer was probably waiting to see if there was any more data for your job before it printed anything. To fix this problem, you can have the text filter send a FORM FEED character (or whatever is necessary) to the printer. This is usually sufficient to have the printer immediately print any text remaining in its internal buffer. It is also useful to make sure each print job ends on a full sheet, so the next job does not start somewhere on the middle of the last page of the previous job. The following replacement for the shell script /usr/local/libexec/if-simple prints a form feed after it sends the job to the printer: #!/bin/sh # # if-simple - Simple text input filter for lpd # Installed in /usr/local/libexec/if-simple # # Simply copies stdin to stdout. Ignores all filter arguments. # Writes a form feed character (\f) after printing job. /bin/cat && printf "\f" && exit 0 exit 2 It produced the staircase effect. You got the following on paper: !"#$%&'()*+,-./01234 "#$%&'()*+,-./012345 #$%&'()*+,-./0123456 MS-DOS OS/2 ASCII You have become another victim of the staircase effect, caused by conflicting interpretations of what characters should indicate a new line. Unix-style operating systems use a single character: ASCII code 10, the line feed (LF). MS-DOS, OS/2, and others uses a pair of characters, ASCII code 10 and ASCII code 13 (the carriage return or CR). Many printers use the MS-DOS convention for representing new-lines. When you print with FreeBSD, your text used just the line feed character. The printer, upon seeing a line feed character, advanced the paper one line, but maintained the same horizontal position on the page for the next character to print. That is what the carriage return is for: to move the location of the next character to print to the left edge of the paper. Here is what FreeBSD wants your printer to do: Printer received CR Printer prints CR Printer received LF Printer prints CR + LF Here are some ways to achieve this: Use the printer's configuration switches or control panel to alter its interpretation of these characters. Check your printer's manual to find out how to do this. If you boot your system into other operating systems besides FreeBSD, you may have to reconfigure the printer to use a an interpretation for CR and LF characters that those other operating systems use. You might prefer one of the other solutions, below. Have FreeBSD's serial line driver automatically convert LF to CR+LF. Of course, this works with printers on serial ports only. To enable this feature, set the CRMOD bit in fs capability in the /etc/printcap file for the printer. Send an escape code to the printer to have it temporarily treat LF characters differently. Consult your printer's manual for escape codes that your printer might support. When you find the proper escape code, modify the text filter to send the code first, then send the print job. PCL Here is an example text filter for printers that understand the Hewlett-Packard PCL escape codes. This filter makes the printer treat LF characters as a LF and CR; then it sends the job; then it sends a form feed to eject the last page of the job. It should work with nearly all Hewlett Packard printers. #!/bin/sh # # hpif - Simple text input filter for lpd for HP-PCL based printers # Installed in /usr/local/libexec/hpif # # Simply copies stdin to stdout. Ignores all filter arguments. # Tells printer to treat LF as CR+LF. Ejects the page when done. printf "\033&k2G" && cat && printf "\033&l0H" && exit 0 exit 2 Here is an example /etc/printcap from a host called orchid. It has a single printer attached to its first parallel port, a Hewlett Packard LaserJet 3Si named teak. It is using the above script as its text filter: # # /etc/printcap for host orchid # teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\ :lp=/dev/lpt0:sh:sd=/var/spool/lpd/teak:mx#0:\ :if=/usr/local/libexec/hpif: It overprinted each line. The printer never advanced a line. All of the lines of text were printed on top of each other on one line. This problem is the opposite of the staircase effect, described above, and is much rarer. Somewhere, the LF characters that FreeBSD uses to end a line are being treated as CR characters to return the print location to the left edge of the paper, but not also down a line. Use the printer's configuration switches or control panel to enforce the following interpretation of LF and CR characters: Printer receives Printer prints CR CR LF CR + LF The printer lost characters. While printing, the printer did not print a few characters in each line. The problem might have gotten worse as the printer ran, losing more and more characters. The problem is that the printer cannot keep up with the speed at which the computer sends data over a serial line (this problem should not occur with printers on parallel ports). There are two ways to overcome the problem: If the printer supports XON/XOFF flow control, have FreeBSD use it by specifying the TANDEM bit in the fs capability. If the printer supports carrier flow control, specify the MDMBUF bit in the fs capability. Make sure the cable connecting the printer to the computer is correctly wired for carrier flow control. If the printer does not support any flow control, use some combination of the NLDELAY, TBDELAY, CRDELAY, VTDELAY, and BSDELAY bits in the fs capability to add appropriate delays to the stream of data sent to the printer. It printed garbage. The printer printed what appeared to be random garbage, but not the desired text. This is usually another symptom of incorrect communications parameters with a serial printer. Double-check the bps rate in the br capability, and the parity bits in the fs and fc capabilities; make sure the printer is using the same settings as specified in the /etc/printcap file. Nothing happened. If nothing happened, the problem is probably within FreeBSD and not the hardware. Add the log file (lf) capability to the entry for the printer you are debugging in the /etc/printcap file. For example, here is the entry for rattan, with the lf capability: rattan|line|diablo|lp|Diablo 630 Line Printer:\ :sh:sd=/var/spool/lpd/rattan:\ :lp=/dev/lpt0:\ :if=/usr/local/libexec/if-simple:\ :lf=/var/log/rattan.log Then, try printing again. Check the log file (in our example, /var/log/rattan.log) to see any error messages that might appear. Based on the messages you see, try to correct the problem. If you do not specify a lf capability, LPD uses /dev/console as a default. diff --git a/en_US.ISO8859-1/books/handbook/security/chapter.sgml b/en_US.ISO8859-1/books/handbook/security/chapter.sgml index 06b23e83e7..9ee1f9df24 100644 --- a/en_US.ISO8859-1/books/handbook/security/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/security/chapter.sgml @@ -1,3043 +1,3099 @@ + + + + Matthew + Dillon + Much of this chapter has been taken from the + security(7) man page by + + + + Security security - Much of this chapter has been taken from the - &man.security.7; man page, originally written by - &a.dillon;. - Synopsis The following chapter will provide a basic introduction to system security concepts, some general good rules of thumb, and some advanced topics such as S/Key, OpenSSL, Kerberos, and others. Introduction Security is a function that begins and ends with the system administrator. While all BSD Unix multi-user systems have some inherent security, the job of building and maintaining additional security mechanisms to keep those users honest is probably one of the single largest undertakings of the sysadmin. Machines are only as secure as you make them, and security concerns are ever competing with the human necessity for convenience. Unix systems, in general, are capable of running a huge number of simultaneous processes and many of these processes operate as servers – meaning that external entities can connect and talk to them. As yesterday's mini-computers and mainframes become today's desktops, and as computers become networked and internetworked, security becomes an ever bigger issue. Security is best implemented through a layered onion approach. In a nutshell, what you want to do is to create as many layers of security as are convenient and then carefully monitor the system for intrusions. You do not want to overbuild your security or you will interfere with the detection side, and detection is one of the single most important aspects of any security mechanism. For example, it makes little sense to set the schg flags (see &man.chflags.1;) on every system binary because while this may temporarily protect the binaries, it prevents an attacker who has broken in from making an easily detectable change that may result in your security mechanisms not detecting the attacker at all. System security also pertains to dealing with various forms of attack, including attacks that attempt to crash or otherwise make a system unusable but do not attempt to break root. Security concerns can be split up into several categories: Denial of service attacks. User account compromises. Root compromise through accessible servers. Root compromise via user accounts. Backdoor creation. DoS attacks Denial of Service (DoS) security DoS attacks Denial of Service (DoS) Denial of Service (DoS) A denial of service attack is an action that deprives the machine of needed resources. Typically, D.O.S. attacks are brute-force mechanisms that attempt to crash or otherwise make a machine unusable by overwhelming its servers or network stack. Some D.O.S. attacks try to take advantages of bugs in the networking stack to crash a machine with a single packet. The latter can only be fixed by applying a bug fix to the kernel. Attacks on servers can often be fixed by properly specifying options to limit the load the servers incur on the system under adverse conditions. Brute-force network attacks are harder to deal with. A spoofed-packet attack, for example, is nearly impossible to stop short of cutting your system off from the Internet. It may not be able to take your machine down, but it can saturate your Internet connection. security account compromises A user account compromise is even more common than a D.O.S. attack. Many sysadmins still run standard telnetd, rlogind, rshd, and ftpd servers on their machines. These servers, by default, do not operate over encrypted connections. The result is that if you have any moderate-sized user base, one or more of your users logging into your system from a remote location (which is the most common and convenient way to login to a system) will have his or her password sniffed. The attentive system admin will analyze his remote access logs looking for suspicious source addresses even for successful logins. One must always assume that once an attacker has access to a user account, the attacker can break root. However, the reality is that in a well secured and maintained system, access to a user account does not necessarily give the attacker access to root. The distinction is important because without access to root the attacker cannot generally hide his tracks and may, at best, be able to do nothing more than mess with the user's files or crash the machine. User account compromises are very common because users tend not to take the precautions that sysadmins take. security backdoors System administrators must keep in mind that there are potentially many ways to break root on a machine. The attacker may know the root password, the attacker may find a bug in a root-run server and be able to break root over a network connection to that server, or the attacker may know of a bug in an suid-root program that allows the attacker to break root once he has broken into a user's account. If an attacker has found a way to break root on a machine, the attacker may not have a need to install a backdoor. Many of the root holes found and closed to date involve a considerable amount of work by the attacker to cleanup after himself, so most attackers install backdoors. Backdoors provide the attacker with a way to easily regain root access to the system, but it also gives the smart system administrator a convenient way to detect the intrusion. Making it impossible for an attacker to install a backdoor may actually be detrimental to your security because it will not close off the hole the attacker found to break in the first place. Security remedies should always be implemented with a multi-layered onion peel approach and can be categorized as follows: Securing root and staff accounts. Securing root – root-run servers and suid/sgid binaries. Securing user accounts. Securing the password file. Securing the kernel core, raw devices, and filesystems. Quick detection of inappropriate changes made to the system. Paranoia. The next section of this chapter will cover the above bullet items in greater depth. security securing Securing FreeBSD The sections that follow will cover the methods of securing your FreeBSD system that were mentioned in the last section of this chapter. Securing the root account and staff accounts su First off, do not bother securing staff accounts if you have not secured the root account. Most systems have a password assigned to the root account. The first thing you do is assume that the password is always compromised. This does not mean that you should remove the password. The password is almost always necessary for console access to the machine. What it does mean is that you should not make it possible to use the password outside of the console or possibly even with the &man.su.1; command. For example, make sure that your pty's are specified as being unsecure in the /etc/ttys file so that direct root logins via telnet or rlogin are disallowed. If using other login services such as sshd, make sure that direct root logins are disabled there as well. Consider every access method – services such as FTP often fall through the cracks. Direct root logins should only be allowed via the system console. wheel Of course, as a sysadmin you have to be able to get to root, so we open up a few holes. But we make sure these holes require additional password verification to operate. One way to make root accessible is to add appropriate staff accounts to the wheel group (in /etc/group). The staff members placed in the wheel group are allowed to su to root. You should never give staff members native wheel access by putting them in the wheel group in their password entry. Staff accounts should be placed in a staff group, and then added to the wheel group via the /etc/group file. Only those staff members who actually need to have root access should be placed in the wheel group. It is also possible, when using an authentication method such as kerberos, to use kerberos' .k5login file in the root account to allow a &man.ksu.1; to root without having to place anyone at all in the wheel group. This may be the better solution since the wheel mechanism still allows an intruder to break root if the intruder has gotten hold of your password file and can break into a staff account. While having the wheel mechanism is better than having nothing at all, it is not necessarily the safest option. An indirect way to secure staff accounts, and ultimately root access is to use an alternative login access method and do what is known as *'ing out the crypted password for the staff accounts. Using the &man.vipw.8; command, one can replace each instance of a crypted password with a single * character. This command will update the /etc/master.passwd file and user/password database to disable password-authenticated logins. A staff account entry such as: foobar:R9DT/Fa1/LV9U:1000:1000::0:0:Foo Bar:/home/foobar:/usr/local/bin/tcsh Should be changed to this : foobar:*:1000:1000::0:0:Foo Bar:/home/foobar:/usr/local/bin/tcsh This change will prevent normal logins from occurring, since the encrypted password will never match *. With this done, staff members must use another mechanism to authenticate themselves such as &man.kerberos.1; or &man.ssh.1; using a public/private key pair. When using something like kerberos, one generally must secure the machines which run the kerberos servers and your desktop workstation. When using a public/private key pair with ssh, one must generally secure the machine used to login from (typically one's workstation). An additional layer of protection can be added to the key pair by password protecting the key pair when creating it with &man.ssh-keygen.1;. Being able to * out the passwords for staff accounts also guarantees that staff members can only login through secure access methods that you have setup. This forces all staff members to use secure, encrypted connections for all of their sessions which closes an important hole used by many intruders: That of sniffing the network from an unrelated, less secure machine. The more indirect security mechanisms also assume that you are logging in from a more restrictive server to a less restrictive server. For example, if your main box is running all sorts of servers, your workstation should not be running any. In order for your workstation to be reasonably secure you should run as few servers as possible, up to and including no servers at all, and you should run a password-protected screen blanker. Of course, given physical access to a workstation an attacker can break any sort of security you put on it. This is definitely a problem that you should consider but you should also consider the fact that the vast majority of break-ins occur remotely, over a network, from people who do not have physical access to your workstation or servers. Kerberos Using something like kerberos also gives you the ability to disable or change the password for a staff account in one place and have it immediately effect all the machine the staff member may have an account on. If a staff member's account gets compromised, the ability to instantly change his password on all machines should not be underrated. With discrete passwords, changing a password on N machines can be a mess. You can also impose re-passwording restrictions with kerberos: not only can a kerberos ticket be made to timeout after a while, but the kerberos system can require that the user choose a new password after a certain period of time (say, once a month). Securing Root-run Servers and SUID/SGID Binaries ntalk comsat finger sandboxes sshd telnetd rshd rlogind The prudent sysadmin only runs the servers he needs to, no more, no less. Be aware that third party servers are often the most bug-prone. For example, running an old version of imapd or popper is like giving a universal root ticket out to the entire world. Never run a server that you have not checked out carefully. Many servers do not need to be run as root. For example, the ntalk, comsat, and finger daemons can be run in special user sandboxes. A sandbox isn't perfect unless you go to a large amount of trouble, but the onion approach to security still stands: If someone is able to break in through a server running in a sandbox, they still have to break out of the sandbox. The more layers the attacker must break through, the lower the likelihood of his success. Root holes have historically been found in virtually every server ever run as root, including basic system servers. If you are running a machine through which people only login via sshd and never login via telnetd or rshd or rlogind, then turn off those services! FreeBSD now defaults to running ntalkd, comsat, and finger in a sandbox. Another program which may be a candidate for running in a sandbox is &man.named.8;. /etc/defaults/rc.conf includes the arguments necessary to run named in a sandbox in a commented-out form. Depending on whether you are installing a new system or upgrading an existing system, the special user accounts used by these sandboxes may not be installed. The prudent sysadmin would research and implement sandboxes for servers whenever possible. sendmail There are a number of other servers that typically do not run in sandboxes: sendmail, popper, imapd, ftpd, and others. There are alternatives to some of these, but installing them may require more work than you are willing to perform (the convenience factor strikes again). You may have to run these servers as root and rely on other mechanisms to detect break-ins that might occur through them. The other big potential root hole in a system are the suid-root and sgid binaries installed on the system. Most of these binaries, such as rlogin, reside in /bin, /sbin, /usr/bin, or /usr/sbin. While nothing is 100% safe, the system-default suid and sgid binaries can be considered reasonably safe. Still, root holes are occasionally found in these binaries. A root hole was found in Xlib in 1998 that made xterm (which is typically suid) vulnerable. It is better to be safe than sorry and the prudent sysadmin will restrict suid binaries that only staff should run to a special group that only staff can access, and get rid of (chmod 000) any suid binaries that nobody uses. A server with no display generally does not need an xterm binary. Sgid binaries can be almost as dangerous. If an intruder can break an sgid-kmem binary the intruder might be able to read /dev/kmem and thus read the crypted password file, potentially compromising any passworded account. Alternatively an intruder who breaks group kmem can monitor keystrokes sent through pty's, including pty's used by users who login through secure methods. An intruder that breaks the tty group can write to almost any user's tty. If a user is running a terminal program or emulator with a keyboard-simulation feature, the intruder can potentially generate a data stream that causes the user's terminal to echo a command, which is then run as that user. Securing User Accounts User accounts are usually the most difficult to secure. While you can impose Draconian access restrictions on your staff and * out their passwords, you may not be able to do so with any general user accounts you might have. If you do have sufficient control then you may win out and be able to secure the user accounts properly. If not, you simply have to be more vigilant in your monitoring of those accounts. Use of ssh and kerberos for user accounts is more problematic due to the extra administration and technical support required, but still a very good solution compared to a crypted password file. Securing the Password File The only sure fire way is to * out as many passwords as you can and use ssh or kerberos for access to those accounts. Even though the crypted password file (/etc/spwd.db) can only be read by root, it may be possible for an intruder to obtain read access to that file even if the attacker cannot obtain root-write access. Your security scripts should always check for and report changes to the password file (see Checking file integrity below). Securing the Kernel Core, Raw Devices, and Filesystems If an attacker breaks root he can do just about anything, but there are certain conveniences. For example, most modern kernels have a packet sniffing device driver built in. Under FreeBSD it is called the bpf device. An intruder will commonly attempt to run a packet sniffer on a compromised machine. You do not need to give the intruder the capability and most systems should not have the bpf device compiled in. sysctl But even if you turn off the bpf device, you still have /dev/mem and /dev/kmem to worry about. For that matter, the intruder can still write to raw disk devices. Also, there is another kernel feature called the module loader, &man.kldload.8;. An enterprising intruder can use a KLD module to install his own bpf device or other sniffing device on a running kernel. To avoid these problems you have to run the kernel at a higher secure level, at least securelevel 1. The securelevel can be set with a sysctl on the kern.securelevel variable. Once you have set the securelevel to 1, write access to raw devices will be denied and special chflags flags, such as schg, will be enforced. You must also ensure that the schg flag is set on critical startup binaries, directories, and script files – everything that gets run up to the point where the securelevel is set. This might be overdoing it, and upgrading the system is much more difficult when you operate at a higher secure level. You may compromise and run the system at a higher secure level but not set the schg flag for every system file and directory under the sun. Another possibility is to simply mount / and /usr read-only. It should be noted that being too Draconian in what you attempt to protect may prevent the all-important detection of an intrusion. Checking File Integrity: Binaries, Configuration Files, Etc. When it comes right down to it, you can only protect your core system configuration and control files so much before the convenience factor rears its ugly head. For example, using chflags to set the schg bit on most of the files in / and /usr is probably counterproductive because while it may protect the files, it also closes a detection window. The last layer of your security onion is perhaps the most important – detection. The rest of your security is pretty much useless (or, worse, presents you with a false sense of safety) if you cannot detect potential incursions. Half the job of the onion is to slow down the attacker rather than stop him in order to give the detection side of the equation a chance to catch him in the act. The best way to detect an incursion is to look for modified, missing, or unexpected files. The best way to look for modified files is from another (often centralized) limited-access system. Writing your security scripts on the extra-secure limited-access system makes them mostly invisible to potential attackers, and this is important. In order to take maximum advantage you generally have to give the limited-access box significant access to the other machines in the business, usually either by doing a read-only NFS export of the other machines to the limited-access box, or by setting up ssh key-pairs to allow the limit-access box to ssh to the other machines. Except for its network traffic, NFS is the least visible method – allowing you to monitor the filesystems on each client box virtually undetected. If your limited-access server is connected to the client boxes through a switch, the NFS method is often the better choice. If your limited-access server is connected to the client boxes through a hub or through several layers of routing, the NFS method may be too insecure (network-wise) and using ssh may be the better choice even with the audit-trail tracks that ssh lays. Once you give a limit-access box at least read access to the client systems it is supposed to monitor, you must write scripts to do the actual monitoring. Given an NFS mount, you can write scripts out of simple system utilities such as &man.find.1; and &man.md5.1;. It is best to physically md5 the client-box files boxes at least once a day, and to test control files such as those found in /etc and /usr/local/etc even more often. When mismatches are found relative to the base md5 information the limited-access machine knows is valid, it should scream at a sysadmin to go check it out. A good security script will also check for inappropriate suid binaries and for new or deleted files on system partitions such as / and /usr. When using ssh rather than NFS, writing the security