diff --git a/en_US.ISO8859-1/books/handbook/disks/chapter.sgml b/en_US.ISO8859-1/books/handbook/disks/chapter.sgml
index 469876183c..5bbd5e82df 100644
--- a/en_US.ISO8859-1/books/handbook/disks/chapter.sgml
+++ b/en_US.ISO8859-1/books/handbook/disks/chapter.sgml
@@ -1,1073 +1,1131 @@
DisksSynopsisThis chapter covers how to use disks, whether physical,
memory, or networked, on FreeBSD.BIOS Drive NumberingBefore you install and configure FreeBSD on your system, there is an
important subject that you should be aware of if, especially if you have
- multiple hard drives.
+ multiple hard drives.
+ DOS
+ Microsoft WindowsIn a PC running DOS or any of the BIOS-dependent operating systems
(WINxxx), the BIOS is able to abstract the normal disk drive order, and
the operating system goes along with the change. This allows the user
to boot from a disk drive other than the so-called primary
master. This is especially convenient for some users who have
found that the simplest and cheapest way to keep a system backup is to
buy an identical second hard drive, and perform routine copies of the
first drive to the second drive using Ghost or XCOPY. Then, if the
first drive fails, or is attacked by a virus, or is scribbled upon by an
operating system defect, he can easily recover by instructing the BIOS
to logically swap the drives. It's like switching the cables on the
drives, but without having to open the case.
+ SCSI
+ BIOSMore expensive systems with SCSI controllers often include BIOS
extensions which allow the SCSI drives to be re-ordered in a similar
fashion for up to seven drives.A user who is accustomed to taking advantage of these features may
become surprised when the results with FreeBSD are not as expected.
FreeBSD does not use the BIOS, and does not know the logical BIOS
drive mapping. This can lead to very perplexing situations,
especially when drives are physically identical in geometry, and have
also been made as data clones of one another.When using FreeBSD, always restore the BIOS to natural drive
numbering before installing FreeBSD, and then leave it that way. If you
need to switch drives around, then do so, but do it the hard way, and
open the case and move the jumpers and cables.An illustration from the files of Bill and Fred's Exceptional
Adventures:Bill breaks-down an older Wintel box to make another FreeBSD box
for Fred. Bill installs a single SCSI drive as SCSI unit zero, and
installs FreeBSD on it.Fred begins using the system, but after several days notices that
the older SCSI drive is reporting numerous soft errors, and reports
this fact to Bill.After several more days, Bill decides it's time to address the
situation, so he grabs an identical SCSI drive from the disk drive
"archive" in the back room. An initial surface scan indicates that
this drive is functioning well, so Bill installs this drive as SCSI
unit four, and makes an image copy from drive zero to drive four. Now
that the new drive is installed and functioning nicely, Bill decides
that it's a good idea to start using it, so he uses features in the
SCSI BIOS to re-order the disk drives so that the system boots from
SCSI unit four. FreeBSD boots and runs just fine.Fred continues his work for several days, and soon Bill and Fred
decide that it's time for a new adventure -- time to upgrade to a
newer version of FreeBSD. Bill removes SCSI unit zero because it was
a bit flaky, and replaces it with another identical disk drive from
the "archive." Bill then installs the new version of FreeBSD onto the
new SCSI unit zero using Fred's magic Internet FTP floppies. The
installation goes well.Fred uses the new version of FreeBSD for a few days, and certifies
that it is good enough for use in the engineering department...it's
time to copy all of his work from the old version. So Fred mounts
SCSI unit four (the latest copy of the older FreeBSD version). Fred
is dismayed to find that none of his precious work is present on SCSI
unit four.Where did the data go?When Bill made an image copy of the original SCSI unit zero onto
SCSI unit four, unit four became the "new clone," When Bill
re-ordered the SCSI BIOS so that he could boot from SCSI unit four, he
was only fooling himself. FreeBSD was still running on SCSI unit zero.
Making this kind of BIOS change will cause some or all of the Boot and
Loader code to be fetched from the selected BIOS drive, but when the
FreeBSD kernel drivers take-over, the BIOS drive numbering will be
ignored, and FreeBSD will transition back to normal drive numbering.
In the illustration at hand, the system continued to operate on the
original SCSI unit zero, and all of Fred's data was there, not on SCSI
unit four. The fact that the system appeared to be running on SCSI
unit four was simply an artifact of human expectations.We are delighted to mention that no data bytes were killed or
harmed in any way by our discovery of this phenomenon. The older SCSI
unit zero was retrieved from the bone pile, and all of Fred's work was
returned to him, (and now Bill knows that he can count as high as
zero).Although SCSI drives were used in this illustration, the concepts
apply equally to IDE drives.Disk Naming
+ IDE
+ SCSI
+ RAID
+ fash memoryPhysical drives come in two main flavors,
IDE, or SCSI; but there
are also drives backed by RAID controllers, flash memory, and so
forth. Since these behave quite differently, they have their
own drivers and devices.
Physical Disk Naming ConventionsDrive typeDrive device nameIDE hard drivesad in 4.0-RELEASE,
wd before 4.0-RELEASE.IDE CDROM drivesacd from 3.1-RELEASE,
wcd before 4.0-RELEASE.SCSI hard drivesda from 3.0-RELEASE,
sd before 3.0-RELEASE.SCSI CDROM drivescdAssorted non-standard CDROM drivesmcd for Mitsumi CD-ROM,
scd for Sony CD-ROM,
matcd for Matsushita/Panasonic CD-ROM
Floppy drivesfdSCSI tape drivessa from 3.0-RELEASE,
st before 3.0-RELEASE.IDE tape drivesast from 4.0-RELEASE,
wst before 4.0-RELEASE.Flash drivesfla for DiskOnChip Flash device
from 3.3-RELEASE.RAID drivesmyxd for Mylex, and
amrd for AMI MegaRAID,
idad for Compaq Smart RAID.
from 4.0-RELEASE. id between
3.2-RELEASE and 4.0-RELEASE.
Slices and Partitions
-
+ slices
+ partitions
+ dangerously dedicatedPhysical disks usually contain
slices, unless they are
dangerously dedicated. Slice numbers follow
the device name, prefixed with an s:
da0s1.Slices, dangerously dedicated physical
drives, and other drives contain
partitions, which represented as
letters from a to h.
b is reserved for swap partitions, and
c is an unused partition the size of the
entire slice or drive. This is explained in .Mounting and Unmounting FilesystemsThe filesystem is best visualized as a tree,
rooted, as it were, at /.
/dev, /usr, and the
other directories in the root directory are branches, which may
have their own branches, such as
/usr/local, and so on.
+ root filesystemThere are various reasons to house some of these
directories on separate filesystems. /var
contains log, spool, and various types of temporary files, and
as such, may get filled up. Filling up the root filesystem
isn't a good idea, so splitting /var from
/ is often a good idea.Another common reason to contain certain directory trees on
other filesystems is if they are to be housed on separate
physical disks, or are separate virtual disks, such as Network File System mounts, or CDROM
drives.The fstab File
+ filesystemsmounted with
+ fstabDuring the boot process,
filesystems listed in /etc/fstab are
automatically mounted (unless they are listed with
).The /etc/fstab file contains a list
of lines of the following format:device/mount-pointfstypeoptionsdumpfreqpassnodevice is a device name (which should
exist), as explained in the Disk
naming conventions above.mount-point is a directory (which
should exist), on which to mount the filesystem.fstype is the filesystem type to pass
to &man.mount.8;. The default FreeBSD filesystem is
ufs.options is either
for read-write filesystems, or for
read-only filesystems, followed by any other options that may
be needed. A common option is for
filesystems not normally mounted during the boot sequence.
Other options in the &man.mount.8; manual page.dumpfreq is the number of days the
filesystem should be dumped, and passno is
the pass number during which the filesystem is mounted during
the boot sequence.The mount Command
+ filesystemsmountingThe &man.mount.8; command is what is ultimately used to
mount filesystems.In its most basic form, you use:&prompt.root; mount devicemountpointThere are plenty of options, as mentioned in the
&man.mount.8; manual page, but the most common are:mount optionsMount all filesystems in
/etc/fstab, as modified by
, if given.Do everything but actually mount the
filesystem.Force the mounting the filesystem.Mount the filesystem read-only.fstypeMount the given filesystem as the given filesystem
type, or mount only filesystems of the given type, if
given the option.ufs is the default filesystem
type.Update mount options on the filesystem.Be verbose.Mount the filesystem read-write.The takes a comma-separated list of
the options, including the following:nodevDo not interpret special devices on the
filesystem. Useful security option.noexecDo not allow execution of binaries on this
filesystem. Useful security option.nosuidDo not interpret setuid or setgid flags on the
filesystem. Useful security option.The umount Command
+ filesystemsunmountingThe umount command takes, as a parameter, one of a
mountpoint, a device name, or the or
option.All forms take to force unmounting,
and for verbosity. and are used to
unmount all mounted filesystems, possibly modified by the
filesystem types listed after .
, however, doesn't attempt to unmount the
root filesystem.Adding Disks
+ disksaddingOriginally contributed by &a.obrien; 26 April
1998
- Lets say we want to add a new SCSI disk to a machine that currently
- only has a single drive. First turn off the computer and install the
- drive in the computer following the instructions of the computer,
- controller, and drive manufacturer. Due the wide variations of procedures
- to do this, the details are beyond the scope of this document.
+ Lets say we want to add a new SCSI disk to a machine that
+ currently only has a single drive. First turn off the computer
+ and install the drive in the computer following the instructions
+ of the computer, controller, and drive manufacturer. Due the
+ wide variations of procedures to do this, the details are beyond
+ the scope of this document.Login as user root. After you've installed the
drive, inspect /var/run/dmesg.boot to ensure the new
disk was found. Continuing with our example, the newly added drive will
be da1 and we want to mount it on
/1 (if you are adding an IDE drive, it will
be wd1 in pre-4.0 systems, or
ad1 in most 4.X systems).
- Because FreeBSD runs on IBM-PC compatible computers, it must take into
- account the PC BIOS partitions. These are different from the traditional
- BSD partitions. A PC disk has up to four BIOS partition entries. If the
- disk is going to be truly dedicated to FreeBSD, you can use the
- dedicated mode. Otherwise, FreeBSD will have to live
- with in one of the PC BIOS partitions. FreeBSD calls the PC BIOS
- partitions slices so as not to confuse them with
- traditional BSD partitions. You may also use slices on a disk that is
- dedicated to FreeBSD, but used in a computer that also has another
- operating system installed. This is to not confuse the
- fdisk utility of the other operating system.
+ partitions
+ slices
+ fdisk
+
+ Because FreeBSD runs on IBM-PC compatible computers, it must
+ take into account the PC BIOS partitions. These are different
+ from the traditional BSD partitions. A PC disk has up to four
+ BIOS partition entries. If the disk is going to be truly
+ dedicated to FreeBSD, you can use the
+ dedicated mode. Otherwise, FreeBSD will
+ have to live with in one of the PC BIOS partitions. FreeBSD
+ calls the PC BIOS partitions slices so as
+ not to confuse them with traditional BSD partitions. You may
+ also use slices on a disk that is dedicated to FreeBSD, but used
+ in a computer that also has another operating system installed.
+ This is to not confuse the fdisk utility of
+ the other operating system.In the slice case the drive will be added as
- /dev/da1s1e. This is read as: SCSI disk, unit number
- 1 (second SCSI disk), slice 1 (PC BIOS partition 1), and
- e BSD partition. In the dedicated case, the drive
- will be added simply as /dev/da1e.
+ /dev/da1s1e. This is read as: SCSI disk,
+ unit number 1 (second SCSI disk), slice 1 (PC BIOS partition 1),
+ and e BSD partition. In the dedicated
+ case, the drive will be added simply as
+ /dev/da1e.
Using sysinstall
-
- You may use /stand/sysinstall to partition and
- label a new disk using its easy to use menus. Either login as user
- root or use the su command. Run
+ sysinstalladding disks
+
+ You may use /stand/sysinstall to
+ partition and label a new disk using its easy to use menus.
+ Either login as user root or use the
+ su command. Run
/stand/sysinstall and enter the
- Configure menu. With in the FreeBSD
- Configuration Menu, scroll down and select the
- Partition item. Next you should be presented with a
- list of hard drives installed in your system. If you do not see
- da1 listed, you need to recheck your physical
- installation and dmesg output in the file
+ Configure menu. With in the
+ FreeBSD Configuration Menu, scroll down and
+ select the Partition item. Next you should
+ be presented with a list of hard drives installed in your
+ system. If you do not see da1 listed, you
+ need to recheck your physical installation and
+ dmesg output in the file
/var/run/dmesg.boot.
- Select da1 to enter the FDISK Partition
- Editor. Choose A to use the entire disk
- for FreeBSD. When asked if you want to remain cooperative with
- any future possible operating systems, answer
- YES. Write the changes to the disk using
- W. Now exit the FDISK editor using
- q. Next you will be asked about the Master Boot
- Record. Since you are adding a disk to an already running system,
- choose None.
-
- Next enter the Disk Label Editor. This is where
- you will create the traditional BSD partitions. A disk can have up to
- eight partitions, labeled a-h. A few of the partition labels have
- special uses. The a partition is used for the root
- partition (/). Thus only your system disk (e.g,
- the disk you boot from) should have an a partition.
- The b partition is used for swap partitions, and you
- may have many disks with swap partitions. The c
- partition addresses the entire disk in dedicated mode, or the entire
- FreeBSD slice in slice mode. The other partitions are for general
- use.
-
- Sysinstall's Label editor favors the e partition
- for non-root, non-swap partitions. With in the Label editor, create a
- single file system using C. When prompted if this
- will be a FS (file system) or swap, choose FS and
- give a mount point (e.g, /mnt). When adding a disk
- in post-install mode, Sysinstall will not create entries in
- /etc/fstab for you, so the mount point you specify
- isn't important.
-
- You are now ready to write the new label to the disk and create a
- file system on it. Do this by hitting W. Ignore any
- errors from Sysinstall that it could not mount the new partition. Exit
- the Label Editor and Sysinstall completely.
-
- The last step is to edit /etc/fstab to add an
- entry for your new disk.
+ Select da1 to enter the FDISK
+ Partition Editor. Choose A to
+ use the entire disk for FreeBSD. When asked if you want to
+ remain cooperative with any future possible operating
+ systems, answer YES. Write the
+ changes to the disk using W. Now exit the
+ FDISK editor using q. Next you will be
+ asked about the Master Boot Record. Since you are adding a
+ disk to an already running system, choose
+ None.
+
+ BSD partitions
+ Next enter the Disk Label Editor. This
+ is where you will create the traditional BSD partitions. A
+ disk can have up to eight partitions, labeled a-h. A few of
+ the partition labels have special uses. The
+ a partition is used for the root partition
+ (/). Thus only your system disk (e.g,
+ the disk you boot from) should have an a
+ partition. The b partition is used for
+ swap partitions, and you may have many disks with swap
+ partitions. The c partition addresses the
+ entire disk in dedicated mode, or the entire FreeBSD slice in
+ slice mode. The other partitions are for general use.
+
+ Sysinstall's Label editor favors the e
+ partition for non-root, non-swap partitions. With in the
+ Label editor, create a single file system using
+ C. When prompted if this will be a FS
+ (file system) or swap, choose FS and give a
+ mount point (e.g, /mnt). When adding a
+ disk in post-install mode, Sysinstall will not create entries
+ in /etc/fstab for you, so the mount point
+ you specify isn't important.
+
+ You are now ready to write the new label to the disk and
+ create a file system on it. Do this by hitting
+ W. Ignore any errors from Sysinstall that
+ it could not mount the new partition. Exit the Label Editor
+ and Sysinstall completely.
+
+ The last step is to edit /etc/fstab
+ to add an entry for your new disk.Using Command Line UtilitiesUsing SlicesThis setup will allow your disk to work correctly with
other operating systems that might be installed on your
computer and will not confuse other operating systems' fdisk
utilities. It is recommended to use this method for new disk
installs. Only use dedicated mode if you
have a good reason to do so!&prompt.root; dd if=/dev/zero of=/dev/rda1 bs=1k count=1
&prompt.root; fdisk -BI da1 #Initialize your new disk
&prompt.root; disklabel -B -w -r da1s1 auto #Label it.
