Index: sys/modules/Makefile =================================================================== --- sys/modules/Makefile +++ sys/modules/Makefile @@ -109,6 +109,7 @@ ${_dpms} \ dummynet \ ${_dwwdt} \ + dxr \ ${_efirt} \ ${_em} \ ${_ena} \ Index: sys/modules/dxr/Makefile =================================================================== --- /dev/null +++ sys/modules/dxr/Makefile @@ -0,0 +1,11 @@ +# $FreeBSD$ + +SYSDIR?=${SRCTOP}/sys +.include "${SYSDIR}/conf/kern.opts.mk" + +.PATH: ${SYSDIR}/netinet + +KMOD= dxr +SRCS= dxr.c opt_inet.h + +.include Index: sys/netinet/dxr.c =================================================================== --- /dev/null +++ sys/netinet/dxr.c @@ -0,0 +1,1250 @@ +/*- + * SPDX-License-Identifier: BSD-2-Clause-FreeBSD + * + * Copyright (c) 2012-2021 Marko Zec + * Copyright (c) 2005, 2018 University of Zagreb + * Copyright (c) 2005 International Computer Science Institute + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +/* + * An implementation of DXR, a simple IPv4 LPM scheme with compact lookup + * structures and a trivial search procedure. More significant bits of + * the search key are used to directly index a two-stage trie, while the + * remaining bits are used for finding the next hop in a sorted array. + * More details in: + * + * M. Zec, L. Rizzo, M. Mikuc, DXR: towards a billion routing lookups per + * second in software, ACM SIGCOMM Computer Communication Review, September + * 2012 + * + * M. Zec, M. Mikuc, Pushing the envelope: beyond two billion IP routing + * lookups per second on commodity CPUs, IEEE SoftCOM, September 2017, Split + */ + +#include +__FBSDID("$FreeBSD$"); + +#include "opt_inet.h" + +#include +#include +#include +#include +#include +#include +#include + +#include + +#include +#include +#include +#include + +#define DXR_TRIE_BITS 20 + +CTASSERT(DXR_TRIE_BITS >= 16 && DXR_TRIE_BITS <= 24); + +#define DXR2 + +#if DXR_TRIE_BITS > 16 +#define DXR_D 16 +#else +#define DXR_D (DXR_TRIE_BITS - 1) +#endif +#define DXR_X (DXR_TRIE_BITS - DXR_D) + +#define D_TBL_SIZE (1 << DXR_D) +#define DIRECT_TBL_SIZE (1 << DXR_TRIE_BITS) +#define DXR_RANGE_MASK (0xffffffffU >> DXR_TRIE_BITS) +#define DXR_RANGE_SHIFT (32 - DXR_TRIE_BITS) + +#define DESC_BASE_BITS 22 +#define DESC_FRAGMENTS_BITS (32 - DESC_BASE_BITS) +#define BASE_MAX ((1 << DESC_BASE_BITS) - 1) +#define RTBL_SIZE_INCR (BASE_MAX / 64) + +#if DXR_TRIE_BITS < 24 +#define FRAGS_MASK_SHORT ((1 << (23 - DXR_TRIE_BITS)) - 1) +#else +#define FRAGS_MASK_SHORT 0 +#endif +#define FRAGS_PREF_SHORT (((1 << DESC_FRAGMENTS_BITS) - 1) & \ + ~FRAGS_MASK_SHORT) +#define FRAGS_MARK_XL (FRAGS_PREF_SHORT - 1) +#define FRAGS_MARK_HIT (FRAGS_PREF_SHORT - 2) + +#define IS_SHORT_FORMAT(x) ((x & FRAGS_PREF_SHORT) == FRAGS_PREF_SHORT) +#define IS_LONG_FORMAT(x) ((x & FRAGS_PREF_SHORT) != FRAGS_PREF_SHORT) +#define IS_XL_FORMAT(x) (x == FRAGS_MARK_XL) + +#define RE_SHORT_MAX_NH ((1 << (DXR_TRIE_BITS - 8)) - 1) + +#define CHUNK_HASH_BITS 16 +#define CHUNK_HASH_SIZE (1 << CHUNK_HASH_BITS) +#define CHUNK_HASH_MASK (CHUNK_HASH_SIZE - 1) + +#define TRIE_HASH_BITS 16 +#define TRIE_HASH_SIZE (1 << TRIE_HASH_BITS) +#define TRIE_HASH_MASK (TRIE_HASH_SIZE - 1) + +#define XTBL_SIZE_INCR (DIRECT_TBL_SIZE / 16) + +#define SIN(s) ((struct sockaddr_in *)(s)) + +/* Lookup structures */ + +struct direct_entry { + uint32_t fragments: DESC_FRAGMENTS_BITS, + base: DESC_BASE_BITS; +}; + +struct range_entry_long { + uint32_t start: DXR_RANGE_SHIFT, + nexthop: DXR_TRIE_BITS; +}; + +#if DXR_TRIE_BITS < 24 +struct range_entry_short { + uint16_t start: DXR_RANGE_SHIFT - 8, + nexthop: DXR_TRIE_BITS - 8; +}; +#endif + +/* Auxiliary structures */ + +struct heap_entry { + uint32_t start; + uint32_t end; + uint32_t preflen; + uint32_t nexthop; +}; + +struct chunk_desc { + LIST_ENTRY(chunk_desc) cd_all_le; + LIST_ENTRY(chunk_desc) cd_hash_le; + uint32_t cd_hash; + uint32_t cd_refcount; + uint32_t cd_base; + uint32_t cd_cur_size; + uint32_t cd_max_size; +}; + +struct trie_desc { + LIST_ENTRY(trie_desc) td_all_le; + LIST_ENTRY(trie_desc) td_hash_le; + uint32_t td_hash; + uint32_t td_index; + uint32_t