script is much more difficult. You essentially have to scp the scripts to the client box in order to run them, making them visible, and for safety you also need to scp the binaries (such as find) that those scripts use. The ssh daemon on the client box may already be compromised. All in all, using ssh may be necessary when running over unsecure links, but it's also a lot harder to deal with. A good security script will also check for changes to user and staff members access configuration files: .rhosts, .shosts, .ssh/authorized_keys and so forth… files that might fall outside the purview of the MD5 check. If you have a huge amount of user disk space it may take too long to run through every file on those partitions. In this case, setting mount flags to disallow suid binaries and devices on those partitions is a good idea. The nodev and nosuid options (see &man.mount.8;) are what you want to look into. You should probably scan them anyway at least once a week, since the object of this layer is to detect a break-in whether or not the break-in is effective. Process accounting (see &man.accton.8;) is a relatively low-overhead feature of the operating system which might help as a post-break-in evaluation mechanism. It is especially useful in tracking down how an intruder has actually broken into a system, assuming the file is still intact after the break-in occurs. Finally, security scripts should process the log files and the logs themselves should be generated in as secure a manner as possible – remote syslog can be very useful. An intruder tries to cover his tracks, and log files are critical to the sysadmin trying to track down the time and method of the initial break-in. One way to keep a permanent record of the log files is to run the system console to a serial port and collect the information on a continuing basis through a secure machine monitoring the consoles. Paranoia A little paranoia never hurts. As a rule, a sysadmin can add any number of security features as long as they do not effect convenience, and can add security features that do effect convenience with some added thought. Even more importantly, a security administrator should mix it up a bit – if you use recommendations such as those given by this document verbatim, you give away your methodologies to the prospective attacker who also has access to this document. Denial of Service Attacks Denial of Service (DoS) This section covers Denial of Service attacks. A DoS attack is typically a packet attack. While there is not much you can do about modern spoofed packet attacks that saturate your network, you can generally limit the damage by ensuring that the attacks cannot take down your servers. Limiting server forks. Limiting springboard attacks (ICMP response attacks, ping broadcast, etc.). Kernel Route Cache. A common DoS attack is against a forking server that attempts to cause the server to eat processes, file descriptors, and memory until the machine dies. Inetd (see &man.inetd.8;) has several options to limit this sort of attack. It should be noted that while it is possible to prevent a machine from going down it is not generally possible to prevent a service from being disrupted by the attack. Read the inetd manual page carefully and pay specific attention to the , , and options. Note that spoofed-IP attacks will circumvent the option to inetd, so typically a combination of options must be used. Some standalone servers have self-fork-limitation parameters. Sendmail has its option which tends to work much better than trying to use sendmail's load limiting options due to the load lag. You should specify a MaxDaemonChildren parameter when you start sendmail high enough to handle your expected load but no so high that the computer cannot handle that number of sendmails without falling on its face. It is also prudent to run sendmail in queued mode () and to run the daemon (sendmail -bd) separate from the queue-runs (sendmail -q15m). If you still want real-time delivery you can run the queue at a much lower interval, such as , but be sure to specify a reasonable MaxDaemonChildren option for that sendmail to prevent cascade failures. Syslogd can be attacked directly and it is strongly recommended that you use the option whenever possible, and the option otherwise. You should also be fairly careful with connect-back services such as tcpwrapper's reverse-identd, which can be attacked directly. You generally do not want to use the reverse-ident feature of tcpwrappers for this reason. It is a very good idea to protect internal services from external access by firewalling them off at your border routers. The idea here is to prevent saturation attacks from outside your LAN, not so much to protect internal services from network-based root compromise. Always configure an exclusive firewall, i.e., firewall everything except ports A, B, C, D, and M-Z. This way you can firewall off all of your low ports except for certain specific services such as named (if you are primary for a zone), ntalkd, sendmail, and other Internet-accessible services. If you try to configure the firewall the other way – as an inclusive or permissive firewall, there is a good chance that you will forget to close a couple of services or that you will add a new internal service and forget to update the firewall. You can still open up the high-numbered port range on the firewall to allow permissive-like operation without compromising your low ports. Also take note that FreeBSD allows you to control the range of port numbers used for dynamic binding via the various net.inet.ip.portrange sysctl's (sysctl -a | fgrep portrange), which can also ease the complexity of your firewall's configuration. For example, you might use a normal first/last range of 4000 to 5000, and a hiport range of 49152 to 65535, then block everything under 4000 off in your firewall (except for certain specific Internet-accessible ports, of course). ICMP_BANDLIM Another common DoS attack is called a springboard attack – to attack a server in a manner that causes the server to generate responses which then overload the server, the local network, or some other machine. The most common attack of this nature is the ICMP ping broadcast attack. The attacker spoofs ping packets sent to your LAN's broadcast address with the source IP address set to the actual machine they wish to attack. If your border routers are not configured to stomp on ping's to broadcast addresses, your LAN winds up generating sufficient responses to the spoofed source address to saturate the victim, especially when the attacker uses the same trick on several dozen broadcast addresses over several dozen different networks at once. Broadcast attacks of over a hundred and twenty megabits have been measured. A second common springboard attack is against the ICMP error reporting system. By constructing packets that generate ICMP error responses, an attacker can saturate a server's incoming network and cause the server to saturate its outgoing network with ICMP responses. This type of attack can also crash the server by running it out of mbuf's, especially if the server cannot drain the ICMP responses it generates fast enough. The FreeBSD kernel has a new kernel compile option called ICMP_BANDLIM which limits the effectiveness of these sorts of attacks. The last major class of springboard attacks is related to certain internal inetd services such as the udp echo service. An attacker simply spoofs a UDP packet with the source address being server A's echo port, and the destination address being server B's echo port, where server A and B are both on your LAN. The two servers then bounce this one packet back and forth between each other. The attacker can overload both servers and their LANs simply by injecting a few packets in this manner. Similar problems exist with the internal chargen port. A competent sysadmin will turn off all of these inetd-internal test services. Spoofed packet attacks may also be used to overload the kernel route cache. Refer to the net.inet.ip.rtexpire, rtminexpire, and rtmaxcache sysctl parameters. A spoofed packet attack that uses a random source IP will cause the kernel to generate a temporary cached route in the route table, viewable with netstat -rna | fgrep W3. These routes typically timeout in 1600 seconds or so. If the kernel detects that the cached route table has gotten too big it will dynamically reduce the rtexpire but will never decrease it to less than rtminexpire. There are two problems: The kernel does not react quickly enough when a lightly loaded server is suddenly attacked. The rtminexpire is not low enough for the kernel to survive a sustained attack. If your servers are connected to the Internet via a T3 or better it may be prudent to manually override both rtexpire and rtminexpire via &man.sysctl.8;. Never set either parameter to zero (unless you want to crash the machine. Setting both parameters to 2 seconds should be sufficient to protect the route table from attack. Access Issues with Kerberos and SSH ssh Kerberos There are a few issues with both kerberos and ssh that need to be addressed if you intend to use them. Kerberos V is an excellent authentication protocol but there are bugs in the kerberized telnet and rlogin applications that make them unsuitable for dealing with binary streams. Also, by default kerberos does not encrypt a session unless you use the option. ssh encrypts everything by default. ssh works quite well in every respect except that it forwards encryption keys by default. What this means is that if you have a secure workstation holding keys that give you access to the rest of the system, and you ssh to an unsecure machine, your keys becomes exposed. The actual keys themselves are not exposed, but ssh installs a forwarding port for the duration of your login and if a attacker has broken root on the unsecure machine he can utilize that port to use your keys to gain access to any other machine that your keys unlock. We recommend that you use ssh in combination with kerberos whenever possible for staff logins. ssh can be compiled with kerberos support. This reduces your reliance on potentially exposable ssh keys while at the same time protecting passwords via kerberos. ssh keys should only be used for automated tasks from secure machines (something that kerberos is unsuited to). We also recommend that you either turn off key-forwarding in the ssh configuration, or that you make use of the from=IP/DOMAIN option that ssh allows in its authorized_keys file to make the key only usable to entities logging in from specific machines. + + + + Bill + Swingle + Parts rewritten and updated by + + + + + DES, MD5, and Crypt security crypt crypt DES MD5 - - Parts rewritten and updated by &a.unfurl;, 21 March - 2000. Every user on a Unix system has a password associated with their account. It seems obvious that these passwords need to be known only to the user and the actual operating system. In order to keep these passwords secret, they are encrypted with what is known as a one-way hash, that is, they can only be easily encrypted but not decrypted. In other words, what we told you a moment ago was obvious is not even true: the operating system itself does not really know the password. It only knows the encrypted form of the password. The only way to get the plain-text password is by a brute force search of the space of possible passwords. Unfortunately the only secure way to encrypt passwords when Unix came into being was based on DES, the Data Encryption Standard. This is not such a problem for users that live in the US, but since the source code for DES could not be exported outside the US, FreeBSD had to find a way to both comply with US law and retain compatibility with all the other Unix variants that still use DES. The solution was to divide up the encryption libraries so that US users could install the DES libraries and use DES but international users still had an encryption method that could be exported abroad. This is how FreeBSD came to use MD5 as its default encryption method. MD5 is believed to be more secure than DES, so installing DES is offered primarily for compatibility reasons. Recognizing your crypt mechanism It is pretty easy to identify which encryption method FreeBSD is set up to use. Examining the encrypted passwords in the /etc/master.passwd file is one way. Passwords encrypted with the MD5 hash are longer than those with encrypted with the DES hash and also begin with the characters $1$. DES password strings do not have any particular identifying characteristics, but they are shorter than MD5 passwords, and are coded in a 64-character alphabet which does not include the $ character, so a relatively short string which does not begin with a dollar sign is very likely a DES password. The libraries can identify the passwords this way as well. As a result, the DES libraries are able to identify MD5 passwords, and use MD5 to check passwords that were encrypted that way, and DES for the rest. They are able to do this because the DES libraries also contain MD5. Unfortunately, the reverse is not true, so the MD5 libraries cannot authenticate passwords that were encrypted with DES. Identifying which library is being used by the programs on your system is easy as well. Any program that uses crypt is linked against libcrypt which for each type of library is a symbolic link to the appropriate implementation. For example, on a system using the DES versions: &prompt.user; ls -l /usr/lib/libcrypt* lrwxr-xr-x 1 root wheel 13 Mar 19 06:56 libcrypt.a -> libdescrypt.a lrwxr-xr-x 1 root wheel 18 Mar 19 06:56 libcrypt.so.2.0 -> libdescrypt.so.2.0 lrwxr-xr-x 1 root wheel 15 Mar 19 06:56 libcrypt_p.a -> libdescrypt_p.a On a system using the MD5-based libraries, the same links will be present, but the target will be libscrypt rather than libdescrypt. If you have installed the DES-capable crypt library libdescrypt (e.g. by installing the "crypto" distribution), then which password format will be used for new passwords is controlled by the passwd_format login capability in /etc/login.conf, which takes values of either des or md5. See the &man.login.conf.5; manpage for more information about login capabilities. S/Key S/Key security S/Key S/Key is a one-time password scheme based on a one-way hash function. FreeBSD uses the MD4 hash for compatibility but other systems have used MD5 and DES-MAC. S/Key has been part of the FreeBSD base system since version 1.1.5 and is also used on a growing number of other operating systems. S/Key is a registered trademark of Bell Communications Research, Inc. There are three different sorts of passwords which we will talk about in the discussion below. The first is your usual Unix-style or Kerberos password; we will call this a Unix password. The second sort is the one-time password which is generated by the S/Key key program and accepted by the keyinit program and the login prompt; we will call this a one-time password. The final sort of password is the secret password which you give to the key program (and sometimes the keyinit program) which it uses to generate one-time passwords; we will call it a secret password or just unqualified password. The secret password does not have anything to do with your Unix password; they can be the same but this is not recommended. S/Key secret passwords are not limited to 8 characters like Unix passwords, they can be as long as you like. Passwords of six or seven word long phrases are fairly common. For the most part, the S/Key system operates completely independently of the Unix password system. Besides the password, there are two other pieces of data that are important to S/Key. One is what is known as the seed or key and consists of two letters and five digits. The other is what is called the iteration count and is a number between 1 and 100. S/Key creates the one-time password by concatenating the seed and the secret password, then applying the MD4 hash as many times as specified by the iteration count and turning the result into six short English words. These six English words are your one-time password. The login and su programs keep track of the last one-time password used, and the user is authenticated if the hash of the user-provided password is equal to the previous password. Because a one-way hash is used it is impossible to generate future one-time passwords if a successfully used password is captured; the iteration count is decremented after each successful login to keep the user and the login program in sync. When the iteration count gets down to 1 S/Key must be reinitialized. There are four programs involved in the S/Key system which we will discuss below. The key program accepts an iteration count, a seed, and a secret password, and generates a one-time password. The keyinit program is used to initialized S/Key, and to change passwords, iteration counts, or seeds; it takes either a secret password, or an iteration count, seed, and one-time password. The keyinfo program examines the /etc/skeykeys file and prints out the invoking user's current iteration count and seed. Finally, the login and su programs contain the necessary logic to accept S/Key one-time passwords for authentication. The login program is also capable of disallowing the use of Unix passwords on connections coming from specified addresses. There are four different sorts of operations we will cover. The first is using the keyinit program over a secure connection to set up S/Key for the first time, or to change your password or seed. The second operation is using the keyinit program over an insecure connection, in conjunction with the key program over a secure connection, to do the same. The third is using the key program to log in over an insecure connection. The fourth is using the key program to generate a number of keys which can be written down or printed out to carry with you when going to some location without secure connections to anywhere. Secure connection initialization To initialize S/Key for the first time, change your password, or change your seed while logged in over a secure connection (e.g., on the console of a machine or via ssh), use the keyinit command without any parameters while logged in as yourself: &prompt.user; keyinit Adding unfurl: Reminder - Only use this method if you are directly connected. If you are using telnet or rlogin exit with no password and use keyinit -s. Enter secret password: Again secret password: ID unfurl s/key is 99 to17757 DEFY CLUB PRO NASH LACE SOFT At the Enter secret password: prompt you should enter a password or phrase. Remember, this is not the password that you will use to login with, this is used to generate your one-time login keys. The ID line gives the parameters of your particular S/Key instance; your login name, the iteration count, and seed. When logging in with S/Key, the system will remember these parameters and present them back to you so you do not have to remember them. The last line gives the particular one-time password which corresponds to those parameters and your secret password; if you were to re-login immediately, this one-time password is the one you would use. Insecure connection initialization To initialize S/Key or change your secret password over an insecure connection, you will need to already have a secure connection to some place where you can run the key program; this might be in the form of a desk accessory on a Macintosh, or a shell prompt on a machine you trust. You will also need to make up an iteration count (100 is probably a good value), and you may make up your own seed or use a randomly-generated one. Over on the insecure connection (to the machine you are initializing), use the keyinit -s command: &prompt.user; keyinit -s Updating unfurl: Old key: to17758 Reminder you need the 6 English words from the key command. Enter sequence count from 1 to 9999: 100 Enter new key [default to17759]: s/key 100 to 17759 s/key access password: To accept the default seed (which the keyinit program confusingly calls a key), press return. Then before entering an access password, move over to your secure connection or S/Key desk accessory, and give it the same parameters: &prompt.user; key 100 to17759 Reminder - Do not use this program while logged in via telnet or rlogin. Enter secret password: <secret password> CURE MIKE BANE HIM RACY GORE Now switch back over to the insecure connection, and copy the one-time password generated by key over to the keyinit program: s/key access password:CURE MIKE BANE HIM RACY GORE ID unfurl s/key is 100 to17759 CURE MIKE BANE HIM RACY GORE The rest of the description from the previous section applies here as well. Generating a single one-time password Once you've initialized S/Key, when you login you will be presented with a prompt like this: &prompt.user; telnet example.com Trying 10.0.0.1... Connected to example.com Escape character is '^]'. FreeBSD/i386 (example.com) (ttypa) login: <username> s/key 97 fw13894 Password: As a side note, the S/Key prompt has a useful feature (not shown here): if you press return at the password prompt, the login program will turn echo on, so you can see what you are typing. This can be extremely useful if you are attempting to type in an S/Key by hand, such as from a printout. Also, if this machine were configured to disallow Unix passwords over a connection from the source machine, the prompt would have also included the annotation (s/key required), indicating that only S/Key one-time passwords will be accepted. MS-DOS Windows MacOS At this point you need to generate your one-time password to answer this login prompt. This must be done on a trusted system that you can run the key command on. (There are versions of the key program for MS-DOS, Windows and MacOS as well.) The key program needs both the iteration count and the seed as command line options. You can cut-and-paste these right from the login prompt on the machine that you are logging in to. On the trusted system: &prompt.user; key 97 fw13894 Reminder - Do not use this program while logged in via telnet or rlogin. Enter secret password: WELD LIP ACTS ENDS ME HAAG Now that you have your one-time password you can continue logging in: login: <username> s/key 97 fw13894 Password: <return to enable echo> s/key 97 fw13894 Password [echo on]: WELD LIP ACTS ENDS ME HAAG Last login: Tue Mar 21 11:56:41 from 10.0.0.2 ... This is the easiest mechanism if you have a trusted machine. There is a Java S/Key key applet, The Java OTP Calculator, that you can download and run locally on any Java supporting browser. Generating multiple one-time passwords Sometimes you have to go places where you do not have access to a trusted machine or secure connection. In this case, it is possible to use the key command to generate a number of one-time passwords before hand to be printed out and taken with you. For example: &prompt.user; key -n 5 30 zz99999 Reminder - Do not use this program while logged in via telnet or rlogin. Enter secret password: <secret password> 26: SODA RUDE LEA LIND BUDD SILT 27: JILT SPY DUTY GLOW COWL ROT 28: THEM OW COLA RUNT BONG SCOT 29: COT MASH BARR BRIM NAN FLAG 30: CAN KNEE CAST NAME FOLK BILK The requests five keys in sequence, the specifies what the last iteration number should be. Note that these are printed out in reverse order of eventual use. If you are really paranoid, you might want to write the results down by hand; otherwise you can cut-and-paste into lpr. Note that each line shows both the iteration count and the one-time password; you may still find it handy to scratch off passwords as you use them. Restricting use of Unix passwords Restrictions can be placed on the use of Unix passwords based on the host name, user name, terminal port, or IP address of a login session. These restrictions can be found in the configuration file /etc/skey.access. The &man.skey.access.5; manual page has more info on the complete format of the file and also details some security cautions to be aware of before depending on this file for security. If there is no /etc/skey.access file (this is the FreeBSD default), then all users will be allowed to use Unix passwords. If the file exists, however, then all users will be required to use S/Key unless explicitly permitted to do otherwise by configuration statements in the skey.access file. In all cases, Unix passwords are permitted on the console. Here is a sample configuration file which illustrates the three most common sorts of configuration statements: permit internet 192.168.0.0 255.255.0.0 permit user fnord permit port ttyd0 The first line (permit internet) allows users whose IP source address (which is vulnerable to spoofing) matches the specified value and mask, to use Unix passwords. This should not be considered a security mechanism, but rather, a means to remind authorized users that they are using an insecure network and need to use S/Key for authentication. The second line (permit user) allows the specified username, in this case fnord, to use Unix passwords at any time. Generally speaking, this should only be used for people who are either unable to use the key program, like those with dumb terminals, or those who are uneducable. The third line (permit port) allows all users logging in on the specified terminal line to use Unix passwords; this would be used for dial-ups. + + + + Mark + Murray + Contributed by + + + + + Mark + Dapoz + Based on a contribution by + + + + Kerberos Kerberos - - Contributed by &a.markm; (based on contribution by - &a.md;). Kerberos is a network add-on system/protocol that allows users to authenticate themselves through the services of a secure server. Services such as remote login, remote copy, secure inter-system file copying and other high-risk tasks are made considerably safer and more controllable. The following instructions can be used as a guide on how to set up Kerberos as distributed for FreeBSD. However, you should refer to the relevant manual pages for a complete description. 4.4BSD-Lite In FreeBSD, the Kerberos is not that from the original 4.4BSD-Lite, distribution, but eBones, which had been previously ported to FreeBSD 1.1.5.1, and was sourced from outside the USA/Canada, and was thus available to system owners outside those countries during the era of restrictive export controls on cryptographic code from the USA. Creating the initial database This is done on the Kerberos server only. First make sure that you do not have any old Kerberos databases around. You should change to the directory /etc/kerberosIV and check that only the following files are present: &prompt.root; cd /etc/kerberosIV &prompt.root; ls README krb.conf krb.realms If any additional files (such as principal.