&prompt.root; disklabel -e da1s1 # Now edit the disklabel you just created and add any partitions.
&prompt.root; mkdir -p /1
&prompt.root; newfs /dev/da1s1e # Repeat this for every partition you created.
&prompt.root; mount -t ufs /dev/da1s1e /1 # Mount the partition(s)
&prompt.root; vi /etc/fstab # When satisfied, add the appropriate entry/entries to your /etc/fstab.If you have an IDE disk, substitute ad
for da. On pre-4.x systems use
wd.Dedicated
+ OS/2If you will not be sharing the new drive with another operating
system, you may use the dedicated mode. Remember
this mode can confuse Microsoft operating systems; however, no damage
will be done by them. IBM's OS/2 however, will
appropriate any partition it finds which it doesn't
understand.&prompt.root; dd if=/dev/zero of=/dev/rda1 bs=1k count=1
&prompt.root; disklabel -Brw da1 auto
&prompt.root; disklabel -e da1 # create the `e' partition
&prompt.root; newfs -d0 /dev/rda1e
&prompt.root; mkdir -p /1
&prompt.root; vi /etc/fstab # add an entry for /dev/da1e
&prompt.root; mount /1An alternate method is:&prompt.root; dd if=/dev/zero of=/dev/rda1 count=2
&prompt.root; disklabel /dev/rda1 | disklabel -BrR da1 /dev/stdin
&prompt.root; newfs /dev/rda1e
&prompt.root; mkdir -p /1
&prompt.root; vi /etc/fstab # add an entry for /dev/da1e
&prompt.root; mount /1Virtual Disks: Network, Memory, and File-Based Filesystems
+ virtual disks
+ disksvirtualAside from the disks you physically insert into your computer:
floppies, CDs, hard drives, and so forth; other forms of disks
are understood by FreeBSD - the virtual
disks.
+ NFS
+ Coda
+ disksmemoryThese include network filesystems such as the Network Filesystem and Coda, memory-based
filesystems such as md and
file-backed filesystems created by vnconfig.vnconfig: file-backed filesystem
+ disksfile-backed&man.vnconfig.8; configures and enables vnode pseudo disk
devices. A vnode is a representation
of a file, and is the focus of file activity. This means that
&man.vnconfig.8; uses files to create and operate a
filesystem. One possible use is the mounting of floppy or CD
images kept in files.To mount an existing filesystem image:Using vnconfig to mount an existing filesystem
image&prompt.root; vnconfig vn0diskimage
&prompt.root; mount /dev/vn0c /mntTo create a new filesystem image with vnconfig:Creating a New File-Backed Disk with vnconfig&prompt.root; dd if=/dev/zero of=newimage bs=1k count=5k
5120+0 records in
5120+0 records out
&prompt.root; vnconfig -s labels -c vn0newimage
&prompt.root; disklabel -r -w vn0 auto
&prompt.root; newfs vn0c
Warning: 2048 sector(s) in last cylinder unallocated
/dev/rvn0c: 10240 sectors in 3 cylinders of 1 tracks, 4096 sectors
5.0MB in 1 cyl groups (16 c/g, 32.00MB/g, 1280 i/g)
super-block backups (for fsck -b #) at:
32
&prompt.root; mount /dev/vn0c /mnt
&prompt.root; df /mnt
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/vn0c 4927 1 4532 0% /mntmd: Memory Filesystem
+ disksmemorymd is a simple, efficient means to do memory
filesystems.Simply take a filesystem you've prepared with, for
example, &man.vnconfig.8;, and:md memory disk&prompt.root; dd if=newimage of=/dev/md0
5120+0 records in
5120+0 records out
&prompt.root; mount /dev/md0c/mnt
&prompt.root; df /mnt
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/md0c 4927 1 4532 0% /mntDisk Quotas
+ accountingdisk
+ space
+ disk quotasQuotas are an optional feature of the operating system that
allow you to limit the amount of disk space and/or the number of
files a user, or members of a group, may allocate on a per-file
system basis. This is used most often on timesharing systems where
it is desirable to limit the amount of resources any one user or
group of users may allocate. This will prevent one user from
consuming all of the available disk space.Configuring Your System to Enable Disk QuotasBefore attempting to use disk quotas it is necessary to make
sure that quotas are configured in your kernel. This is done by
adding the following line to your kernel configuration
file:options QUOTAThe stock GENERIC kernel does not have
this enabled by default, so you will have to configure, build and
install a custom kernel in order to use disk quotas. Please refer
to the Configuring the FreeBSD
Kernel section for more information on kernel
configuration.Next you will need to enable disk quotas in
/etc/rc.conf. This is done by adding the
line:enable_quotas=YES
-
+ disk quotascheckingFor finer control over your quota startup, there is an
additional configuration variable available. Normally on bootup,
the quota integrity of each file system is checked by the
quotacheck program. The
quotacheck facility insures that the data in
the quota database properly reflects the data on the file system.
This is a very time consuming process that will significantly
affect the time your system takes to boot. If you would like to
skip this step, a variable is made available for the
purpose:check_quotas=NOIf you are running FreeBSD prior to 3.2-RELEASE, the
configuration is simpler, and consists of only one variable. Set
the following in your /etc/rc.conf:check_quotas=YESFinally you will need to edit /etc/fstab
to enable disk quotas on a per-file system basis. This is where
you can either enable user or group quotas or both for all of your
file systems.To enable per-user quotas on a file system, add the
userquota option to the options field in the
/etc/fstab entry for the file system you want
to enable quotas on. For example:/dev/da1s2g /home ufs rw,userquota 1 2Similarly, to enable group quotas, use the
groupquota option instead of the
userquota keyword. To enable both user and
group quotas, change the entry as follows:/dev/da1s2g /home ufs rw,userquota,groupquota 1 2By default the quota files are stored in the root directory of
the file system with the names quota.user and
quota.group for user and group quotas
respectively. See man fstab for more
information. Even though that man page says that you can specify
an alternate location for the quota files, this is not recommended
because the various quota utilities do not seem to handle this
properly.At this point you should reboot your system with your new
kernel. /etc/rc will automatically run the
appropriate commands to create the initial quota files for all of
the quotas you enabled in /etc/fstab, so
there is no need to manually create any zero length quota
files.In the normal course of operations you should not be required
to run the quotacheck,
quotaon, or quotaoff
commands manually. However, you may want to read their man pages
just to be familiar with their operation.Setting Quota Limits
+ disk quotaslimitsOnce you have configured your system to enable quotas, verify
that they really are enabled. An easy way to do this is to
run:&prompt.root; quota -vYou should see a one line summary of disk usage and current
quota limits for each file system that quotas are enabled
on.You are now ready to start assigning quota limits with the
edquota command.You have several options on how to enforce limits on the
amount of disk space a user or group may allocate, and how many
files they may create. You may limit allocations based on disk
space (block quotas) or number of files (inode quotas) or a
combination of both. Each of these limits are further broken down
into two categories; hard and soft limits.
+ hard limitA hard limit may not be exceeded. Once a user reaches his
hard limit he may not make any further allocations on the file
system in question. For example, if the user has a hard limit of
500 blocks on a file system and is currently using 490 blocks, the
user can only allocate an additional 10 blocks. Attempting to
allocate an additional 11 blocks will fail.
+ soft limitSoft limits, on the other hand, can be exceeded for a limited
amount of time. This period of time is known as the grace period,
which is one week by default. If a user stays over his or her
soft limit longer than the grace period, the soft limit will
turn into a hard limit and no further allocations will be allowed.
When the user drops back below the soft limit, the grace period
will be reset.The following is an example of what you might see when you run
the edquota command. When the
edquota command is invoked, you are placed into
the editor specified by the EDITOR environment
variable, or in the vi editor if the
EDITOR variable is not set, to allow you to edit
the quota limits.&prompt.root; edquota -u testQuotas for user test:
/usr: blocks in use: 65, limits (soft = 50, hard = 75)
inodes in use: 7, limits (soft = 50, hard = 60)
/usr/var: blocks in use: 0, limits (soft = 50, hard = 75)
inodes in use: 0, limits (soft = 50, hard = 60)You will normally see two lines for each file system that has
quotas enabled. One line for the block limits, and one line for
inode limits. Simply change the value you want updated to modify
the quota limit. For example, to raise this users block limit
from a soft limit of 50 and a hard limit of 75 to a soft limit of
500 and a hard limit of 600, change:/usr: blocks in use: 65, limits (soft = 50, hard = 75)to: /usr: blocks in use: 65, limits (soft = 500, hard = 600)The new quota limits will be in place when you exit the
editor.Sometimes it is desirable to set quota limits on a range of
uids. This can be done by use of the option
on the edquota command. First, assign the
desired quota limit to a user, and then run
edquota -p protouser startuid-enduid. For
example, if user test has the desired quota
limits, the following command can be used to duplicate those quota
limits for uids 10,000 through 19,999:&prompt.root; edquota -p test 10000-19999See man edquota for more detailed
information.Checking Quota Limits and Disk Usage
+ disk quotascheckingYou can use either the quota or the
repquota commands to check quota limits and
disk usage. The quota command can be used to
check individual user and group quotas and disk usage. Only the
super-user may examine quotas and usage for other users, or for
groups that they are not a member of. The
repquota command can be used to get a summary
of all quotas and disk usage for file systems with quotas
enabled.The following is some sample output from the
quota -v command for a user that has quota
limits on two file systems.Disk quotas for user test (uid 1002):
Filesystem blocks quota limit grace files quota limit grace
/usr 65* 50 75 5days 7 50 60
/usr/var 0 50 75 0 50 60
+ grace periodOn the /usr file system in the above
example this user is currently 15 blocks over the soft limit of
50 blocks and has 5 days of the grace period left. Note the
asterisk * which indicates that the user is
currently over his quota limit.Normally file systems that the user is not using any disk
space on will not show up in the output from the
quota command, even if he has a quota limit
assigned for that file system. The option
will display those file systems, such as the
/usr/var file system in the above
example.Quotas over NFS
+ NFSQuotas are enforced by the quota subsystem on the NFS server.
The &man.rpc.rquotad.8; daemon makes quota information available
to the &man.quota.1; command on NFS clients, allowing users on
those machines to see their quota statistics.Enable rpc.rquotad in
/etc/inetd.conf like so:rquotad/1 dgram rpc/udp wait root /usr/libexec/rpc.rquotad rpc.rquotadNow restart inetd:&prompt.root; kill -HUP `cat /var/run/inetd.pid`Creating CDs
+ CDROMscreatingContributed by Mike Meyer
mwm@mired.org, April 2001.IntroductionCDs have a number of features that differentiate them from
conventional disks. Initially, they weren't writable by the
user. They are designed so that they can be read continuously without
delays to move the head between tracks. They are also much easier
to transport between systems than similarly sized media were at the
time.CDs do have tracks, but this refers to a section of data to
be read continuously and not a physical property of the disk. To
produce a CD on FreeBSD, you prepare the data files that are going
to make up the tracks on the CD, then write the tracks to the
CD.
+ ISO 9660
+ filesystemsISO-9660The ISO 9660 file system was designed to deal with these
differences. It unfortunately codifies file system limits that were
common then. Fortunately, it provides an extension mechanism that
allows properly written CDs to exceed those limits while still
working with systems that do not support those extensions.
+ mkisofsThe mkisofs
program is used to produce a data file containing an ISO 9660 file
system. It has options that support various extensions, and is
described below. You can install it with the
/usr/ports/sysutils/mkisofs port.
+ CD burnerATAPIWhich tool to use to burn the CD depends on whether your CD burner
is ATAPI or something else. ATAPI CD burners use the burncd program that is part of
the base system. SCSI and USB CD burners should use the
cdrecord from
the /usr/ports/sysutils/cdrecord port.mkisofsmkisofs produces an ISO 9660 file system
that is an image of a directory tree in the Unix file system name
space. The simplest usage is:&prompt.root; mkisofs imagefile.iso/path/to/tree
+ filesystemsISO-9660This command will create an imagefile
containing an ISO 9660 file system that is a copy of the tree at
/path/to/tree. In the process, it will
map the file names to names that fit the limitations of the
standard ISO 9660 file system, and will exclude files that have
names uncharacteristic of ISO file systems. Read &man.mkisofs.8;
for details of this process, and options that can be used to
control it.
+ filesystemsHFS
+ filesystemsJolietA number of options are available to overcome those
restrictions. In particular, enables the
Rock Ridge extensions common to Unix systems,
enables Joliet extensions used by Microsoft systems, and
can be used to create HFS file systems used
by Macs. Read &man.mkisofs.8; for more information on the last
two.For CDs that are going to be used only on FreeBSD systems,
can be used to disable all filename
restrictions. When used with , it produces a
file system image that is identical to the FreeBSD tree you started
from, though it may violate the ISO 9660 standard in a number of
ways.
-
+
+ CDROMscreating bootableThe last option of general use is . This is
used to specify the location of the boot image for use in producing an
El Torito bootable CD. This option takes an
argument which is the path to a boot image from the top of the
tree being written to the CD. So, given that
/tmp/myboot holds a bootable FreeBSD system
with the boot image in
/tmp/myboot/boot/cdboot, you could produce the
image of an ISO 9660 file system in
/tmp/bootable.iso like so:&prompt.root; mkisofs boot/cdboot/tmp/bootable.iso/tmp/mybootHaving done that, if you have vn configured in your kernel, you
can mount the file system with:&prompt.root; vnconfig vn0c/tmp/bootable.iso
&prompt.root; mount cd9660 /dev/vn0c/mntAt which point you can verify that /mnt
and /tmp/myboot are identical.There are many other options you can use with
mkisofs to fine-tune its behavior. See
&man.mkisofs.8; for details.burncd
-
+ CDROMsburningIf you have an ATAPI CD burner, you can use the
burncd command to burn an ISO image onto a
CD. burncd is part of the base system, installed
as /usr/sbin/burncd. Usage is very simple, as
it has few options:&prompt.root; burncd cddevice data imagefile.iso fixateWill burn a copy of imagefile.iso on
cddevice. The default device is
/dev/acd0. See &man.burncd.8; for options to
set the write speed, eject the CD after burning, and write audio
data.cdrecordIf you do not have an ATAPI CD burner, you will have to use
cdrecord to burn your
CDs. cdrecord is not part of the base system;
you must install it from either the port at
/usr/ports/sysutils/cdrecord or the appropriate
package. Changes to the base system can cause binary versions of
this program to fail, possibly resulting in a
coaster. You should therefore either upgrade the
port when you upgrade your system, or if you are tracking -stable, upgrade the port when a
new version becomes available.While cdrecord has many options, basic usage
is even simpler than burncd. Burning an ISO 9660
image is done with:&prompt.root; cdrecord deviceimagefile.isoThe tricky part of using cdrecord is finding
the to use. To find the proper setting, use
the flag of cdrecord,
which might produce results like this:
-
+ CDROMsburning&prompt.root; cdrecord
Cdrecord 1.9 (i386-unknown-freebsd4.2) Copyright (C) 1995-2000 Jörg Schilling
Using libscg version 'schily-0.1'
scsibus0:
0,0,0 0) 'SEAGATE ' 'ST39236LW ' '0004' Disk
0,1,0 1) 'SEAGATE ' 'ST39173W ' '5958' Disk
0,2,0 2) *
0,3,0 3) 'iomega ' 'jaz 1GB ' 'J.86' Removable Disk
0,4,0 4) 'NEC ' 'CD-ROM DRIVE:466' '1.26' Removable CD-ROM
0,5,0 5) *
0,6,0 6) *
0,7,0 7) *
scsibus1:
1,0,0 100) *
1,1,0 101) *
1,2,0 102) *
1,3,0 103) *
1,4,0 104) *
1,5,0 105) 'YAMAHA ' 'CRW4260 ' '1.0q' Removable CD-ROM
1,6,0 106) 'ARTEC ' 'AM12S ' '1.06' Scanner
1,7,0 107) *
This lists the appropriate value for the
devices on the list. Locate your CD burner, and use the three
numbers separated by commas as the value for
. In this case, the CRW device is 1,5,0, so the
appropriate input would be
=1,5,0. There are easier
ways to specify this value; see &man.cdrecord.1; for
details. That is also the place to look for information on writing
audio tracks, controlling the speed, and other things.
diff --git a/en_US.ISO8859-1/books/handbook/printing/chapter.sgml b/en_US.ISO8859-1/books/handbook/printing/chapter.sgml
index ebedc1631d..89ed7a371b 100644
--- a/en_US.ISO8859-1/books/handbook/printing/chapter.sgml
+++ b/en_US.ISO8859-1/books/handbook/printing/chapter.sgml
@@ -1,4565 +1,4624 @@
PrintingContributed by &a.kelly;, 30 September 1995.
