diff --git a/sys/sys/time.h b/sys/sys/time.h --- a/sys/sys/time.h +++ b/sys/sys/time.h @@ -159,117 +159,124 @@ } /* - * Decimal<->sbt conversions. Multiplying or dividing by SBT_1NS results in - * large roundoff errors which sbttons() and nstosbt() avoid. Millisecond and - * microsecond functions are also provided for completeness. - * - * These functions return the smallest sbt larger or equal to the - * number of seconds requested so that sbttoX(Xtosbt(y)) == y. Unlike - * top of second computations below, which require that we tick at the - * top of second, these need to be rounded up so we do whatever for at - * least as long as requested. - * - * The naive computation we'd do is this - * ((unit * 2^64 / SIFACTOR) + 2^32-1) >> 32 - * However, that overflows. Instead, we compute - * ((unit * 2^63 / SIFACTOR) + 2^31-1) >> 32 - * and use pre-computed constants that are the ceil of the 2^63 / SIFACTOR - * term to ensure we are using exactly the right constant. We use the lesser - * evil of ull rather than a uint64_t cast to ensure we have well defined - * right shift semantics. With these changes, we get all the ns, us and ms - * conversions back and forth right. - * Note: This file is used for both kernel and userland includes, so we can't - * rely on KASSERT being defined, nor can we pollute the namespace by including - * assert.h. + * Scaling functions for signed and unsigned 64-bit time using any + * 32-bit fraction: */ + static __inline int64_t -sbttons(sbintime_t _sbt) +__stime64_scale32_ceil(int64_t x, int32_t factor, int32_t divisor) { - uint64_t ns; + const int64_t rem = (x % divisor); -#ifdef KASSERT - KASSERT(_sbt >= 0, ("Negative values illegal for sbttons: %jx", _sbt)); -#endif - ns = _sbt; - if (ns >= SBT_1S) - ns = (ns >> 32) * 1000000000; - else - ns = 0; + return ((x / divisor) * factor + (rem * factor + divisor - 1) / divisor); +} + +static __inline int64_t +__stime64_scale32_floor(int64_t x, int32_t factor, int32_t divisor) +{ + const int64_t rem = (x % divisor); - return (ns + (1000000000 * (_sbt & 0xffffffffu) >> 32)); + return ((x / divisor) * factor + (rem * factor) / divisor); } -static __inline sbintime_t -nstosbt(int64_t _ns) +static __inline uint64_t +__utime64_scale32_ceil(uint64_t x, uint32_t factor, uint32_t divisor) { - sbintime_t sb = 0; + const uint64_t rem = (x % divisor); -#ifdef KASSERT - KASSERT(_ns >= 0, ("Negative values illegal for nstosbt: %jd", _ns)); -#endif - if (_ns >= 1000000000) { - sb = (_ns / 1000000000) * SBT_1S; - _ns = _ns % 1000000000; - } - /* 9223372037 = ceil(2^63 / 1000000000) */ - sb += ((_ns * 9223372037ull) + 0x7fffffff) >> 31; - return (sb); + return ((x / divisor) * factor + (rem * factor + divisor - 1) / divisor); } -static __inline int64_t -sbttous(sbintime_t _sbt) +static __inline uint64_t +__utime64_scale32_floor(uint64_t x, uint32_t factor, uint32_t divisor) { + const uint64_t rem = (x % divisor); -#ifdef KASSERT - KASSERT(_sbt >= 0, ("Negative values illegal for sbttous: %jx", _sbt)); -#endif - return ((_sbt >> 32) * 1000000 + - (1000000 * (_sbt & 0xffffffffu) >> 32)); + return ((x / divisor) * factor + (rem * factor) / divisor); } -static __inline sbintime_t -ustosbt(int64_t _us) +/* + * This function finds the common divisor between the two arguments, + * in powers of two. Use a macro, so the compiler will output a + * warning if the value overflows! + * + * Detailed description: + * + * Create a variable with 1's at the positions of the leading 0's + * starting at the least significant bit, producing 0 if none (e.g., + * 01011000 -> 0000 0111). Then these two variables are bitwise AND'ed + * together, to produce the greatest common power of two minus one. In + * the end add one to flip the value to the actual power of two (e.g., + * 0000 0111 + 1 -> 0000 1000). + */ +#define __common_powers_of_two(a, b) \ + ((~(a) & ((a) - 1) & ~(b) & ((b) - 1)) + 1) + +/* + * Scaling functions for signed and unsigned 64-bit time assuming + * reducable 64-bit fractions to 32-bit fractions: + */ + +static __inline