* or master_key) exist, then use the kdb_destroy command to destroy the old Kerberos database, of if Kerberos is not running, simply delete the extra files. You should now edit the krb.conf and krb.realms files to define your Kerberos realm. In this case the realm will be GRONDAR.ZA and the server is grunt.grondar.za. We edit or create the krb.conf file: &prompt.root; cat krb.conf GRONDAR.ZA GRONDAR.ZA grunt.grondar.za admin server CS.BERKELEY.EDU okeeffe.berkeley.edu ATHENA.MIT.EDU kerberos.mit.edu ATHENA.MIT.EDU kerberos-1.mit.edu ATHENA.MIT.EDU kerberos-2.mit.edu ATHENA.MIT.EDU kerberos-3.mit.edu LCS.MIT.EDU kerberos.lcs.mit.edu TELECOM.MIT.EDU bitsy.mit.edu ARC.NASA.GOV trident.arc.nasa.gov In this case, the other realms do not need to be there. They are here as an example of how a machine may be made aware of multiple realms. You may wish to not include them for simplicity. The first line names the realm in which this system works. The other lines contain realm/host entries. The first item on a line is a realm, and the second is a host in that realm that is acting as a key distribution center. The words admin server following a hosts name means that host also provides an administrative database server. For further explanation of these terms, please consult the Kerberos man pages. Now we have to add grunt.grondar.za to the GRONDAR.ZA realm and also add an entry to put all hosts in the .grondar.za domain in the GRONDAR.ZA realm. The krb.realms file would be updated as follows: &prompt.root; cat krb.realms grunt.grondar.za GRONDAR.ZA .grondar.za GRONDAR.ZA .berkeley.edu CS.BERKELEY.EDU .MIT.EDU ATHENA.MIT.EDU .mit.edu ATHENA.MIT.EDU Again, the other realms do not need to be there. They are here as an example of how a machine may be made aware of multiple realms. You may wish to remove them to simplify things. The first line puts the specific system into the named realm. The rest of the lines show how to default systems of a particular subdomain to a named realm. Now we are ready to create the database. This only needs to run on the Kerberos server (or Key Distribution Center). Issue the kdb_init command to do this: &prompt.root; kdb_init Realm name [default ATHENA.MIT.EDU ]: GRONDAR.ZA You will be prompted for the database Master Password. It is important that you NOT FORGET this password. Enter Kerberos master key: Now we have to save the key so that servers on the local machine can pick it up. Use the kstash command to do this. &prompt.root; kstash Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! This saves the encrypted master password in /etc/kerberosIV/master_key. Making it all run Two principals need to be added to the database for each system that will be secured with Kerberos. Their names are kpasswd and rcmd These two principals are made for each system, with the instance being the name of the individual system. These daemons, kpasswd and rcmd allow other systems to change Kerberos passwords and run commands like rcp, rlogin and rsh. Now let's add these entries: &prompt.root; kdb_edit Opening database... Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! Previous or default values are in [brackets] , enter return to leave the same, or new value. Principal name: passwd Instance: grunt <Not found>, Create [y] ? y Principal: passwd, Instance: grunt, kdc_key_ver: 1 New Password: <---- enter RANDOM here Verifying password New Password: <---- enter RANDOM here Random password [y] ? y Principal's new key version = 1 Expiration date (enter yyyy-mm-dd) [ 2000-01-01 ] ? Max ticket lifetime (*5 minutes) [ 255 ] ? Attributes [ 0 ] ? Edit O.K. Principal name: rcmd Instance: grunt <Not found>, Create [y] ? Principal: rcmd, Instance: grunt, kdc_key_ver: 1 New Password: <---- enter RANDOM here Verifying password New Password: <---- enter RANDOM here Random password [y] ? Principal's new key version = 1 Expiration date (enter yyyy-mm-dd) [ 2000-01-01 ] ? Max ticket lifetime (*5 minutes) [ 255 ] ? Attributes [ 0 ] ? Edit O.K. Principal name: <---- null entry here will cause an exit Creating the server file We now have to extract all the instances which define the services on each machine. For this we use the ext_srvtab command. This will create a file which must be copied or moved by secure means to each Kerberos client's /etc/kerberosIV directory. This file must be present on each server and client, and is crucial to the operation of Kerberos. &prompt.root; ext_srvtab grunt Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! Generating 'grunt-new-srvtab'.... Now, this command only generates a temporary file which must be renamed to srvtab so that all the server can pick it up. Use the mv command to move it into place on the original system: &prompt.root; mv grunt-new-srvtab srvtab If the file is for a client system, and the network is not deemed safe, then copy the client-new-srvtab to removable media and transport it by secure physical means. Be sure to rename it to srvtab in the client's /etc/kerberosIV directory, and make sure it is mode 600: &prompt.root; mv grumble-new-srvtab srvtab &prompt.root; chmod 600 srvtab Populating the database We now have to add some user entries into the database. First let's create an entry for the user jane. Use the kdb_edit command to do this: &prompt.root; kdb_edit Opening database... Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! Previous or default values are in [brackets] , enter return to leave the same, or new value. Principal name: jane Instance: <Not found>, Create [y] ? y Principal: jane, Instance: , kdc_key_ver: 1 New Password: <---- enter a secure password here Verifying password New Password: <---- re-enter the password here Principal's new key version = 1 Expiration date (enter yyyy-mm-dd) [ 2000-01-01 ] ? Max ticket lifetime (*5 minutes) [ 255 ] ? Attributes [ 0 ] ? Edit O.K. Principal name: <---- null entry here will cause an exit Testing it all out First we have to start the Kerberos daemons. NOTE that if you have correctly edited your /etc/rc.conf then this will happen automatically when you reboot. This is only necessary on the Kerberos server. Kerberos clients will automagically get what they need from the /etc/kerberosIV directory. &prompt.root; kerberos & Kerberos server starting Sleep forever on error Log file is /var/log/kerberos.log Current Kerberos master key version is 1. Master key entered. BEWARE! Current Kerberos master key version is 1 Local realm: GRONDAR.ZA &prompt.root; kadmind -n & KADM Server KADM0.0A initializing Please do not use 'kill -9' to kill this job, use a regular kill instead Current Kerberos master key version is 1. Master key entered. BEWARE! Now we can try using the kinit command to get a ticket for the id jane that we created above: &prompt.user; kinit jane MIT Project Athena (grunt.grondar.za) Kerberos Initialization for "jane" Password: Try listing the tokens using klist to see if we really have them: &prompt.user; klist Ticket file: /tmp/tkt245 Principal: jane@GRONDAR.ZA Issued Expires Principal Apr 30 11:23:22 Apr 30 19:23:22 krbtgt.GRONDAR.ZA@GRONDAR.ZA Now try changing the password using passwd to check if the kpasswd daemon can get authorization to the Kerberos database: &prompt.user; passwd realm GRONDAR.ZA Old password for jane: New Password for jane: Verifying password New Password for jane: Password changed. Adding <command>su</command> privileges Kerberos allows us to give each user who needs root privileges their own separate supassword. We could now add an id which is authorized to su to root. This is controlled by having an instance of root associated with a principal. Using kdb_edit we can create the entry jane.root in the Kerberos database: &prompt.root; kdb_edit Opening database... Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! Previous or default values are in [brackets] , enter return to leave the same, or new value. Principal name: jane Instance: root <Not found>, Create [y] ? y Principal: jane, Instance: root, kdc_key_ver: 1 New Password: <---- enter a SECURE password here Verifying password New Password: <---- re-enter the password here Principal's new key version = 1 Expiration date (enter yyyy-mm-dd) [ 2000-01-01 ] ? Max ticket lifetime (*5 minutes) [ 255 ] ? 12 <--- Keep this short! Attributes [ 0 ] ? Edit O.K. Principal name: <---- null entry here will cause an exit Now try getting tokens for it to make sure it works: &prompt.root; kinit jane.root MIT Project Athena (grunt.grondar.za) Kerberos Initialization for "jane.root" Password: Now we need to add the user to root's .klogin file: &prompt.root; cat /root/.klogin jane.root@GRONDAR.ZA Now try doing the su: &prompt.user; su Password: and take a look at what tokens we have: &prompt.root; klist Ticket file: /tmp/tkt_root_245 Principal: jane.root@GRONDAR.ZA Issued Expires Principal May 2 20:43:12 May 3 04:43:12 krbtgt.GRONDAR.ZA@GRONDAR.ZA Using other commands In an earlier example, we created a principal called jane with an instance root. This was based on a user with the same name as the principal, and this is a Kerberos default; that a <principal>.<instance> of the form <username>.root will allow that <username> to su to root if the necessary entries are in the .klogin file in root's home directory: &prompt.root; cat /root/.klogin jane.root@GRONDAR.ZA Likewise, if a user has in their own home directory lines of the form: &prompt.user; cat ~/.klogin jane@GRONDAR.ZA jack@GRONDAR.ZA This allows anyone in the GRONDAR.ZA realm who has authenticated themselves to jane or jack (via kinit, see above) access to rlogin to jane's account or files on this system (grunt) via rlogin, rsh or rcp. For example, Jane now logs into another system, using Kerberos: &prompt.user; kinit MIT Project Athena (grunt.grondar.za) Password: &prompt.user; rlogin grunt Last login: Mon May 1 21:14:47 from grumble Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994 The Regents of the University of California. All rights reserved. FreeBSD BUILT-19950429 (GR386) #0: Sat Apr 29 17:50:09 SAT 1995 Or Jack logs into Jane's account on the same machine (Jane having set up the .klogin file as above, and the person in charge of Kerberos having set up principal jack with a null instance: &prompt.user; kinit &prompt.user; rlogin grunt -l jane MIT Project Athena (grunt.grondar.za) Password: Last login: Mon May 1 21:16:55 from grumble Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994 The Regents of the University of California. All rights reserved. FreeBSD BUILT-19950429 (GR386) #0: Sat Apr 29 17:50:09 SAT 1995 + + + + Gary + Palmer + Contributed by + + + Alex + Nash + + + + Firewalls firewall security firewalls - Contributed by &a.gpalmer; and Alex Nash. - Firewalls are an area of increasing interest for people who are connected to the Internet, and are even finding applications on private networks to provide enhanced security. This section will hopefully explain what firewalls are, how to use them, and how to use the facilities provided in the FreeBSD kernel to implement them. People often think that having a firewall between your internal network and the Big Bad Internet will solve all your security problems. It may help, but a poorly setup firewall system is more of a security risk than not having one at all. A firewall can add another layer of security to your systems, but it cannot stop a really determined cracker from penetrating your internal network. If you let internal security lapse because you believe your firewall to be impenetrable, you have just made the crackers job that much easier. What is a firewall? There are currently two distinct types of firewalls in common use on the Internet today. The first type is more properly called a packet filtering router, where the kernel on a multi-homed machine chooses whether to forward or block packets based on a set of rules. The second type, known as a proxy server, relies on daemons to provide authentication and to forward packets, possibly on a multi-homed machine which has kernel packet forwarding disabled. Sometimes sites combine the two types of firewalls, so that only a certain machine (known as a bastion host) is allowed to send packets through a packet filtering router onto an internal network. Proxy services are run on the bastion host, which are generally more secure than normal authentication mechanisms. FreeBSD comes with a kernel packet filter (known as IPFW), which is what the rest of this section will concentrate on. Proxy servers can be built on FreeBSD from third party software, but there is such a variety of proxy servers available that it would be impossible to cover them in this document. Packet filtering routers A router is a machine which forwards packets between two or more networks. A packet filtering router has an extra piece of code in its kernel which compares each packet to a list of rules before deciding if it should be forwarded or not. Most modern IP routing software has packet filtering code within it that defaults to forwarding all packets. To enable the filters, you need to define a set of rules for the filtering code so it can decide if the packet should be allowed to pass or not. To decide whether a packet should be passed on, the code looks through its set of rules for a rule which matches the contents of this packets headers. Once a match is found, the rule action is obeyed. The rule action could be to drop the packet, to forward the packet, or even to send an ICMP message back to the originator. Only the first match counts, as the rules are searched in order. Hence, the list of rules can be referred to as a rule chain. The packet matching criteria varies depending on the software used, but typically you can specify rules which depend on the source IP address of the packet, the destination IP address, the source port number, the destination port number (for protocols which support ports), or even the packet type (UDP, TCP, ICMP, etc). Proxy servers Proxy servers are machines which have had the normal system daemons (telnetd, ftpd, etc) replaced with special servers. These servers are called proxy servers as they normally only allow onward connections to be made. This enables you to run (for example) a proxy telnet server on your firewall host, and people can telnet in to your firewall from the outside, go through some authentication mechanism, and then gain access to the internal network (alternatively, proxy servers can be used for signals coming from the internal network and heading out). Proxy servers are normally more secure than normal servers, and often have a wider variety of authentication mechanisms available, including one-shot password systems so that even if someone manages to discover what password you used, they will not be able to use it to gain access to your systems as the password instantly expires. As they do not actually give users access to the host machine, it becomes a lot more difficult for someone to install backdoors around your security system. Proxy servers often have ways of restricting access further, so that only certain hosts can gain access to the servers, and often they can be set up so that you can limit which users can talk to which destination machine. Again, what facilities are available depends largely on what proxy software you choose. What does IPFW allow me to do? ipfw IPFW, the software supplied with FreeBSD, is a packet filtering and accounting system which resides in the kernel, and has a user-land control utility, &man.ipfw.8;. Together, they allow you to define and query the rules currently used by the kernel in its routing decisions. There are two related parts to IPFW. The firewall section allows you to perform packet filtering. There is also an IP accounting section which allows you to track usage of your router, based on similar rules to the firewall section. This allows you to see (for example) how much traffic your router is getting from a certain machine, or how much WWW (World Wide Web) traffic it is forwarding. As a result of the way that IPFW is designed, you can use IPFW on non-router machines to perform packet filtering on incoming and outgoing connections. This is a special case of the more general use of IPFW, and the same commands and techniques should be used in this situation. Enabling IPFW on FreeBSD ipfw enabling As the main part of the IPFW system lives in the kernel, you will need to add one or more options to your kernel configuration file, depending on what facilities you want, and recompile your kernel. See reconfiguring the kernel for more details on how to recompile your kernel. There are currently three kernel configuration options relevant to IPFW: options IPFIREWALL Compiles into the kernel the code for packet filtering. options IPFIREWALL_VERBOSE Enables code to allow logging of packets through &man.syslogd.8;. Without this option, even if you specify that packets should be logged in the filter rules, nothing will happen. options IPFIREWALL_VERBOSE_LIMIT=10 Limits the number of packets logged through &man.syslogd.8; on a per entry basis. You may wish to use this option in hostile environments in which you want to log firewall activity, but do not want to be open to a denial of service attack via syslog flooding. When a chain entry reaches the packet limit specified, logging is turned off for that particular entry. To resume logging, you will need to reset the associated counter using the &man.ipfw.8; utility: &prompt.root; ipfw zero 4500 Where 4500 is the chain entry you wish to continue logging. Previous versions of FreeBSD contained an IPFIREWALL_ACCT option. This is now obsolete as the firewall code automatically includes accounting facilities. Configuring IPFW ipfw configuring The configuration of the IPFW software is done through the &man.ipfw.8; utility. The syntax for this command looks quite complicated, but it is relatively simple once you understand its structure. There are currently four different command categories used by the utility: addition/deletion, listing, flushing, and clearing. Addition/deletion is used to build the rules that control how packets are accepted, rejected, and logged. Listing is used to examine the contents of your rule set (otherwise known as the chain) and packet counters (accounting). Flushing is used to remove all entries from the chain. Clearing is used to zero out one or more accounting entries. Altering the IPFW rules The syntax for this form of the command is: ipfw -N command index action log protocol addresses options There is one valid flag when using this form of the command: -N Resolve addresses and service names in output. The command given can be shortened to the shortest unique form. The valid commands are: add Add an entry to the firewall/accounting rule list delete Delete an entry from the firewall/accounting rule list Previous versions of IPFW used separate firewall and accounting entries. The present version provides packet accounting with each firewall entry. If an index value is supplied, it used to place the entry at a specific point in the chain. Otherwise, the entry is placed at the end of the chain at an index 100 greater than the last chain entry (this does not include the default policy, rule 65535, deny). The log option causes matching rules to be output to the system console if the kernel was compiled with IPFIREWALL_VERBOSE. Valid actions are: reject Drop the packet, and send an ICMP host or port unreachable (as appropriate) packet to the source. allow Pass the packet on as normal. (aliases: pass and accept) deny Drop the packet. The source is not notified via an ICMP message (thus it appears that the packet never arrived at the destination). count Update packet counters but do not allow/deny the packet based on this rule. The search continues with the next chain entry. Each action will be recognized by the shortest unambiguous prefix. The protocols which can be specified are: all Matches any IP packet icmp Matches ICMP packets tcp Matches TCP packets udp Matches UDP packets The address specification is: from address/maskport to address/maskport via interface You can only specify port in conjunction with protocols which support ports (UDP and TCP). The is optional and may specify the IP address or domain name of a local IP interface, or an interface name (e.g. ed0) to match only packets coming through this interface. Interface unit numbers can be specified with an optional wildcard. For example, ppp* would match all kernel PPP interfaces. The syntax used to specify an address/mask is: address or address/mask-bits or address:mask-pattern A valid hostname may be specified in place of the IP address. is a decimal number representing how many bits in the address mask should be set. e.g. specifying 192.216.222.1/24 will create a mask which will allow any address in a class C subnet (in this case, 192.216.222) to be matched. is an IP address which will be logically AND'ed with the address given. The keyword any may be used to specify any IP address. The port numbers to be blocked are specified as: port,port,port to specify either a single port or a list of ports, or port-port to specify a range of ports. You may also combine a single range with a list, but the range must always be specified first. The options available are: frag Matches if the packet is not the first fragment of the datagram. in Matches if the packet is on the way in. out Matches if the packet is on the way out. ipoptions spec Matches if the IP header contains the comma separated list of options specified in spec. The supported list of IP options are: ssrr (strict source route), lsrr (loose source route), rr (record packet route), and ts (time stamp). The absence of a particular option may be denoted with a leading !. established Matches if the packet is part of an already established TCP connection (i.e. it has the RST or ACK bits set). You can optimize the performance of the firewall by placing established rules early in the chain. setup Matches if the packet is an attempt to establish a TCP connection (the SYN bit set is set but the ACK bit is not). tcpflags flags Matches if the TCP header contains the comma separated list of flags. The supported flags are fin, syn, rst, psh, ack, and urg. The absence of a particular flag may be indicated by a leading !. icmptypes types Matches if the ICMP type is present in the list types. The list may be specified as any combination of ranges and/or individual types separated by commas. Commonly used ICMP types are: 0 echo reply (ping reply), 3 destination unreachable, 5 redirect, 8 echo request (ping request), and 11 time exceeded (used to indicate TTL expiration as with &man.traceroute.8;). Listing the IPFW rules The syntax for this form of the command is: ipfw -a -t -N l There are three valid flags when using this form of the command: -a While listing, show counter values. This option is the only way to see accounting counters. -t Display the last match times for each chain entry. The time listing is incompatible with the input syntax used by the &man.ipfw.8; utility. -N Attempt to resolve given addresses and service names. Flushing the IPFW rules The syntax for flushing the chain is: ipfw flush This causes all entries in the firewall chain to be removed except the fixed default policy enforced by the kernel (index 65535). Use caution when flushing rules, the default deny policy will leave your system cut off from the network until allow entries are added to the chain. Clearing the IPFW packet counters The syntax for clearing one or more packet counters is: ipfw zero index When used without an index argument, all packet counters are cleared. If an index is supplied, the clearing operation only affects a specific chain entry. Example commands for ipfw This command will deny all packets from the host evil.crackers.org to the telnet port of the host nice.people.org: &prompt.root ipfw add deny tcp from evil.crackers.org to nice.people.org 23 The next example denies and logs any TCP traffic from the entire crackers.org network (a class C) to the nice.people.org machine (any port). &prompt.root; ipfw add deny log tcp from evil.crackers.org/24 to nice.people.org If you do not want people sending X sessions to your internal network (a subnet of a class C), the following command will do the necessary filtering: &prompt.root; ipfw add deny tcp from any to my.org/28 6000 setup To see the accounting records: &prompt.root; ipfw -a list or in the short form &prompt.root; ipfw -a l You can also see the last time a chain entry was matched with: &prompt.root; ipfw -at l Building a packet filtering firewall The following suggestions are just that: suggestions. The requirements of each firewall are different and we cannot tell you how to build a firewall to meet your particular requirements. When initially setting up your firewall, unless you have a test bench setup where you can configure your firewall host in a controlled environment, it is strongly recommend you use the logging version of the commands and enable logging in the kernel. This will allow you to quickly identify problem areas and cure them without too much disruption. Even after the initial setup phase is complete, I recommend using the logging for `deny' as it allows tracing of possible attacks and also modification of the firewall rules if your requirements alter. If you use the logging versions of the accept command, it can generate large amounts of log data as one log line will be generated for every packet that passes through the firewall, so large FTP/http transfers, etc, will really slow the system down. It also increases the latencies on those packets as it requires more work to be done by the kernel before the packet can be passed on. syslogd with also start using up a lot more processor time as it logs all the extra data to disk, and it could quite easily fill the partition /var/log is located on. You should enable your firewall from /etc/rc.conf.local or /etc/rc.conf. The associated man page explains which knobs to fiddle and lists some preset firewall configurations. If you do not use a preset configuration, ipfw list will output the current ruleset into a file that you can pass to rc.conf. If you do not use /etc/rc.conf.local or /etc/rc.conf to enable your firewall, it is important to make sure your firewall is enabled before any IP interfaces are configured. The next problem is what your firewall should actually do! This is largely dependent on what access to your network you want to allow from the outside, and how much access to the outside world you want to allow from the inside. Some general rules are: Block all incoming access to ports below 1024 for TCP. This is where most of the security sensitive services are, like finger, SMTP (mail) and telnet. Block all incoming UDP traffic. There are very few useful services that travel over UDP, and what useful traffic there is normally a security threat (e.g. Suns RPC and NFS protocols). This has its disadvantages also, since UDP is a connectionless protocol, denying incoming UDP traffic also blocks the replies to outgoing UDP traffic. This can cause a problem for people (on the inside) using external archie (prospero) servers. If you want to allow access to archie, you'll have to allow packets coming from ports 191 and 1525 to any internal UDP port through the firewall. ntp is another service you may consider allowing through, which comes from port 123. Block traffic to port 6000 from the outside. Port 6000 is the port used for access to X11 servers, and can be a security threat (especially if people are in the habit of doing xhost + on their workstations). X11 can actually use a range of ports starting at 6000, the upper limit being how many X displays you can run on the machine. The upper limit as defined by RFC 1700 (Assigned Numbers) is 6063. Check what ports any internal servers use (e.g. SQL servers, etc). It is probably a good idea to block those as well, as they normally