Restructured and updated by &a.jim;, March 2000.Synopsis
+ LPD spooling system
+ printingIn order to use printers with FreeBSD, you will need to set them
up to work with the Berkeley line printer spooling system, also
known as the LPD spooling system. It is the standard printer
control system in FreeBSD. This chapter introduces the LPD spooling
system, often simply called LPD, and will guide you through its
configuration.If you are already familiar with LPD or another printer spooling
system, you may wish to skip to section Setting up the spooling
system.IntroductionLPD controls everything about a host's printers. It is
responsible for a number of things:It controls access to attached printers and printers
attached to other hosts on the network.
+ print jobsIt enables users to submit files to be printed; these
submissions are known as jobs.It prevents multiple users from accessing a printer at the
same time by maintaining a queue for each
printer.It can print header pages (also known
as banner or burst
pages) so users can easily find jobs they have printed in a
stack of printouts.It takes care of communications parameters for printers
connected on serial ports.It can send jobs over the network to a LPD spooler on
another host.It can run special filters to format jobs to be printed for
various printer languages or printer capabilities.It can account for printer usage.Through a configuration file
(/etc/printcap), and by providing the special
filter programs, you can enable the LPD system to do all or some
subset of the above for a great variety of printer hardware.Why You Should Use the SpoolerIf you are the sole user of your system, you may be wondering
why you should bother with the spooler when you do not need access
control, header pages, or printer accounting. While it is
possible to enable direct access to a printer, you should use the
spooler anyway since:LPD prints jobs in the background; you do not have to wait
for data to be copied to the printer.
+ TeXLPD can conveniently run a job to be printed through
filters to add date/time headers or convert a special file
format (such as a TeX DVI file) into a format the printer will
understand. You will not have to do these steps
manually.Many free and commercial programs that provide a print
feature usually expect to talk to the spooler on your system.
By setting up the spooling system, you will more easily
support other software you may later add or already
have.Basic SetupTo use printers with the LPD spooling system, you will need to
set up both your printer hardware and the LPD software. This
document describes two levels of setup:See section Simple Printer
Setup to learn how to connect a printer, tell LPD how to
communicate with it, and print plain text files to the
printer.See section Advanced
Printer Setup to find out how to print a variety of
special file formats, to print header pages, to print across a
network, to control access to printers, and to do printer
accounting.Simple Printer SetupThis section tells how to configure printer hardware and the
LPD software to use the printer. It teaches the basics:Section Hardware
Setup gives some hints on connecting the printer to a
port on your computer.Section Software
Setup shows how to setup the LPD spooler configuration
file (/etc/printcap).If you are setting up a printer that uses a network protocol
to accept data to print instead of a serial or parallel interface,
see Printers With
Networked Data Stream Interfaces.Although this section is called Simple Printer
Setup, it is actually fairly complex. Getting the printer
to work with your computer and the LPD spooler is the hardest
part. The advanced options like header pages and accounting are
fairly easy once you get the printer working.Hardware SetupThis section tells about the various ways you can connect a
printer to your PC. It talks about the kinds of ports and
cables, and also the kernel configuration you may need to enable
FreeBSD to speak to the printer.If you have already connected your printer and have
successfully printed with it under another operating system, you
can probably skip to section Software Setup.Ports and CablesNearly all printers you can get for a PC today support one
or both of the following interfaces:
+ printerserialSerial interfaces use a serial
port on your computer to send data to the printer. Serial
interfaces are common in the computer industry and cables
are readily available and also easy to construct. Serial
interfaces sometimes need special cables and might require
you to configure somewhat complex communications
options.
+ printerparallelParallel interfaces use a
parallel port on your computer to send data to the
printer. Parallel interfaces are common in the PC market.
Cables are readily available but more difficult to
construct by hand. There are usually no communications
options with parallel interfaces, making their
configuration exceedingly simple.
+ centronics (see parallel printers)Parallel interfaces are sometimes known as
Centronics interfaces, named after the
connector type on the printer.In general, serial interfaces are slower than parallel
interfaces. Parallel interfaces usually offer just
one-way communication (computer to printer) while serial
gives you two-way. Many newer parallel ports and printers
can communicate in both directions under FreeBSD when a
IEEE1284 compliant cable is used.
+ PostScriptUsually, the only time you need two-way communication with
the printer is if the printer speaks PostScript. PostScript
printers can be very verbose. In fact, PostScript jobs are
actually programs sent to the printer; they need not produce
paper at all and may return results directly to the computer.
PostScript also uses two-way communication to tell the
computer about problems, such as errors in the PostScript
program or paper jams. Your users may be appreciative of such
information. Furthermore, the best way to do effective
accounting with a PostScript printer requires two-way
communication: you ask the printer for its page count (how
many pages it has printed in its lifetime), then send the
user's job, then ask again for its page count. Subtract the
two values and you know how much paper to charge the
user.Parallel PortsTo hook up a printer using a parallel interface, connect
the Centronics cable between the printer and the computer.
The instructions that came with the printer, the computer, or
both should give you complete guidance.Remember which parallel port you used on the computer.
The first parallel port is /dev/lpt0 to
FreeBSD; the second is /dev/lpt1, and so
on.Serial PortsTo hook up a printer using a serial interface, connect the
proper serial cable between the printer and the computer. The
instructions that came with the printer, the computer, or both
should give you complete guidance.If you are unsure what the proper serial
cable is, you may wish to try one of the following
alternatives:A modem cable connects each pin
of the connector on one end of the cable straight through
to its corresponding pin of the connector on the other
end. This type of cable is also known as a
DTE-to-DCE cable.
+ null-modem cableA null-modem cable connects some
pins straight through, swaps others (send data to receive
data, for example), and shorts some internally in each
connector hood. This type of cable is also known as a
DTE-to-DTE cable.A serial printer cable, required
- for some unusual printers, is like the null modem cable,
+ for some unusual printers, is like the null-modem cable,
but sends some signals to their counterparts instead of
being internally shorted.
+ baud rate
+ parity
+ flow control protocolYou should also set up the communications parameters for
the printer, usually through front-panel controls or DIP
switches on the printer. Choose the highest
bps (bits per second, sometimes
baud rate) rate that both your computer
and the printer can support. Choose 7 or 8 data bits; none,
even, or odd parity; and 1 or 2 stop bits. Also choose a flow
control protocol: either none, or XON/XOFF (also known as
in-band or software) flow control.
Remember these settings for the software configuration that
follows.Software SetupThis section describes the software setup necessary to print
with the LPD spooling system in FreeBSD.Here is an outline of the steps involved:Configure your kernel, if necessary, for the port you
are using for the printer; section Kernel Configuration tells
you what you need to do.Set the communications mode for the parallel port, if
you are using a parallel port; section Setting the
Communication Mode for the Parallel Port gives
details.Test if the operating system can send data to the printer.
Section Checking Printer
Communications gives some suggestions on how to do
this.Set up LPD for the printer by modifying the file
/etc/printcap. You will find out how
to do this later in this chapter.Kernel ConfigurationThe operating system kernel is compiled to work with a
specific set of devices. The serial or parallel interface for
your printer is a part of that set. Therefore, it might be
necessary to add support for an additional serial or parallel
port if your kernel is not already configured for one.To find out if the kernel you are currently using supports
a serial interface, type:&prompt.root; dmesg | grep sioNWhere N is the number of the
serial port, starting from zero. If you see output similar to
the following:sio2 at 0x3e8-0x3ef irq 5 on isa
sio2: type 16550Athen the kernel supports the port.To find out if the kernel supports a parallel interface,
type:&prompt.root; dmesg | grep lptNWhere N is the number of the
parallel port, starting from zero. If you see output similar
to the following lpt0 at 0x378-0x37f on isa
then the kernel supports the port.You might have to reconfigure your kernel in order for the
operating system to recognize and use the parallel or serial
port you are using for the printer.To add support for a serial port, see the section on
kernel configuration. To add support for a parallel port, see
that section and the section that
follows.Adding /dev Entries for the
PortsEven though the kernel may support communication along a
serial or parallel port, you will still need a software
interface through which programs running on the system can
send and receive data. That is what entries in the
/dev directory are for.To add a /dev entry for a
port:Become root with the &man.su.1; command. Enter the
root password when prompted.Change to the /dev
directory:&prompt.root; cd /devType:&prompt.root; ./MAKEDEV portWhere port is the device
entry for the port you want to make. Use
lpt0 for the first parallel port,
lpt1 for the second, and so on; use
ttyd0 for the first serial port,
ttyd1 for the second, and so on.Type:&prompt.root; ls -l portto make sure the device entry got created.Setting the Communication Mode for the Parallel
PortWhen you are using the parallel interface, you can choose
whether FreeBSD should use interrupt-driven or polled
communication with the printer.The interrupt-driven method is
the default with the GENERIC kernel. With this method,
the operating system uses an IRQ line to determine when
the printer is ready for data.The polled method directs the
operating system to repeatedly ask the printer if it is
ready for more data. When it responds ready, the kernel
sends more data.The interrupt-driven method is somewhat faster but uses up
a precious IRQ line. You should use whichever one
works.You can set the communications mode in two ways: by
configuring the kernel or by using the &man.lptcontrol.8;
program.To set the communications mode by configuring
the kernel:Edit your kernel configuration file. Look for or add
an lpt0 entry. If you are setting up
the second parallel port, use lpt1
instead. Use lpt2 for the third port,
and so on.If you want interrupt-driven mode, add the
irq specifier:device lpt0 at isa? port? tty irq N vector lptintrWhere N is the IRQ
number for your computer's parallel port.If you want polled mode, do not add the
irq specifier:device lpt0 at isa? port? tty vector lptintrSave the file. Then configure, build, and install the
kernel, then reboot. See kernel configuration for
more details.To set the communications mode with
&man.lptcontrol.8;:Type:&prompt.root; lptcontrol -i -u Nto set interrupt-driven mode for
lptN.Type:&prompt.root; lptcontrol -p -u Nto set polled-mode for
lptN.You could put these commands in your
/etc/rc.local file to set the mode each
time your system boots. See &man.lptcontrol.8; for more
information.Checking Printer CommunicationsBefore proceeding to configure the spooling system, you
should make sure the operating system can successfully send
data to your printer. It is a lot easier to debug printer
communication and the spooling system separately.To test the printer, we will send some text to it. For
printers that can immediately print characters sent to them,
the program &man.lptest.1; is perfect: it generates all 96
printable ASCII characters in 96 lines.
+ PostScriptFor a PostScript (or other language-based) printer, we
will need a more sophisticated test. A small PostScript
program, such as the following, will suffice:%!PS
100 100 moveto 300 300 lineto stroke
310 310 moveto /Helvetica findfont 12 scalefont setfont
(Is this thing working?) show
showpageThe above PostScript code can be placed into a file and
used as shown in the examples appearing in the following
sections.
+ PCLWhen this document refers to a printer language, it is
assuming a language like PostScript, and not Hewlett
Packard's PCL. Although PCL has great functionality, you
can intermingle plain text with its escape sequences.
PostScript cannot directly print plain text, and that is the
kind of printer language for which we must make special
accommodations.Checking a Parallel Printer
+ printerparallelThis section tells you how to check if FreeBSD can
communicate with a printer connected to a parallel
port.To test a printer on a parallel
port:Become root with &man.su.1;.Send data to the printer.If the printer can print plain text, then use
&man.lptest.1;. Type:&prompt.root; lptest > /dev/lptNWhere N is the number
of the parallel port, starting from zero.If the printer understands PostScript or other
printer language, then send a small program to the
printer. Type:&prompt.root; cat > /dev/lptNThen, line by line, type the program
carefully as you cannot edit a
line once you have pressed RETURN
or ENTER. When you have finished
entering the program, press
CONTROL+D, or whatever your end
of file key is.Alternatively, you can put the program in a file
and type:&prompt.root; cat file > /dev/lptNWhere file is the
name of the file containing the program you want to
send to the printer.You should see something print. Do not worry if the
text does not look right; we will fix such things
later.Checking a Serial Printer
+ printerserialThis section tells you how to check if FreeBSD can
communicate with a printer on a serial port.To test a printer on a serial
port:Become root with &man.su.1;.Edit the file /etc/remote. Add
the following entry:printer:dv=/dev/port:br#bps-rate:pa=parity
+ bits-per-second
+ serial port
+ parityWhere port is the device
entry for the serial port (ttyd0,
ttyd1, etc.),
bps-rate is the
bits-per-second rate at which the printer communicates,
and parity is the parity
required by the printer (either even,
odd, none, or
zero).Here is a sample entry for a printer connected via
a serial line to the third serial port at 19200 bps with
no parity:printer:dv=/dev/ttyd2:br#19200:pa=noneConnect to the printer with &man.tip.1;.
Type:&prompt.root; tip printerIf this step does not work, edit the file
/etc/remote again and try using
/dev/cuaaN
instead of
/dev/ttydN.Send data to the printer.If the printer can print plain text, then use
&man.lptest.1;. Type:~$lptestIf the printer understands PostScript or other
printer language, then send a small program to the
printer. Type the program, line by line,
very carefully as backspacing
or other editing keys may be significant to the
printer. You may also need to type a special
end-of-file key for the printer so it knows it
received the whole program. For PostScript
printers, press CONTROL+D.Alternatively, you can put the program in a file
and type:~>fileWhere file is the
name of the file containing the program. After
&man.tip.1; sends the file, press any required
end-of-file key.You should see something print. Do not worry if the
text does not look right; we will fix that later.Enabling the Spooler: The /etc/printcap
FileAt this point, your printer should be hooked up, your kernel
configured to communicate with it (if necessary), and you have
been able to send some simple data to the printer. Now, we are
ready to configure LPD to control access to your printer.You configure LPD by editing the file
/etc/printcap. The LPD spooling system
reads this file each time the spooler is used, so updates to the
file take immediate effect.
+ printercapabilitiesThe format of the &man.printcap.5; file is straightforward.
Use your favorite text editor to make changes to
/etc/printcap. The format is identical to
other capability files like
/usr/share/misc/termcap and
/etc/remote. For complete information
about the format, see the &man.cgetent.3;.The simple spooler configuration consists of the following
steps:Pick a name (and a few convenient aliases) for the
printer, and put them in the
/etc/printcap file; see the
Naming the Printer
section for more information on naming.
+ header pagesTurn off header pages (which are on by default) by
inserting the sh capability; see the
Suppressing Header
Pages section for more information.Make a spooling directory, and specify its location with
the sd capability; see the Making the Spooling
Directory section for more information.Set the /dev entry to use for the
printer, and note it in /etc/printcap
with the lp capability; see the Identifying the Printer
Device for more information. Also, if the printer is
on a serial port, set up the communication parameters with
the fs, fc,
xs, and xc
capabilities; which is discussed in the Configuring Spooler
Communications Parameters section.Install a plain text input filter; see the Installing the Text
Filter section for details.Test the setup by printing something with the
&man.lpr.1; command. More details are available in the
Trying It Out and
Troubleshooting
sections.Language-based printers, such as PostScript printers,
cannot directly print plain text. The simple setup outlined
above and described in the following sections assumes that if
you are installing such a printer you will print only files
that the printer can understand.Users often expect that they can print plain text to any of
the printers installed on your system. Programs that interface
to LPD to do their printing usually make the same assumption.
If you are installing such a printer and want to be able to
print jobs in the printer language and
print plain text jobs, you are strongly urged to add an
additional step to the simple setup outlined above: install an
automatic plain-text-to-PostScript (or other printer language)
conversion program. The section entitled Accommodating Plain
Text Jobs on PostScript Printers tells how to do
this.Naming the PrinterThe first (easy) step is to pick a name for your printer
It really does not matter whether you choose functional or
whimsical names since you can also provide a number of aliases
for the printer.At least one of the printers specified in the
/etc/printcap should have the alias
lp. This is the default printer's name.