td_refcount; +}; + +uma_zone_t chunk_zone; +uma_zone_t trie_zone; + +struct dxr_aux; + +struct dxr { + /* Lookup tables */ + uint16_t d_shift; + uint16_t x_shift; + uint32_t x_mask; + void *d; + void *x; + void *r; + struct nhop_object **nh_tbl; + + /* Glue to external state */ + struct dxr_aux *aux; + struct fib_data *fd; + struct epoch_context epoch_ctx; +}; + +struct dxr_aux { + /* Glue to external state */ + struct rib_head *rib; + struct fib_data *fd; + int refs; + + /* Auxiliary build-time tables */ + struct direct_entry direct_tbl[DIRECT_TBL_SIZE]; + uint16_t d_tbl[D_TBL_SIZE]; + struct direct_entry *x_tbl; + union { + struct range_entry_long re; + uint32_t fragments; + } *range_tbl; + + /* Auxiliary internal state */ + uint32_t updates_mask[DIRECT_TBL_SIZE / 32]; + struct trie_desc *trietbl[D_TBL_SIZE]; + LIST_HEAD(, chunk_desc) chunk_hashtbl[CHUNK_HASH_SIZE]; + LIST_HEAD(, chunk_desc) all_chunks; + LIST_HEAD(, chunk_desc) unused_chunks; /* abuses hash link entry */ + LIST_HEAD(, trie_desc) trie_hashtbl[TRIE_HASH_SIZE]; + LIST_HEAD(, trie_desc) all_trie; + LIST_HEAD(, trie_desc) unused_trie; /* abuses hash link entry */ + struct sockaddr_in dst; + struct sockaddr_in mask; + struct heap_entry heap[33]; + uint32_t prefixes; + uint32_t updates_low; + uint32_t updates_high; + uint32_t all_chunks_cnt; + uint32_t unused_chunks_cnt; + uint32_t xtbl_size; + uint32_t all_trie_cnt; + uint32_t unused_trie_cnt; + uint32_t heap_index; + uint32_t d_bits; + uint32_t rtbl_size; + uint32_t rtbl_top; + uint32_t rtbl_work_frags; + uint32_t work_chunk; +}; + +static MALLOC_DEFINE(M_DXRLPM, "dxr", "DXR LPM"); +static MALLOC_DEFINE(M_DXRAUX, "dxr aux", "DXR auxiliary"); + +SYSCTL_DECL(_net_route_algo); +SYSCTL_NODE(_net_route_algo, OID_AUTO, dxr, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, + "DXR tunables"); + +VNET_DEFINE_STATIC(int, max_trie_holes) = 8; +#define V_max_trie_holes VNET(max_trie_holes) +SYSCTL_INT(_net_route_algo_dxr, OID_AUTO, max_trie_holes, + CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(max_trie_holes), 0, + "Trie fragmentation threshold before triggering a full rebuild"); + +VNET_DEFINE_STATIC(int, max_range_holes) = 16; +#define V_max_range_holes VNET(max_range_holes) +SYSCTL_INT(_net_route_algo_dxr, OID_AUTO, max_range_holes, + CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(max_range_holes), 0, + "Range table fragmentation threshold before triggering a full rebuild"); + +/* Binary search for a matching address range */ +#define DXR_LOOKUP_STAGE \ + if (masked_dst < range[middle].start) { \ + upperbound = middle; \ + middle = (middle + lowerbound) / 2; \ + } else if (masked_dst < range[middle + 1].start) \ + return (range[middle].nexthop); \ + else { \ + lowerbound = middle + 1; \ + middle = (upperbound + middle + 1) / 2; \ + } \ + if (upperbound == lowerbound) \ + return (range[lowerbound].nexthop); + +static int +dxr_lookup(struct dxr *dxr, uint32_t dst) +{ +#ifdef DXR2 + uint16_t *dt = dxr->d; + struct direct_entry *xt = dxr->x; + int xi; +#else + struct direct_entry *dt = dxr->d; +#endif + struct direct_entry de; + struct range_entry_long *rt; + uint32_t base; + uint32_t upperbound; + uint32_t middle; + uint32_t lowerbound; + uint32_t masked_dst; + +#ifdef DXR2 + xi = (dt[dst >> dxr->d_shift] << dxr->x_shift) + + ((dst >> DXR_RANGE_SHIFT) & dxr->x_mask); + de = xt[xi]; +#else + de = dt[dst >> DXR_RANGE_SHIFT]; +#endif + + if (__predict_true(de.fragments == FRAGS_MARK_HIT)) + return (de.base); + + rt = dxr->r; + base = de.base; + lowerbound = 0; + masked_dst = dst & DXR_RANGE_MASK; + +#if DXR_TRIE_BITS < 24 + if (__predict_true(IS_SHORT_FORMAT(de.fragments))) { + upperbound = de.fragments & FRAGS_MASK_SHORT; + struct range_entry_short *range = + (struct range_entry_short *) &rt[base]; + + masked_dst >>= 8; + middle = upperbound; + upperbound = upperbound * 2 + 1; + + for (;;) { + DXR_LOOKUP_STAGE + DXR_LOOKUP_STAGE + } + } +#endif + + upperbound = de.fragments; + struct range_entry_long *range = &rt[base]; + if (__predict_false(IS_XL_FORMAT(de.fragments))) { + upperbound = *((uint32_t *) range); + range++; + } + middle = upperbound / 2; + + for (;;) { + DXR_LOOKUP_STAGE + DXR_LOOKUP_STAGE + } +} + +static void +initheap(struct dxr_aux *da, uint32_t dst_u32, uint32_t chunk) +{ + struct heap_entry *fhp = &da->heap[0]; + struct radix_node *rn; + + da->heap_index = 0; + da->dst.sin_addr.s_addr = htonl(dst_u32); + rn = da->rib->rnh_matchaddr(&da->dst, &da->rib->head); + if (rn && ((rn->rn_flags & RNF_ROOT) == 0)) { + struct rtentry *rt = (struct rtentry *) rn; + struct sockaddr_in *dst = SIN(rt_key(rt)); + struct sockaddr_in *mask = SIN(rt_mask(rt)); + + fhp->start = ntohl(dst->sin_addr.s_addr); + + if (mask) { + fhp->preflen = ffs(ntohl(mask->sin_addr.s_addr)); + if (fhp->preflen) + fhp->preflen = 33 - fhp->preflen; + fhp->end = fhp->start | ~ntohl(mask->sin_addr.s_addr); + } else { + fhp->preflen = 32; + fhp->end = fhp->start; + } + fhp->nexthop = fib_get_nhop_idx(da->fd, rt->rt_nhop); + } else { + fhp->preflen = fhp->nexthop = fhp->start = 0; + fhp->end = 0xffffffffU; + } +} + +static uint32_t +chunk_size(struct dxr_aux *da, struct direct_entry *fdesc) +{ + + if (IS_SHORT_FORMAT(fdesc->fragments)) + return ((fdesc->fragments & FRAGS_MASK_SHORT) + 1); + else if (IS_XL_FORMAT(fdesc->fragments)) + return (da->range_tbl[fdesc->base].fragments + 2); + else /* if (IS_LONG_FORMAT(fdesc->fragments)) */ + return (fdesc->fragments + 1); +} + +static uint32_t +chunk_hash(struct dxr_aux *da, struct direct_entry *fdesc) +{ + uint32_t size = chunk_size(da, fdesc); + uint32_t *p = (uint32_t *) &da->range_tbl[fdesc->base]; + uint32_t *l = (uint32_t *) &da->range_tbl[fdesc->base + size]; + uint32_t hash = fdesc->fragments; + + for (; p < l; p++) + hash = (hash << 7) + (hash >> 13) + *p; + + return (hash + (hash >> 16)); +} + +static int +chunk_ref(struct dxr_aux *da, uint32_t chunk) +{ + struct direct_entry *fdesc = &da->direct_tbl[chunk]; + struct chunk_desc *cdp, *empty_cdp; + uint32_t base = fdesc->base; + uint32_t size = chunk_size(da, fdesc); + uint32_t hash = chunk_hash(da, fdesc); + + /* Find an existing descriptor */ + LIST_FOREACH(cdp, &da->chunk_hashtbl[hash & CHUNK_HASH_MASK], + cd_hash_le) { + if (cdp->cd_hash != hash || cdp->cd_cur_size != size || + memcmp(&da->range_tbl[base], &da->range_tbl[cdp->cd_base], + sizeof(struct range_entry_long) * size)) + continue; + da->rtbl_top = fdesc->base; + fdesc->base = cdp->cd_base; + cdp->cd_refcount++; + return (0); + } + + /* No matching chunks found. Recycle an empty or allocate a new one */ + cdp = NULL; + LIST_FOREACH(empty_cdp, &da->unused_chunks, cd_hash_le) + if (empty_cdp->cd_max_size >= size && (cdp == NULL || + empty_cdp->cd_max_size < cdp->cd_max_size)) { + cdp = empty_cdp; + if (empty_cdp->cd_max_size == size) + break; + } + + if (cdp != NULL) { + /* Copy from heap into the recycled chunk */ + bcopy(&da->range_tbl[fdesc->base], &da->range_tbl[cdp->cd_base], + size * sizeof(struct range_entry_long)); + fdesc->base = cdp->cd_base; + da->rtbl_top -= size; + da->unused_chunks_cnt--; + if (cdp->cd_max_size > size + 1) { + /* Split the range in two, need a new descriptor */ + empty_cdp = uma_zalloc(chunk_zone, M_NOWAIT); + if (empty_cdp == NULL) + return (1); + empty_cdp->cd_max_size = cdp->cd_max_size - size; + empty_cdp->cd_base = cdp->cd_base + size; + LIST_INSERT_AFTER(cdp, empty_cdp, cd_all_le); + LIST_INSERT_AFTER(cdp, empty_cdp, cd_hash_le); + da->all_chunks_cnt++; + da->unused_chunks_cnt++; + cdp->cd_max_size = size; + } + LIST_REMOVE(cdp, cd_hash_le); + } else { + /* Alloc a new descriptor */ + cdp = uma_zalloc(chunk_zone, M_NOWAIT); + if (cdp == NULL) + return (1); + cdp->cd_max_size = size; + cdp->cd_base = fdesc->base; + LIST_INSERT_HEAD(&da->all_chunks, cdp, cd_all_le); + da->all_chunks_cnt++; + } + + cdp->cd_hash = hash; + cdp->cd_refcount = 1; + cdp->cd_cur_size = size; + LIST_INSERT_HEAD(&da->chunk_hashtbl[hash & CHUNK_HASH_MASK], cdp, + cd_hash_le); + if (da->rtbl_top >= da->rtbl_size) { + if (da->rtbl_top >= BASE_MAX) { + FIB_PRINTF(LOG_ERR, da->fd, + "structural limit exceeded at %d " + "range table elements", da->rtbl_top); + return (1); + } + da->rtbl_size += RTBL_SIZE_INCR; + if (da->rtbl_top >= BASE_MAX / 4) + FIB_PRINTF(LOG_WARNING, da->fd, "range table at %d%%", + da->rtbl_top * 100 / BASE_MAX); + da->range_tbl = realloc(da->range_tbl, + sizeof(*da->range_tbl) * da->rtbl_size + FRAGS_PREF_SHORT, + M_DXRAUX, M_NOWAIT); + if (da->range_tbl == NULL) + return (1); + } + + return (0); +} + +static void +chunk_unref(struct dxr_aux *da, uint32_t chunk) +{ + struct direct_entry *fdesc = &da->direct_tbl[chunk]; + struct chunk_desc *cdp; + uint32_t base = fdesc->base; + uint32_t size = chunk_size(da, fdesc); + uint32_t hash = chunk_hash(da, fdesc); + + /* Find an existing descriptor */ + LIST_FOREACH(cdp, &da->chunk_hashtbl[hash & CHUNK_HASH_MASK], + cd_hash_le) + if (cdp->cd_hash == hash && cdp->cd_cur_size == size && + memcmp(&da->range_tbl[base], &da->range_tbl[cdp->cd_base], + sizeof(struct range_entry_long) * size) == 0) + break; + + KASSERT(cdp != NULL, ("dxr: dangling chunk")); + if (--cdp->cd_refcount > 0) + return; + + LIST_REMOVE(cdp, cd_hash_le); + da->unused_chunks_cnt++; + if (cdp->cd_base + cdp->cd_max_size != da->rtbl_top) { + LIST_INSERT_HEAD(&da->unused_chunks, cdp, cd_hash_le); + return; + } + + do { + da->all_chunks_cnt--; + da->unused_chunks_cnt--; + da->rtbl_top -= cdp->cd_max_size; + LIST_REMOVE(cdp, cd_all_le); + uma_zfree(chunk_zone, cdp); + LIST_FOREACH(cdp, &da->unused_chunks, cd_hash_le) + if (cdp->cd_base + cdp->cd_max_size == da->rtbl_top) { + LIST_REMOVE(cdp, cd_hash_le); + break; + } + } while (cdp != NULL); +} + +#ifdef DXR2 +static uint32_t +trie_hash(struct dxr_aux *da, uint32_t dxr_x, uint32_t index) +{ + uint32_t i, *val; + uint32_t hash = 0; + + for (i = 0; i < (1 << dxr_x); i++) { + hash = (hash << 3) ^ (hash >> 3); + val = (uint32_t *) + (void *) &da->direct_tbl[(index << dxr_x) + i]; + hash += (*val << 5); + hash += (*val >> 5); + } + + return (hash + (hash >> 16)); +} + +static int +trie_ref(struct dxr_aux *da, uint32_t index) +{ + struct trie_desc *tp; + uint32_t dxr_d = da->d_bits; + uint32_t dxr_x = DXR_TRIE_BITS - dxr_d; + uint32_t hash = trie_hash(da, dxr_x, index); + + /* Find an existing descriptor */ + LIST_FOREACH(tp, &da->trie_hashtbl[hash & TRIE_HASH_MASK], td_hash_le) + if (tp->td_hash == hash && + memcmp(&da->direct_tbl[index << dxr_x], + &da->x_tbl[tp->td_index << dxr_x], + sizeof(*da->x_tbl) << dxr_x) == 0) { + tp->td_refcount++; + da->trietbl[index] = tp; + return(tp->td_index); + } + + tp = LIST_FIRST(&da->unused_trie); + if (tp != NULL) { + LIST_REMOVE(tp, td_hash_le); + da->unused_trie_cnt--; + } else { + tp = uma_zalloc(trie_zone, M_NOWAIT); + if (tp == NULL) + return (-1); + LIST_INSERT_HEAD(&da->all_trie, tp, td_all_le); + tp->td_index = da->all_trie_cnt++; + } + + tp->td_hash = hash; + tp->td_refcount = 1; + LIST_INSERT_HEAD(&da->trie_hashtbl[hash & TRIE_HASH_MASK], tp, + td_hash_le); + memcpy(&da->x_tbl[tp->td_index << dxr_x], + &da->direct_tbl[index << dxr_x], sizeof(*da->x_tbl) << dxr_x); + da->trietbl[index] = tp; + if (da->all_trie_cnt >= da->xtbl_size >> dxr_x) { + da->xtbl_size += XTBL_SIZE_INCR; + da->x_tbl = realloc(da->x_tbl, + sizeof(*da->x_tbl) * da->xtbl_size, M_DXRAUX, M_NOWAIT); + if (da->x_tbl == NULL) + return (-1); + } + return(tp->td_index); +} + +static void +trie_unref(struct dxr_aux *da, uint32_t index) +{ + struct trie_desc *tp = da->trietbl[index]; + + if (tp == NULL) + return; + da->trietbl[index] = NULL; + if (--tp->td_refcount > 0) + return; + + LIST_REMOVE(tp, td_hash_le); + da->unused_trie_cnt++; + if (tp->td_index != da->all_trie_cnt - 1) { + LIST_INSERT_HEAD(&da->unused_trie, tp, td_hash_le); + return; + } + + do { + da->all_trie_cnt--; + da->unused_trie_cnt--; + LIST_REMOVE(tp, td_all_le); + uma_zfree(trie_zone, tp); + LIST_FOREACH(tp, &da->unused_trie, td_hash_le) + if (tp->td_index == da->all_trie_cnt - 1) { + LIST_REMOVE(tp, td_hash_le); + break; + } + } while (tp != NULL); +} +#endif + +static void +heap_inject(struct dxr_aux *da, uint32_t start, uint32_t end, uint32_t preflen, + uint32_t nh) +{ + struct heap_entry *fhp; + int i; + + for (i = da->heap_index; i >= 0; i--) { + if (preflen > da->heap[i].preflen) + break; + else if (preflen < da->heap[i].preflen) + da->heap[i + 1] = da->heap[i]; + else + return; + } + + fhp = &da->heap[i + 1]; + fhp->preflen = preflen; + fhp->start = start; + fhp->end = end; + fhp->nexthop = nh; + da->heap_index++; +} + +static int +dxr_walk(struct radix_node *rn, void *arg) +{ + struct dxr_aux *da = arg; + struct rtentry *rt = (struct rtentry *)rn; + struct sockaddr_in *dst = SIN(rt_key(rt)); + struct sockaddr_in *mask = SIN(rt_mask(rt)); + uint32_t chunk = da->work_chunk; + uint32_t first = chunk << DXR_RANGE_SHIFT; + uint32_t last = first | DXR_RANGE_MASK; + struct range_entry_long *fp = + &da->range_tbl[da->rtbl_top + da->rtbl_work_frags].re; + struct heap_entry *fhp = &da->heap[da->heap_index]; + uint32_t preflen, nh, start, end; + + start = ntohl(dst->sin_addr.s_addr); + if (start > last) + return (-1); /* Beyond chunk boundaries, we are done */ + if (start < first) + return (0); /* Skip this route */ + + end = start; + if (mask) { + preflen = ffs(ntohl(mask->sin_addr.s_addr)); + if (preflen) + preflen = 33 - preflen; + end |= ~ntohl(mask->sin_addr.s_addr); + } else + preflen = 32; + nh = fib_get_nhop_idx(da->fd, rt->rt_nhop); + + if (start == fhp->start) + heap_inject(da, start, end, preflen, nh); + else { + /* start > fhp->start */ + while (start > fhp->end) { + uint32_t oend = fhp->end; + + if (da->heap_index > 0) { + fhp--; + da->heap_index--; + } else + initheap(da, fhp->end + 1, chunk); + if (fhp->end > oend && fhp->nexthop != fp->nexthop) { + fp++; + da->rtbl_work_frags++; + fp->start = (oend + 1) & DXR_RANGE_MASK; + fp->nexthop = fhp->nexthop; + } + } + if (start > ((chunk << DXR_RANGE_SHIFT) | fp->start) && + nh != fp->nexthop) { + fp++; + da->rtbl_work_frags++; + fp->start = start & DXR_RANGE_MASK; + } else if (da->rtbl_work_frags) { + if ((--fp)->nexthop == nh) + da->rtbl_work_frags--; + else + fp++; + } + fp->nexthop = nh; + heap_inject(da, start, end, preflen, nh); + } + + return (0); +} + +static int +update_chunk(struct dxr_aux *da, uint32_t chunk) +{ + struct rib_head *rib = da->rib; + struct range_entry_long *fp; +#if DXR_TRIE_BITS < 24 + struct range_entry_short *fps; + uint32_t start, nh, i; +#endif + struct heap_entry *fhp; + uint32_t first = chunk << DXR_RANGE_SHIFT; + uint32_t last = first | DXR_RANGE_MASK; + + if (da->direct_tbl[chunk].fragments != FRAGS_MARK_HIT) + chunk_unref(da, chunk); + + initheap(da, first, chunk); + + fp = &da->range_tbl[da->rtbl_top].re; + da->rtbl_work_frags = 0; + fp->start = first & DXR_RANGE_MASK; + fp->nexthop = da->heap[0].nexthop; + + da->dst.sin_addr.s_addr = htonl(first); + da->mask.sin_addr.s_addr = htonl(~DXR_RANGE_MASK); + + da->work_chunk = chunk; + rib->rnh_walktree_from(&rib->head, &da->dst, &da->mask, dxr_walk, da); + + /* Flush any remaining objects on the heap */ + fp = &da->range_tbl[da->rtbl_top + da->rtbl_work_frags].re; + fhp = &da->heap[da->heap_index]; + while (fhp->preflen > DXR_TRIE_BITS) { + uint32_t oend = fhp->end; + + if (da->heap_index > 0) { + fhp--; + da->heap_index--; + } else + initheap(da, fhp->end + 1, chunk); + if (fhp->end > oend && fhp->nexthop != fp->nexthop) { + /* Have we crossed the upper chunk boundary? */ + if (oend >= last) + break; + fp++; + da->rtbl_work_frags++; + fp->start = (oend + 1) & DXR_RANGE_MASK; + fp->nexthop = fhp->nexthop; + } + } + + /* Direct hit if the chunk contains only a single fragment */ + if (da->rtbl_work_frags == 0) { + da->direct_tbl[chunk].base = fp->nexthop; + da->direct_tbl[chunk].fragments = FRAGS_MARK_HIT; + return (0); + } + + da->direct_tbl[chunk].base = da->rtbl_top; + da->direct_tbl[chunk].fragments = da->rtbl_work_frags; + +#if DXR_TRIE_BITS < 24 + /* Check whether the chunk can be more compactly encoded */ + fp = &da->range_tbl[da->rtbl_top].re; + for (i = 0; i <= da->rtbl_work_frags; i++, fp++) + if ((fp->start & 0xff) != 0 || fp->nexthop > RE_SHORT_MAX_NH) + break; + if (i == da->rtbl_work_frags + 1) { + fp = &da->range_tbl[da->rtbl_top].re; + fps = (void *) fp; + for (i = 0; i <= da->rtbl_work_frags; i++, fp++, fps++) { + start = fp->start; + nh = fp->nexthop; + fps->start = start >> 8; + fps->nexthop = nh; + } + fps->start = start >> 