fall outside the 1-1024 range specified above. Another checklist for firewall configuration is available from CERT at http://www.cert.org/tech_tips/packet_filtering.html As stated above, these are only guidelines. You will have to decide what filter rules you want to use on your firewall yourself. We cannot accept ANY responsibility if someone breaks into your network, even if you follow the advice given above. OpenSSL security OpenSSL OpenSSL As of FreeBSD 4.0, the OpenSSL toolkit is a part of the base system. OpenSSL provides a general-purpose cryptography library, as well as the Secure Sockets Layer v2/v3 (SSLv2/SSLv3) and Transport Layer Security v1 (TLSv1) network security protocols. However, one of the algorithms (specifically IDEA) included in OpenSSL is protected by patents in the USA and elsewhere, and is not available for unrestricted use. IDEA is included in the OpenSSL sources in FreeBSD, but it is not built by default. If you wish to use it, and you comply with the license terms, enable the MAKE_IDEA switch in /etc/make.conf and rebuild your sources using 'make world'. Today, the RSA algorithm is free for use in USA and other countries. In the past it was protected by a patent. OpenSSL install Source Code Installations OpenSSL is part of the src-crypto and src-secure cvsup collections. See the Obtaining FreeBSD section for more information about obtaining and updating FreeBSD source code. + + + + Yoshinobu + Inoue + Contributed by + + + + + IPsec IPsec security IPsec - Contributed by &a.shin;, 5 March - 2000. - The IPsec mechanism provides secure communication either for IP layer and socket layer communication. This section should explain how to use them. For implementation details, please refer to The Developers' Handbook. The current IPsec implementation supports both transport mode and tunnel mode. However, tunnel mode comes with some restrictions. http://www.kame.net/newsletter/ has more comprehensive examples. Please be aware that in order to use this functionality, you must have the following options compiled into your kernel: options IPSEC #IP security options IPSEC_ESP #IP security (crypto; define w/IPSEC) Transport mode example with IPv4 Let's setup security association to deploy a secure channel between HOST A (10.2.3.4) and HOST B (10.6.7.8). Here we show a little complicated example. From HOST A to HOST B, only old AH is used. From HOST B to HOST A, new AH and new ESP are combined. Now we should choose algorithm to be used corresponding to "AH"/"new AH"/"ESP"/"new ESP". Please refer to the &man.setkey.8; man page to know algorithm names. Our choice is MD5 for AH, new-HMAC-SHA1 for new AH, and new-DES-expIV with 8 byte IV for new ESP. Key length highly depends on each algorithm. For example, key length must be equal to 16 bytes for MD5, 20 for new-HMAC-SHA1, and 8 for new-DES-expIV. Now we choose "MYSECRETMYSECRET", "KAMEKAMEKAMEKAMEKAME", "PASSWORD", respectively. OK, let's assign SPI (Security Parameter Index) for each protocol. Please note that we need 3 SPIs for this secure channel since three security headers are produced (one for from HOST A to HOST B, two for from HOST B to HOST A). Please also note that SPI MUST be greater than or equal to 256. We choose, 1000, 2000, and 3000, respectively. (1) HOST A ------> HOST B (1)PROTO=AH ALG=MD5(RFC1826) KEY=MYSECRETMYSECRET SPI=1000 (2.1) HOST A <------ HOST B <------ (2.2) (2.1) PROTO=AH ALG=new-HMAC-SHA1(new AH) KEY=KAMEKAMEKAMEKAMEKAME SPI=2000 (2.2) PROTO=ESP ALG=new-DES-expIV(new ESP) IV length = 8 KEY=PASSWORD SPI=3000 Now, let's setup security association. Execute &man.setkey.8; on both HOST A and B: &prompt.root; setkey -c add 10.2.3.4 10.6.7.8 ah-old 1000 -m transport -A keyed-md5 "MYSECRETMYSECRET" ; add 10.6.7.8 10.2.3.4 ah 2000 -m transport -A hmac-sha1 "KAMEKAMEKAMEKAMEKAME" ; add 10.6.7.8 10.2.3.4 esp 3000 -m transport -E des-cbc "PASSWORD" ; ^D Actually, IPsec communication doesn't process until security policy entries will be defined. In this case, you must setup each host. At A: &prompt.root; setkey -c spdadd 10.2.3.4 10.6.7.8 any -P out ipsec ah/transport/10.2.3.4-10.6.7.8/require ; ^D At B: &prompt.root; setkey -c spdadd 10.6.7.8 10.2.3.4 any -P out ipsec esp/transport/10.6.7.8-10.2.3.4/require ; spdadd 10.6.7.8 10.2.3.4 any -P out ipsec ah/transport/10.6.7.8-10.2.3.4/require ; ^D HOST A --------------------------------------> HOST E 10.2.3.4 10.6.7.8 | | ========== old AH keyed-md5 ==========> <========= new AH hmac-sha1 =========== <========= new ESP des-cbc ============ Transport mode example with IPv6 Another example using IPv6. ESP transport mode is recommended for TCP port number 110 between Host-A and Host-B. ============ ESP ============ | | Host-A Host-B fec0::10 -------------------- fec0::11 Encryption algorithm is blowfish-cbc whose key is "kamekame", and authentication algorithm is hmac-sha1 whose key is "this is the test key". Configuration at Host-A: &prompt.root; setkey -c <<EOF spdadd fec0::10[any] fec0::11[110] tcp -P out ipsec esp/transport/fec0::10-fec0::11/use ; spdadd fec0::11[110] fec0::10[any] tcp -P in ipsec esp/transport/fec0::11-fec0::10/use ; add fec0::10 fec0::11 esp 0x10001 -m transport -E blowfish-cbc "kamekame" -A hmac-sha1 "this is the test key" ; add fec0::11 fec0::10 esp 0x10002 -m transport -E blowfish-cbc "kamekame" -A hmac-sha1 "this is the test key" ; EOF and at Host-B: &prompt.root; setkey -c <<EOF spdadd fec0::11[110] fec0::10[any] tcp -P out ipsec esp/transport/fec0::11-fec0::10/use ; spdadd fec0::10[any] fec0::11[110] tcp -P in ipsec esp/transport/fec0::10-fec0::11/use ; add fec0::10 fec0::11 esp 0x10001 -m transport -E blowfish-cbc "kamekame" -A hmac-sha1 "this is the test key" ; add fec0::11 fec0::10 esp 0x10002 -m transport -E blowfish-cbc "kamekame" -A hmac-sha1 "this is the test key" ; EOF Note the direction of SP. Tunnel mode example with IPv4 Tunnel mode between two security gateways Security protocol is old AH tunnel mode, i.e. specified by RFC1826, with keyed-md5 whose key is "this is the test" as authentication algorithm. ======= AH ======= | | Network-A Gateway-A Gateway-B Network-B 10.0.1.0/24 ---- 172.16.0.1 ----- 172.16.0.2 ---- 10.0.2.0/24 Configuration at Gateway-A: &prompt.root; setkey -c <<EOF spdadd 10.0.1.0/24 10.0.2.0/24 any -P out ipsec ah/tunnel/172.16.0.1-172.16.0.2/require ; spdadd 10.0.2.0/24 10.0.1.0/24 any -P in ipsec ah/tunnel/172.16.0.2-172.16.0.1/require ; add 172.16.0.1 172.16.0.2 ah-old 0x10003 -m any -A keyed-md5 "this is the test" ; add 172.16.0.2 172.16.0.1 ah-old 0x10004 -m any -A keyed-md5 "this is the test" ; EOF If port number field is omitted such above then "[any]" is employed. `-m' specifies the mode of SA to be used. "-m any" means wild-card of mode of security protocol. You can use this SA for both tunnel and transport mode. and at Gateway-B: &prompt.root; setkey -c <<EOF spdadd 10.0.2.0/24 10.0.1.0/24 any -P out ipsec ah/tunnel/172.16.0.2-172.16.0.1/require ; spdadd 10.0.1.0/24 10.0.2.0/24 any -P in ipsec ah/tunnel/172.16.0.1-172.16.0.2/require ; add 172.16.0.1 172.16.0.2 ah-old 0x10003 -m any -A keyed-md5 "this is the test" ; add 172.16.0.2 172.16.0.1 ah-old 0x10004 -m any -A keyed-md5 "this is the test" ; EOF Making SA bundle between two security gateways AH transport mode and ESP tunnel mode is required between Gateway-A and Gateway-B. In this case, ESP tunnel mode is applied first, and AH transport mode is next. ========== AH ========= | ======= ESP ===== | | | | | Network-A Gateway-A Gateway-B Network-B fec0:0:0:1::/64 --- fec0:0:0:1::1 ---- fec0:0:0:2::1 --- fec0:0:0:2::/64 Tunnel mode example with IPv6 Encryption algorithm is 3des-cbc, and authentication algorithm for ESP is hmac-sha1. Authentication algorithm for AH is hmac-md5. Configuration at Gateway-A: &prompt.root; setkey -c <<EOF spdadd fec0:0:0:1::/64 fec0:0:0:2::/64 any -P out ipsec esp/tunnel/fec0:0:0:1::1-fec0:0:0:2::1/require ah/transport/fec0:0:0:1::1-fec0:0:0:2::1/require ; spdadd fec0:0:0:2::/64 fec0:0:0:1::/64 any -P in ipsec esp/tunnel/fec0:0:0:2::1-fec0:0:0:1::1/require ah/transport/fec0:0:0:2::1-fec0:0:0:1::1/require ; add fec0:0:0:1::1 fec0:0:0:2::1 esp 0x10001 -m tunnel -E 3des-cbc "kamekame12341234kame1234" -A hmac-sha1 "this is the test key" ; add fec0:0:0:1::1 fec0:0:0:2::1 ah 0x10001 -m transport -A hmac-md5 "this is the test" ; add fec0:0:0:2::1 fec0:0:0:1::1 esp 0x10001 -m tunnel -E 3des-cbc "kamekame12341234kame1234" -A hmac-sha1 "this is the test key" ; add fec0:0:0:2::1 fec0:0:0:1::1 ah 0x10001 -m transport -A hmac-md5 "this is the test" ; EOF Making SAs with the different end ESP tunnel mode is required between Host-A and Gateway-A. Encryption algorithm is cast128-cbc, and authentication algorithm for ESP is hmac-sha1. ESP transport mode is recommended between Host-A and Host-B. Encryption algorithm is rc5-cbc, and authentication algorithm for ESP is hmac-md5. ================== ESP ================= | ======= ESP ======= | | | | | Host-A Gateway-A Host-B fec0:0:0:1::1 ---- fec0:0:0:2::1 ---- fec0:0:0:2::2 Configuration at Host-A: &prompt.root; setkey -c <<EOF spdadd fec0:0:0:1::1[any] fec0:0:0:2::2[80] tcp -P out ipsec esp/transport/fec0:0:0:1::1-fec0:0:0:2::2/use esp/tunnel/fec0:0:0:1::1-fec0:0:0:2::1/require ; spdadd fec0:0:0:2::1[80] fec0:0:0:1::1[any] tcp -P in ipsec esp/transport/fec0:0:0:2::2-fec0:0:0:l::1/use esp/tunnel/fec0:0:0:2::1-fec0:0:0:1::1/require ; add fec0:0:0:1::1 fec0:0:0:2::2 esp 0x10001 -m transport -E cast128-cbc "12341234" -A hmac-sha1 "this is the test key" ; add fec0:0:0:1::1 fec0:0:0:2::1 esp 0x10002 -E rc5-cbc "kamekame" -A hmac-md5 "this is the test" ; add fec0:0:0:2::2 fec0:0:0:1::1 esp 0x10003 -m transport -E cast128-cbc "12341234" -A hmac-sha1 "this is the test key" ; add fec0:0:0:2::1 fec0:0:0:1::1 esp 0x10004 -E rc5-cbc "kamekame" -A hmac-md5 "this is the test" ; EOF + + + + Chern + Lee + Contributed by + + + + + OpenSSH OpenSSH security OpenSSH - Contributed by &a.chern;, April 21, - 2001. - - Secure shell is a set of network connectivity tools used to access remote machines securely. It can be used as a direct replacement for rlogin, rsh, rcp, and telnet. Additionally, any other TCP/IP connections can be tunneled/forwarded securely through ssh. ssh encrypts all traffic to effectively eliminate eavesdropping, connection hijacking, and other network-level attacks. OpenSSH is maintained by the OpenBSD project, and is based upon SSH v1.2.12 with all the recent bug fixes and updates. It is compatible with both SSH protocols 1 and 2. OpenSSH has been in the base system since FreeBSD 4.0. Advantages of using OpenSSH Normally, when using &man.telnet.1; or &man.rlogin.1;, data is sent over the network in an clear, un-encrypted form. Network sniffers anywhere in between the client and server can steal your user/password information or data transferred in your session. OpenSSH offers a variety of authentication and encryption methods to prevent this from happening. Enabling sshd OpenSSH enabling Be sure to make the following additions to your rc.conf file: sshd_enable="YES" This will load the ssh daemon the next time your system initializes. Alternatively, you can simply run the sshd daemon. SSH client OpenSSH client The &man.ssh.1; utility works similarly to &man.rlogin.1;. &prompt.root ssh user@foobardomain.com Host key not found from the list of known hosts. Are you sure you want to continue connecting (yes/no)? yes Host 'foobardomain.com' added to the list of known hosts. user@foobardomain.com's password: ******* The login will continue just as it would have if a session was created using rlogin or telnet. SSH utilizes a key fingerprint system for verifying the authenticity of the server when the client connects. The user is prompted to enter 'yes' only during the first time connecting. Future attempts to login are all verified against the saved fingerprint key. The SSH client will alert you if the saved fingerprint differs from the received fingerprint on future login attempts. The fingerprints are saved in ~/.ssh/known_hosts Secure copy OpenSSH secure copy scp The scp command works similarly to rcp; it copies a file to or from a remote machine, except in a secure fashion. &prompt.root scp user@foobardomain.com:/COPYRIGHT COPYRIGHT user@foobardomain.com's password: COPYRIGHT 100% |*****************************| 4735 00:00 &prompt.root Since the fingerprint was already saved for this host in the previous example, it is verified when using scp here. Configuration OpenSSH configuration The system-wide configuration files for both the OpenSSH daemon and client reside within the /etc/ssh directory. ssh_config configures the client settings, while sshd_config configures the daemon. ssh-keygen Instead of using passwords, &man.ssh-keygen.1; can be used to generate RSA keys to authenticate a user. &prompt.user ssh-keygen Initializing random number generator... Generating p: .++ (distance 66) Generating q: ..............................++ (distance 498) Computing the keys... Key generation complete. Enter file in which to save the key (/home/user/.ssh/identity): Enter passphrase: Enter the same passphrase again: Your identification has been saved in /home/user/.ssh/identity. ... &man.ssh-keygen.1; will create a public and private key pair for use in authentication. The private key is stored in ~/.ssh/identity, whereas the public key is stored in ~/.ssh/identity.pub. The public key must be placed in ~/.ssh/authorized_keys of the remote machine in order for the setup to work. This will allow connection to the remote machine based upon RSA authentication instead of passwords. If a passphrase is used in &man.ssh-keygen.1;, the user will be prompted for a password each time in order to use the private key. &man.ssh-agent.1; and &man.ssh-add.1; are utilities used in managing multiple passworded private keys. SSH Tunneling OpenSSH tunneling OpenSSH has the ability to create a tunnel to encapsulate another protocol in an encrypted session. The following command tells &man.ssh.1; to create a tunnel for telnet. &prompt.user; ssh -2 -N -f -L 5023:localhost:23 user@foo.bar.com &prompt.user; -2 this forces &man.ssh.1 to use version 2 of the protocol. (Do not use if you are working with older ssh servers) -N indicates no command, or tunnel only. If omitted, &man.ssh.1; would initiate a normal session. -f forces &man.ssh.1; to run in the background. -L indicates a local tunnel in localport:localhost:remoteport fashion. foo.bar.com is the remote/target SSH server. An SSH tunnel works by creating a listen socket on the specified local host and port. It then forwards any connection to the local host/port via the SSH connection to the remote machine on the specified remote port. In the example, port 5023 on localhost is being forwarded to port 23 on the remote machine. Since 23 is telnet, this would create a secure telnet session through an SSH tunnel. This can be used to wrap any number of insecure TCP protocols such as smtp, pop3, ftp, etc. A typical SSH Tunnel &prompt.user; ssh -2 -N -f -L 5025:localhost:25 user@mailserver.foobar.com user@mailserver.foobar.com's password: ***** &prompt.user; telnet localhost 5025 Trying 127.0.0.1... Connected to localhost. Escape character is '^]'. 220 mailserver.foobar.com ESMTP This can be used in conjunction with an &man.ssh-keygen.1; and additional user accounts to create a more seamless/hassle-free SSH tunneling environment. Keys can be used in place of typing a password, and the tunnels can be run as a separate user. Further Reading OpenSSH &man.ssh.1; &man.scp.1; &man.ssh-keygen.1; &man.ssh-agent.1; &man.ssh-add.1; &man.sshd.8; &man.sftp-server.8; diff --git a/en_US.ISO8859-1/books/handbook/serialcomms/chapter.sgml b/en_US.ISO8859-1/books/handbook/serialcomms/chapter.sgml index 39ed3aaae7..8aaaf6c721 100644 --- a/en_US.ISO8859-1/books/handbook/serialcomms/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/serialcomms/chapter.sgml @@ -1,2586 +1,2590 @@ Serial Communications Synopsis serial communications Unix has always had support for serial communications. In fact, the very first Unix machines relied on serial lines for user input and output. Things have changed a lot from the days when the average terminal consisted of a 10-character-per-second serial printer and a keyboard. This chapter will cover some of the ways in which FreeBSD uses serial communications. After reading this chapter you will know: How to connect terminals to your FreeBSD system. How to use a modem to dial out to remote hosts. How to allow remote users to login to your system with a modem. How to boot your system from a serial console. Before reading this chapter you should: Know how to configure and install a new kernel () Understand Unix permissions and processes () Have access to the technical manual for the serial hardware (modem or multi-port card) that you would like to use with FreeBSD. Introduction Terminology bits-per-second bps Bits per Second — the rate at which data is transmitted DTE DTE Data Terminal Equipment — for example, your computer DCE DCE Data Communications Equipment — your modem RS-232 RS-232C cables EIA standard for hardware serial communications When talking about communications data rates, the authors do not use the term baud. Baud refers to the number of electrical state transitions that may be made in a period of time, while bps (bits per second) is the correct term to use (at least it does not seem to bother the curmudgeons quite a much). Cables and Ports To connect a modem or terminal to your FreeBSD system, you will need a serial port on your computer and the proper cable to connect to your serial device. If you are already familiar with your hardware and the cable it requires, you can safely skip this section. Cables There are several different kinds of serial cables. The two most common types for our purposes are null-modem cables and standard ("straight") RS-232 cables. The documentation for your hardware should describe the type of cable required. Null-modem cables null-modem cable A null-modem cable passes some signals straight through, like signal ground, but switches other signals. For example, the send data pin on one end goes to the receive data pin on the other end. If you like making your own cables, you can construct a null-modem cable for use with terminals. This table shows the RS-232C signal names and the pin numbers on a DB-25 connector. Signal Pin # Pin # Signal TxD 2 connects to 3 RxD RxD 3 connects to 2 TxD DTR 20 connects to 6 DSR DSR 6 connects to 20 DTR SG 7 connects to 7 SG DCD 8 connects to 4 RTS RTS 4 5 CTS CTS 5 connects to 8 DCD For DCD to RTS, connect pins 4 to 5 internally in the connector hood, and then to pin 8 in the remote hood. Standard RS-232C Cables RS-232C cables A standard serial cable passes all the RS-232C signals straight-through. That is, the send data pin on one end of the cable goes to the send data pin on the other end. This is the type of cable to connect a modem to your FreeBSD system, and the type of cable needed for some terminals. Ports Serial ports are the devices through which data is transferred between the FreeBSD host computer and the terminal. This section describes the kinds of ports that exist and how they are addressed in FreeBSD. Kinds of Ports Several kinds of serial ports exist. Before you purchase or construct a cable, you need to make sure it will fit the ports on your terminal and on the FreeBSD system. Most terminals will have DB25 ports. Personal computers, including PCs running FreeBSD, will have DB25 or DB9 ports. If you have a multiport serial card for your PC, you may have RJ-12 or RJ-45 ports. See the documentation that accompanied the hardware for specifications on the kind of port in use. A visual inspection of the port often works, too. Port Names In FreeBSD, you access each serial port through an entry in the /dev directory. There are two different kinds of entries: Call-in ports are named /dev/ttydN where N is the port number, starting from zero. Generally, you use the call-in port for terminals. Call-in ports require that the serial line assert the data carrier detect (DCD) signal to work. Call-out ports are named /dev/cuaaN. You usually do not use the call-out port for terminals, just for modems. You may use the call-out port if the serial cable or the terminal does not support the carrier detect signal. If you have connected a terminal to the first serial port (COM1 in MS-DOS parlance), then you want to use /dev/ttyd0 to refer to the terminal. If it is on the second serial port (also known as COM2), it is /dev/ttyd1, and so forth. Kernel Configuration FreeBSD supports four serial ports by default. In the MS-DOS world, these are known as COM1:, COM2:, COM3:, and COM4:. FreeBSD currently supports dumb multiport serial interface cards, such as the BocaBoard 1008 and 2016, as well as more intelligent multi-port cards such as those made by Digiboard and Stallion Technologies. The default kernel only looks for the standard COM ports, though. To see if your kernel recognizes any of your serial ports, watch for messages while the kernel is booting, or use the /sbin/dmesg command to replay the kernel's boot messages. In particular, look for messages that start with the characters sio. To view just the messages that have the word sio, use the command: &prompt.root; /sbin/dmesg | grep 'sio' For example, on a system with four serial ports, these are the serial-port specific kernel boot messages: sio0 at 0x3f8-0x3ff irq 4 on isa sio0: type 16550A sio1 at 0x2f8-0x2ff irq 3 on isa sio1: type 16550A sio2 at 0x3e8-0x3ef irq 5 on isa sio2: type 16550A sio3 at 0x2e8-0x2ef irq 9 on isa sio3: type 16550A If your kernel does not recognize all of your serial ports, you will probably need to configure a custom FreeBSD kernel for your system. For detailed information on configuring your kernel, please see . The relevant device lines for your kernel configuration file would look like this: device sio0 at isa? port "IO_COM1" tty irq 4 vector siointr device sio1 at isa? port "IO_COM2" tty irq 3 vector siointr device sio2 at isa? port "IO_COM3" tty irq 5 vector siointr device sio3 at isa? port "IO_COM4" tty irq 9 vector siointr You can comment-out or completely remove lines for devices you do not have. Please see the &man.sio.4; manual page for complete information on how to write configuration lines for multiport boards. Be careful if you are using a configuration file that was previously used for a different version of FreeBSD because the device flags have changed between versions. port "IO_COM1" is a substitution for port 0x3f8, IO_COM2 is 0x2f8, IO_COM3 is 0x3e8, and IO_COM4 is 0x2e8, which are fairly common port addresses for their respective serial ports; interrupts 4, 3, 5, and 9 are fairly common interrupt request lines. Also note that regular serial ports cannot share interrupts on ISA-bus PCs (multiport boards have on-board electronics that allow all the 16550A's on the board to share one or two interrupt request lines). Device Special Files Most devices in the kernel are accessed through device special files, which are located in the /dev directory. The sio devices are accessed through the /dev/ttydN (dial-in) and /dev/cuaaN (call-out) devices. FreeBSD also provides initialization devices (/dev/ttyidN and /dev/cuai0N) and locking devices (/dev/ttyldN and /dev/cual0N). The initialization devices are used to initialize communications port parameters each time a port is opened, such as crtscts for modems which use CTS/RTS signaling for flow control. The locking devices are used to lock flags on ports to prevent users or programs changing certain parameters; see the manual pages &man.termios.4;, &man.sio.4;, and &man.stty.1; for information on the terminal settings, locking and initializing devices, and setting terminal options, respectively. Making Device Special Files FreeBSD 5.0 includes the devfs filesystem which automatically creates device nodes as needed. If you are running a version of FreeBSD with devfs enabled then you can safely skip this section. A shell script called MAKEDEV in the /dev directory manages the device special files. To use MAKEDEV to make dial-up device special files for COM1: (port 0), cd to /dev and issue the command MAKEDEV ttyd0. Likewise, to make dial-up device special files for COM2: (port 1), use MAKEDEV ttyd1. MAKEDEV not only creates the /dev/ttydN device special files, but also creates the /dev/cuaaN, /dev/cuaiaN, /dev/cualaN, /dev/ttyldN, and /dev/ttyidN nodes. After making new device special files, be sure to check the permissions on the files (especially the /dev/cua* files) to make sure that only users who should have access to those device special files can read and write on them — you probably do not want to allow your average user to use your modems to dial-out. The default permissions on the /dev/cua* files should be sufficient: crw-rw---- 1 uucp dialer 28, 129 Feb 15 14:38 /dev/cuaa1 crw-rw---- 1 uucp dialer 28, 161 Feb 15 14:38 /dev/cuaia1 crw-rw---- 1 uucp dialer 28, 193 Feb 15 14:38 /dev/cuala1 These permissions allow the user uucp and users in the group dialer to use the call-out devices. Serial Port Configuration ttyd cuaa The ttydN (or cuaaN) device is the regular device you will want to open for your applications. When a process opens the device, it will have a default set of terminal I/O settings. You can see these settings with the command &prompt.root; stty -a -f /dev/ttyd1 When you change the settings to this device, the settings are in effect until the device is closed. When it is reopened, it goes back to the default set. To make changes to the default set, you can open and adjust the settings of the initial state device. For example, to turn on mode, 8 bit communication, and flow control by default for ttyd5, type: &prompt.root; stty -f /dev/ttyid5 clocal cs8 ixon ixoff rc files rc.serial System-wide initialization of the serial devices is controlled in /etc/rc.serial. This file affects the default settings of serial devices. To prevent certain settings from being changed by an application, make adjustments to the lock state device. For example, to lock the speed of ttyd5 to 57600 bps, type: &prompt.root; stty -f /dev/ttyld5 57600 Now, an application that opens ttyd5 and tries to change the speed of the port will be stuck with 57600 bps. MAKEDEV Naturally, you should make the initial state and lock state devices writable only by the root account. Sean Kelly - Contributed + Contributed by Terminals terminals Terminals provide a convenient and low-cost way to access the power of your FreeBSD system when you are not at the computer's console or on a connected network. This section describes how to use terminals with FreeBSD. Uses and Types of Terminals The original Unix systems did not have consoles. Instead, people logged in and ran programs through terminals that were connected to the computer's serial ports. It is quite similar to using a modem and some terminal software to dial into a remote system to do text-only work. Today's PCs have consoles capable of high quality graphics, but the ability to establish a login session on a serial port still exists in nearly every Unix-style operating system today; FreeBSD is no exception. By using a terminal attached to a unused serial port, you can log in and run any text program that you would normally run on the