int64_t +__stime64_scale64_ceil(int64_t x, int64_t factor, int64_t divisor) { - sbintime_t sb = 0; + const int64_t gcd = __common_powers_of_two(factor, divisor); -#ifdef KASSERT - KASSERT(_us >= 0, ("Negative values illegal for ustosbt: %jd", _us)); -#endif - if (_us >= 1000000) { - sb = (_us / 1000000) * SBT_1S; - _us = _us % 1000000; - } - /* 9223372036855 = ceil(2^63 / 1000000) */ - sb += ((_us * 9223372036855ull) + 0x7fffffff) >> 31; - return (sb); + return (__stime64_scale32_ceil(x, factor / gcd, divisor / gcd)); } static __inline int64_t -sbttoms(sbintime_t _sbt) +__stime64_scale64_floor(int64_t x, int64_t factor, int64_t divisor) { -#ifdef KASSERT - KASSERT(_sbt >= 0, ("Negative values illegal for sbttoms: %jx", _sbt)); -#endif - return ((_sbt >> 32) * 1000 + (1000 * (_sbt & 0xffffffffu) >> 32)); + const int64_t gcd = __common_powers_of_two(factor, divisor); + + return (__stime64_scale32_floor(x, factor / gcd, divisor / gcd)); } -static __inline sbintime_t -mstosbt(int64_t _ms) +static __inline uint64_t +__utime64_scale64_ceil(uint64_t x, uint64_t factor, uint64_t divisor) { - sbintime_t sb = 0; + const uint64_t gcd = __common_powers_of_two(factor, divisor); -#ifdef KASSERT - KASSERT(_ms >= 0, ("Negative values illegal for mstosbt: %jd", _ms)); -#endif - if (_ms >= 1000) { - sb = (_ms / 1000) * SBT_1S; - _ms = _ms % 1000; - } - /* 9223372036854776 = ceil(2^63 / 1000) */ - sb += ((_ms * 9223372036854776ull) + 0x7fffffff) >> 31; - return (sb); + return (__utime64_scale32_ceil(x, factor / gcd, divisor / gcd)); +} + +static __inline uint64_t +__utime64_scale64_floor(uint64_t x, uint64_t factor, uint64_t divisor) +{ + const uint64_t gcd = __common_powers_of_two(factor, divisor); + + return (__utime64_scale32_floor(x, factor / gcd, divisor / gcd)); } +/* + * Decimal<->sbt conversions. Multiplying or dividing by SBT_1NS + * results in large roundoff errors which sbttons() and nstosbt() + * avoid. Millisecond and microsecond functions are also provided for + * completeness. + * + * When converting from sbt to another unit, the result is always + * rounded down. When converting back to sbt the result is always + * rounded up. This gives the property that sbttoX(Xtosbt(y)) == y . + * + * The conversion functions can also handle negative values. + */ +#define SBT_DECLARE_CONVERSION_PAIR(name, units_per_second) \ +static __inline int64_t \ +sbtto##name(sbintime_t sbt) \ +{ \ + return (__stime64_scale64_floor(sbt, units_per_second, SBT_1S)); \ +} \ +static __inline sbintime_t \ +name##tosbt(int64_t name) \ +{ \ + return (__stime64_scale64_ceil(name, SBT_1S, units_per_second)); \ +} + +SBT_DECLARE_CONVERSION_PAIR(ns, 1000000000) +SBT_DECLARE_CONVERSION_PAIR(us, 1000000) +SBT_DECLARE_CONVERSION_PAIR(ms, 1000) + /*- * Background information: * @@ -289,8 +296,8 @@ { _ts->tv_sec = _bt->sec; - _ts->tv_nsec = ((uint64_t)1000000000 * - (uint32_t)(_bt->frac >> 32)) >> 32; + _ts->tv_nsec = __utime64_scale64_floor( + _bt->frac, 1000000000, 1ULL << 32) >> 32; } static __inline uint64_t @@ -299,8 +306,8 @@ uint64_t ret; ret = (uint64_t)(_bt->sec) * (uint64_t)1000000000; - ret += (((uint64_t)1000000000 * - (uint32_t)(_bt->frac >> 32)) >> 32); + ret += __utime64_scale64_floor( + _bt->frac, 1000000000, 1ULL << 32) >> 32; return (ret); } @@ -309,8 +316,8 @@ { _bt->sec = _ts->tv_sec; - /* 18446744073 = int(2^64 / 1000000000) */ - _bt->frac = _ts->tv_nsec * (uint64_t)18446744073LL; + _bt->frac = __utime64_scale64_floor( + (uint64_t)_ts->tv_nsec << 32, 1ULL << 32, 1000000000); } static __inline void @@ -318,7 +325,8 @@ { _tv->tv_sec = _bt->sec; - _tv->tv_usec = ((uint64_t)1000000 * (uint32_t)(_bt->frac >> 32)) >> 32; + _tv->tv_usec = __utime64_scale64_floor( + _bt->frac, 1000000, 1ULL << 32) >> 32; } static __inline void @@ -326,8 +334,8 @@ { _bt->sec = _tv->tv_sec; - /* 18446744073709 = int(2^64 / 1000000) */ - _bt->frac = _tv->tv_usec * (uint64_t)18446744073709LL; + _bt->frac = __utime64_scale64_floor( + (uint64_t)_tv->tv_usec << 32, 1ULL << 32, 1000000); } static __inline struct timespec