If users do not have the PRINTER environment
variable nor specify a printer name on the command line of any
of the LPD commands, then lp will be the
default printer they get to use.Also, it is common practice to make the last alias for a
printer be a full description of the printer, including make
and model.Once you have picked a name and some common aliases, put
them in the /etc/printcap file. The name
of the printer should start in the leftmost column. Separate
each alias with a vertical bar and put a colon after the last
alias.In the following example, we start with a skeletal
/etc/printcap that defines two printers
(a Diablo 630 line printer and a Panasonic KX-P4455 PostScript
laser printer):#
# /etc/printcap for host rose
#
rattan|line|diablo|lp|Diablo 630 Line Printer:
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:In this example, the first printer is named
rattan and has as aliases
line, diablo,
lp, and Diablo 630 Line
Printer. Since it has the alias
lp, it is also the default printer. The
second is named bamboo, and has as aliases
ps, PS,
S, panasonic, and
Panasonic KX-P4455 PostScript v51.4.Suppressing Header Pages
+ printingheader pagesThe LPD spooling system will by default print a
header page for each job. The header
page contains the user name who requested the job, the host
from which the job came, and the name of the job, in nice
large letters. Unfortunately, all this extra text gets in the
way of debugging the simple printer setup, so we will suppress
header pages.To suppress header pages, add the sh
capability to the entry for the printer in
/etc/printcap. Here is an example
/etc/printcap with sh
added:#
# /etc/printcap for host rose - no header pages anywhere
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\
:sh:
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:Note how we used the correct format: the first line starts
in the leftmost column, and subsequent lines are indented with
a single TAB. Every line in an entry except the last ends in
a backslash character.Making the Spooling Directory
+ printer spool
+ print jobsThe next step in the simple spooler setup is to make a
spooling directory, a directory where
print jobs reside until they are printed, and where a number
of other spooler support files live.Because of the variable nature of spooling directories, it
is customary to put these directories under
/var/spool. It is not necessary to
backup the contents of spooling directories, either.
Recreating them is as simple as running &man.mkdir.1;.It is also customary to make the directory with a name
that is identical to the name of the printer, as shown
below:&prompt.root; mkdir /var/spool/printer-nameHowever, if you have a lot of printers on your network,
you might want to put the spooling directories under a single
directory that you reserve just for printing with LPD. We
will do this for our two example printers
rattan and
bamboo:&prompt.root; mkdir /var/spool/lpd
&prompt.root; mkdir /var/spool/lpd/rattan
&prompt.root; mkdir /var/spool/lpd/bambooIf you are concerned about the privacy of jobs that
users print, you might want to protect the spooling
directory so it is not publicly accessible. Spooling
directories should be owned and be readable, writable, and
searchable by user daemon and group daemon, and no one else.
We will do this for our example printers:&prompt.root; chown daemon:daemon /var/spool/lpd/rattan
&prompt.root; chown daemon:daemon /var/spool/lpd/bamboo
&prompt.root; chmod 770 /var/spool/lpd/rattan
&prompt.root; chmod 770 /var/spool/lpd/bambooFinally, you need to tell LPD about these directories
using the /etc/printcap file. You
specify the pathname of the spooling directory with the
sd capability:#
# /etc/printcap for host rose - added spooling directories
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\
:sh:sd=/var/spool/lpd/rattan:
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:Note that the name of the printer starts in the first
column but all other entries describing the printer should be
indented with a tab and each line escaped with a
backslash.If you do not specify a spooling directory with
sd, the spooling system will use
/var/spool/lpd as a default.Identifying the Printer DeviceIn the Adding
/dev Entries for the Ports
section, we identified which entry in the
/dev directory FreeBSD will use to
communicate with the printer. Now, we tell LPD that
information. When the spooling system has a job to print, it
will open the specified device on behalf of the filter program
(which is responsible for passing data to the printer).List the /dev entry pathname in the
/etc/printcap file using the
lp capability.In our running example, let us assume that
rattan is on the first parallel port, and
bamboo is on a sixth serial port; here are
the additions to /etc/printcap:#
# /etc/printcap for host rose - identified what devices to use
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\
:sh:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:\
:lp=/dev/ttyd5:If you do not specify the lp capability
for a printer in your /etc/printcap file,
LPD uses /dev/lp as a default.
/dev/lp currently does not exist in
FreeBSD.If the printer you are installing is connected to a
parallel port, skip to the section entitled, Installing the Text
Filter. Otherwise, be sure to follow the instructions
in the next section.Configuring Spooler Communication Parameters
+ printerserialFor printers on serial ports, LPD can set up the bps rate,
parity, and other serial communication parameters on behalf of
the filter program that sends data to the printer. This is
advantageous since:It lets you try different communication parameters by
simply editing the /etc/printcap
file; you do not have to recompile the filter
program.It enables the spooling system to use the same filter
program for multiple printers which may have different
serial communication settings.The following /etc/printcap
capabilities control serial communication parameters of the
device listed in the lp capability:br#bps-rateSets the communications speed of the device to
bps-rate, where
bps-rate can be 50, 75, 110,
134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600,
19200, or 38400 bits-per-second.fc#clear-bitsClears the flag bits
clear-bits in the
sgttyb structure after
opening the device.fs#set-bitsSets the flag bits
set-bits in the
sgttyb structure.xc#clear-bitsClears local mode bits
clear-bits after opening the
device.xs#set-bitsSets local mode bits
set-bits.For more information on the bits for the
fc, fs,
xc, and xs capabilities,
see the file
/usr/include/sys/ioctl_compat.h.When LPD opens the device specified by the
lp capability, it reads the flag bits in
the sgttyb structure; it clears any bits in
the fc capability, then sets bits in the
fs capability, then applies the resultant
setting. It does the same for the local mode bits as
well.Let us add to our example printer on the sixth serial
port. We will set the bps rate to 38400. For the flag bits,
we will set the TANDEM,
ANYP, LITOUT,
FLUSHO, and PASS8 flags.
For the local mode bits, we will set the
LITOUT and PASS8
flags:bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:\
:lp=/dev/ttyd5:fs#0x82000c1:xs#0x820:Installing the Text Filter
+ print filtersWe are now ready to tell LPD what text filter to use to
send jobs to the printer. A text filter,
also known as an input filter, is a
program that LPD runs when it has a job to print. When LPD
runs the text filter for a printer, it sets the filter's
standard input to the job to print, and its standard output to
the printer device specified with the lp
capability. The filter is expected to read the job from
standard input, perform any necessary translation for the
printer, and write the results to standard output, which will
get printed. For more information on the text filter, see
the Filters
section.For our simple printer setup, the text filter can be a
small shell script that just executes
/bin/cat to send the job to the printer.
FreeBSD comes with another filter called
lpf that handles backspacing and
underlining for printers that might not deal with such
character streams well. And, of course, you can use any other
filter program you want. The filter lpf is
described in detail in section entitled lpf: a Text
Filter.First, let us make the shell script
/usr/local/libexec/if-simple be a simple
text filter. Put the following text into that file with your
favorite text editor:#!/bin/sh
#
# if-simple - Simple text input filter for lpd
# Installed in /usr/local/libexec/if-simple
#
# Simply copies stdin to stdout. Ignores all filter arguments.
/bin/cat && exit 0
exit 2Make the file executable:&prompt.root; chmod 555 /usr/local/libexec/if-simpleAnd then tell LPD to use it by specifying it with the
if capability in
/etc/printcap. We will add it to the two
printers we have so far in the example
/etc/printcap:#
# /etc/printcap for host rose - added text filter
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\
:sh:sd=/var/spool/lpd/rattan:\ :lp=/dev/lpt0:\
:if=/usr/local/libexec/if-simple:
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:\
:lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:\
:if=/usr/local/libexec/if-simple:Turn on LPD&man.lpd.8; is run from /etc/rc,
controlled by the lpd_enable variable. This
variable defaults to NO. If you have not done
so already, add the line:lpd_enable="YES"to /etc/rc.conf, and then either restart
your machine, or just run &man.lpd.8;.&prompt.root; lpdTrying It OutYou have reached the end of the simple LPD setup.
Unfortunately, congratulations are not quite yet in order,
since we still have to test the setup and correct any
problems. To test the setup, try printing something. To
print with the LPD system, you use the command &man.lpr.1;,
which submits a job for printing.You can combine &man.lpr.1; with the &man.lptest.1;
program, introduced in section Checking Printer
Communications to generate some test text.To test the simple LPD setup:Type:&prompt.root; lptest 20 5 | lpr -Pprinter-nameWhere printer-name is a the
name of a printer (or an alias) specified in
/etc/printcap. To test the default
printer, type &man.lpr.1; without any
argument. Again, if you are testing a printer that expects
PostScript, send a PostScript program in that language instead
of using &man.lptest.1;. You can do so by putting the program
in a file and typing lpr
file.For a PostScript printer, you should get the results of
the program. If you are using &man.lptest.1;, then your
results should look like the following:!"#$%&'()*+,-./01234
"#$%&'()*+,-./012345
#$%&'()*+,-./0123456
$%&'()*+,-./01234567
%&'()*+,-./012345678To further test the printer, try downloading larger
programs (for language-based printers) or running
&man.lptest.1; with different arguments. For example,
lptest 80 60 will produce 60 lines of 80
characters each.If the printer did not work, see the Troubleshooting
section.Advanced Printer SetupThis section describes filters for printing specially formatted
files, header pages, printing across networks, and restricting and
accounting for printer usage.Filters
+ print filtersAlthough LPD handles network protocols, queuing, access control,
and other aspects of printing, most of the real
work happens in the filters. Filters are
programs that communicate with the printer and handle its device
dependencies and special requirements. In the simple printer setup,
we installed a plain text filter—an extremely simple one that
should work with most printers (section Installing the Text
Filter).However, in order to take advantage of format conversion, printer
accounting, specific printer quirks, and so on, you should understand
how filters work. It will ultimately be the filter's responsibility
to handle these aspects. And the bad news is that most of the time
you have to provide filters yourself. The good
news is that many are generally available; when they are not, they are
usually easy to write.Also, FreeBSD comes with one,
/usr/libexec/lpr/lpf, that works with many
printers that can print plain text. (It handles backspacing and tabs
in the file, and does accounting, but that is about all it does.)
There are also several filters and filter components in the FreeBSD
ports collection.Here is what you will find in this section:Section How Filters
Work, tries to give an overview of a filter's role in the
printing process. You should read this section to get an
understanding of what is happening under the hood
when LPD uses filters. This knowledge could help you anticipate
and debug problems you might encounter as you install more and
more filters on each of your printers.LPD expects every printer to be able to print plain text by
default. This presents a problem for PostScript (or other
language-based printers) which cannot directly print plain text.
Section Accommodating
Plain Text Jobs on PostScript Printers tells you what you
should do to overcome this problem. You should read this
section if you have a PostScript printer.PostScript is a popular output format for many programs. Even
some people (myself included) write PostScript code directly. But
PostScript printers are expensive. Section Simulating PostScript on
Non-PostScript Printers tells how you can further modify
a printer's text filter to accept and print PostScript data on a
non-PostScript printer. You should read
this section if you do not have a PostScript printer.Section Conversion
Filters tells about a way you can automate the conversion
of specific file formats, such as graphic or typesetting data,
into formats your printer can understand. After reading this
section, you should be able to set up your printers such that
users can type lpr -t to print troff data, or
lpr -d to print TeX DVI data, or lpr
-v to print raster image data, and so forth. I
recommend reading this section.Section Output
Filters tells all about a not often used feature of LPD:
output filters. Unless you are printing header pages (see Header Pages),
you can probably skip that section altogether.Section lpf: a Text
Filter describes lpf, a fairly
complete if simple text filter for line printers (and laser
printers that act like line printers) that comes with FreeBSD. If
you need a quick way to get printer accounting working for plain
text, or if you have a printer which emits smoke when it sees
backspace characters, you should definitely consider
lpf.How Filters WorkAs mentioned before, a filter is an executable program started
by LPD to handle the device-dependent part of communicating with the
printer.When LPD wants to print a file in a job, it starts a filter
program. It sets the filter's standard input to the file to print,
its standard output to the printer, and its standard error to the
error logging file (specified in the lf
capability in /etc/printcap, or
/dev/console by default).
+ troffWhich filter LPD starts and the filter's arguments depend on
what is listed in the /etc/printcap file and
what arguments the user specified for the job on the
&man.lpr.1; command line. For example, if the user typed
lpr -t, LPD would start the troff filter, listed
in the tf capability for the destination printer.
If the user wanted to print plain text, it would start the
if filter (this is mostly true: see Output Filters for
details).There are three kinds of filters you can specify in
/etc/printcap:The text filter, confusingly called the
input filter in LPD documentation, handles
regular text printing. Think of it as the default filter. LPD
expects every printer to be able to print plain text by default,
and it is the text filter's job to make sure backspaces, tabs,
or other special characters do not confuse the printer. If you
are in an environment where you have to account for printer
usage, the text filter must also account for pages printed,
usually by counting the number of lines printed and comparing
that to the number of lines per page the printer supports. The
text filter is started with the following argument list:
filter-name-c-wwidth-llength-iindent-n login-h hostacct-file
where
appears if the job's submitted with lpr
-lwidthis the value from the pw (page
width) capability specified in
/etc/printcap, default 132lengthis the value from the pl (page
length) capability, default 66indentis the amount of the indentation from lpr
-i, default 0loginis the account name of the user printing the
filehostis the host name from which the job was
submittedacct-fileis the name of the accounting file from the
af capability.
-
+
+ printerfiltersA conversion filter converts a specific
file format into one the printer can render onto paper. For
example, ditroff typesetting data cannot be directly printed,
but you can install a conversion filter for ditroff files to
convert the ditroff data into a form the printer can digest and
print. Section Conversion
Filters tells all about them. Conversion filters also
need to do accounting, if you need printer accounting.
Conversion filters are started with the following arguments:
filter-name-xpixel-width-ypixel-height-n login-h hostacct-file
where pixel-width is the value
from the px capability (default 0) and
pixel-height is the value from the
py capability (default 0).The output filter is used only if there
is no text filter, or if header pages are enabled. In my
experience, output filters are rarely used. Section Output Filters describe
them. There are only two arguments to an output filter:
filter-name-wwidth-llength
which are identical to the text filters and
arguments.Filters should also exit with the
following exit status:exit 0If the filter printed the file successfully.exit 1If the filter failed to print the file but wants LPD to
try to print the file again. LPD will restart a filter if it
exits with this status.exit 2If the filter failed to print the file and does not want
LPD to try again. LPD will throw out the file.The text filter that comes with the FreeBSD release,
/usr/libexec/lpr/lpf, takes advantage of the
page width and length arguments to determine when to send a form
feed and how to account for printer usage. It uses the login, host,
and accounting file arguments to make the accounting entries.If you are shopping for filters, see if they are LPD-compatible.
If they are, they must support the argument lists described above.
If you plan on writing filters for general use, then have them
support the same argument lists and exit codes.Accommodating Plain Text Jobs on PostScript Printers
+ print jobsIf you are the only user of your computer and PostScript (or
other language-based) printer, and you promise to never send plain
text to your printer and to never use features of various programs
that will want to send plain text to your printer, then you do not
need to worry about this section at all.But, if you would like to send both PostScript and plain text
jobs to the printer, then you are urged to augment your printer
setup. To do so, we have the text filter detect if the arriving job
is plain text or PostScript. All PostScript jobs must start with
%! (for other printer languages, see your printer
documentation). If those are the first two characters in the job,
we have PostScript, and can pass the rest of the job directly. If
those are not the first two characters in the file, then the filter
will convert the text into PostScript and print the result.How do we do this?