console or in an xterm window in the X Window System. For the business user, you can attach many terminals to a FreeBSD system and place them on your employees' desktops. For a home user, a spare computer such as an older IBM PC or a Macintosh can be a terminal wired into a more powerful computer running FreeBSD. You can turn what might otherwise be a single-user computer into a powerful multiple user system. For FreeBSD, there are three kinds of terminals: Dumb terminals PCs acting as terminals X terminals The remaining subsections describe each kind. Dumb Terminals Dumb terminals are specialized pieces of hardware that let you connect to computers over serial lines. They are called dumb because they have only enough computational power to display, send, and receive text. You cannot run any programs on them. It is the computer to which you connect them that has all the power to run text editors, compilers, email, games, and so forth. There are hundreds of kinds of dumb terminals made by many manufacturers, including Digital Equipment Corporation's VT-100 and Wyse's WY-75. Just about any kind will work with FreeBSD. Some high-end terminals can even display graphics, but only certain software packages can take advantage of these advanced features. Dumb terminals are popular in work environments where workers do not need access to graphic applications such as those provided by the X Window System. PCs Acting As Terminals If a dumb terminal has just enough ability to display, send, and receive text, then certainly any spare personal computer can be a dumb terminal. All you need is the proper cable and some terminal emulation software to run on the computer. Such a configuration is popular in homes. For example, if your spouse is busy working on your FreeBSD system's console, you can do some text-only work at the same time from a less powerful personal computer hooked up as a terminal to the FreeBSD system. X Terminals X terminals are the most sophisticated kind of terminal available. Instead of connecting to a serial port, they usually connect to a network like Ethernet. Instead of being relegated to text-only applications, they can display any X application. We introduce X terminals just for the sake of completeness. However, this chapter does not cover setup, configuration, or use of X terminals. Configuration This section describes what you need to configure on your FreeBSD system to enable a login session on a terminal. It assumes you have already configured your kernel to support the serial port to which the terminal is connected—and that you have connected it. Recall from that the init process is responsible for all process control and initialization at system startup. One of the tasks performed by init is to read the /etc/ttys file and start a getty process on the available terminals. The getty process is responsible for reading a login name and starting the login program. Thus, to configure terminals for your FreeBSD system the following steps should be taken as root : Add a line to /etc/ttys for the entry in the /dev directory for the serial port if it is not already there. Specify that /usr/libexec/getty be run on the port, and specify the appropriate getty type from the /etc/gettytab file. Specify the default terminal type. Set the port to on. Specify whether the port should be secure. Force init to reread the /etc/ttys file. As an optional step, you may wish to create a custom getty type for use in step 2 by making an entry in /etc/gettytab. This chapter does not explain how to do so; you are encouraged to see the &man.gettytab.5; and the &man.getty.8; manual pages for more information. Adding an Entry to <filename>/etc/ttys</filename> The /etc/ttys file lists all of the ports on your FreeBSD system where you want to allow logins. For example, the first virtual console ttyv0 has an entry in this file. You can log in on the console using this entry. This file also contains entries for the other virtual consoles, serial ports, and pseudo-ttys. For a hardwired terminal, just list the serial port's /dev entry without the /dev part. A default FreeBSD install includes a /etc/ttys file with support for the first four serial ports: ttyd0 through ttyd3. If you are attaching a terminal to one of those ports, you do not need to add another entry. Adding Terminal Entries to <filename>/etc/ttys</filename> Suppose we would like to connect two terminals to the system: a Wyse-50 and an old 286 IBM PC running Procomm terminal software emulating a VT-100 terminal. We connect the Wyse to the second serial port and the 286 to the sixth serial port (a port on a multiport serial card). The corresponding entries in the /etc/ttys file would look like this: ttyd1 "/usr/libexec/getty std.38400" wy50 on insecure ttyd5 "/usr/libexec/getty std.19200" vt100 on insecure The first field normally specifies the name of the terminal special file as it is found in /dev. The second field is the command to execute for this line, which is usually &man.getty.8;. getty initializes and opens the line, sets the speed, prompts for a user name and then executes the &man.login.1; program. The getty program accepts one (optional) parameter on its command line, the getty type. A getty type tells about characteristics on the terminal line, like bps rate and parity. The getty program reads these characteristics from the file /etc/gettytab. The file /etc/gettytab contains lots of entries for terminal lines both old and new. In almost all cases, the entries that start with the text std will work for hardwired terminals. These entries ignore parity. There is a std entry for each bps rate from 110 to 115200. Of course, you can add your own entries to this file. The &man.gettytab.5; manual page provides more information. When setting the getty type in the /etc/ttys file, make sure that the communications settings on the terminal match. For our example, the Wyse-50 uses no parity and connects at 38400 bps. The 286 PC uses no parity and connects at 19200 bps. The third field is the type of terminal usually connected to that tty line. For dial-up ports, unknown or dialup is typically used in this field since users may dial up with practically any type of terminal or software. For hardwired terminals, the terminal type does not change, so you can put a real terminal type from the &man.termcap.5; database file in this field. For our example, the Wyse-50 uses the real terminal type while the 286 PC running Procomm will be set to emulate at VT-100. The fourth field specifies if the port should be enabled. Putting on here will have the init process start the program in the second field, getty. If you put off in this field, there will be no getty, and hence no logins on the port. The final field is used to specify whether the port is secure. Marking a port as secure means that you trust it enough to allow the root account (or any account with a user ID of 0) to login from that port. Insecure ports do not allow root logins. On an insecure port, users must login from unprivileged accounts and then use &man.su.1; or a similar mechanism to gain superuser privileges. It is highly recommended that you use "insecure" even for terminals that are behind locked doors. It is quite easy to login and use su if you need superuser privileges. Force <command>init</command> to Reread <filename>/etc/ttys</filename> After making the necessary changes to the /etc/ttys file you should send a SIGHUP (hangup) signal to the init process to force it to re-read its configuration file. For example : &prompt.root; kill -HUP 1 If everything is set up correctly, all cables are in place, and the terminals are powered up, then a getty process should be running on each terminal and you should see login prompts on your terminals at this point. Troubleshooting your connection Even with the most meticulous attention to detail, something could still go wrong while setting up a terminal. Here is a list of symptoms and some suggested fixes. No login prompt appears Make sure the terminal is plugged in and powered up. If it is a personal computer acting as a terminal, make sure it is running terminal emulation software on the correct serial port. Make sure the cable is connected firmly to both the terminal and the FreeBSD computer. Make sure it is the right kind of cable. Make sure the terminal and FreeBSD agree on the bps rate and parity settings. If you have a video display terminal, make sure the contrast and brightness controls are turned up. If it is a printing terminal, make sure paper and ink are in good supply. Make sure that a getty process is running and serving the terminal. For example, to get a list of running getty processes with ps, type: &prompt.root; ps -axww|grep getty You should see an entry for the terminal. For example, the following display shows that a getty is running on the second serial port ttyd1 and is using the std.38400 entry in /etc/gettytab: 22189 d1 Is+ 0:00.03 /usr/libexec/getty std.38400 ttyd1 If no getty process is running, make sure you have enabled the port in /etc/ttys. Also remember to run kill -HUP 1 after modifying the ttys file. Garbage appears instead of a login prompt Make sure the terminal and FreeBSD agree on the bps rate and parity settings. Check the getty processes to make sure the correct getty type is in use. If not, edit /etc/ttys and run kill -HUP 1. Characters appear doubled; the password appears when typed Switch the terminal (or the terminal emulation software) from half duplex or local echo to full duplex. Guy Helmer - Contributed + Contributed by + + Sean Kelly - Additions + Additions by Dial-in Service dial-in service Configuring your FreeBSD system for dial-in service is very similar to connecting terminals except that you're dealing with modems instead of terminals. External v.s. Internal Modems External modems seem to be more convenient for dial-up, because external modems often can be semi-permanently configured via parameters stored in non-volatile RAM and they usually provide lighted indicators that display the state of important RS-232 signals. Blinking lights impress visitors, but lights are also very useful to see whether a modem is operating properly. Internal modems usually lack non-volatile RAM, so their configuration may be limited only to setting DIP switches. If your internal modem has any signal indicator lights, it is probably difficult to view the lights when the system's cover is in place. Modems and Cables modem If you are using an external modem, then you will of course need the proper cable. A standard RS-232C serial cable should suffice as long as all of the normal signals are wired : Transmitted Data (SD) Received Data (RD) Request to Send (RTS) Clear to Send (CTS) Data Set Ready (DSR) Data Terminal Ready (DTR) Carrier Detect (CD) Signal Ground (SG) FreeBSD needs the RTS and CTS signals for flow-control at speeds above 2400bps, the CD signal to detect when a call has been answered or the line has been hung up, and the DTR signal to reset the modem after a session is complete. Some cables are wired without all of the needed signals, so if you have problems, such as a login session not going away when the line hangs up, you may have a problem with your cable. Like other Unix-like operating systems, FreeBSD uses the hardware signals to find out when a call has been answered or a line has been hung up and to hangup and reset the modem after a call. FreeBSD avoids sending commands to the modem or watching for status reports from the modem. If you are familiar with connecting modems to PC-based bulletin board systems, this may seem awkward. Serial Interface Considerations FreeBSD supports NS8250-, NS16450-, NS16550-, and NS16550A-based EIA RS-232C (CCITT V.24) communications interfaces. The 8250 and 16450 devices have single-character buffers. The 16550 device provides a 16-character buffer, which allows for better system performance. (Bugs in plain 16550's prevent the use of the 16-character buffer, so use 16550A's if possible). Because single-character-buffer devices require more work by the operating system than the 16-character-buffer devices, 16550A-based serial interface cards are much preferred. If the system has many active serial ports or will have a heavy load, 16550A-based cards are better for low-error-rate communications. Quick Overview getty As with terminals, init spawns a getty process for each configured serial port for dial-in connections. For example, if a modem is attached to /dev/ttyd0, the command ps ax might show this: 4850 ?? I 0:00.09 /usr/libexec/getty V19200 ttyd0 When a user dials the modem's line and the modems connect, the CD line is asserted by the modem. The kernel notices that carrier has been detected and completes getty's open of the port. getty sends a login: prompt at the specified initial line speed. getty watches to see if legitimate characters are received, and, in a typical configuration, if it finds junk (probably due to the modem's connection speed being different than getty's speed), getty tries adjusting the line speeds until it receives reasonable characters. /usr/bin/login After the user enters his/her login name, getty executes /usr/bin/login, which completes the login by asking for the user's password and then starting the user's shell. Configuration Files There are three system configuration files in the /etc directory that you will probably need to edit to allow dial-up access to your FreeBSD system. The first, /etc/gettytab, contains configuration information for the /usr/libexec/getty daemon. Second, /etc/ttys holds information that tells /sbin/init what tty devices should have getty processes running on them. Lastly, you can place port initialization commands in the /etc/rc.serial script. There are two schools of thought regarding dial-up modems on Unix. One group likes to configure their modems and systems so that no matter at what speed a remote user dials in, the local computer-to-modem RS-232 interface runs at a locked speed. The benefit of this configuration is that the remote user always sees a system login prompt immediately. The downside is that the system does not know what a user's true data rate is, so full-screen programs like Emacs will not adjust their screen-painting methods to make their response better for slower connections. The other school configures their modems' RS-232 interface to vary its speed based on the remote user's connection speed. For example, V.32bis (14.4 Kbps) connections to the modem might make the modem run its RS-232 interface at 19.2 Kbps, while 2400 bps connections make the modem's RS-232 interface run at 2400 bps. Because getty does not understand any particular modem's connection speed reporting, getty gives a login: message at an initial speed and watches the characters that come back in response. If the user sees junk, it is assumed that they know they should press the Enter key until they see a recognizable prompt. If the data rates do not match, getty sees anything the user types as junk, tries going to the next speed and gives the login: prompt again. This procedure can continue ad nauseam, but normally only takes a keystroke or two before the user sees a good prompt. Obviously, this login sequence does not look as clean as the former locked-speed method, but a user on a low-speed connection should receive better interactive response from full-screen programs. The authors will try to give balanced configuration information, but is biased towards having the modem's data rate follow the connection rate. <filename>/etc/gettytab</filename> /etc/gettytab /etc/gettytab is a &man.termcap.5;-style file of configuration information for &man.getty.8;. Please see the &man.gettytab.5; manual page for complete information on the format of the file and the list of capabilities. Locked-Speed Config If you are locking your modem's data communications rate at a particular speed, you probably will not need to make any changes to /etc/gettytab. Matching-Speed Config You will need to setup an entry in /etc/gettytab to give getty information about the speeds you wish to use for your modem. If you have a 2400 bps modem, you can probably use the existing D2400 entry. # # Fast dialup terminals, 2400/1200/300 rotary (can start either way) # D2400|d2400|Fast-Dial-2400:\ :nx=D1200:tc=2400-baud: 3|D1200|Fast-Dial-1200:\ :nx=D300:tc=1200-baud: 5|D300|Fast-Dial-300:\ :nx=D2400:tc=300-baud: If you have a higher speed modem, you will probably need to add an entry in /etc/gettytab; here is an entry you could use for a 14.4 Kbps modem with a top interface speed of 19.2 Kbps: # # Additions for a V.32bis Modem # um|V300|High Speed Modem at 300,8-bit:\ :nx=V19200:tc=std.300: un|V1200|High Speed Modem at 1200,8-bit:\ :nx=V300:tc=std.1200: uo|V2400|High Speed Modem at 2400,8-bit:\ :nx=V1200:tc=std.2400: up|V9600|High Speed Modem at 9600,8-bit:\ :nx=V2400:tc=std.9600: uq|V19200|High Speed Modem at 19200,8-bit:\ :nx=V9600:tc=std.19200: This will result in 8-bit, no parity connections. The example above starts the communications rate at 19.2 Kbps (for a V.32bis connection), then cycles through 9600 bps (for V.32), 2400 bps, 1200 bps, 300 bps, and back to 19.2 Kbps. Communications rate cycling is implemented with the nx= (next table) capability. Each of the lines uses a tc= (table continuation) entry to pick up the rest of the standard settings for a particular data rate. If you have a 28.8 Kbps modem and/or you want to take advantage of compression on a 14.4 Kbps modem, you need to use a higher communications rate than 19.2 Kbps. Here is an example of a gettytab entry starting a 57.6 Kbps: # # Additions for a V.32bis or V.34 Modem # Starting at 57.6 Kbps # vm|VH300|Very High Speed Modem at 300,8-bit:\ :nx=VH57600:tc=std.300: vn|VH1200|Very High Speed Modem at 1200,8-bit:\ :nx=VH300:tc=std.1200: vo|VH2400|Very High Speed Modem at 2400,8-bit:\ :nx=VH1200:tc=std.2400: vp|VH9600|Very High Speed Modem at 9600,8-bit:\ :nx=VH2400:tc=std.9600: vq|VH57600|Very High Speed Modem at 57600,8-bit:\ :nx=VH9600:tc=std.57600: If you have a slow CPU or a heavily loaded system and you do not have 16550A-based serial ports, you may receive sio silo errors at 57.6 Kbps. <filename>/etc/ttys</filename> /etc/ttys Configuration of the /etc/ttys file was covered in . Configuration for modems is similar but we must pass a different argument to getty and specify a different terminal type. The general format for both locked-speed and matching-speed configurations is: ttyd0 "/usr/libexec/getty xxx" dialup on The first item in the above line is the device special file for this entry — ttyd0 means /dev/ttyd0 is the file that this getty will be watching. The second item, "/usr/libexec/getty xxx" (xxx will be replaced by the initial gettytab capability) is the process init will run on the device. The third item, dialup, is the default terminal type. The fourth parameter, on, indicates to init that the line is operational. There can be a fifth parameter, secure, but it should only be used for terminals which are physically secure (such as the system console). The default terminal type (dialup in the example above) may depend on local preferences. dialup is the traditional default terminal type on dial-up lines so that users may customize their login scripts to notice when the terminal is dialup and automatically adjust their terminal type. However, the author finds it easier at his site to specify vt102 as the default terminal type, since the users just use VT102 emulation on their remote systems. After you have made changes to /etc/ttys, you may send the init process a HUP signal to re-read the file. You can use the command &prompt.root; kill -HUP 1 to send the signal. If this is your first time setting up the system, though, you may want to wait until your modem(s) are properly configured and connected before signaling init. Locked-Speed Config For a locked-speed configuration, your ttys entry needs to have a fixed-speed entry provided to getty. For a modem whose port speed is locked at 19.2 Kbps, the ttys entry might look like this: ttyd0 "/usr/libexec/getty std.19200" dialup on If your modem is locked at a different data rate, substitute the appropriate value for std.speed instead of std.19200. Make sure that you use a valid type listed in /etc/gettytab. Matching-Speed Config In a matching-speed configuration, your ttys entry needs to reference the appropriate beginning auto-baud (sic) entry in /etc/gettytab. For example, if you added the above suggested entry for a matching-speed modem that starts at 19.2 Kbps (the gettytab entry containing the V19200 starting point), your ttys entry might look like this: ttyd0 "/usr/libexec/getty V19200" dialup on <filename>/etc/rc.serial</filename> rc files rc.serial High-speed modems, like V.32, V.32bis, and V.34 modems, need to use hardware (RTS/CTS) flow control. You can add stty commands to /etc/rc.serial to set the hardware flow control flag in the FreeBSD kernel for the modem ports. For example to set the termios flag crtscts on serial port #1's (COM2:) dial-in and dial-out initialization devices, the following lines could be added to /etc/rc.serial : # Serial port initial configuration stty -f /dev/ttyid1 crtscts stty -f /dev/cuai01 crtscts Modem Settings If you have a modem whose parameters may be permanently set in non-volatile RAM, you will need to use a terminal program (such as Telix under MS-DOS or tip under FreeBSD) to set the parameters. Connect to the modem using the same communications speed as the initial speed getty will use and configure the modem's non-volatile RAM to match these requirements: CD asserted when connected DTR asserted for operation; dropping DTR hangs up line and resets modem CTS transmitted data flow control Disable XON/XOFF flow control RTS received data flow control Quiet mode (no result codes) No command echo Please read the documentation for your modem to find out what commands and/or DIP switch settings you need to give it. For example, to set the above parameters on a USRobotics Sportster 14,400 external modem, one could give these commands to the modem: ATZ AT&C1&D2&H1&I0&R2&W You might also want to take this opportunity to adjust other settings in the modem, such as whether it will use V.42bis and/or MNP5 compression. The USR Sportster 14,400 external modem also has some DIP switches that need to be set; for other modems, perhaps you can use these settings as an example: Switch 1: UP — DTR Normal Switch 2: Do not care (Verbal Result Codes/Numeric Result Codes) Switch 3: UP — Suppress Result Codes Switch 4: DOWN — No echo, offline commands Switch 5: UP — Auto Answer Switch 6: UP — Carrier Detect Normal Switch 7: UP — Load NVRAM Defaults Switch 8: Do not care (Smart Mode/Dumb Mode) Result codes should be disabled/suppressed for dial-up modems to avoid problems that can occur if getty mistakenly gives a login: prompt to a modem that is in command mode and the modem echoes the command or returns a result code. This sequence can result in a extended, silly conversation between getty and the modem. Locked-speed Config For a locked-speed configuration, you will need to configure the modem to maintain a constant modem-to-computer data rate independent of the communications rate. On a USR Sportster 14,400 external modem, these commands will lock the modem-to-computer data rate at the speed used to issue the commands: ATZ AT&B1&W Matching-speed Config For a variable-speed configuration, you will need to configure your modem to adjust its serial port data rate to match the incoming call rate. On a USR Sportster 14,400 external modem, these commands will lock the modem's error-corrected data rate to the speed used to issue the commands, but allow the serial port rate to vary for non-error-corrected connections: ATZ AT&B2&W Checking the Modem's Configuration Most high-speed modems provide commands to view the modem's current operating parameters in a somewhat human-readable fashion. On the USR Sportster 14,400 external modems, the command ATI5 displays the settings that are stored in the non-volatile RAM. To see the true operating parameters of the modem (as influenced by the USR's DIP switch settings), use the commands ATZ and then ATI4. If you have a different brand of modem, check your modem's manual to see how to double-check your modem's configuration parameters. Troubleshooting Here are a few steps you can follow to check out the dial-up modem on your system. Checking out the FreeBSD system Hook up your modem to your FreeBSD system, boot the system, and, if your modem has status indication lights, watch to see whether the modem's DTR indicator lights when the login: prompt appears on the system's console — if it lights up, that should mean that FreeBSD has started a getty process on the appropriate communications port and is waiting for the modem to accept a call. If the DTR indicator doesn't light, login to the FreeBSD system through the console and issue a ps ax to see if FreeBSD is trying to run a getty process on the correct port. You should see a lines like this among the processes displayed: 114 ?? I 0:00.10 /usr/libexec/getty V19200 ttyd0 115 ?? I 0:00.10 /usr/libexec/getty V19200 ttyd1 If you see something different, like this: 114 d0 I 0:00.10 /usr/libexec/getty V19200 ttyd0 and the modem has not accepted a call yet, this means that getty has completed its open on the communications port. This could indicate a problem with the cabling or a mis-configured modem, because getty should not be able to open the communications port until CD (carrier detect) has been asserted by the modem. If you do not see any getty processes waiting to open the desired ttydN port, double-check your entries in /etc/ttys to see if there are any mistakes there. Also, check the log file /var/log/messages to see if there are any log messages from init or getty regarding any problems. If there are any messages, triple-check the configuration files /etc/ttys and /etc/gettytab, as well as the appropriate device special files /dev/ttydN, for any mistakes, missing entries, or missing device special files. Try Dialing In Try dialing into the system; be sure to use 8 bits, no parity, 1 stop bit on the remote system. If you do not get a prompt right away, or get garbage, try pressing Enter about once per second. If you still do not see a login: prompt after a while, try sending a BREAK. If you are using a high-speed modem to do the dialing, try dialing again after locking the dialing modem's interface speed (via AT&B1 on a USR Sportster, for example). If you still cannot get a login: prompt, check /etc/gettytab again and double-check that The initial capability name specified in /etc/ttys for the line matches a name of a capability in /etc/gettytab Each nx= entry matches another gettytab capability name Each tc= entry matches another gettytab capability name If you dial but the modem on the FreeBSD system will not answer, make sure that the modem is configured to answer the phone when DTR is asserted. If the modem seems to be configured correctly, verify that the DTR line is asserted by checking the modem's indicator lights (if it has any). If you have gone over everything several times and it still does not work, take a break and come back to it later. If it still does not work, perhaps you can send an electronic mail message to