8; + fps->nexthop = nh; + da->rtbl_work_frags >>= 1; + da->direct_tbl[chunk].fragments = + da->rtbl_work_frags | FRAGS_PREF_SHORT; + } else +#endif + if (da->rtbl_work_frags >= FRAGS_MARK_HIT) { + da->direct_tbl[chunk].fragments = FRAGS_MARK_XL; + memmove(&da->range_tbl[da->rtbl_top + 1], + &da->range_tbl[da->rtbl_top], + (da->rtbl_work_frags + 1) * sizeof(*da->range_tbl)); + da->range_tbl[da->rtbl_top].fragments = da->rtbl_work_frags; + da->rtbl_work_frags++; + } + da->rtbl_top += (da->rtbl_work_frags + 1); + return (chunk_ref(da, chunk)); +} + +static void +dxr_build(struct dxr *dxr) +{ + struct dxr_aux *da = dxr->aux; + struct chunk_desc *cdp; + struct rib_rtable_info rinfo; + struct timeval t0, t1, t2, t3; + uint32_t r_size, dxr_tot_size; + uint32_t i, m, range_rebuild = 0; +#ifdef DXR2 + struct trie_desc *tp; + uint32_t d_tbl_size, dxr_x, d_size, x_size; + uint32_t ti, trie_rebuild = 0, prev_size = 0; +#endif + + KASSERT(dxr->d == NULL, ("dxr: d not free")); + + if (da == NULL) { + da = malloc(sizeof(*dxr->aux), M_DXRAUX, M_NOWAIT); + if (da == NULL) + return; + dxr->aux = da; + da->rib = fib_get_rh(dxr->fd); + da->refs = 1; + LIST_INIT(&da->all_chunks); + LIST_INIT(&da->all_trie); + da->rtbl_size = RTBL_SIZE_INCR; + da->range_tbl = NULL; + da->xtbl_size = XTBL_SIZE_INCR; + da->x_tbl = NULL; + bzero(&da->dst, sizeof(da->dst)); + bzero(&da->mask, sizeof(da->mask)); + da->dst.sin_len = sizeof(da->dst); + da->mask.sin_len = sizeof(da->mask); + da->dst.sin_family = AF_INET; + da->mask.sin_family = AF_INET; + } + if (da->range_tbl == NULL) { + da->range_tbl = malloc(sizeof(*da->range_tbl) * da->rtbl_size + + FRAGS_PREF_SHORT, M_DXRAUX, M_NOWAIT); + if (da->range_tbl == NULL) + return; + range_rebuild = 1; + } +#ifdef DXR2 + if (da->x_tbl == NULL) { + da->x_tbl = malloc(sizeof(*da->x_tbl) * da->xtbl_size, + M_DXRAUX, M_NOWAIT); + if (da->x_tbl == NULL) + return; + trie_rebuild = 1; + } +#endif + da->fd = dxr->fd; + KASSERT(da->rib == fib_get_rh(dxr->fd), ("dxr: rib mismatch")); + + microuptime(&t0); + + dxr->nh_tbl = fib_get_nhop_array(da->fd); + fib_get_rtable_info(da->rib, &rinfo); + + if (da->updates_low > da->updates_high || + da->unused_chunks_cnt > V_max_range_holes) + range_rebuild = 1; + if (range_rebuild) { + bzero(da->chunk_hashtbl, sizeof(da->chunk_hashtbl)); + while ((cdp = LIST_FIRST(&da->all_chunks)) != NULL) { + LIST_REMOVE(cdp, cd_all_le); + uma_zfree(chunk_zone, cdp); + } + LIST_INIT(&da->unused_chunks); + da->all_chunks_cnt = da->unused_chunks_cnt = 0; + da->rtbl_top = 0; + da->updates_low = 0; + da->updates_high = DIRECT_TBL_SIZE - 1; + memset(da->updates_mask, 0xff, sizeof(da->updates_mask)); + for (i = 0; i < DIRECT_TBL_SIZE; i++) { + da->direct_tbl[i].fragments = FRAGS_MARK_HIT; + da->direct_tbl[i].base = 0; + } + } + da->prefixes = rinfo.num_prefixes; + + /* DXR: construct direct & range table */ + for (i = da->updates_low; i <= da->updates_high; i++) { + m = da->updates_mask[i >> 5] >> (i & 0x1f); + if (m == 0) + i |= 0x1f; + else if (m & 1 && update_chunk(da, i) != 0) + return; + } + r_size = sizeof(*da->range_tbl) * da->rtbl_top; + microuptime(&t1); + +#ifdef DXR2 + if (range_rebuild || da->unused_trie_cnt > V_max_trie_holes) { + trie_rebuild = 1; + da->d_bits = DXR_D; + } + +dxr2_try_squeeze: + if (trie_rebuild) { + bzero(da->trietbl, sizeof(da->trietbl)); + bzero(da->trie_hashtbl, sizeof(da->trie_hashtbl)); + while ((tp = LIST_FIRST(&da->all_trie)) != NULL) { + LIST_REMOVE(tp, td_all_le); + uma_zfree(trie_zone, tp); + } + LIST_INIT(&da->unused_trie); + da->all_trie_cnt = da->unused_trie_cnt = 0; + } + /* DXR2: populate d_tbl, x_tbl */ + dxr_x = DXR_TRIE_BITS - da->d_bits; + d_tbl_size = (1 << da->d_bits); + + for (i = da->updates_low >> dxr_x; i <= da->updates_high >> dxr_x; + i++) { + trie_unref(da, i); + ti = trie_ref(da, i); + if (ti < 0) + return; + da->d_tbl[i] = ti; + } + + d_size = sizeof(*da->d_tbl) * d_tbl_size; + x_size = sizeof(*da->x_tbl) * DIRECT_TBL_SIZE / d_tbl_size + * da->all_trie_cnt; + dxr_tot_size = d_size + x_size + r_size; + + if (trie_rebuild == 1) { + /* Try to find a more compact D/X split */ + if (prev_size == 0 || dxr_tot_size <= prev_size) + da->d_bits--; + else { + da->d_bits++; + trie_rebuild = 2; + } + prev_size = dxr_tot_size; + goto dxr2_try_squeeze; + } + microuptime(&t2); +#else /* !DXR2 */ + dxr_tot_size = sizeof(da->direct_tbl) + r_size; + t2 = t1; +#endif + + dxr->d = malloc(dxr_tot_size, M_DXRLPM, M_NOWAIT); + if (dxr->d == NULL) + return; +#ifdef DXR2 + memcpy(dxr->d, da->d_tbl, d_size); + dxr->x = ((char *) dxr->d) + d_size; + memcpy(dxr->x, da->x_tbl, x_size); + dxr->r = ((char *) dxr->x) + x_size; + dxr->d_shift = 32 - da->d_bits; + dxr->x_shift = dxr_x; + dxr->x_mask = 0xffffffffU >> (32 - dxr_x); +#else /* !DXR2 */ + memcpy(dxr->d, da->direct_tbl, sizeof(da->direct_tbl)); + dxr->r = ((char *) dxr->d) + sizeof(da->direct_tbl); +#endif + memcpy(dxr->r, da->range_tbl, r_size); + + if (da->updates_low <= da->updates_high) + bzero(&da->updates_mask[da->updates_low / 32], + (da->updates_high - da->updates_low) / 8 + 1); + da->updates_low = DIRECT_TBL_SIZE - 1; + da->updates_high = 0; + microuptime(&t3); + +#ifdef DXR2 + FIB_PRINTF(LOG_INFO, da->fd, "D%dX%dR, %d prefixes, %d nexthops", + da->d_bits, dxr_x, rinfo.num_prefixes, rinfo.num_nhops); +#else + FIB_PRINTF(LOG_INFO, da->fd, "D%dR, %d prefixes, %d nexthops", + DXR_D, rinfo.num_prefixes, rinfo.num_nhops); +#endif + i = dxr_tot_size * 100 / rinfo.num_prefixes; + FIB_PRINTF(LOG_INFO, da->fd, "%d.%02d KBytes, %d.%02d Bytes/prefix", + dxr_tot_size / 1024, dxr_tot_size * 100 / 1024 % 100, + i / 100, i % 100); + i = (t1.tv_sec - t0.tv_sec) * 1000000 + t1.tv_usec - t0.tv_usec; + FIB_PRINTF(LOG_INFO, da->fd, "range table %s in %u.%03u ms", + range_rebuild ? "rebuilt" : "updated", i / 1000, i % 1000); +#ifdef DXR2 + i = (t2.tv_sec - t1.tv_sec) * 1000000 + t2.tv_usec - t1.tv_usec; + FIB_PRINTF(LOG_INFO, da->fd, "trie %s in %u.%03u ms", + trie_rebuild ? "rebuilt" : "updated", i / 1000, i % 1000); +#endif + i = (t3.tv_sec - t2.tv_sec) * 1000000 + t3.tv_usec - t2.tv_usec; + FIB_PRINTF(LOG_INFO, da->fd, "snapshot forked in %u.%03u ms", + i / 1000, i % 1000); + FIB_PRINTF(LOG_INFO, da->fd, "range table: %d%%, %d chunks, %d holes", + da->rtbl_top * 100 / BASE_MAX, da->all_chunks_cnt, + da->unused_chunks_cnt); +} + +/* + * Glue functions for attaching to FreeBSD 13 fib_algo infrastructure. + */ + +static struct nhop_object * +dxr_fib_lookup(void *algo_data, const struct flm_lookup_key key, + uint32_t scopeid) +{ + struct dxr *dxr = algo_data; + uint32_t nh; + + nh = dxr_lookup(dxr, ntohl(key.addr4.s_addr)); + + return (dxr->nh_tbl[nh]); +} + +static enum flm_op_result +dxr_init(uint32_t fibnum, struct fib_data *fd, void *old_data, void **data) +{ + struct dxr *old_dxr = old_data; + struct dxr_aux *da = NULL; + struct dxr *dxr; + + dxr = malloc(sizeof(*dxr), M_DXRAUX, M_NOWAIT); + if (dxr == NULL) + return (FLM_REBUILD); + + /* Check whether we may reuse the old auxiliary structures */ + if (old_dxr != NULL && old_dxr->aux != NULL) { + da = old_dxr->aux; + da->refs++; + } + + dxr->aux = da; + dxr->d = NULL; + dxr->fd = fd; + *data = dxr; + + return (FLM_SUCCESS); +} + +static void +dxr_destroy(void *data) +{ + struct dxr *dxr = data; + struct dxr_aux *da; + struct chunk_desc *cdp; + struct trie_desc *tp; + + if (dxr->d != NULL) + free(dxr->d, M_DXRLPM); + + da = dxr->aux; + free(dxr, M_DXRAUX); + + if (da == NULL || --(da->refs) > 0) + return; + + /* Release auxiliary structures */ + while ((cdp = LIST_FIRST(&da->all_chunks)) != NULL) { + LIST_REMOVE(cdp, cd_all_le); + uma_zfree(chunk_zone, cdp); + } + while ((tp = LIST_FIRST(&da->all_trie)) != NULL) { + LIST_REMOVE(tp, td_all_le); + uma_zfree(trie_zone, tp); + } + free(da->range_tbl, M_DXRAUX); + free(da->x_tbl, M_DXRAUX); + free(da, M_DXRAUX); +} + +static void +epoch_dxr_destroy(epoch_context_t ctx) +{ + struct dxr *dxr = __containerof(ctx, struct dxr, epoch_ctx); + + dxr_destroy(dxr); +} + +static enum flm_op_result +dxr_dump_end(void *data, struct fib_dp *dp) +{ + struct dxr *dxr = data; + struct dxr_aux *da; + + dxr_build(dxr); + + da = dxr->aux; + if (da == NULL) + return (FLM_REBUILD); + + /* Structural limit exceeded, hard error */ + if (da->rtbl_top >= BASE_MAX) + return (FLM_ERROR); + + /* A malloc(,, M_NOWAIT) failed somewhere, retry later */ + if (dxr->d == NULL) + return (FLM_REBUILD); + + dp->f = dxr_fib_lookup; + dp->arg = dxr; + + return (FLM_SUCCESS); +} + +static enum flm_op_result +dxr_dump_rib_item(struct rtentry *rt, void *data) +{ + + return (FLM_SUCCESS); +} + +static enum flm_op_result +dxr_change_rib_item(struct rib_head *rnh, struct rib_cmd_info *rc, + void *data) +{ + + return (FLM_BATCH); +} + +static enum flm_op_result +dxr_change_rib_batch(struct rib_head *rnh, struct fib_change_queue *q, + void *data) +{ + struct dxr *new_dxr, *dxr = data; + struct dxr_aux *da; + struct fib_dp new_dp; + uint32_t ip, plen, hmask, start, end, i, ui; + enum flm_op_result res; +#ifdef INVARIANTS + struct rib_rtable_info rinfo; + int update_delta = 0; +#endif + + KASSERT(data != NULL, ("%s: NULL data", __FUNCTION__)); + KASSERT(q != NULL, ("%s: NULL q", __FUNCTION__)); + KASSERT(q->count < q->size, ("%s: q->count %d q->size %d", + __FUNCTION__, q->count, q->size)); + + da = dxr->aux; + KASSERT(da != NULL, ("%s: NULL dxr->aux", __FUNCTION__)); + + FIB_PRINTF(LOG_INFO, da->fd, "processing %d update(s)", q->count); + for (ui = 0; ui < q->count; ui++) { +#ifdef INVARIANTS + if (q->entries[ui].nh_old == NULL && + q->entries[ui].nh_new != NULL) + update_delta++; + else if (q->entries[ui].nh_old != NULL && + q->entries[ui].nh_new == NULL) + update_delta--; +#endif + plen = q->entries[ui].plen; + ip = ntohl(q->entries[ui].addr4.s_addr); + hmask = 0xffffffffU >> plen; + start = (ip & ~hmask) >> DXR_RANGE_SHIFT; + end = (ip | hmask) >> DXR_RANGE_SHIFT; + + if ((start & 0x1f) == 0 && (end & 0x1f) == 0x1f) + for (i = start >> 5; i <= end >> 5; i++) + da->updates_mask[i] = 0xffffffffU; + else + for (i = start; i <= end; i++) + da->updates_mask[i >> 5] |= (1 << (i & 0x1f)); + if (start < da->updates_low) + da->updates_low = start; + if (end > da->updates_high) + da->updates_high = end; + } + +#ifdef INVARIANTS + fib_get_rtable_info(da->rib, &rinfo); + KASSERT(da->prefixes + update_delta == rinfo.num_prefixes, + ("%s: update count mismatch", __FUNCTION__)); +#endif + + res = dxr_init(0, dxr->fd, data, (void **) &new_dxr); + if (res != FLM_SUCCESS) + return (res); + + dxr_build(new_dxr); + + /* Structural limit exceeded, hard error */ + if (da->rtbl_top >= BASE_MAX) { + dxr_destroy(new_dxr); + return (FLM_ERROR); + } + + /* A malloc(,, M_NOWAIT) failed somewhere, retry later */ + if (new_dxr->d == NULL) + goto fail; + + new_dp.f = dxr_fib_lookup; + new_dp.arg = new_dxr; + if (fib_set_datapath_ptr(dxr->fd, &new_dp)) { + fib_set_algo_ptr(dxr->fd, new_dxr); + fib_epoch_call(epoch_dxr_destroy, &dxr->epoch_ctx); + return (FLM_SUCCESS); + } + +fail: + dxr_destroy(new_dxr); + return (FLM_REBUILD); +} + +static uint8_t +dxr_get_pref(const struct rib_rtable_info *rinfo) +{ + + /* Below bsearch4 up to 10 prefixes. Always supersedes dpdk_lpm4. */ + return (251); +} + +static struct fib_lookup_module dxr_lpm = { + .flm_name = "dxr", + .flm_family = AF_INET, + .flm_init_cb = dxr_init, + .flm_destroy_cb = dxr_destroy, + .flm_dump_rib_item_cb = dxr_dump_rib_item, + .flm_dump_end_cb = dxr_dump_end, + .flm_change_rib_item_cb = dxr_change_rib_item, + .flm_change_rib_items_cb = dxr_change_rib_batch, + .flm_get_pref = dxr_get_pref, +}; + +static int +dxr_modevent(module_t mod, int type, void *unused) +{ + int error; + + switch (type) { + case MOD_LOAD: + chunk_zone = uma_zcreate("dxr chunk", sizeof(struct chunk_desc), + NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); + trie_zone = uma_zcreate("dxr trie", sizeof(struct trie_desc), + NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); + fib_module_register(&dxr_lpm); + return(0); + case MOD_UNLOAD: + error = fib_module_unregister(&dxr_lpm); + if (error) + return (error); + uma_zdestroy(chunk_zone); + uma_zdestroy(trie_zone); + return(0); + default: + return(EOPNOTSUPP); + } +} + +static moduledata_t dxr_mod = {"dxr_lpm4", dxr_modevent, 0}; + +DECLARE_MODULE(dxr_mod, dxr_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); +MODULE_VERSION(dxr_mod, 1);