+ printerserialIf you have got a serial printer, a great way to do it is to
install lprps. lprps is a
PostScript printer filter which performs two-way communication with
the printer. It updates the printer's status file with verbose
information from the printer, so users and administrators can see
exactly what the state of the printer is (such as toner
low or paper jam). But more
importantly, it includes a program called psif
which detects whether the incoming job is plain text and calls
textps (another program that comes with
lprps) to convert it to PostScript. It then uses
lprps to send the job to the printer.lprps is part of the FreeBSD ports collection
(see The Ports Collection). You can
fetch, build and install it yourself, of course. After installing
lprps, just specify the pathname to the
psif program that is part of
lprps. If you installed lprps
from the ports collection, use the following in the serial
PostScript printer's entry in
/etc/printcap::if=/usr/local/libexec/psif:You should also specify the rw capability;
that tells LPD to open the printer in read-write mode.If you have a parallel PostScript printer (and therefore cannot
use two-way communication with the printer, which
lprps needs), you can use the following shell
script as the text filter:#!/bin/sh
#
# psif - Print PostScript or plain text on a PostScript printer
# Script version; NOT the version that comes with lprps
# Installed in /usr/local/libexec/psif
#
read first_line
first_two_chars=`expr "$first_line" : '\(..\)'`
if [ "$first_two_chars" = "%!" ]; then
#
# PostScript job, print it.
#
echo "$first_line" && cat && printf "\004" && exit 0
exit 2
else
#
# Plain text, convert it, then print it.
#
( echo "$first_line"; cat ) | /usr/local/bin/textps && printf "\004" && exit 0
exit 2
fiIn the above script, textps is a program we
installed separately to convert plain text to PostScript. You can
use any text-to-PostScript program you wish. The FreeBSD ports
collection (see The Ports Collection)
includes a full featured text-to-PostScript program called
a2ps that you might want to investigate.Simulating PostScript on Non-PostScript Printers
-
+ PostScriptemulating
+ GhostscriptPostScript is the de facto standard for
high quality typesetting and printing. PostScript is, however, an
expensive standard. Thankfully, Alladin
Enterprises has a free PostScript work-alike called
Ghostscript that runs with FreeBSD.
Ghostscript can read most PostScript files and can render their
pages onto a variety of devices, including many brands of
non-PostScript printers. By installing Ghostscript and using a
special text filter for your printer, you can make your
non-PostScript printer act like a real PostScript printer.Ghostscript is in the FreeBSD ports collection, if you
would like to install it from there. You can fetch, build, and
install it quite easily yourself, as well.To simulate PostScript, we have the text filter detect if it is
printing a PostScript file. If it is not, then the filter will pass
the file directly to the printer; otherwise, it will use Ghostscript
to first convert the file into a format the printer will
understand.Here is an example: the following script is a text filter
for Hewlett Packard DeskJet 500 printers. For other printers,
substitute the argument to the
gs (Ghostscript) command. (Type gs
-h to get a list of devices the current installation of
Ghostscript supports.)#!/bin/sh
#
# ifhp - Print Ghostscript-simulated PostScript on a DeskJet 500
# Installed in /usr/local/libexec/hpif
#
# Treat LF as CR+LF:
#
printf "\033&k2G" || exit 2
#
# Read first two characters of the file
#
read first_line
first_two_chars=`expr "$first_line" : '\(..\)'`
if [ "$first_two_chars" = "%!" ]; then
#
# It is PostScript; use Ghostscript to scan-convert and print it.
#
# Note that PostScript files are actually interpreted programs,
# and those programs are allowed to write to stdout, which will
# mess up the printed output. So, we redirect stdout to stderr
# and then make descriptor 3 go to stdout, and have Ghostscript
# write its output there. Exercise for the clever reader:
# capture the stderr output from Ghostscript and mail it back to
# the user originating the print job.
#
exec 3>&1 1>&2
/usr/local/bin/gs -dSAFER -dNOPAUSE -q -sDEVICE=djet500 \
-sOutputFile=/dev/fd/3 - && exit 0
#
/usr/local/bin/gs -dSAFER -dNOPAUSE -q -sDEVICE=djet500 -sOutputFile=- - \
&& exit 0
else
#
# Plain text or HP/PCL, so just print it directly; print a form
# at the end to eject the last page.
#
echo $first_line && cat && printf "\033&l0H" &&
exit 0
fi
exit 2Finally, you need to notify LPD of the filter via the
if capability::if=/usr/local/libexec/hpif:That is it. You can type lpr plain.text and
lpr whatever.ps and both should print
successfully.Conversion FiltersAfter completing the simple setup described in Simple Printer Setup, the first
thing you will probably want to do is install conversion filters for
your favorite file formats (besides plain ASCII text).Why Install Conversion Filters?
+ TeXprinting dvi filesConversion filters make printing various kinds of files easy.
As an example, suppose we do a lot of work with the TeX
typesetting system, and we have a PostScript printer. Every time
we generate a DVI file from TeX, we cannot print it directly until
we convert the DVI file into PostScript. The command sequence
goes like this:&prompt.user; dvips seaweed-analysis.dvi
&prompt.user; lpr seaweed-analysis.psBy installing a conversion filter for DVI files, we can skip
the hand conversion step each time by having LPD do it for us.
Now, each time we get a DVI file, we are just one step away from
printing it:&prompt.user; lpr -d seaweed-analysis.dviWe got LPD to do the DVI file conversion for us by specifying
the option. Section Formatting and Conversion
Options lists the conversion options.For each of the conversion options you want a printer to
support, install a conversion filter and
specify its pathname in /etc/printcap. A
conversion filter is like the text filter for the simple printer
setup (see section Installing
the Text Filter) except that instead of printing plain
text, the filter converts the file into a format the printer can
understand.Which Conversions Filters Should I Install?You should install the conversion filters you expect to use.
If you print a lot of DVI data, then a DVI conversion filter is in
order. If you have got plenty of troff to print out, then you
probably want a troff filter.The following table summarizes the filters that LPD works
with, their capability entries for the
/etc/printcap file, and how to invoke them
with the lpr command:File type/etc/printcap capabilitylpr optioncifplotcfDVIdfplotgfditroffnfFORTRAN textrftroffrfrastervfplain textifnone, , or
In our example, using lpr -d means the
printer needs a df capability in its entry in
/etc/printcap.
+ fortranDespite what others might contend, formats like FORTRAN text
and plot are probably obsolete. At your site, you can give new
meanings to these or any of the formatting options just by
installing custom filters. For example, suppose you would like to
directly print Printerleaf files (files from the Interleaf desktop
publishing program), but will never print plot files. You could
install a Printerleaf conversion filter under the
gf capability and then educate your users that
lpr -g mean print Printerleaf
files.Installing Conversion FiltersSince conversion filters are programs you install outside of
the base FreeBSD installation, they should probably go under
/usr/local. The directory
/usr/local/libexec is a popular location,
since they are specialized programs that only LPD will run;
regular users should not ever need to run them.To enable a conversion filter, specify its pathname under the
appropriate capability for the destination printer in
/etc/printcap.In our example, we will add the DVI conversion filter to the
entry for the printer named bamboo. Here is
the example /etc/printcap file again, with
the new df capability for the printer
bamboo.#
# /etc/printcap for host rose - added df filter for bamboo
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\
:sh:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:\
:if=/usr/local/libexec/if-simple:
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:\
:lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:\
:if=/usr/local/libexec/psif:\
:df=/usr/local/libexec/psdf:The DVI filter is a shell script named
/usr/local/libexec/psdf. Here is that
script:#!bin/sh
#
# psdf - DVI to PostScript printer filter
# Installed in /usr/local/libexec/psdf
#
# Invoked by lpd when user runs lpr -d
#
exec /usr/local/bin/dvips -f | /usr/local/libexec/lprps "$@"This script runs dvips in filter mode (the
argument) on standard input, which is the job
to print. It then starts the PostScript printer filter
lprps (see section Accommodating Plain
Text Jobs on PostScript Printers) with the arguments LPD
passed to this script. lprps will use those
arguments to account for the pages printed.More Conversion Filter ExamplesSince there is no fixed set of steps to install conversion
filters, let me instead provide more examples. Use these as
guidance to making your own filters. Use them directly, if
appropriate.This example script is a raster (well, GIF file, actually)
conversion filter for a Hewlett Packard LaserJet III-Si
printer:#!/bin/sh
#
# hpvf - Convert GIF files into HP/PCL, then print
# Installed in /usr/local/libexec/hpvf
PATH=/usr/X11R6/bin:$PATH; export PATH
giftopnm | ppmtopgm | pgmtopbm | pbmtolj -resolution 300 \
&& exit 0 \
|| exit 2It works by converting the GIF file into a portable anymap,
converting that into a portable graymap, converting that into a
portable bitmap, and converting that into LaserJet/PCL-compatible
data.Here is the /etc/printcap file with an
entry for a printer using the above filter:#
# /etc/printcap for host orchid
#
teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\
:lp=/dev/lpt0:sh:sd=/var/spool/lpd/teak:mx#0:\
:if=/usr/local/libexec/hpif:\
:vf=/usr/local/libexec/hpvf:The following script is a conversion filter for troff data
from the groff typesetting system for the PostScript printer named
bamboo:#!/bin/sh
#
# pstf - Convert groff's troff data into PS, then print.
# Installed in /usr/local/libexec/pstf
#
exec grops | /usr/local/libexec/lprps "$@"The above script makes use of lprps again
to handle the communication with the printer. If the printer were
on a parallel port, we would use this script instead:#!/bin/sh
#
# pstf - Convert groff's troff data into PS, then print.
# Installed in /usr/local/libexec/pstf
#
exec gropsThat is it. Here is the entry we need to add to
/etc/printcap to enable the filter::tf=/usr/local/libexec/pstf:Here is an example that might make old hands at FORTRAN blush.
It is a FORTRAN-text filter for any printer that can directly
print plain text. We will install it for the printer
teak:#!/bin/sh
#
# hprf - FORTRAN text filter for LaserJet 3si:
# Installed in /usr/local/libexec/hprf
#
printf "\033&k2G" && fpr && printf "\033&l0H" &&
exit 0
exit 2And we will add this line to the
/etc/printcap for the printer
teak to enable this filter::rf=/usr/local/libexec/hprf:Here is one final, somewhat complex example. We will add a
DVI filter to the LaserJet printer teak
introduced earlier. First, the easy part: updating
/etc/printcap with the location of the DVI
filter::df=/usr/local/libexec/hpdf:Now, for the hard part: making the filter. For that, we need
a DVI-to-LaserJet/PCL conversion program. The FreeBSD ports
collection (see The Ports Collection)
has one: dvi2xx is the name of the package.
Installing this package gives us the program we need,
dvilj2p, which converts DVI into LaserJet IIp,
LaserJet III, and LaserJet 2000 compatible codes.dvilj2p makes the filter
hpdf quite complex since
dvilj2p cannot read from standard input. It
wants to work with a filename. What is worse, the filename has to
end in .dvi so using
/dev/fd/0 for standard input is problematic.
We can get around that problem by linking (symbolically) a
temporary file name (one that ends in .dvi)
to /dev/fd/0, thereby forcing
dvilj2p to read from standard input.The only other fly in the ointment is the fact that we cannot
use /tmp for the temporary link. Symbolic
links are owned by user and group bin. The
filter runs as user daemon. And the
/tmp directory has the sticky bit set. The
filter can create the link, but it will not be able clean up when
done and remove it since the link will belong to a different
user.Instead, the filter will make the symbolic link in the current
working directory, which is the spooling directory (specified by
the sd capability in
/etc/printcap). This is a perfect place for
filters to do their work, especially since there is (sometimes)
more free disk space in the spooling directory than under
/tmp.Here, finally, is the filter:#!/bin/sh
#
# hpdf - Print DVI data on HP/PCL printer
# Installed in /usr/local/libexec/hpdf
PATH=/usr/local/bin:$PATH; export PATH
#
# Define a function to clean up our temporary files. These exist
# in the current directory, which will be the spooling directory
# for the printer.
#
cleanup() {
rm -f hpdf$$.dvi
}
#
# Define a function to handle fatal errors: print the given message
# and exit 2. Exiting with 2 tells LPD to do not try to reprint the
# job.
#
fatal() {
echo "$@" 1>&2
cleanup
exit 2
}
#
# If user removes the job, LPD will send SIGINT, so trap SIGINT
# (and a few other signals) to clean up after ourselves.
#
trap cleanup 1 2 15
#
# Make sure we are not colliding with any existing files.
#
cleanup
#
# Link the DVI input file to standard input (the file to print).
#
ln -s /dev/fd/0 hpdf$$.dvi || fatal "Cannot symlink /dev/fd/0"
#
# Make LF = CR+LF
#
printf "\033&k2G" || fatal "Cannot initialize printer"
#
# Convert and print. Return value from dvilj2p does not seem to be
# reliable, so we ignore it.
#
dvilj2p -M1 -q -e- dfhp$$.dvi
#
# Clean up and exit
#
cleanup
exit 0Automated Conversion: An Alternative To Conversion
FiltersAll these conversion filters accomplish a lot for your
printing environment, but at the cost forcing the user to specify
(on the &man.lpr.1; command line) which one to use.
If your users are not particularly computer literate, having to
specify a filter option will become annoying. What is worse,
though, is that an incorrectly specified filter option may run a
filter on the wrong type of file and cause your printer to spew
out hundreds of sheets of paper.Rather than install conversion filters at all, you might want
to try having the text filter (since it is the default filter)
detect the type of file it has been asked to print and then
automatically run the right conversion filter. Tools such as
file can be of help here. Of course, it will
be hard to determine the differences between
some file types—and, of course, you can
still provide conversion filters just for them.
+ apsfilter
+ printerfiltersapsfilterThe FreeBSD ports collection has a text filter that performs
automatic conversion called apsfilter. It can
detect plain text, PostScript, and DVI files, run the proper
conversions, and print.Output FiltersThe LPD spooling system supports one other type of filter that
we have not yet explored: an output filter. An output filter is
intended for printing plain text only, like the text filter, but
with many simplifications. If you are using an output filter but no
text filter, then:LPD starts an output filter once for the entire job instead
of once for each file in the job.LPD does not make any provision to identify the start or the
end of files within the job for the output filter.LPD does not pass the user's login or host to the filter, so
it is not intended to do accounting. In fact, it gets only two
arguments:filter-name-wwidth-llengthWhere width is from the
pw capability and
length is from the
pl capability for the printer in
question.Do not be seduced by an output filter's simplicity. If you
would like each file in a job to start on a different page an output
filter will not work. Use a text filter (also
known as an input filter); see section Installing the Text Filter.
Furthermore, an output filter is actually more
complex in that it has to examine the byte stream being
sent to it for special flag characters and must send signals to
itself on behalf of LPD.However, an output filter is necessary if
you want header pages and need to send escape sequences or other
initialization strings to be able to print the header page. (But it
is also futile if you want to charge header
pages to the requesting user's account, since LPD does not give any
user or host information to the output filter.)On a single printer, LPD allows both an output filter and text
or other filters. In such cases, LPD will start the output filter
to print the header page (see section Header Pages)
only. LPD then expects the output filter to stop
itself by sending two bytes to the filter: ASCII 031
followed by ASCII 001. When an output filter sees these two bytes
(031, 001), it should stop by sending SIGSTOP to itself. When LPD's
done running other filters, it will restart the output filter by
sending SIGCONT to it.If there is an output filter but no text
filter and LPD is working on a plain text job, LPD uses the output
filter to do the job. As stated before, the output filter will
print each file of the job in sequence with no intervening form
feeds or other paper advancement, and this is probably
not what you want. In almost all cases, you
need a text filter.The program lpf, which we introduced earlier
as a text filter, can also run as an output filter. If you need a
quick-and-dirty output filter but do not want to write the byte
detection and signal sending code, try lpf. You
can also wrap lpf in a shell script to handle any
initialization codes the printer might require.lpf: a Text FilterThe program /usr/libexec/lpr/lpf that comes
with FreeBSD binary distribution is a text filter (input filter)
that can indent output (job submitted with lpr
-i), allow literal characters to pass (job submitted
with lpr -l), adjust the printing position for
backspaces and tabs in the job, and account for pages printed. It
can also act like an output filter.lpf is suitable for many printing
environments. And although it has no capability to send
initialization sequences to a printer, it is easy to write a shell
script to do the needed initialization and then execute
lpf.
+ page accounting
+ accountingprinterIn order for lpf to do page accounting
correctly, it needs correct values filled in for the
pw and pl capabilities in the
/etc/printcap file. It uses these values to
determine how much text can fit on a page and how many pages were in
a user's job. For more information on printer accounting, see Accounting for Printer
Usage.Header PagesIf you have lots of users, all of them using
various printers, then you probably want to consider header
pages as a necessary evil.