the &a.questions;describing your modem and your problem, and the good folks on the list will try to help. Dial-out Service dial-out service The following are tips to getting your host to be able to connect over the modem to another computer. This is appropriate for establishing a terminal session with a remote host. This is useful to log onto a BBS. This kind of connection can be extremely helpful to get a file on the Internet if you have problems with PPP. If you need to FTP something and PPP is broken, use the terminal session to FTP it. Then use zmodem to transfer it to your machine. My stock Hayes modem is not supported, what can I do? Actually, the man page for tip is out of date. There is a generic Hayes dialer already built in. Just use at=hayes in your /etc/remote file. The Hayes driver is not smart enough to recognize some of the advanced features of newer modems—messages like BUSY, NO DIALTONE, or CONNECT 115200 will just confuse it. You should turn those messages off when you use tip (using ATX0&W). Also, the dial timeout for tip is 60 seconds. Your modem should use something less, or else tip will think there is a communication problem. Try ATS7=45&W. Actually, as shipped tip does not yet support it fully. The solution is to edit the file tipconf.h in the directory /usr/src/usr.bin/tip/tip Obviously you need the source distribution to do this. Edit the line #define HAYES 0 to #define HAYES 1. Then make and make install. Everything works nicely after that. How am I expected to enter these AT commands? /etc/remote Make what is called a direct entry in your /etc/remote file. For example, if your modem is hooked up to the first serial port, /dev/cuaa0, then put in the following line: cuaa0:dv=/dev/cuaa0:br#19200:pa=none Use the highest bps rate your modem supports in the br capability. Then, type tip cuaa0 and you will be connected to your modem. If there is no /dev/cuaa0 on your system, do this: &prompt.root; cd /dev &prompt.root; MAKEDEV cuaa0 Or use cu as root with the following command: &prompt.root; cu -lline -sspeed line is the serial port (e.g./dev/cuaa0) and speed is the speed (e.g.57600). When you are done entering the AT commands hit ~. to exit. The <literal>@</literal> sign for the pn capability does not work! The @ sign in the phone number capability tells tip to look in /etc/phones for a phone number. But the @ sign is also a special character in capability files like /etc/remote. Escape it with a backslash: pn=\@ How can I dial a phone number on the command line? Put what is called a generic entry in your /etc/remote file. For example: tip115200|Dial any phone number at 115200 bps:\ :dv=/dev/cuaa0:br#115200:at=hayes:pa=none:du: tip57600|Dial any phone number at 57600 bps:\ :dv=/dev/cuaa0:br#57600:at=hayes:pa=none:du: Then you can things like: &prompt.root; tip -115200 5551234 If you prefer cu over tip, use a generic cu entry: cu115200|Use cu to dial any number at 115200bps:\ :dv=/dev/cuaa1:br#57600:at=hayes:pa=none:du: and type: &prompt.root; cu 5551234 -s 115200 Do I have to type in the bps rate every time I do that? Put in an entry for tip1200 or cu1200, but go ahead and use whatever bps rate is appropriate with the br capability. tip thinks a good default is 1200 bps which is why it looks for a tip1200 entry. You do not have to use 1200 bps, though. I access a number of hosts through a terminal server. Rather than waiting until you are connected and typing CONNECT <host> each time, use tip's cm capability. For example, these entries in /etc/remote: pain|pain.deep13.com|Forrester's machine:\ :cm=CONNECT pain\n:tc=deep13: muffin|muffin.deep13.com|Frank's machine:\ :cm=CONNECT muffin\n:tc=deep13: deep13:Gizmonics Institute terminal server:\ :dv=/dev/cuaa2:br#38400:at=hayes:du:pa=none:pn=5551234: will let you type tip pain or tip muffin to connect to the hosts pain or muffin; and tip deep13 to get to the terminal server. Can tip try more than one line for each site? This is often a problem where a university has several modem lines and several thousand students trying to use them... Make an entry for your university in /etc/remote and use @ for the pn capability: big-university:\ :pn=\@:tc=dialout dialout:\ :dv=/dev/cuaa3:br#9600:at=courier:du:pa=none: Then, list the phone numbers for the university in /etc/phones: big-university 5551111 big-university 5551112 big-university 5551113 big-university 5551114 tip will try each one in the listed order, then give up. If you want to keep retrying, run tip in a while loop. Why do I have to hit <keycombo action="simul"> <keycap>Ctrl</keycap><keycap>P</keycap> </keycombo> twice to send <keycombo action="simul"> <keycap>Ctrl</keycap><keycap>P</keycap> </keycombo> once? CtrlP is the default force character, used to tell tip that the next character is literal data. You can set the force character to any other character with the ~s escape, which means set a variable. Type ~sforce=single-char followed by a newline. single-char is any single character. If you leave out single-char, then the force character is the nul character, which you can get by typing Ctrl2 or CtrlSPACE . A pretty good value for single-char is Shift Ctrl 6 , which is only used on some terminal servers. You can have the force character be whatever you want by specifying the following in your $HOME/.tiprc file: force=<single-char> Suddenly everything I type is in UPPER CASE?? You must have pressed Ctrl A , tip's raise character, specially designed for people with broken caps-lock keys. Use ~s as above and set the variable raisechar to something reasonable. In fact, you can set it to the same as the force character, if you never expect to use either of these features. Here is a sample .tiprc file perfect for Emacs users who need to type Ctrl2 and CtrlA a lot: force=^^ raisechar=^^ The ^^ is ShiftCtrl6 . How can I do file transfers with <command>tip</command>? If you are talking to another Unix system, you can send and receive files with ~p (put) and ~t (take). These commands run cat and echo on the remote system to accept and send files. The syntax is: ~p local-file remote-file ~t remote-file local-file There is no error checking, so you probably should use another protocol, like zmodem. How can I run zmodem with <command>tip</command>? To receive files, start the sending program on the remote end. Then, type ~C rz to begin receiving them locally. To send files, start the receiving program on the remote end. Then, type ~C sz files to send them to the remote system. Kazutaka YOKOTA - Contributed + Contributed by + + Bill Paul - Based on a document + Based on a document by Setting Up the Serial Console serial console Introduction FreeBSD boot on a system with only a dumb terminal on a serial port as a console. Such a configuration should be useful for two classes of people: system administrators who wish to install FreeBSD on machines that have no keyboard or monitor attached, and developers who want to debug the kernel or device drivers. As described in , FreeBSD employs a three stage bootstrap. The first two stages are in the boot block code which is stored at the beginning of the FreeBSD slice on the boot disk. The boot block will then load and run the boot loader (/boot/loader) as the third stage code. In order to set up the serial console you must configure the boot block code, the boot loader code and the kernel. Serial Console Configuration Prepare a serial cable. null-modem cable You will need either a null-modem cable or a standard serial cable and a null-modem adapter. See for a discussion on serial cables. Unplug your keyboard. Most PC systems probe for the keyboard during the Power-On Self-Test (POST) and will generate an error if the keyboard is not detected. Some machines complain loudly about the lack of a keyboard and will not continue to boot until it is plugged in. If your computer complains about the error, but boots anyway, then you do not have to do anything special. (Some machines with Phoenix BIOS installed merely say Keyboard failed and continue to boot normally.) If your computer refuses to boot without a keyboard attached then you will have to configure the BIOS so that it ignores this error (if it can). Consult your motherboard's manual for details on how to do this. Setting the keyboard to Not installed in the BIOS setup does not mean that you will not be able to use your keyboard. All this does is tell the BIOS not to probe for a keyboard at power-on so that it will not complain if the keyboard is not plugged in. You can leave the keyboard plugged in even with this flag set to Not installed and the keyboard will still work. If your system has a PS/2 mouse, chances are very good that you may have to unplug your mouse as well as your keyboard. This is because PS/2 mice share some hardware with the keyboard, and leaving the mouse plugged in can fool the keyboard probe into thinking the keyboard is still there. It is said that a Gateway 2000 Pentium 90MHz system with an AMI BIOS that behaves this way. In general this is not a problem since the mouse is not much good without the keyboard anyway. Plug a dumb terminal into COM1: (sio0). If you do not have a dumb terminal, you can use an old PC/XT with a modem program, or the serial port on another Unix box. If you do not have a COM1: (sio0), get one. At this time, there is no way to select a port other than COM1: for the boot blocks without recompiling the boot blocks. If you are already using COM1: for another device, you will have to temporarily remove that device and install a new boot block and kernel once you get FreeBSD up and running. (It is assumed that COM1: will be available on a file/compute/terminal server anyway; if you really need COM1: for something else (and you cannot switch that something else to COM2: (sio1)), then you probably should not even be bothering with all this in the first place.) Make sure the configuration file of your kernel has appropriate flags set for COM1: (sio0). Relevant flags are: 0x10 Enables console support for this unit. The other console flags are ignored unless this is set. Currently, at most one unit can have console support; the first one (in config file order) with this flag set is preferred. This option alone will not make the serial port the console. Set the following flag or use the option described below, together with this flag. 0x20 Forces this unit to be the console (unless there is another higher priority console), regardless of the option discussed below. This flag replaces the COMCONSOLE option in FreeBSD versions 2.X. The flag 0x20 must be used together with the flag. 0x40 Reserves this unit (in conjunction with 0x10) and makes the unit unavailable for normal access. You should not set this flag to the serial port unit which you want to use as the serial console. The only use of this flag is to designate the unit for kernel remote debugging. See The Developer's Handbook for more information on remote debugging. In FreeBSD 4.0-CURRENT or later the semantics of the flag 0x40 are slightly different and there is another flag to specify a serial port for remote debugging. Example: device sio0 at isa? port "IO_COM1" tty flags 0x10 irq 4 See the &man.sio.4; manual page for more details. If the flags were not set, you need to run UserConfig (on a different console) or recompile the kernel. Create boot.config in the root directory of the a partition on the boot drive. This file will instruct the boot block code how you would like to boot the system. In order to activate the serial console, you need one or more of the following options—if you want multiple options, include them all on the same line: Toggles internal and serial consoles. You can use this to switch console devices. For instance, if you boot from the internal (video) console, you can use to direct the boot loader and the kernel to use the serial port as its console device. Alternatively, if you boot from the serial port, you can use the to tell the boot loader and the kernel to use the video display as the console instead. Toggles single and dual console configurations. In the single configuration the console will be either the internal console (video display) or the serial port, depending on the state of the option above. In the dual console configuration, both the video display and the serial port will become the console at the same time, regardless of the state of the option. However, that the dual console configuration takes effect only during the boot block is running. Once the boot loader gets control, the console specified by the option becomes the only console. Makes the boot block probe the keyboard. If no keyboard is found, the and options are automatically set. Due to space constraints in the current version of the boot blocks, the option is capable of detecting extended keyboards only. Keyboards with less than 101 keys (and without F11 and F12 keys) may not be detected. Keyboards on some laptop computers may not be properly found because of this limitation. If this is to be the case with your system, you have to abandon using the option. Unfortunately there is no workaround for this problem. Use either the option to select the console automatically, or the option to activate the serial console. You may include other options described in &man.boot.8; as well. The options, except for , will be passed to the boot loader (/boot/loader). The boot loader will determine which of the internal video or the serial port should become the console by examining the state of the option alone. This means that if you specify the option but not the option in /boot.config, you can use the serial port as the console only during the boot block; the boot loader will use the internal video display as the console. Boot the machine. When you start your FreeBSD box, the boot blocks will echo the contents of /boot.config to the console. For example; /boot.config: -P Keyboard: no The second line appears only if you put in /boot.config and indicates presence/absence of the keyboard. These messages go to either serial or internal console, or both, depending on the option in /boot.config. Options Message goes to none internal console serial console serial and internal consoles serial and internal consoles , keyboard present internal console , keyboard absent serial console After the above messages, there will be a small pause before the boot blocks continue loading the boot loader and before any further messages printed to the console. Under normal circumstances, you do not need to interrupt the boot blocks, but you may want to do so in order to make sure things are set up correctly. Hit any key, other than Enter, at the console to interrupt the boot process. The boot blocks will then prompt you for further action. You should now see something like: >> FreeBSD/i386 BOOT Default: 0:wd(0,a)/boot/loader boot: Verify the above message appears on either the serial or internal console or both, according to the options you put in /boot.config. If the message appears in the correct console, hit Enter to continue the boot process. If you want the serial console but you do not see the prompt on the serial terminal, something is wrong with your settings. In the meantime, you enter and hit Enter/Return (if possible) to tell the boot block (and then the boot loader and the kernel) to choose the serial port for the console. Once the system is up, go back and check what went wrong. After the boot loader is loaded and you are in the third stage of the boot process you can still switch between the internal console and the serial console by setting appropriate environment variables in the boot loader. See . Summary Here is the summary of various settings discussed in this section and the console eventually selected. Case 1: You set the flags to 0x10 for sio0 device sio0 at isa? port "IO_COM1" tty flags 0x10 irq 4 Options in /boot.config Console during boot blocks Console during boot loader Console in kernel nothing internal internal internal serial serial serial serial and internal internal internal serial and internal serial serial , keyboard present internal internal internal , keyboard absent serial and internal serial serial Case 2: You set the flags to 0x30 for sio0 device sio0 at isa? port "IO_COM1" tty flags 0x30 irq 4 Options in /boot.config Console during boot blocks Console during boot loader Console in kernel nothing internal internal serial serial serial serial serial and internal internal serial serial and internal serial serial , keyboard present internal internal serial , keyboard absent serial and internal serial serial Tips for the Serial Console Setting A Faster Serial Port Speed By default the serial port settings are set to 9600 baud, 8 bits, no parity, 1 stop bit. If you wish to change the speed, you need to recompile at least the boot blocks. Add the following line to /etc/make.conf and compile new boot blocks: BOOT_COMCONSOLE_SPEED=19200 If the serial console is configured in some other way than by booting with , or if the serial console used by the kernel is different from the one used by the boot blocks, then you must also add the following option to the kernel configuration file and compile a new kernel: options CONSPEED=19200 Using Serial Port Other Than <devicename>sio0</devicename> For The Console Using a port other than sio0 as the console requires some recompiling. If you want to use another serial port for whatever reasons, recompile the boot blocks, the boot loader and the kernel as follows. Get the kernel source. Edit /etc/make.conf and set BOOT_COMCONSOLE_PORT to the address of the port you want to use (0x3F8, 0x2F8, 0x3E8 or 0x2E8). Only sio0 through sio3 (COM1: through COM4:) can be used; multiport serial cards will not work. No interrupt setting is needed. Create a custom kernel configuration file and add appropriate flags for the serial port you want to use. For example, if you want to make sio1 (COM2:) the console: device sio1 at isa? port "IO_COM2" tty flags 0x10 irq 3 or device sio1 at isa? port "IO_COM2" tty flags 0x30 irq 3 The console flags for the other serial ports should not be set. Recompile and install the boot blocks: &prompt.root; cd /sys/boot/i386/boot2 &prompt.root; make &prompt.root; make install Recompile and install the boot loader: &prompt.root; cd /sys/boot/i386/loader &prompt.root; make &prompt.root; make install Rebuild and install the kernel. Write the boot blocks to the boot disk with &man.disklabel.8; and boot from the new kernel. Entering the DDB Debugger from the Serial Line If you wish to drop into the kernel debugger from the serial console (useful for remote diagnostics, but also dangerous if you generate a spurious BREAK on the serial port!) then you should compile your kernel with the following options: options BREAK_TO_DEBUGGER options DDB Getting a Login Prompt on the Serial Console While this is not required, you may wish to get a login prompt over the serial line, now that you can see boot messages and can enter the kernel debugging session through the serial console. Here is how to do it. Open the file /etc/ttys with an editor and locate the lines: ttyd0 "/usr/libexec/getty std.9600" unknown off secure ttyd1 "/usr/libexec/getty std.9600" unknown off secure ttyd2 "/usr/libexec/getty std.9600" unknown off secure ttyd3 "/usr/libexec/getty std.9600" unknown off secure ttyd0 through ttyd3 corresponds to COM1 through COM4. Change off to on for the desired port. If you have changed the speed of the serial port, you need to change std.9600 to match the current setting, e.g. std.19200. You may also want to change the terminal type from unknown to the actual type of your serial terminal. After editing the file, you must kill -HUP 1 to make this change take effect. Changing Console from the Boot Loader Previous sections described how to set up the serial console by tweaking the boot block. This section shows that you can specify the console by entering some commands and environment variables in the boot loader. As the boot loader is invoked as the third stage of the boot process, after the boot block, the settings in the boot loader will override the settings in the boot block. Setting Up the Serial Console You can easily specify the boot loader and the kernel to use the serial console by writing just one line in /boot/loader.rc: set console=comconsole This will take effect regardless of the settings in the boot block discussed in the previous section. You had better put the above line as the first line of /boot/loader.rc so as to see boot messages on the serial console as early as possible. Likewise, you can specify the internal console as: set console=vidconsole If you do not set the boot loader environment variable console, the boot loader, and subsequently the kernel, will use whichever console indicated by the option in the boot block. In versions 3.2 or later, you may specify the console in /boot/loader.conf.local or /boot/loader.conf, rather than in /boot/loader.rc. In this method your /boot/loader.rc should look like: include /boot/loader.4th start Then, create /boot/loader.conf.local and put the following line there. console=comconsole or console=vidconsole See &man.loader.conf.5; for more information. At the moment, the boot loader has no option equivalent to the option in the boot block, and there is no provision to automatically select the internal console and the serial console based on the presence of the keyboard. Using Serial Port Other than <devicename>sio0</devicename> for the Console You need to recompile the boot loader to use a serial port other than sio0 for the serial console. Follow the procedure described in . Caveats The idea here is to allow people to set up dedicated servers that require no graphics hardware or attached keyboards. Unfortunately, while most systems will let you boot without a keyboard, there are quite a few that will not let you boot without a graphics adapter. Machines with AMI BIOSes can be configured to boot with no graphics adapter installed simply by changing the `graphics adapter' setting in the CMOS configuration to `Not installed.' However, many machines do not support this option and will refuse to boot if you have no display hardware in the system. With these machines, you'll have to leave some kind of graphics card plugged in, (even if it's just a junky mono board) although you will not have to attach a monitor into it. You might also try installing an AMI BIOS. diff --git a/en_US.ISO8859-1/books/handbook/sound/chapter.sgml b/en_US.ISO8859-1/books/handbook/sound/chapter.sgml index e242a377f7..1675e6e19e 100644 --- a/en_US.ISO8859-1/books/handbook/sound/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/sound/chapter.sgml @@ -1,368 +1,368 @@ Moses Moore - Contributed + Contributed by Sound Synopsis FreeBSD supports a wide variety of sound cards, allowing you to enjoy high fidelity output from your computer. This includes the ability to record and playback audio in the MPEG Audio Layer 3 (MP3), WAV, and Ogg Vorbis formats as well as many other formats. The FreeBSD Ports Collection also contains applications allowing you to edit your recorded audio, add sound effects, and control attached MIDI devices. After reading this chapter you will know: How to locate your sound card. How to configure your system so that your sound card is recognized. Methods to test that your card is working using sample applications. How to troubleshoot your sound setup. Before reading this chapter you should: Know how to configure and install a new kernel () Locating the Correct Device PCI ISA sound cards Before you begin, you should know the model of the card you have, the chip it uses, and whether it is a PCI or ISA card. FreeBSD supports a wide variety of both PCI and ISA cards. If you do not see your card in the following list, check the &man.pcm.4; manual page. This is not a complete list; however, it does list some of the most common cards. Crystal 4237, 4236, 4232, 4231 Yamaha OPL-SAx OPTi931 Ensoniq AudioPCI 1370/1371 ESS Solo-1/1E NeoMagic 256AV/ZX Sound Blaster Pro, 16, 32, AWE64, AWE128, Live Creative ViBRA16 Advanced Asound 100, 110, and Logic ALS120 ES 1868, 1869, 1879, 1888 Gravis UltraSound Aureal Vortex 1 or 2 kernel configuration The driver you use in your kernel depends on the kind of card you have. The sections below provide more information and what you will need to add to your kernel configuration. Creative, Advance, and ESS Sound Cards If you have one of the above cards, you will need to add device pcm to your kernel. If you have a PnP ISA card, you will also need to add device sbc to your kernel. For a non-PnP ISA card, add device pcm and device sbc0 at isa? port0x220 irq 5 drq 1 flags 0x15 to your kernel. Those are the default settings. You may need to change the IRQ, etc. See the &man.sbc.4; man page for more information. The Sound Blaster Live is not supported under FreeBSD 4.0 without a patch, which this document will not cover. It is recommended that you update to the latest -STABLE before trying to use this card. Gravis UltraSound Cards For a PnP ISA card, you will need to add device pcm and device gusc to your kernel. If you have a non-PnP ISA card, you will need to add device pcm and device gus0 at isa? port 0x220 irq 5 drq 1 flags 0x13 to your kernel. You may need to change the IRQ, etc. See the &man.gusc.4; man page for more information. Crystal Sound Cards For Crystal cards, you will need both device pcm and device csa in your kernel. Generic Support For PnP ISA or PCI cards, you will need to add device pcm to your kernel configuration. If you have a non-PnP ISA sound card that does not have a bridge driver, you will need to add device pcm0 at isa? irq 10 drq 1 flags 0x0 to your kernel configuration. You may need to change the IRQ, etc., to match your hardware configuration. Recompiling the Kernel After adding the driver(s) you need to your kernel configuration, you will need to recompile your kernel. Please see of the handbook for more information. Creating and Testing the Device Nodes device nodes After you reboot, log in and run cat /dev/sndstat. You should see output similar to the following: FreeBSD Audio Driver (newpcm) Sep 21 2000 18:29:53 Installed devices: pcm0: <Aureal Vortex 8830> at memory 0xfeb40000 irq 5 (4p/1r +channels duplex) If you see an error message, something went wrong earlier. If that happens, go through your kernel configuration file again and make sure you chose the correct device. If it reported no errors and returned pcm0, su to root and do the following: &prompt.root; cd /dev &prompt.root; sh MAKEDEV snd0 If it reported no errors and returned pcm1, su to root and do the following: &prompt.root; cd /dev &prompt.root; sh MAKEDEV snd1 Please note that either of the above commands will not create a /dev/snd device! Instead it creates a group of device nodes including: Device Description /dev/audio SPARC-compatible audio device /dev/dsp Digitized voice device /dev/dspW Like /dev/dsp, but 16 bits per sample /dev/midi Raw midi access device /dev/mixer Control port mixer device /dev/music Level 2 sequencer interface /dev/sequencer Sequencer device /dev/pss Programmable device interface If all goes well, you should now have a functioning sound card. If you do not, see the next section. Common Problems device node I get an unsupported subdevice XX error! One or more of the