+ banner pages (see header pages)
+ header pagesHeader pages, also known as banner or
burst pages identify to whom jobs belong after
they are printed. They are usually printed in large, bold letters,
perhaps with decorative borders, so that in a stack of printouts they
stand out from the real documents that comprise users' jobs. They
enable users to locate their jobs quickly. The obvious drawback to a
header page is that it is yet one more sheet that has to be printed
for every job, their ephemeral usefulness lasting not more than a few
minutes, ultimately finding themselves in a recycling bin or rubbish
heap. (Note that header pages go with each job, not each file in a
job, so the paper waste might not be that bad.)The LPD system can provide header pages automatically for your
printouts if your printer can directly print
plain text. If you have a PostScript printer, you will need an
external program to generate the header page; see Header Pages on
PostScript Printers.Enabling Header PagesIn the Simple Printer
Setup, we turned off header pages by specifying
sh (meaning suppress header) in the
/etc/printcap file. To enable header pages for
a printer, just remove the sh capability.Sounds too easy, right?You are right. You might have to provide
an output filter to send initialization strings to the printer.
Here is an example output filter for Hewlett Packard PCL-compatible
printers:#!/bin/sh
#
# hpof - Output filter for Hewlett Packard PCL-compatible printers
# Installed in /usr/local/libexec/hpof
printf "\033&k2G" || exit 2
exec /usr/libexec/lpr/lpfSpecify the path to the output filter in the
of capability. See Output Filters for more
information.Here is an example /etc/printcap file for
the printer teak that we introduced earlier; we
enabled header pages and added the above output filter:#
# /etc/printcap for host orchid
#
teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\
:lp=/dev/lpt0:sd=/var/spool/lpd/teak:mx#0:\
:if=/usr/local/libexec/hpif:\
:vf=/usr/local/libexec/hpvf:\
:of=/usr/local/libexec/hpof:Now, when users print jobs to teak, they get
a header page with each job. If users want to spend time searching
for their printouts, they can suppress header pages by submitting
the job with lpr -h; see Header Page Options for
more &man.lpr.1; options.LPD prints a form feed character after the header page. If
your printer uses a different character or sequence of characters
to eject a page, specify them with the ff
capability in /etc/printcap.Controlling Header PagesBy enabling header pages, LPD will produce a long
header, a full page of large letters identifying the
user, host, and job. Here is an example (kelly printed the job
named outline from host rose): k ll ll
k l l
k l l
k k eeee l l y y
k k e e l l y y
k k eeeeee l l y y
kk k e l l y y
k k e e l l y yy
k k eeee lll lll yyy y
y
y y
yyyy
ll
t l i
t l
oooo u u ttttt l ii n nnn eeee
o o u u t l i nn n e e
o o u u t l i n n eeeeee
o o u u t l i n n e
o o u uu t t l i n n e e
oooo uuu u tt lll iii n n eeee
r rrr oooo ssss eeee
rr r o o s s e e
r o o ss eeeeee
r o o ss e
r o o s s e e
r oooo ssss eeee
Job: outline
Date: Sun Sep 17 11:04:58 1995LPD appends a form feed after this text so the job starts on a
new page (unless you have sf (suppress form
feeds) in the destination printer's entry in
/etc/printcap).If you prefer, LPD can make a short header;
specify sb (short banner) in the
/etc/printcap file. The header page will look
like this:rose:kelly Job: outline Date: Sun Sep 17 11:07:51 1995Also by default, LPD prints the header page first, then the job.
To reverse that, specify hl (header last) in
/etc/printcap.Accounting for Header PagesUsing LPD's built-in header pages enforces a particular paradigm
when it comes to printer accounting: header pages must be
free of charge.Why?Because the output filter is the only external program that will
have control when the header page is printed that could do
accounting, and it is not provided with any user or
host information or an accounting file, so it has no
idea whom to charge for printer use. It is also not enough to just
add one page to the text filter or any of the
conversion filters (which do have user and host information) since
users can suppress header pages with lpr -h.
They could still be charged for header pages they did not print.
Basically, lpr -h will be the preferred option of
environmentally-minded users, but you cannot offer any incentive to
use it.It is still not enough to have each of the
filters generate their own header pages (thereby being able to
charge for them). If users wanted the option of suppressing the
header pages with lpr -h, they will still get
them and be charged for them since LPD does not pass any knowledge
of the option to any of the filters.So, what are your options?You can:Accept LPD's paradigm and make header pages free.Install an alternative to LPD, such as LPRng. Section
Alternatives to the
Standard Spooler tells more about other spooling
software you can substitute for LPD.Write a smart output filter. Normally,
an output filter is not meant to do anything more than
initialize a printer or do some simple character conversion. It
is suited for header pages and plain text jobs (when there is no
text (input) filter). But, if there is a text filter for the
plain text jobs, then LPD will start the output filter only for
the header pages. And the output filter can parse the header
page text that LPD generates to determine what user and host to
charge for the header page. The only other problem with this
method is that the output filter still does not know what
accounting file to use (it is not passed the name of the file
from the af capability), but if you have a
well-known accounting file, you can hard-code that into the
output filter. To facilitate the parsing step, use the
sh (short header) capability in
/etc/printcap. Then again, all that might
be too much trouble, and users will certainly appreciate the
more generous system administrator who makes header pages
free.Header Pages on PostScript PrintersAs described above, LPD can generate a plain text header page
suitable for many printers. Of course, PostScript cannot directly
print plain text, so the header page feature of LPD is
useless—or mostly so.One obvious way to get header pages is to have every conversion
filter and the text filter generate the header page. The filters
should use the user and host arguments to generate a suitable
header page. The drawback of this method is that users will always
get a header page, even if they submit jobs with lpr
-h.Let us explore this method. The following script takes three
arguments (user login name, host name, and job name) and makes a
simple PostScript header page:#!/bin/sh
#
# make-ps-header - make a PostScript header page on stdout
# Installed in /usr/local/libexec/make-ps-header
#
#
# These are PostScript units (72 to the inch). Modify for A4 or
# whatever size paper you are using:
#
page_width=612
page_height=792
border=72
#
# Check arguments
#
if [ $# -ne 3 ]; then
echo "Usage: `basename $0` <user> <host> <job>" 1>&2
exit 1
fi
#
# Save these, mostly for readability in the PostScript, below.
#
user=$1
host=$2
job=$3
date=`date`
#
# Send the PostScript code to stdout.
#
exec cat <<EOF
%!PS
%
% Make sure we do not interfere with user's job that will follow
%
save
%
% Make a thick, unpleasant border around the edge of the paper.
%
$border $border moveto
$page_width $border 2 mul sub 0 rlineto
0 $page_height $border 2 mul sub rlineto
currentscreen 3 -1 roll pop 100 3 1 roll setscreen
$border 2 mul $page_width sub 0 rlineto closepath
0.8 setgray 10 setlinewidth stroke 0 setgray
%
% Display user's login name, nice and large and prominent
%
/Helvetica-Bold findfont 64 scalefont setfont
$page_width ($user) stringwidth pop sub 2 div $page_height 200 sub moveto
($user) show
%
% Now show the boring particulars
%
/Helvetica findfont 14 scalefont setfont
/y 200 def
[ (Job:) (Host:) (Date:) ] {
200 y moveto show /y y 18 sub def }
forall
/Helvetica-Bold findfont 14 scalefont setfont
/y 200 def
[ ($job) ($host) ($date) ] {
270 y moveto show /y y 18 sub def
} forall
%
% That is it
%
restore
showpage
EOFNow, each of the conversion filters and the text filter can call
this script to first generate the header page, and then print the
user's job. Here is the DVI conversion filter from earlier in this
document, modified to make a header page:#!/bin/sh
#
# psdf - DVI to PostScript printer filter
# Installed in /usr/local/libexec/psdf
#
# Invoked by lpd when user runs lpr -d
#
orig_args="$@"
fail() {
echo "$@" 1>&2
exit 2
}
while getopts "x:y:n:h:" option; do
case $option in
x|y) ;; # Ignore
n) login=$OPTARG ;;
h) host=$OPTARG ;;
*) echo "LPD started `basename $0` wrong." 1>&2
exit 2
;;
esac
done
[ "$login" ] || fail "No login name"
[ "$host" ] || fail "No host name"
( /usr/local/libexec/make-ps-header $login $host "DVI File"
/usr/local/bin/dvips -f ) | eval /usr/local/libexec/lprps $orig_argsNotice how the filter has to parse the argument list in order to
determine the user and host name. The parsing for the other
conversion filters is identical. The text filter takes a slightly
different set of arguments, though (see section How Filters
Work).As we have mentioned before, the above scheme, though fairly
simple, disables the suppress header page option (the
option) to lpr. If users
wanted to save a tree (or a few pennies, if you charge for header
pages), they would not be able to do so, since every filter's going
to print a header page with every job.To allow users to shut off header pages on a per-job basis, you
will need to use the trick introduced in section Accounting for
Header Pages: write an output filter that parses the
LPD-generated header page and produces a PostScript version. If the
user submits the job with lpr -h, then LPD will
not generate a header page, and neither will your output filter.
Otherwise, your output filter will read the text from LPD and send
the appropriate header page PostScript code to the printer.If you have a PostScript printer on a serial line, you can make
use of lprps, which comes with an output filter,
psof, which does the above. Note that
psof does not charge for header pages.Networked Printing
+ printernetwork
+ network printingFreeBSD supports networked printing: sending jobs to remote
printers. Networked printing generally refers to two different
things:Accessing a printer attached to a remote host. You install a
printer that has a conventional serial or parallel interface on
one host. Then, you set up LPD to enable access to the printer
from other hosts on the network. Section Printers Installed on
Remote Hosts tells how to do this.Accessing a printer attached directly to a network. The
printer has a network interface in addition (or in place of) a
more conventional serial or parallel interface. Such a printer
might work as follows:It might understand the LPD protocol and can even queue
jobs from remote hosts. In this case, it acts just like a
regular host running LPD. Follow the same procedure in
section Printers
Installed on Remote Hosts to set up such a
printer.It might support a data stream network connection. In this
case, you attach the printer to one host on the
network by making that host responsible for spooling jobs and
sending them to the printer. Section Printers with
Networked Data Stream Interfaces gives some
suggestions on installing such printers.Printers Installed on Remote HostsThe LPD spooling system has built-in support for sending jobs to
other hosts also running LPD (or are compatible with LPD). This
feature enables you to install a printer on one host and make it
accessible from other hosts. It also works with printers that have
network interfaces that understand the LPD protocol.To enable this kind of remote printing, first install a printer
on one host, the printer host, using the simple
printer setup described in Simple
Printer Setup. Do any advanced setup in Advanced Printer Setup that you
need. Make sure to test the printer and see if it works with the
features of LPD you have enabled. Also ensure that the
local host has authorization to use the LPD
service in the remote host (see Restricting Jobs
from Remote Printers).
+ printernetwork
+
+ network printingIf you are using a printer with a network interface that is
compatible with LPD, then the printer host in
the discussion below is the printer itself, and the
printer name is the name you configured for the
printer. See the documentation that accompanied your printer and/or
printer-network interface.If you are using a Hewlett Packard Laserjet then the printer
name text will automatically perform the LF to
CRLF conversion for you, so you will not require the
hpif script.Then, on the other hosts you want to have access to the printer,
make an entry in their /etc/printcap files with
the following:Name the entry anything you want. For simplicity, though,
you probably want to use the same name and aliases as on the
printer host.Leave the lp capability blank, explicitly
(:lp=:).Make a spooling directory and specify its location in the
sd capability. LPD will store jobs here
before they get sent to the printer host.Place the name of the printer host in the
rm capability.Place the printer name on the printer
host in the rp
capability.That is it. You do not need to list conversion filters, page
dimensions, or anything else in the
/etc/printcap file.Here is an example. The host rose has two
printers, bamboo and rattan.
We will enable users on the host orchid to print to those printers.
Here is the /etc/printcap file for
orchid (back from section Enabling Header
Pages). It already had the entry for the printer
teak; we have added entries for the two printers
on the host rose:#
# /etc/printcap for host orchid - added (remote) printers on rose
#
#
# teak is local; it is connected directly to orchid:
#
teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\
:lp=/dev/lpt0:sd=/var/spool/lpd/teak:mx#0:\
:if=/usr/local/libexec/ifhp:\
:vf=/usr/local/libexec/vfhp:\
:of=/usr/local/libexec/ofhp:
#
# rattan is connected to rose; send jobs for rattan to rose:
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\
:lp=:rm=rose:rp=rattan:sd=/var/spool/lpd/rattan:
#
# bamboo is connected to rose as well:
#
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:lp=:rm=rose:rp=bamboo:sd=/var/spool/lpd/bamboo:Then, we just need to make spooling directories on
orchid:&prompt.root; mkdir -p /var/spool/lpd/rattan /var/spool/lpd/bamboo
&prompt.root; chmod 770 /var/spool/lpd/rattan /var/spool/lpd/bamboo
&prompt.root; chown daemon:daemon /var/spool/lpd/rattan /var/spool/lpd/bambooNow, users on orchid can print to
rattan and bamboo. If, for
example, a user on orchid typed
&prompt.user; lpr -P bamboo -d sushi-review.dvi
the LPD system on orchid would copy the job to the spooling
directory /var/spool/lpd/bamboo and note that
it was a DVI job. As soon as the host rose has room in its
bamboo spooling directory, the two LPDs would
transfer the file to rose. The file would wait in rose's queue
until it was finally printed. It would be converted from DVI to
PostScript (since bamboo is a PostScript printer) on rose.Printers with Networked Data Stream InterfacesOften, when you buy a network interface card for a printer, you
can get two versions: one which emulates a spooler (the more
expensive version), or one which just lets you send data to it as if
you were using a serial or parallel port (the cheaper version).
This section tells how to use the cheaper version. For the more
expensive one, see the previous section Printers Installed on
Remote Hosts.The format of the /etc/printcap file lets
you specify what serial or parallel interface to use, and (if you
are using a serial interface), what baud rate, whether to use flow
control, delays for tabs, conversion of newlines, and more. But
there is no way to specify a connection to a printer that is
listening on a TCP/IP or other network port.To send data to a networked printer, you need to develop a
communications program that can be called by the text and conversion
filters. Here is one such example: the script
netprint takes all data on standard input and
sends it to a network-attached printer. We specify the hostname of
the printer as the first argument and the port number to which to
connect as the second argument to netprint. Note
that this supports one-way communication only (FreeBSD to printer);
many network printers support two-way communication, and you might
want to take advantage of that (to get printer status, perform
accounting, etc.).#!/usr/bin/perl
#
# netprint - Text filter for printer attached to network
# Installed in /usr/local/libexec/netprint
#
$#ARGV eq 1 || die "Usage: $0 <printer-hostname> <port-number>";
$printer_host = $ARGV[0];
$printer_port = $ARGV[1];
require 'sys/socket.ph';
($ignore, $ignore, $protocol) = getprotobyname('tcp');
($ignore, $ignore, $ignore, $ignore, $address)
= gethostbyname($printer_host);
$sockaddr = pack('S n a4 x8', &AF_INET, $printer_port, $address);
socket(PRINTER, &PF_INET, &SOCK_STREAM, $protocol)
|| die "Can't create TCP/IP stream socket: $!";
connect(PRINTER, $sockaddr) || die "Can't contact $printer_host: $!";
while (<STDIN>) { print PRINTER; }
exit 0;We can then use this script in various filters. Suppose we had
a Diablo 750-N line printer connected to the network. The printer
accepts data to print on port number 5100. The host name of the
printer is scrivener. Here is the text filter for the
printer:#!/bin/sh
#
# diablo-if-net - Text filter for Diablo printer `scrivener' listening
# on port 5100. Installed in /usr/local/libexec/diablo-if-net
#
exec /usr/libexec/lpr/lpf "$@" | /usr/local/libexec/netprint scrivener 5100Restricting Printer UsageThis section gives information on restricting printer usage. The
+ printerrestricting
+ access to
LPD system lets you control who can access a printer, both locally or
remotely, whether they can print multiple copies, how large their jobs
can be, and how large the printer queues can get.Restricting Multiple CopiesThe LPD system makes it easy for users to print multiple copies
of a file. Users can print jobs with lpr -#5
(for example) and get five copies of each file in the job. Whether
this is a good thing is up to you.If you feel multiple copies cause unnecessary wear and tear on
your printers, you can disable the option to
&man.lpr.1; by adding the sc capability to the
/etc/printcap file. When users submit jobs
with the option, they will see:lpr: multiple copies are not allowedNote that if you have set up access to a printer remotely (see
section Printers
Installed on Remote Hosts), you need the
sc capability on the remote
/etc/printcap files as well, or else users will
still be able to submit multiple-copy jobs by using another
host.Here is an example. This is the
/etc/printcap file for the host
rose. The printer rattan is
quite hearty, so we will allow multiple copies, but the laser
printer bamboo's a bit more delicate, so we will
disable multiple copies by adding the sc
capability:#
# /etc/printcap for host rose - restrict multiple copies on bamboo
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\
:sh:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:\
:if=/usr/local/libexec/if-simple:
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:sc:\
:lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:\
:if=/usr/local/libexec/psif:\
:df=/usr/local/libexec/psdf:Now, we also need to add the sc capability on
the host orchid's
/etc/printcap (and while we are at it, let us
disable multiple copies for the printer
teak):#
# /etc/printcap for host orchid - no multiple copies for local
# printer teak or remote printer bamboo
teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\
:lp=/dev/lpt0:sd=/var/spool/lpd/teak:mx#0:sc:\
:if=/usr/local/libexec/ifhp:\
:vf=/usr/local/libexec/vfhp:\
:of=/usr/local/libexec/ofhp:
rattan|line|diablo|lp|Diablo 630 Line Printer:\
:lp=:rm=rose:rp=rattan:sd=/var/spool/lpd/rattan:
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:lp=:rm=rose:rp=bamboo:sd=/var/spool/lpd/bamboo:sc:By using the sc capability, we prevent the
use of lpr -#, but that still does not prevent
users from running &man.lpr.1;
multiple times, or from submitting the same file multiple times in
one job like this:&prompt.user; lpr forsale.sign forsale.sign forsale.sign forsale.sign forsale.signThere are many ways to prevent this abuse (including ignoring
it) which you are free to explore.Restricting Access To PrintersYou can control who can print to what printers by using the UNIX
group mechanism and the rg capability in
/etc/printcap. Just place the users you want
to have access to a printer in a certain group, and then name that
group in the rg capability.Users outside the group (including root) will be greeted with
lpr: Not a member of the restricted group
if they try to print to the controlled printer.As with the sc (suppress multiple copies)
capability, you need to specify rg on remote
hosts that also have access to your printers, if you feel it is
appropriate (see section Printers Installed on
Remote Hosts).For example, we will let anyone access the printer
rattan, but only those in group
artists can use bamboo. Here
is the familiar /etc/printcap for host
rose:#
# /etc/printcap for host rose - restricted group for bamboo
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\
:sh:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:\
:if=/usr/local/libexec/if-simple:
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:sc:rg=artists:\
:lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:\
:if=/usr/local/libexec/psif:\
:df=/usr/local/libexec/psdf:Let us leave the other example
/etc/printcap file (for the host
orchid) alone. Of course, anyone on
orchid can print to bamboo. It
might be the case that we only allow certain logins on
orchid anyway, and want them to have access to the
printer. Or not.There can be only one restricted group per printer.Controlling Sizes of Jobs Submitted
+ print jobsIf you have many users accessing the printers, you probably need
to put an upper limit on the sizes of the files users can submit to
print. After all, there is only so much free space on the
filesystem that houses the spooling directories, and you also need
to make sure there is room for the jobs of other users.
+ print jobscontrollingLPD enables you to limit the maximum byte size a file in a job
can be with the mx capability. The units are in
BUFSIZ blocks, which are 1024 bytes. If you put a zero for this
capability, there will be no limit on file size; however, if no
mx capability is specified, then a default limit
of 1000 blocks will be used.The limit applies to files in a job, and
not the total job size.LPD will not refuse a file that is larger than the limit you
place on a printer. Instead, it will queue as much of the file up
to the limit, which will then get printed. The rest will be
discarded. Whether this is correct behavior is up for
debate.Let us add limits to our example printers
rattan and bamboo. Since
those artists' PostScript files tend to be large, we will limit them
to five megabytes. We will put no limit on the plain text line
printer:#
# /etc/printcap for host rose
#
#
# No limit on job size:
#
rattan|line|diablo|lp|Diablo 630 Line Printer:\
:sh:mx#0:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:\
:if=/usr/local/libexec/if-simple:
#
# Limit of five megabytes:
#
bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:sc:rg=artists:mx#5000:\
:lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:\
:if=/usr/local/libexec/psif:\
:df=/usr/local/libexec/psdf:Again, the limits apply to the local users only. If you have
set up access to your printers remotely, remote users will not get
those limits. You will need to specify the mx
capability in the remote /etc/printcap files as
well. See section Printers Installed on
Remote Hosts for more information on remote
printing.There is another specialized way to limit job sizes from remote
printers; see section Restricting Jobs
from Remote Printers.Restricting Jobs from Remote PrintersThe LPD spooling system provides several ways to restrict print
jobs submitted from remote hosts:Host restrictionsYou can control from which remote hosts a local LPD
accepts requests with the files
/etc/hosts.equiv and
/etc/hosts.lpd. LPD checks to see if an
incoming request is from a host listed in either one of these
files. If not, LPD refuses the request.The format of these files is simple: one host name per
line. Note that the file
/etc/hosts.equiv is also used by the
&man.ruserok.3; protocol, and affects programs like
&man.rsh.1; and &man.rcp.1;, so be careful.For example, here is the
/etc/hosts.lpd file on the host
rose:orchid
violet
madrigal.fishbaum.deThis means rose will accept requests from
the hosts orchid, violet,
and madrigal.fishbaum.de. If any
other host tries to access rose's
LPD, the job will be refused.Size restrictionsYou can control how much free space there needs to remain
on the filesystem where a spooling directory resides. Make a
file called minfree in the spooling
directory for the local printer. Insert in that file a number
representing how many disk blocks (512 bytes) of free space
there has to be for a remote job to be accepted.This lets you insure that remote users will not fill your
filesystem. You can also use it to give a certain priority to
local users: they will be able to queue jobs long after the
free disk space has fallen below the amount specified in the
minfree file.For example, let us add a minfree
file for the printer bamboo. We examine
/etc/printcap to find the spooling
directory for this printer; here is bamboo's
entry:bamboo|ps|PS|S|panasonic|Panasonic KX-P4455 PostScript v51.4:\
:sh:sd=/var/spool/lpd/bamboo:sc:rg=artists:mx#5000:\
:lp=/dev/ttyd5:fs#0x82000e1:xs#0x820:rw:mx#5000:\
:if=/usr/local/libexec/psif:\
:df=/usr/local/libexec/psdf:The spooling directory is the given in the
sd capability. We will make three
megabytes (which is 6144 disk blocks) the amount of free disk
space that must exist on the filesystem for LPD to accept
remote jobs:&prompt.root; echo 6144 > /var/spool/lpd/bam
boo/minfreeUser restrictionsYou can control which remote users can print to local
printers by specifying the rs capability in
/etc/printcap. When
rs appears in the entry for a
locally-attached printer, LPD will accept jobs from remote
hosts if the user submitting the job also
has an account of the same login name on the local host.
Otherwise, LPD refuses the job.This capability is particularly useful in an environment
where there are (for example) different departments sharing a
network, and some users transcend departmental boundaries. By
giving them accounts on your systems, they can use your
printers from their own departmental systems. If you would
rather allow them to use only your
printers and not your compute resources, you can give them
token accounts, with no home directory and a
useless shell like /usr/bin/false.Accounting for Printer Usage
+ accountingprinterSo, you need to charge for printouts. And why not? Paper and ink
cost money. And then there are maintenance costs—printers are
loaded with moving parts and tend to break down. You have examined
your printers, usage patterns, and maintenance fees and have come up
with a per-page (or per-foot, per-meter, or per-whatever) cost. Now,
how do you actually start accounting for printouts?Well, the bad news is the LPD spooling system does not provide
much help in this department. Accounting is highly dependent on the
kind of printer in use, the formats being printed, and
your requirements in charging for printer
usage.To implement accounting, you have to modify a printer's text
filter (to charge for plain text jobs) and the conversion filters (to
charge for other file formats), to count pages or query the printer
for pages printed. You cannot get away with using the simple output
filter, since it cannot do accounting. See section Filters.Generally, there are two ways to do accounting:Periodic accounting is the more common
way, possibly because it is easier. Whenever someone prints a
job, the filter logs the user, host, and number of pages to an
accounting file. Every month, semester, year, or whatever time
period you prefer, you collect the accounting files for the
various printers, tally up the pages printed by users, and charge
for usage. Then you truncate all the logging files, starting with
a clean slate for the next period.Timely accounting is less common,
probably because it is more difficult. This method has the
filters charge users for printouts as soon as they use the
printers. Like disk quotas, the accounting is immediate. You can
prevent users from printing when their account goes in the red,
and might provide a way for users to check and adjust their
print quotas. But this method requires some database
code to track users and their quotas.The LPD spooling system supports both methods easily: since you
have to provide the filters (well, most of the time), you also have to
provide the accounting code. But there is a bright side: you have
enormous flexibility in your accounting methods. For example, you
choose whether to use periodic or timely accounting. You choose what
information to log: user names, host names, job types, pages printed,
square footage of paper used, how long the job took to print, and so
forth. And you do so by modifying the filters to save this
information.Quick and Dirty Printer AccountingFreeBSD comes with two programs that can get you set up with
simple periodic accounting right away. They are the text filter
lpf, described in section lpf: a Text Filter, and
&man.pac.8;, a program to gather and total
entries from printer accounting files.As mentioned in the section on filters (Filters), LPD starts
the text and the conversion filters with the name of the accounting
file to use on the filter command line. The filters can use this
argument to know where to write an accounting file entry. The name
of this file comes from the af capability in
/etc/printcap, and if not specified as an
absolute path, is relative to the spooling directory.LPD starts lpf with page width and length
arguments (from the pw and pl
capabilities). lpf uses these arguments to
determine how much paper will be used. After sending the file to
the printer, it then writes an accounting entry in the accounting
file. The entries look like this:2.00 rose:andy
3.00 rose:kelly
3.00 orchid:mary
5.00 orchid:mary
2.00 orchid:zhangYou should use a separate accounting file for each printer, as
lpf has no file locking logic built into it, and
two lpfs might corrupt each other's entries if
they were to write to the same file at the same time. A easy way to
insure a separate accounting file for each printer is to use
af=acct in /etc/printcap.
Then, each accounting file will be in the spooling directory for a
printer, in a file named acct.When you are ready to charge users for printouts, run the
&man.pac.8; program. Just change to the spooling directory for
the printer you want to collect on and type pac.
You will get a dollar-centric summary like the following: Login pages/feet runs price
orchid:kelly 5.00 1 $ 0.10
orchid:mary 31.00 3 $ 0.62
orchid:zhang 9.00 1 $ 0.18
rose:andy 2.00 1 $ 0.04
rose:kelly 177.00 104 $ 3.54
rose:mary 87.00 32 $ 1.74
rose:root 26.00 12 $ 0.52
total 337.00 154 $ 6.74These are the arguments &man.pac.8; expects:Which printer to summarize.
This option works only if there is an absolute path in the
af capability in
/etc/printcap.Sort the output by cost instead of alphabetically by user
name.Ignore host name in the accounting files. With this
option, user smith on host
alpha is the same user
smith on host gamma.
Without, they are different users.Compute charges with price
dollars per page or per foot instead of the price from the
pc capability in
/etc/printcap, or two cents (the
default). You can specify price as
a floating point number.Reverse the sort order.Make an accounting summary file and truncate the
accounting file.name…Print accounting information for the given user
names only.In the default summary that &man.pac.8; produces, you see the
number of pages printed by each user from various hosts. If, at
your site, host does not matter (because users can use any host),
run pac -m, to produce the following
summary: Login pages/feet runs price
andy 2.00 1 $ 0.04
kelly 182.00 105 $ 3.64
mary 118.00 35 $ 2.36
root 26.00 12 $ 0.52
zhang 9.00 1 $ 0.18
total 337.00 154 $ 6.74To compute the dollar amount due,
&man.pac.8; uses the pc capability in the
/etc/printcap file (default of 200, or 2 cents
per page). Specify, in hundredths of cents, the price per page or
per foot you want to charge for printouts in this capability. You
can override this value when you run &man.pac.8; with the
option. The units for the
option are in dollars, though, not hundredths of cents. For
example,
&prompt.root; pac -p1.50
makes each page cost one dollar and fifty cents. You can really
rake in the profits by using this option.Finally, running pac -s will save the summary
information in a summary accounting file, which is named the same as
the printer's accounting file, but with _sum
appended to the name. It then truncates the accounting file. When
you run &man.pac.8; again, it rereads the
summary file to get starting totals, then adds information from the
regular accounting file.How Can You Count Pages Printed?In order to perform even remotely accurate accounting, you need
to be able to determine how much paper a job uses. This is the
essential problem of printer accounting.For plain text jobs, the problem is not that hard to solve: you
count how many lines are in a job and compare it to how many lines
per page your printer supports. Do not forget to take into account
backspaces in the file which overprint lines, or long logical lines
that wrap onto one or more additional physical lines.The text filter lpf (introduced in lpf: a Text Filter) takes
into account these things when it does accounting. If you are
writing a text filter which needs to do accounting, you might want
to examine lpf's source code.How do you handle other file formats, though?Well, for DVI-to-LaserJet or DVI-to-PostScript conversion, you
can have your filter parse the diagnostic output of
dvilj or dvips and look to see
how many pages were converted. You might be able to do similar
things with other file formats and conversion programs.But these methods suffer from the fact that the printer may not
actually print all those pages. For example, it could jam, run out
of toner, or explode—and the user would still get
charged.So, what can you do?There is only one sure way to do
accurate accounting. Get a printer that can
tell you how much paper it uses, and attach it via a serial line or
a network connection. Nearly all PostScript printers support this
notion. Other makes and models do as well (networked Imagen laser
printers, for example). Modify the filters for these printers to
get the page usage after they print each job and have them log
accounting information based on that value
only. There is no line counting nor
error-prone file examination required.Of course, you can always be generous and make all printouts
free.Using Printers
+ printerusageThis section tells you how to use printers you have setup with
FreeBSD. Here is an overview of the user-level commands:&man.lpr.1;Print jobs&man.lpq.1;Check printer queues&man.lprm.1;Remove jobs from a printer's queueThere is also an administrative command, &man.lpc.8;, described in
the section Administrating the LPD
Spooler, used to control printers and their queues.All three of the commands &man.lpr.1;, &man.lprm.1;, and &man.lpq.1;
accept an option to specify on which
printer/queue to operate, as listed in the
/etc/printcap file. This enables you to submit,
remove, and check on jobs for various printers. If you do not use the
option, then these commands use the printer
specified in the PRINTER environment variable. Finally,
if you do not have a PRINTER environment variable, these
commands default to the printer named lp.Hereafter, the terminology default printer
means the printer named in the PRINTER environment
variable, or the printer named lp when there is no
PRINTER environment variable.Printing JobsTo print files, type:&prompt.user; lpr filename...
+ printingThis prints each of the listed files to the default printer. If
you list no files, &man.lpr.1; reads data to
print from standard input. For example, this command prints some
important system files:&prompt.user; lpr /etc/host.conf /etc/hosts.equivTo select a specific printer, type:&prompt.user; lpr -P printer-namefilename...This example prints a long listing of the current directory to the
printer named rattan:&prompt.user; ls -l | lpr -P rattanBecause no files were listed for the
&man.lpr.1; command, lpr read the data to print
from standard input, which was the output of the ls
-l command.The &man.lpr.1; command can also accept a wide variety of options
to control formatting, apply file conversions, generate multiple
copies, and so forth. For more information, see the section Printing Options.Checking Jobs
+ print jobsWhen you print with &man.lpr.1;, the data you wish to print is put
together in a package called a print job, which is sent
to the LPD spooling system. Each printer has a queue of jobs, and
your job waits in that queue along with other jobs from yourself and
from other users. The printer prints those jobs in a first-come,
first-served order.To display the queue for the default printer, type &man.lpq.1;.
For a specific printer, use the option. For
example, the command
&prompt.user; lpq -P bamboo
shows the queue for the printer named bamboo. Here
is an example of the output of the lpq
command:bamboo is ready and printing
Rank Owner Job Files Total Size
active kelly 9 /etc/host.conf, /etc/hosts.equiv 88 bytes
2nd kelly 10 (standard input) 1635 bytes
3rd mary 11 ... 78519 bytesThis shows three jobs in the queue for bamboo.