device nodes wasn't created correctly. Repeat the steps above. I/O port I get a sb_dspwr(XX) timed out error! The I/O port is not set correctly. IRQ I get a bad irq XX error! The IRQ is set incorrectly. Make sure that the set IRQ and the sound IRQ are the same. I get a xxx: gus pcm not attached, out of memory error. What causes that? If this happens, it is because there is not enough available memory to use the device. diff --git a/en_US.ISO8859-1/books/handbook/users/chapter.sgml b/en_US.ISO8859-1/books/handbook/users/chapter.sgml index e42d02fed2..4387a025f3 100644 --- a/en_US.ISO8859-1/books/handbook/users/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/users/chapter.sgml @@ -1,1027 +1,1027 @@ Neil Blakey-Milner - Contributed + Contributed by Users and Basic Account Management Synopsis FreeBSD allows multiple users to use the computer at the same time. Obviously, only one of those users can be sat in front of the screen and keyboard at any one time, but any number of users can log in through the network to get their work done. To use the system every user must have an account. After reading this chapter you will know: The differences between the various user accounts on a FreeBSD system How to add user accounts How to remove user accounts How to change account details, such as the user's full name, or preferred shell How to set limits on a per-account basis, to control the resources such as memory and CPU time that accounts and groups of accounts are allowed to access How to use groups to make account management easier Before reading this chapter you should: Read Introduction All access to the system is achieved via accounts, and all processes are run by users, so user and account management are of integral importance on FreeBSD systems. Every account on a FreeBSD system has certain information associated with it to identify the account. User name The user name as it would be typed at the login: prompt. User names must be unique across the computer; you may not have two users with the same user name. There are a number of rules for creating valid user names, documented in &man.passwd.5;; you would typically use user names that consist of eight or fewer all lower case characters. Password Each account has a password associated with it. The password may be blank, in which case no password will be required to access the system. This is normally a very bad idea; every account should have a password. User ID (UID) The UID is a number from 0 to 65536 used to uniquely identify the user to the system. Internally FreeBSD uses the UID to identify users—any FreeBSD commands that allow you to specify a user name will convert it to the UID before working with it. This means that you can have several accounts with different user names but the same UID. As far as FreeBSD is concerned these accounts are one user. It is unlikely you will ever need to do this. Group ID (GID) The GID is a number from 0 to 65536 used to uniquely identify the primary group that the user belongs to. Groups are a mechanism for controlling access to resources based on a user's GID rather than their UID. This can significantly reduce the size of some configuration files. A user may also be in more than one group. Login class Login classes are an extension to the group mechanism that provide additional flexibility when tailoring the system to different users. Password change time By default FreeBSD does not force users to change their passwords periodically. You can enforce this on a per-user basis, forcing some or all of your users to change their passwords after a certain amount of time has elapsed. Account expiry time By default FreeBSD does not expire accounts. If you are creating accounts that you know have a limited lifespan, for example, in a school where you have accounts for the students, then you can specify when the account expires. After the expiry time has elapsed the account can not be used to log in to the system, although the account's directories and files will remain. User's full name The user name uniquely identifies the account to FreeBSD, but does not necessarily reflect the user's real name. This information can be associated with the account. Home directory The home directory is the full path to a directory on the system in which the user will start when logging on to the system. A common convention is to put all user home directories under /home/username. The user would store their personal files in their home directory, and any directories they may create in there. User shell The shell provides the default environment users use to interact with the system. There are many different kinds of shells, and experienced users will have their own preferences, which can be reflected in their account settings. There are three main types of accounts; the Superuser, system users, and user accounts. The Superuser account, usually called root, is used to manage the system with no limitations on privileges. System users run services. Finally, user accounts are used by real people, who log on, read mail, and so forth. The Superuser Account accounts superuser (root) The superuser account, usually called root, comes preconfigured to facilitate system administration, and should not be used for day-to-day tasks like sending and receiving mail, general exploration of the system, or programming. This is because the superuser, unlike normal user accounts, can operate without limits, and misuse of the superuser account may result in spectacular disasters. User accounts are unable to destroy the system by mistake, so it is generally best to use normal user accounts whenever possible, unless you especially need the extra privilege. You should always double and triple-check commands you issue as the superuser, since an extra space or missing character can mean irreparable data loss. So, the first thing you should do after reading this chapter, is to create an unprivileged user account for yourself for general usage, if you haven't already. This applies equally whether you're running a multi-user or single-user machine. Later in this chapter, we discuss how to create additional accounts, and how to change between the normal user and superuser. System Accounts accounts system System users are those used to run services such as DNS, mail, web servers, and so forth. The reason for this is security; if all services ran as the superuser, they could act without restriction. accounts daemon accounts operator Examples of system users are daemon, operator, bind (for the Domain Name Service), and news. Often sysadmins create httpd to run web servers they install. accounts nobody nobody is the generic unprivileged system user. However, it's important to keep in mind that the more services that use nobody, the more files and processes that user will become associated with, and hence the more privileged that user becomes. User Accounts accounts user User accounts are the primary means of access for real people to the system, and these accounts insulate the user and the environment, preventing the users from damaging the system or other users, and allowing users to customize their environment without affecting others. Every person accessing your system should have a unique user account. This allows you to find out who is doing what, prevent people from clobbering each others' settings or reading each others' mail, and so forth. Each user can set up their own environment to accommodate their use of the system, by using alternate shells, editors, key bindings, and language. Modifying Accounts accounts modifying pw is a powerful and flexible tool to modify all aspects of user accounts. For most tasks however, adduser and rmuser are recommended to add and remove accounts respectively. chpass allows both the system administrator and normal users to adjust passwords, shells, and personal information. If you are only interested in changing a password then the passwd command is usually quicker. adduser accounts adding adduser /usr/share/skel skeleton directory adduser is a simple program for adding new users. It creates entries in the system passwd and group files. It will also create a home directory for the new user, copy in the default configuration files ("dotfiles") from /usr/share/skel, and can optionally mail the new user a welcome message. To create the initial configuration file, use adduser -s -config_create. The makes adduser default to quiet. We use later when we want to change defaults. Next, we configure adduser defaults, and create our first user account, since using root for normal usage is evil and nasty. Configuring adduser &prompt.root; adduser -v Use option ``-silent'' if you don't want to see all warnings and questions. Check /etc/shells Check /etc/master.passwd Check /etc/group Enter your default shell: csh date no sh tcsh zsh [sh]: zsh Your default shell is: zsh -> /usr/local/bin/zsh Enter your default HOME partition: [/home]: Copy dotfiles from: /usr/share/skel no [/usr/share/skel]: Send message from file: /etc/adduser.message no [/etc/adduser.message]: no Do not send message Use passwords (y/n) [y]: y Write your changes to /etc/adduser.conf? (y/n) [n]: y Ok, let's go. Don't worry about mistakes. I will give you the chance later to correct any input. Enter username [a-z0-9_-]: jru Enter full name []: J. Random User Enter shell csh date no sh tcsh zsh [zsh]: Enter home directory (full path) [/home/jru]: Uid [1001]: Enter login class: default []: Login group jru [jru]: Login group is ``jru''. Invite jru into other groups: guest no [no]: wheel Enter password []: Enter password again []: Name: jru Password: **** Fullname: J. Random User Uid: 1001 Gid: 1001 (jru) Class: Groups: jru wheel HOME: /home/jru Shell: /usr/local/bin/zsh OK? (y/n) [y]: y Added user ``jru'' Copy files from /usr/share/skel to /home/jru Add another user? (y/n) [y]: n Goodbye! &prompt.root; In summary, we changed the default shell to zsh (an additional shell found in packages), and turned off the sending of a welcome mail to added users. We then saved the configuration, and then created an account for jru, and we made sure jru is in wheel group (which we'll see is important later). The password you type in isn't echoed, nor are asterisks displayed. Make sure you don't mistype the password twice. Just use adduser without arguments from now on, and you won't have to go through changing the defaults. If the program asks you to change the defaults, exit the program, and try the option. <application>rmuser</application> rmuser accounts removing You can use rmuser to completely remove a user from the system. rmuser performs the following steps: Removes the user's &man.crontab.1; entry (if any). Removes any &man.at.1; jobs belonging to the user. Kills all processes owned by the user. Removes the user from the system's local password file. Removes the user's home directory (if it is owned by the user). Removes the incoming mail files belonging to the user from /var/mail. Removes all files owned by the user from temporary file storage areas such as /tmp. Finally, removes the username from all groups to which it belongs in /etc/group. If a group becomes empty and the group name is the same as the username, the group is removed; this complements the per-user unique groups created by &man.adduser.8;. rmuser can't be used to remove superuser accounts, since that is almost always an indication of massive destruction. By default, an interactive mode is used, which attempts to make sure you know what you're doing. rmuser interactive account removal &prompt.root; rmuser jru Matching password entry: jru:*:1001:1001::0:0:J. Random User:/home/jru:/usr/local/bin/tcsh Is this the entry you wish to remove? y Remove user's home directory (/home/jru)? y Updating password file, updating databases, done. Updating group file: trusted (removing group jru -- personal group is empty) done. Removing user's incoming mail file /var/mail/jru: done. Removing files belonging to jru from /tmp: done. Removing files belonging to jru from /var/tmp: done. Removing files belonging to jru from /var/tmp/vi.recover: done. &prompt.root; <application>pw</application> pw pw is a command line utility to create, remove, modify, and display users and groups, and functions as an editor of the system user and group files. This section describes its use for users. The Groups section below describes its use for groups. It is designed to be useful both as a directly executed command and for use from shell scripts. For detailed information, please see &man.pw.8;. <application>chpass</application> chpass chpass changes user database information such as passwords, shells, and personal information. Only system administrators, as the superuser, may change other users' information and passwords with chpass. When passed no options, aside from an optional username, chpass displays an editor containing user information. When the user exists from the editor, the user database is updated with the new information. Interactive chpass by Superuser #Changing user database information for jru. Login: jru Password: * Uid [#]: 1000 Gid [# or name]: 1000 Change [month day year]: Expire [month day year]: Class: Home directory: /home/jru Shell: /usr/local/bin/tcsh Full Name: J. Random User Office Location: Office Phone: Home Phone: Other information: The normal user can change only a small subsection of this information, and only for themselves. Interactive chpass by Normal User #Changing user database information for jru. Shell: /usr/local/bin/tcsh Full Name: J. Random User Office Location: Office Phone: Home Phone: Other information: chfn and chsh are just links to chpass, as are ypchpass, ypchfn, and ypchsh. NIS support is automatic, so specifying the yp before the command is not necessary. passwd passwd accounts changing password passwd is the usual way to change your own password as a user, or another user's password as the superuser. Users must type in their original password before changing their password, to prevent an unauthorized person from changing their password when the user is away from their console. Changing your password &prompt.user; passwd Changing local password for jru. Old password: New password: Retype new password: passwd: updating the database... passwd: done Changing another user's password as the superuser &prompt.root; passwd jru Changing local password for jru. New password: Retype new password: passwd: updating the database... passwd: done yppasswd is just a link to passwd. NIS support is automatic, so specifying the yp before the command is not necessary. Limiting Users limiting users accounts limiting If you run a multi-user system, chances are that you do not trust all of your users not to damage your system. FreeBSD provides a number of ways a system administrator can limit the amount of system resources an individual user can use. These limits are generally divided into two sections: disk quotas, and other resource limits. quotas limiting users quotas disk quotas Disk quotas are a way for the system administrator to tell the filesystem the amount of disk space a user may use; moreover, they provide a way to quickly check on the disk usage of a user without having to calculate it every time. Quotas are discussed in . The other resource limits include ways to limit the amount of CPU, memory, and other resources a user may consume. These are defined using login classes and are discussed here. /etc/login.conf Login classes are defined in /etc/login.conf. The precise semantics are beyond the scope of this section, but are described in detail in the &man.login.conf.5; manual page. It is sufficient to say that each user is assigned to a login class (default by default), and that each login class has a set of login capabilities associated with it. A login capability is a name=value pair, where name is a well-known identifier and value is an arbitrary string processed accordingly depending on the name. Setting up login classes and capabilities is rather straight-forward, and is also described in &man.login.conf.5;. Resource limits are different from plain vanilla login capabilities in two ways. First, for every limit, there is a soft (current) and hard limit. A soft limit may be adjusted by the user or application, but may be no higher than the hard limit. The latter may be lowered by the user, but never raised. Second, most resource limits apply per process to a specific user, not the user as a whole. Note, however, that these differences are mandated by the specific handling of the limits, not by the implementation of the login capability framework (i.e., they are not really a special case of login capabilities). And so, without further ado, below are the most commonly used resource limits (the rest, along with all the other login capabilities, may be found in &man.login.conf.5;). coredumpsize coredumpsize limiting users coredumpsize The limit on the size of a core file generated by a program is, for obvious reasons, subordinate to other limits on disk usage (e.g., filesize, or disk quotas). Nevertheless, it is often used as a less-severe method of controlling disk space consumption: since users do not generate core files themselves, and often do not delete them, setting this may save them from running out of disk space should a large program (e.g., emacs) crash. cputime cputime limiting users cputime This is the maximum amount of CPU time a user's process may consume. Offending processes will be killed by the kernel. This is a limit on CPU time consumed, not percentage of the CPU as displayed in some fields by &man.top.1; and &man.ps.1;. A limit on the latter is, at the time of this writing, not possible, and would be rather useless: a compiler—probably a legitimate task—can easily use almost 100% of a CPU for some time. filesize filesize limiting users filesize This is the maximum size of a file the user may possess. Unlike disk quotas, this limit is enforced on individual files, not the set of all files a user owns. maxproc maxproc limiting users maxproc This is the maximum number of processes a user may be running. This includes foreground and background processes alike. For obvious reasons, this may not be larger than the system limit specified by the kern.maxproc sysctl. Also note that setting this too small may hinder a user's productivity: it is often useful to be logged in multiple times or execute pipelines. Some tasks, such as compiling a large program, also spawn multiple processes (e.g., &man.make.1;, &man.cc.1;, and other intermediate preprocessors). memorylocked memorylocked limiting users memorylocked This is the maximum amount a memory a process may have requested to be locked into main memory (e.g., see &man.mlock.2;). Some system-critical programs, such as &man.amd.8;, do this so that their getting swapped out does not contribute to a system's thrashing in time of trouble. memoryuse memoryuse limiting users memoryuse This is the maximum amount of memory a process may consume at any given time. It includes both core memory and swap usage. This is not a catch-all limit for restricting memory consumption, but it is a good start. openfiles openfiles limiting users openfiles This is the maximum amount of files a process may have open. In FreeBSD, files are also used to represent sockets and IPC channels; thus, be careful not to set this too low. The system-wide limit for this is defined by the kern.maxfiles sysctl. sbsize sbsize limiting users sbsize This is the limit on the amount of network memory, and thus mbufs, a user may consume. This originated as a response to an old DoS attack by creating a lot of sockets, but can be generally used to limit network communications. stacksize stacksize limiting users stacksize This is the maximum size a process' stack may grow to. This alone is not sufficient to limit the amount of memory a program may use; consequently, it should be used in conjunction with other limits. There are a few other things to remember when setting resource limits. Following are some general tips, suggestions, and miscellaneous comments. Processes started at system startup by /etc/rc are assigned to the daemon login class. Although the /etc/login.conf that comes with the system is a good source of reasonable values for most limits, only you, the administrator, can know what is appropriate for your system. Setting a limit too high may open your system up to abuse, while setting it too low may put a strain on productivity. Users of the X Window System (X11) should probably be granted more resources than other users. X11 by itself takes a lot of resources, but it also encourages users to run more programs simultaneously. Remember that many limits apply to individual processes, not the user as a whole. For example, setting openfiles to 50 means that each process the user runs may open up to 50 files. Thus, the gross amount of files a user may open is the value of openfiles multiplied by the value of maxproc. This also applies to memory consumption. For further information on resource limits and login classes and capabilities in general, please consult the relevant manual pages: &man.cap.mkdb.1;, &man.getrlimit.2;, &man.login.conf.5;. Personalizing Users Localization is an environment set up by the system administrator or user to accommodate different languages, character sets, date and time standards, and so on. This is discussed in the localization chapter. Groups groups /etc/groups accounts groups A group is simply a list of users. Groups are identified by their group name and gid (group ID). In FreeBSD (and most other Unix systems), the two factors the kernel uses to decide whether a process is allowed to do something is its user ID and list of groups it belongs to. Unlike a user ID, a process has a list of groups associated with it. You may hear some things refer to the "group ID" of a user or process; most of the time, this just means the first group in the list. The group name to group ID map is in /etc/group. This is a plain text file with four colon-delimited fields. The first field is the group name, the second is the encrypted password, the third the group ID, and the fourth the comma-delimited list of members. It can safely be edited by hand (assuming, of course, that you don't make any syntax errors!). For a more complete description of the syntax, see the &man.group.5; manual page. If you don't want to edit /etc/group manually, you can use the &man.pw.8; command to add and edit groups. For example, to add a group called teamtwo and then confirm that it exists you can use: Adding a group using &man.pw.8; &prompt.root; pw groupadd teamtwo &prompt.root; pw groupshow teamtwo teamtwo:*:1100: The number 1100 above is the group ID of the group teamtwo. Right now, teamtwo has no members, and is thus rather useless. Let's change that by inviting jru to the teamtwo group. Adding somebody to a group using &man.pw.8; &prompt.root; pw groupmod teamtwo jru &prompt.root; pw groupshow teamtwo teamtwo:*:1100:jru The argument to the option is a comma-delimited list of users who are members of the group. From the preceding sections, we know that the password file also contains a group for each user. The latter (the user) is automatically added to the group list by the system; the user will not show up as a member when using the groupshow command to &man.pw.8;, but will show up when the information is queried via &man.id.1; or similar tool. In other words, &man.pw.8; only manipulates the /etc/group file; it will never attempt to read additionally data from /etc/passwd. Using &man.id.1; to determine group membership &prompt.user; id jru uid=1001(jru) gid=1001(jru) groups=1001(jru), 1100(teamtwo) As you can see, jru is a member of the groups jru and teamtwo. For more information about &man.pw.8;, see its manual page, and for more information on the format of /etc/group, consult the &man.group.5; manual page. diff --git a/en_US.ISO8859-1/books/handbook/x11/chapter.sgml b/en_US.ISO8859-1/books/handbook/x11/chapter.sgml index 069f1a356f..1372dd97a9 100644 --- a/en_US.ISO8859-1/books/handbook/x11/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/x11/chapter.sgml @@ -1,1139 +1,1149 @@ The X Window System Synopsis FreeBSD uses XFree86 to provide users with a powerful graphical user interface. XFree86 is a open-source implementation of the X Window System. The following chapter will cover installation and configuration of XFree86 on your FreeBSD system. For more information on X11 and to see whether your video card is supported, check the XFree86 web site. After reading this chapter you will know: How to install and configure XFree86. How to install and use different window managers How to use TrueType fonts in XFree86 How to setup your system for graphical logins (XDM). Before reading this chapter you should: Know how to install additional third-party software () Installing XFree86 XFree86 is available as a port and as a package, making it easy to install. You can also download the binaries directly from the XFree86 organization and install them by hand, following the instructions provided by the XFree86 group. Your only decision is which version of XFree86 to run. XFree86 3.X is the maintenance branch of XFree86 development. It's very stable, and it supports a huge number of graphics cards. However, no new development is happening there. XFree86 4.X is a redesign of XFree86. As well as introducing many new features (including much better support for fonts and anti-aliasing), XFree86 4.X supports slightly fewer graphics cards. If your card is supported we recommend you run 4.X. If it is not then run 3.X. The rest of this chapter will explain how to configure XFree86, and suggest various programs for X that you might want to try. Christopher Shumway XFree86 Configuration Introduction This chapter will introduce the steps necessary to install and configure the XFree86 X Windows System under FreeBSD. Once the server is installed and configured properly. The user can read to setup their desktop environment. XFree86 4.X XFree86 Before You Start Before the user is to start configuration of XFree86-4, the the following information will need to be known about the target system: Monitor specifications Video Adapter chipset Video Adapter memory horizontal scan rate vertical scan rate The specifications for the target system's monitor are used by XFree86 to determine the resolution and refresh rate to run at. These specifications can usually be obtained from the documentation that came with the target system's monitor or from the manufacturer's website. There are two ranges of numbers that are needed, the horizontal scan rate and the vertical synchronization rate. The video adapter's chipset defines what driver module XFree86 uses to talk to the graphics hardware. With most chipsets, this can be automatically determined, but it is still useful to know in case the automatic detection doesn't work correctly. Video memory on the graphic adapter determines the resolution and color depth the target system can run at. This is important to know so the user knows the limitations of the target system. Installing XFree86 4.X software XFree86 4 can be installed using the FreeBSD ports system or using &man.pkg.add.1;. If the user is building XFree86-4 from source and has USA_RESIDENT set in /etc/make.conf, the user may first have to fetch Wraphelp.c if XDM-AUTHORIZATION-1 support is desired. This file is to be placed in the port's files/ sub-directory before the port is built. Configuring XFree86 4.X Configuration of XFree86 4.X is a several step process. The first step is to build an initial configuration file with the configure option to XFree86. As the super user, simply run: &prompt.root; XFree86 -configure This will generate a skeleton XFree86 configuration file in the current working directory called XF86Config.new. The XFree86 program will attempt to probe the graphics hardware on the system and will write a configuration file to load the proper drivers for the detected hardware on the target system. The next step is to test the currently existing configuration to verify that XFree86 can work with the graphics hardware on the target system. To preform this task, the user needs to run: &prompt.root; XFree86 -xf86config XF86Config.new If the user is presented with a black and grey grid and an X mouse cursor, then the configuration was successful. To exit the test, just press ctrl, alt and backspace simultaneously. XFree86 4 Tuning Next, the user needs to tune the XF86Config.new configuration file to their personal taste. Open up the file in a text editor such as &man.emacs.1; or &man.ee.1;. The first thing the user will want to do is add the frequencies for the target system's monitor. These are usually expressed as a horizontal and vertical synchronization rate. These values are added to the XF86Config.new file under the "Monitor" section as such: Section "Monitor" Identifier "Monitor0" VendorName "Monitor Vendor" ModelName "Monitor Model" Horizsync 30-107 VertRefresh 48-120 EndSection The Horizsync and VertRefresh keywords may not exist in the user's configuration file. If they do not, they need to be added, with the correct horizontal synchronization rate placed after the Horizsync keyword and the vertical synchronization rate after the VertRefresh keyword. In the example above the target monitor's rates where entered. XF86Config While the XF86Config.new configuration file is still open in an editor, next the user needs to select what the default resolution and color depth is desired. This is defined in the Screen section. Section "Screen" Identifier "Screen0" Device "Card0" Monitor "Monitor0" DefaultColorDepth 24 SubSection "Display" Depth 24 Modes "1024x768" EndSubSection EndSection The DefaultColorDepth keyword describes the color depth the user wishes to run at by default. This can be overridden with the -bpp command line switch to XFree86 1. The Modes keyword describes the resolution the user wishes to run at for the given color depth. In the example above, the default color depth is twenty four bits per pixel. At this color depth, the accepted resolution is one thousand twenty four pixels by seven hundred and sixty eight pixels. If a user wants to run at a resolution of one thousand twenty four pixels by seven hundred sixty eight pixels at twenty four bits per pixel, then the user needs to add the DefaultColorDepth keyword with the value of twenty four, and add to the "Display" subsection with the desired Depth the Modes keyword with the resolution the user wishes to run at. Note that only VESA standard modes are supported as defined by the target system's graphics hardware. Finally, the user can write out the configuration file and test it using the test mode given above. If all is well, then the configuration file needs to be installed in a common location where XFree86 1 can source it in the future. This is typically /etc/X11/XF86Config or /usr/X11R6/etc/X11/XF86Config. &prompt.root; cp XF86Config.new /etc/X11/XF86Config Once the configuration file has been placed in a common location, XFree86 can then be used through &man.xdm.1;. In order to use startx 1 the user will have to install the X11/wrapper port. Advanced Configuration Topics Configuration with Intel i810 graphics chipsets Intel i810 graphic chipset Configuration with Intel i810 integrated chipsets requires the agpgart AGP programming interface for XFree86 to be able to drive the card. To enable the agpgart programming interface, the agp.ko kernel loadable module needs to be loaded into the kernel with &man.kldload.8;. This can be done automatically with the &man.loader.8;. Simply add this line to /boot/loader.conf to have the loader load agp.ko at boot time: agp_load="YES" Next, a device node needs to be created for the programming interface. To create the AGP device node, run &man.MAKEDEV.8; in the /dev directory as such: &prompt.root; cd /dev &prompt.root; sh MAKEDEV agpgart This will allow the user to configure the graphics hardware as any other graphics board. Murray Stokely - Section on fonts + Section on fonts by Using Fonts in XFree86 Type1 Fonts The default fonts that ship with XFree86 are less than ideal for typical desktop publishing applications. Large presentation fonts show up jagged and unprofessional looking and small fonts in Netscape are almost completely unintelligible. However, there are several free, high quality Type1 (PostScript) fonts available which can be readily used with XFree86, either version 3.X or version 4.X. For instance, the URW font collection (x11-fonts/urwfonts) includes high quality versions of standard type1 fonts (Times Roman, Helvetica, Palatino and others). The Freefont collection (x11-fonts/freefont) includes many more fonts, but most of them are intended for use in graphics software such as the Gimp, and are not complete enough to serve as screen fonts. In addition, XFree86 can be configured to use TrueType fonts with a minimum of effort: see the section on TrueType fonts later. To install the above Type1 font collections from the ports collection you can run the following commands. &prompt.root; cd /usr/ports/x11-fonts/urwfonts &prompt.root; make install clean And likewise with the freefont or other collections. To tell the X server that these fonts exist, you can add an appropriate line to your XF86Config file (in /etc/ for XFree86 version 3, or in /etc/X11/ for version 4), which reads: FontPath "/usr/X11R6/lib/X11/fonts/URW/" Alternatively, at the command line in your X session you can write: &prompt.user; xset fp+ /usr/X11R6/lib/X11/fonts/URW &prompt.user; xset fp rehash This will work but will be lost when you log out from this session, unless you add it to your startup file (~/.xinitrc for a normal startx session, or ~/.xsession when logging in through a graphical login manager like XDM). A third way is to use the new XftConfig file: see the section on anti-aliasing, later. TrueType Fonts XFree86 4.0 has built in support for rendering TrueType fonts. There are two different modules that can enable this functionality. The "freetype" module is used in this example because it is more consistent with the other font rendering back-ends. To enable the freetype module just add the following line to the module section of your /etc/X11/XF86Config file. Load "freetype" For XFree86 3.3.X you will need to run a separate TrueType font server. Xfstt is commonly used for this purpose. To install x11-servers/Xfstt on your FreeBSD system simply install the port from /usr/ports/x11-servers/Xfstt You should now make a directory for your TrueType fonts (e.g. /usr/X11R6/lib/X11/fonts/TrueType) and copy all of your TrueType fonts into this directory. Keep in mind that you cannot take TrueType fonts directly from a Macintosh; they must be in Unix/DOS/Windows format for use by XFree86. Once you have copied the files into this directory you need to use ttmkfdir to create a fonts.dir file so that the X font renderer knows that you've installed these new files. There is a FreeBSD port for x11-fonts/ttmkfdir in /usr/ports/x11-fonts/ttmkfdir. &prompt.root; cd /usr/X11R6/lib/X11/fonts/TrueType &prompt.root; ttmkfdir > fonts.dir Now you need to add your TrueType directory to your fonts path. This is just the same as described above for Type1 fonts, that is, use &prompt.user; xset fp+ /usr/X11R6/lib/X11/fonts/TrueType &prompt.user; xset fp rehash or add a line to the XF86Config file. That's it. Now Netscape, Gimp, StarOffice, and all of your other X applications should now recognize your installed TrueType fonts. Extremely small fonts (as with text in a high resolution display on a web page) and extremely large fonts (within StarOffice) will look much better now. Anti-Aliasing your fonts Starting with version 4.0.2, XFree86 supports anti-aliased fonts. Currently, most software has not been updated to take advantage of this new functionality. However, Qt (the toolkit for the KDE desktop) does; so if you are running XFree86 4.0.2 (or higher), Qt 2.3 (or higher) and KDE, all your KDE/Qt applications can be made to use anti-aliased fonts. To configure anti-aliasing, you need to create (or edit, if it already exists) the file /usr/X11R6/lib/X11/XftConfig. Several advanced things can be done with this file; this section describes only the simplest possibilities. First, you need to tell the X server about the fonts which you want anti-aliased. To do that, for each font directory you have a line, which looks like this: dir "/usr/X11R6/lib/X11/Type1" And likewise for the other font directories (URW, truetype, etc) containing fonts you'd like anti-aliased. Anti-aliasing makes sense only for scalable fonts (basically, Type1 and TrueType) so don't include bitmap font directories here. The directories which you included here can now be commented out of your XF86Config file. Next, you may not want to anti-alias normal-sized text. (Antialiasing makes borders slightly fuzzy, which makes very small text more readable and removes "staircases" from large text, but can cause eyestrain if applied to normal text.) To exclude point sizes between 9 and 13 from anti-aliasing, include these lines: match any size > 8 any size < 14 edit antialias = false; You may also find that the spacing for some monospaced fonts gets messed up when you turn on anti-aliasing. This seems to be an issue with KDE, in particular. One possible fix for this is to force the spacing for such fonts to be 100: add the following lines: match any family == "fixed" edit family =+ "mono"; match any family == "console" edit family =+ "mono"; (this aliases the other common names for fixed fonts as "mono"), and then add: match any family == "mono" edit spacing = 100; Supposing you want to use the Lucidux fonts whenever monospaced fonts are required (these look nice, and don't seem to suffer from the spacing problem), you could replace that last line with these: match any family == "mono" edit family += "LuciduxMono"; match any family == "Lucidux Mono" edit family += "LuciduxMono"; match any family == "LuciduxMono" edit family =+ "Lucidux Mono"; (the last lines alias different equivalent family names). Finally, you want to allow users to add commands to this file, via their personal .xftconfig files. To do this, add a last line: includeif "~/.xftconfig" That's all; anti-aliasing should be enabled the next time you start the X server. However, note that your programs must know how to take advantage of it. At the present time, the toolkit Qt does, so the entire KDE environment can use anti-aliased fonts (see on KDE for details); there are patches for gtk+ to do the same, so if compiled against such a patched gtk+, the GNOME environment and Mozilla can also use anti-aliased fonts. Anti-aliasing is still new to FreeBSD and XFree86; configuring it should get easier with time, and it will soon be supported by many more applications. Seth Kingsley - Section on XDM + Section on XDM by The X Display Manager Overview The X Display Manager (XDM) is an optional part of the X Window System that is used for login session management. This is useful for several types of situations, including minimal X Terminals (see ), desktops, and large network display servers. Since the X Window System is network and protocol independent, there are a wide variety of possible configurations for running X clients and servers on different machines connected by a network. XDM provides a graphical interface for choosing which display server to connect to, and entering authorization information such as a login and password combination. You may think of XDM as providing the same functionality to the user as the &man.getty.8; utility (see for details). That is, it performs system logins to the display being connected to and then runs a session manager on behalf of the user (usually an X window manager). XDM then waits for this program to exit, signaling that the user is done and should be logged out of the display. At this point, XDM can display the login and display chooser screens for the next user to login. Using XDM The XDM daemon program is located in /usr/X11R6/bin/xdm. You can run this program at any time as root and it will start managing the X display on the local machine. If you want XDM to run in the background every time the machine boots up, a convenient way to do this is by adding an entry to /etc/ttys. For more information about the format and usage of this file, see . There is a line in the default /etc/ttys file for running the XDM daemon on a virtual terminal: ttyv8 "/usr/X11R6/bin/xdm -nodaemon" xterm off secure By default this entry is disabled, and in order to enable it you will need to change field 5 from off to on and then restart &man.init.8; using the directions in . The first field, the name of the terminal this program will manage, is ttyv8. This means that XDM will start running on the 9th virtual terminal. Configuring XDM The XDM configuration directory is located in /usr/X11R6/lib/X11/xdm. In this directory you will see several files used to change the behavior and appearance of XDM. Typically you will find these files: File Description Xaccess Client authorization ruleset. Xresources Default X resource values. Xservers List of remote and local displays to manage. Xsession Default session script for logins. Xsetup_* xdm-config Global configuration for all displays running on this machine. xdm-errors Errors generated by the server program. xdm-pid The process ID of the currently running XDM. Also in this directory are a few scripts and programs used to setup the desktop when XDM is running. In the next few sections I will briefly describe the purpose of each of these files. The exact syntax and usage of all of these files is described in &man.xdm.1; The default configuration is a simple rectangular login window with the hostname of the machine displayed at the top in a large font and Login: and Password: prompts below. This is a good starting point if you are planning to design your own look and feel for the XDM screens. Xaccess The protocol for connecting to XDM controlled displays is called the X Display Manager Connection Protocol (XDMCP). This file is basically just a ruleset for controlling XDMCP connections from remote machines. By default, it allows any client to connect, but you will see this will not matter because the default xdm-config file does not listen for remote connections. Xresources This is an application-defaults file for the display chooser and the login screens. This is where you can customize the appearance of the login program. The format is identical to the app-defaults file described in the XFree86 documentation. Xservers This is a list of the remote displays the chooser should provide as choices. Xsession This is the default session script for XDM to run after a user has logged in. Normally each user will have a customized session script in ~/.xsessionrc that overrides this script. Xsetup_* These files contain scripts that will be run automatically before displaying the chooser or login interfaces. There is a script for each display being used, named Xsetup_followed by the local display number (for instance Xsetup_0). Typically these scripts will run one or two programs in the background such as xconsole. xdm-config This file contains settings in the form of app-defaults that are applicable to every display that this installation manages. xdm-errors This file contains the output of the X servers that XDM is trying to run. If a display that XDM is trying to start hangs for some reason, this is a good place to look for error messages. These messages are also written to the user's ~/.xsession-errors file on a per-session basis Running A Network Display Server In order for other clients to connect to your display server, you will need to edit the access control rules, and enable the connection listener. By default these are set to conservative values, which is a good decision security-wise. To get XDM to listen for connections first comment out a line in the xdm-config file: ! SECURITY: do not listen for XDMCP or Chooser requests ! Comment out this line if you want to manage X terminals with xdm DisplayManager.requestPort: 0 and then restart XDM. Remember that comments in app-defaults files begin with a ! character, not a #. After this, you may need to put more strict access controls in place. Look at the example entries in Xaccess file, and refer to the &man.xdm.1; manual page. Replacements for XDM Several replacements for the default XDM program exist. One of them, KDM (bundled with KDE) is described in a later section. Apart from various visual improvements and cosmetic frills, it can be easily configured to let users choose their window manager of choice at the time they log in. + + + + Valentino + Vaschetto + Contributed by + + + + + Desktop Environments - Written by &a.logo;, June 2001 This section describes the different desktop environments available for X-Windows on FreeBSD. For our purposes a "desktop environment" will mean anything ranging from a simple window manager, to a complete suite of desktop applications such as KDE or GNOME. GNOME About GNOME GNOME is a user-friendly desktop environment that enables users to easily use and configure their computers. GNOME includes a panel (for starting applications and displaying status), a desktop (where data and applications can be placed), a set of standard desktop tools and applications, and a set of conventions that make it easy for applications to cooperate and be consistent with each other. Users of other operating systems or environments should feel right at home using the powerful graphics-driven environment that GNOME provides. Installing GNOME To install GNOME from the network, simply type: &prompt.root; pkg_add -r gnome If you would rather build GNOME from source, then use the ports tree: &prompt.root; cd /usr/ports/x11/gnome &prompt.root; make install clean Once GNOME is installed, we must have the X server start GNOME instead of a default window manager. If you have already customized your .xinitrc file then you should simply replace the line that starts your current window manager with one that starts /usr/X11R6/bin/gnome-wm instead. If you haven't added anything special to your configuration file, then it is enough to simply type: &prompt.root; echo "/usr/X11R6/bin/gnome-wm" > ~/.xinitrc That's it. Type startx and you will be in the GNOME desktop environment. If you're running a display manager like XDM, this will not work. Instead, you should create an executable .xsession file with the same command in it. To do this, edit your file (if you already have one) and replace the existing window manager command with /usr/X11R6/bin/gnome-wm; or else, &prompt.root; echo "#!/bin/sh" > ~/.xsession &prompt.root; echo "/usr/X11R6/bin/gnome-wm" >> ~/.xsession &prompt.root; chmod +x ~/.xsession Another option is to configure your display manager to allow choosing the window manager at login time; the section on KDE2 details explains how to do this for kdm, the display manager of KDE. KDE2 About KDE2 KDE is an easy to use contemporary desktop environment. Some of the things that KDE brings to the user are: A beautiful contemporary desktop A desktop exhibiting complete network transparency An integrated help system allowing for convenient, consistent access to help on the use of the KDE desktop and its applications Consistent look and feel of all KDE applications Standardized menu and toolbars, keybindings, color-schemes, etc. Internationalization: KDE is available in more than 40 languages Centralized consisted dialog driven desktop configuration A great number of useful KDE applications KDE has an office application suite based on KDE's KParts technology consisting of a spread-sheet, a presentation application, an organizer, a news client and more. KDE is also comes with a web browser called Konqeuror, which represents already a solid competitor to other existing web browsers on Unix systems. More information on KDE can be found on the KDE website Installing KDE2 At the time of writing, a package for kde2 doesn't exist yet. No problem! The ports tree hides all the complexity of building a package from source. To install KDE2, do this : &prompt.root; cd /usr/ports/x11/kde2 &prompt.root; make install clean This command will fetch all the necessary files from the Internet, configure and compile KDE2, install the applications, and then clean up after itself. Now you're going to have to tell the X server to launch KDE2 instead of a default window manager. Do this by typing this: &prompt.root; echo "/usr/X11R6/bin/startkde" > ~/.xinitrc Now, whenever you go into X-Windows, KDE2 will be your desktop. (Note: this will not work if you're logging in via a display manager like xdm. In that case you have two options: create an .xsession file as described in the section on GNOME, but with the /usr/X11R6/bin/startkde command instead of the gnome-wm command; or, configure your display manager to allow choosing a desktop at login time. Below it is explained how to do this for kdm, KDE's display manager.) More details on KDE2 Now that KDE2 is installed on your system, you'll find that you can learn a lot from its help pages, or just by pointing and clicking at various menus. Windows or Mac users will feel quite at home. The best reference for KDE is the on-line documentation. KDE comes with its own web browser, Konqueror, dozens of useful applications, and extensive documentation. This section only discusses somewhat technical things which are difficult to learn just by random exploration. The KDE display manager If you're an administrator on a multi-user system, you may like to have a graphical login screen to welcome users. You can use xdm, as described earlier. However, KDE includes an alternative, KDM, which is designed to look more attractive and include more login-time options. In particular, users can easily choose (via a menu) which desktop environment (KDE2, GNOME, or something else) to run after logging on. If you're slightly adventurous and you want this added flexibility and visual appeal, read on. To begin with, run the KDE2 control panel, kcontrol, as root. Note: it is generally considered unsafe to run your entire X environment as root. Instead, run your window manager as a normal user, open a terminal window (such as xterm or KDE's konsole, become root with su (you need to be in the wheel group in /etc/group for this), and then type kcontrol. Click on the icon on the left marked "System", then on "Login manager". On the right you'll see various configurable options, which the KDE manual will explain in greater detail. Click on "sessions" on the right. Depending on what window managers or desktop environments you have currently installed, you can type their names in "New type" and add them. (These are just labels so far, not commands, so you can write KDE and GNOME rather than startkde or gnome-wm.) Include a label failsafe. Play with the other menus as you like (those are mainly cosmetic and self-explanatory). When you're done, click on "Apply" at the bottom, and quit the control center. To make sure kdm understands what your above labels (KDE, GNOME etc) mean, you need to edit some more files: the same ones used by xdm. In your terminal window, as root, edit the file /usr/X11R6/lib/X11/xdm/Xsession. You will come across a section in the middle looking like this (by default): case $# in 1) case $1 in failsafe) exec xterm -geometry 80x24-0-0 ;; esac esac You will need to add a few lines to this section. Assuming the labels you gave earlier were KDE2 and GNOME, the following will do: case $# in 1) case $1 in KDE2) exec /usr/X11R6/bin/startkde ;; GNOME) exec /usr/X11R6/bin/gnome-wm ;; failsafe) exec xterm -geometry 80x24-0-0 ;; esac esac To make sure your KDE choice of a login-time desktop background is also honored, you will need to add the following line to /usr/X11R6/lib/X11/xdm/Xsetup_0: /usr/X11R6/bin/kdmdesktop Now, you need only to make sure kdm is started at the next bootup. To learn how to do this, read the section on xdm, and do the same thing replacing references to the xdm program by kdm. That's it. Your next login screen should have a pretty face and lots of menus. Anti-aliased fonts Tired of blocky staircase edges to your fonts under X11? Tired of unreadable text in web browsers? Well, no more. Starting with version 4.0.2, XFree86 supports anti-aliasing via its "RENDER" extension, and starting with version 2.3, Qt (the toolkit used by KDE) supports this extension. Configuring this is described in on antialiasing X11 fonts. So if you're running up-to-date software, anti-aliasing is possible on your KDE2 desktop. Just go to your KDE2 menu, go to Preferences -> Look and Feel -> Style, and click on the checkbox "Use Anti-Aliasing for Fonts and Icons". That's all. If you're running a Qt application which is not part of KDE, you may need to set the environment variable QT_XFT to true before starting your program. XFCE About XFCE XFCE is based on the gtk+ toolkit used by GNOME, but is much more lightweight and meant for those who want a simple, efficient desktop which is nevertheless easy to use and configure. Visually, it looks very much like CDE, found on commercial Unix systems. Some of XFCE's features are: A simple, easy-to-handle desktop Fully configurable via mouse, with drag and drop, etc Main panel similar to CDE, with menus, applets and app launchers Integrated window manager, file manager, sound manager, GNOME compliance module, and other things Themeable (since it uses gtk+) Fast, light and efficient: ideal for older/slower machines or machines with memory limitations More information on XFCE can be found on the XFCE website. Installing XFCE A binary package for xfce exists (at the time of writing). To install, simply do this: &prompt.root; pkg_add -r xfce Alternatively, you may prefer to build from source. The ports tree comes to the rescue again: &prompt.root; cd /usr/ports/x11-wm/xfce &prompt.root; make install clean All necessary source packages (including dependencies) will be automagically fetched, built and installed, and the build areas cleaned up afterwards. Now you want to tell the X server to launch XFCE the next time you start X. Simply type this: &prompt.root; echo "/usr/X11R6/bin/startxfce" > ~/.xinitrc The next time you start X, XFCE will be your desktop. (Note, as before: if you're logging in via a display manager like xdm, you should either create an .xsession, as described in the section on GNOME, but with the /usr/X11R6/bin/startxfce command; or, configure your display manager to allow choosing a desktop at login time, as explained in the section on kdm.)