The first job, submitted by user kelly, got assigned job
number 9. Every job for a printer gets a unique job number.
Most of the time you can ignore the job number, but you will need it
if you want to cancel the job; see section Removing Jobs for details.Job number nine consists of two files; multiple files given on the
&man.lpr.1; command line are treated as part of a single job. It
is the currently active job (note the word active
under the Rank column), which means the printer should
be currently printing that job. The second job consists of data
passed as the standard input to the &man.lpr.1; command. The third
job came from user mary; it is a much larger
job. The pathname of the files she's trying to print is too long to
fit, so the &man.lpq.1; command just shows three dots.The very first line of the output from &man.lpq.1; is also useful:
it tells what the printer is currently doing (or at least what LPD
thinks the printer is doing).The &man.lpq.1; command also support a option
to generate a detailed long listing. Here is an example of
lpq -l:waiting for bamboo to become ready (offline ?)
kelly: 1st [job 009rose]
/etc/host.conf 73 bytes
/etc/hosts.equiv 15 bytes
kelly: 2nd [job 010rose]
(standard input) 1635 bytes
mary: 3rd [job 011rose]
/home/orchid/mary/research/venus/alpha-regio/mapping 78519 bytesRemoving JobsIf you change your mind about printing a job, you can remove the
job from the queue with the &man.lprm.1; command. Often, you can
even use &man.lprm.1; to remove an active job, but some or all of the
job might still get printed.To remove a job from the default printer, first use
&man.lpq.1; to find the job number. Then type:&prompt.user; lprm job-numberTo remove the job from a specific printer, add the
option. The following command removes job number
10 from the queue for the printer bamboo:&prompt.user; lprm -P bamboo 10The &man.lprm.1; command has a few shortcuts:lprm -Removes all jobs (for the default printer) belonging to
you.lprm userRemoves all jobs (for the default printer) belonging to
user. The superuser can remove other
users' jobs; you can remove only your own jobs.lprmWith no job number, user name, or
appearing on the command line,
&man.lprm.1; removes the currently active job on the
default printer, if it belongs to you. The superuser can remove
any active job.Just use the option with the above shortcuts
to operate on a specific printer instead of the default. For example,
the following command removes all jobs for the current user in the
queue for the printer named rattan:&prompt.user; lprm -P rattan -If you are working in a networked environment, &man.lprm.1; will
let you remove jobs only from the
host from which the jobs were submitted, even if the same printer is
available from other hosts. The following command sequence
demonstrates this:&prompt.user; lpr -P rattan myfile
&prompt.user; rlogin orchid
&prompt.user; lpq -P rattan
Rank Owner Job Files Total Size
active seeyan 12 ... 49123 bytes
2nd kelly 13 myfile 12 bytes
&prompt.user; lprm -P rattan 13
rose: Permission denied
&prompt.user; logout
&prompt.user; lprm -P rattan 13
dfA013rose dequeued
cfA013rose dequeued
Beyond Plain Text: Printing OptionsThe &man.lpr.1; command supports a number of options that control
formatting text, converting graphic and other file formats, producing
multiple copies, handling of the job, and more. This section
describes the options.Formatting and Conversion OptionsThe following &man.lpr.1; options control formatting of the
files in the job. Use these options if the job does not contain
plain text or if you want plain text formatted through the
&man.pr.1; utility.
+ TeXFor example, the following command prints a DVI file (from the
TeX typesetting system) named fish-report.dvi
to the printer named bamboo:&prompt.user; lpr -P bamboo -d fish-report.dviThese options apply to every file in the job, so you cannot mix
(say) DVI and ditroff files together in a job. Instead, submit the
files as separate jobs, using a different conversion option for each
job.All of these options except and
require conversion filters installed for the
destination printer. For example, the option
requires the DVI conversion filter. Section Conversion
Filters gives details.Print cifplot files.Print DVI files.Print FORTRAN text files.Print plot data.Indent the output by number
columns; if you omit number, indent
by 8 columns. This option works only with certain conversion
filters.Do not put any space between the and
the number.Print literal text data, including control
characters.Print ditroff (device independent troff) data.-pFormat plain text with &man.pr.1; before printing. See
&man.pr.1; for more information.Use title on the
&man.pr.1; header instead of the file name. This option has
effect only when used with the
option.Print troff data.Print raster data.Here is an example: this command prints a nicely formatted
version of the &man.ls.1; manual page on the default printer:&prompt.user; zcat /usr/share/man/man1/ls.1.gz | troff -t -man | lpr -tThe &man.zcat.1; command uncompresses the source of the
&man.ls.1; manual page and passes it to the &man.troff.1;
command, which formats that source and makes GNU troff
output and passes it to &man.lpr.1;, which submits the job
to the LPD spooler. Because we used the
option to &man.lpr.1;, the spooler will convert the GNU
troff output into a format the default printer can
understand when it prints the job.Job Handling OptionsThe following options to &man.lpr.1; tell LPD to handle the job
specially:-# copiesProduce a number of copies of
each file in the job instead of just one copy. An
administrator may disable this option to reduce printer
wear-and-tear and encourage photocopier usage. See section
Restricting
Multiple Copies.This example prints three copies of
parser.c followed by three copies of
parser.h to the default printer:&prompt.user; lpr -#3 parser.c parser.h-mSend mail after completing the print job. With this
option, the LPD system will send mail to your account when it
finishes handling your job. In its message, it will tell you
if the job completed successfully or if there was an error,
and (often) what the error was.-sDo not copy the files to the spooling directory, but make
symbolic links to them instead.If you are printing a large job, you probably want to use
this option. It saves space in the spooling directory (your
job might overflow the free space on the filesystem where the
spooling directory resides). It saves time as well since LPD
will not have to copy each and every byte of your job to the
spooling directory.There is a drawback, though: since LPD will refer to the
original files directly, you cannot modify or remove them
until they have been printed.If you are printing to a remote printer, LPD will
eventually have to copy files from the local host to the
remote host, so the option will save
space only on the local spooling directory, not the remote.
It is still useful, though.-rRemove the files in the job after copying them to the
spooling directory, or after printing them with the
option. Be careful with this
option!Header Page OptionsThese options to &man.lpr.1; adjust the text that normally
appears on a job's header page. If header pages are suppressed for
the destination printer, these options have no effect. See section
Header Pages
for information about setting up header pages.-C textReplace the hostname on the header page with
text. The hostname is normally the
name of the host from which the job was submitted.-J textReplace the job name on the header page with
text. The job name is normally the
name of the first file of the job, or
stdin if you are printing standard
input.-hDo not print any header page.At some sites, this option may have no effect due to the
way header pages are generated. See Header
Pages for details.Administrating PrintersAs an administrator for your printers, you have had to install,
set up, and test them. Using the &man.lpc.8; command, you
can interact with your printers in yet more ways. With &man.lpc.8;,
you canStart and stop the printersEnable and disable their queuesRearrange the order of the jobs in each queue.First, a note about terminology: if a printer is
stopped, it will not print anything in its queue.
Users can still submit jobs, which will wait in the queue until the
printer is started or the queue is
cleared.If a queue is disabled, no user (except root)
can submit jobs for the printer. An enabled
queue allows jobs to be submitted. A printer can be
started for a disabled queue, in which case it
will continue to print jobs in the queue until the queue is
empty.In general, you have to have root privileges to use the
&man.lpc.8; command. Ordinary users can use the &man.lpc.8; command
to get printer status and to restart a hung printer only.Here is a summary of the &man.lpc.8; commands. Most of the
commands takes a printer-name argument to
tell on which printer to operate. You can use all
for the printer-name to mean all printers
listed in /etc/printcap.abort
printer-nameCancel the current job and stop the printer. Users can
still submit jobs if the queue's enabled.clean
printer-nameRemove old files from the printer's spooling directory.
Occasionally, the files that make up a job are not properly
removed by LPD, particularly if there have been errors during
printing or a lot of administrative activity. This command
finds files that do not belong in the spooling directory and
removes them.disable
printer-nameDisable queuing of new jobs. If the printer's started, it
will continue to print any jobs remaining in the queue. The
superuser (root) can always submit jobs, even to a disabled
queue.This command is useful while you are testing a new printer
or filter installation: disable the queue and submit jobs as
root. Other users will not be able to submit jobs until you
complete your testing and re-enable the queue with the
enable command.down printer-namemessageTake a printer down. Equivalent to
disable followed by stop.
The message appears as the printer's
status whenever a user checks the printer's queue with
&man.lpq.1; or status with lpc
status.enable
printer-nameEnable the queue for a printer. Users can submit jobs but
the printer will not print anything until it is started.help
command-namePrint help on the command
command-name. With no
command-name, print a summary of the
commands available.restart
printer-nameStart the printer. Ordinary users can use this command if
some extraordinary circumstance hangs LPD, but they cannot start
a printer stopped with either the stop or
down commands. The
restart command is equivalent to
abort followed by
start.start
printer-nameStart the printer. The printer will print jobs in its
queue.stop
printer-nameStop the printer. The printer will finish the current job
and will not print anything else in its queue. Even though the
printer is stopped, users can still submit jobs to an enabled
queue.topq printer-namejob-or-usernameRearrange the queue for
printer-name by placing the jobs with
the listed job numbers or the jobs
belonging to username at the top of
the queue. For this command, you cannot use
all as the
printer-name.up
printer-nameBring a printer up; the opposite of the
down command. Equivalent to
start followed by
enable.&man.lpc.8; accepts the above commands on the command line. If
you do not enter any commands, &man.lpc.8; enters an interactive mode,
where you can enter commands until you type exit,
quit, or end-of-file.Alternatives to the Standard SpoolerIf you have been reading straight through this manual, by now you
have learned just about everything there is to know about the LPD
spooling system that comes with FreeBSD. You can probably appreciate
many of its shortcomings, which naturally leads to the question:
What other spooling systems are out there (and work with
FreeBSD)?LPRng
+ LPRngLPRng, which purportedly means LPR: the Next
Generation is a complete rewrite of PLP. Patrick Powell
and Justin Mason (the principal maintainer of PLP) collaborated to
make LPRng. The main site for LPRng is http://www.astart.com/lprng/LPRng.html.TroubleshootingAfter performing the simple test with &man.lptest.1;, you might
have gotten one of the following results instead of the correct
printout:It worked, after awhile; or, it did not eject a full
sheet.The printer printed the above, but it sat for awhile and
did nothing. In fact, you might have needed to press a
PRINT REMAINING or FORM FEED button on the printer to get any
results to appear.If this is the case, the printer was probably waiting to
see if there was any more data for your job before it printed
anything. To fix this problem, you can have the text filter
send a FORM FEED character (or whatever is necessary) to the
printer. This is usually sufficient to have the printer
immediately print any text remaining in its internal buffer.
It is also useful to make sure each print job ends on a full
sheet, so the next job does not start somewhere on the middle
of the last page of the previous job.The following replacement for the shell script
/usr/local/libexec/if-simple prints a
form feed after it sends the job to the printer:#!/bin/sh
#
# if-simple - Simple text input filter for lpd
# Installed in /usr/local/libexec/if-simple
#
# Simply copies stdin to stdout. Ignores all filter arguments.
# Writes a form feed character (\f) after printing job.
/bin/cat && printf "\f" && exit 0
exit 2It produced the staircase effect.You got the following on paper:!"#$%&'()*+,-./01234
"#$%&'()*+,-./012345
#$%&'()*+,-./0123456
+ DOS
+ OS/2
+ ASCIIYou have become another victim of the staircase
effect, caused by conflicting interpretations of
what characters should indicate a new line. UNIX-style
operating systems use a single character: ASCII code 10, the
line feed (LF). MS-DOS, OS/2, and others uses a pair of
characters, ASCII code 10 and ASCII code
13 (the carriage return or CR). Many printers use the MS-DOS
convention for representing new-lines.When you print with FreeBSD, your text used just the line
feed character. The printer, upon seeing a line feed
character, advanced the paper one line, but maintained the
same horizontal position on the page for the next character
to print. That is what the carriage return is for: to move
the location of the next character to print to the left edge
of the paper.Here is what FreeBSD wants your printer to do:Printer received CRPrinter prints CRPrinter received LFPrinter prints CR + LFHere are some ways to achieve this:Use the printer's configuration switches or control
panel to alter its interpretation of these characters.
Check your printer's manual to find out how to do
this.If you boot your system into other operating systems
besides FreeBSD, you may have to
reconfigure the printer to use a an
interpretation for CR and LF characters that those other
operating systems use. You might prefer one of the other
solutions, below.Have FreeBSD's serial line driver automatically
convert LF to CR+LF. Of course, this works with printers
on serial ports only. To enable this
feature, set the CRMOD bit in fs
capability in the /etc/printcap file
for the printer.Send an escape code to the
printer to have it temporarily treat LF characters
differently. Consult your printer's manual for escape
codes that your printer might support. When you find the
proper escape code, modify the text filter to send the
code first, then send the print job.
+ PCLHere is an example text filter for printers that
understand the Hewlett-Packard PCL escape codes. This
filter makes the printer treat LF characters as a LF and
CR; then it sends the job; then it sends a form feed to
eject the last page of the job. It should work with
nearly all Hewlett Packard printers.#!/bin/sh
#
# hpif - Simple text input filter for lpd for HP-PCL based printers
# Installed in /usr/local/libexec/hpif
#
# Simply copies stdin to stdout. Ignores all filter arguments.
# Tells printer to treat LF as CR+LF. Ejects the page when done.
printf "\033&k2G" && cat && printf "\033&l0H" && exit 0
exit 2Here is an example /etc/printcap
from a host called orchid. It has a single printer
attached to its first parallel port, a Hewlett Packard
LaserJet 3Si named teak. It is using the
above script as its text filter:#
# /etc/printcap for host orchid
#
teak|hp|laserjet|Hewlett Packard LaserJet 3Si:\
:lp=/dev/lpt0:sh:sd=/var/spool/lpd/teak:mx#0:\
:if=/usr/local/libexec/hpif:It overprinted each line.The printer never advanced a line. All of the lines of
text were printed on top of each other on one line.This problem is the opposite of the
staircase effect, described above, and is much rarer.
Somewhere, the LF characters that FreeBSD uses to end a line
are being treated as CR characters to return the print
location to the left edge of the paper, but not also down a
line.Use the printer's configuration switches or control panel
to enforce the following interpretation of LF and CR
characters:Printer receivesPrinter printsCRCRLFCR + LFThe printer lost characters.While printing, the printer did not print a few characters
in each line. The problem might have gotten worse as the
printer ran, losing more and more characters.The problem is that the printer cannot keep up with the
speed at which the computer sends data over a serial line
(this problem should not occur with printers on parallel
ports). There are two ways to overcome the problem:If the printer supports XON/XOFF flow control, have
FreeBSD use it by specifying the TANDEM bit in the
fs capability.If the printer supports carrier flow control, specify
the MDMBUF bit in the fs capability.
Make sure the cable connecting the printer to the computer
is correctly wired for carrier flow control.If the printer does not support any flow control, use
some combination of the NLDELAY, TBDELAY, CRDELAY, VTDELAY,
and BSDELAY bits in the fs capability
to add appropriate delays to the stream of data sent to
the printer.It printed garbage.The printer printed what appeared to be random garbage,
but not the desired text.This is usually another symptom of incorrect
communications parameters with a serial printer. Double-check
the bps rate in the br capability, and the
parity bits in the fs and
fc capabilities; make sure the printer is
using the same settings as specified in the
/etc/printcap file.Nothing happened.If nothing happened, the problem is probably within
FreeBSD and not the hardware. Add the log file
(lf) capability to the entry for the
printer you are debugging in the
/etc/printcap file. For example, here is
the entry for rattan, with the
lf capability:rattan|line|diablo|lp|Diablo 630 Line Printer:\
:sh:sd=/var/spool/lpd/rattan:\
:lp=/dev/lpt0:\
:if=/usr/local/libexec/if-simple:\
:lf=/var/log/rattan.logThen, try printing again. Check the log file (in our
example, /var/log/rattan.log) to see any
error messages that might appear. Based on the messages you
see, try to correct the problem.If you do not specify a lf capability,
LPD uses /dev/console as a
default.