Index: include/complex.h =================================================================== --- include/complex.h +++ include/complex.h @@ -109,6 +109,10 @@ float complex conjf(float complex) __pure2; long double complex conjl(long double complex) __pure2; +float complex cpowf(float complex, float complex); +double complex cpow(double complex, double complex); +long double complex + cpowl(long double complex, long double complex); float complex cprojf(float complex) __pure2; double complex cproj(double complex) __pure2; long double complex Index: lib/msun/Makefile =================================================================== --- lib/msun/Makefile +++ lib/msun/Makefile @@ -56,6 +56,7 @@ imprecise.c \ k_cos.c k_cosf.c k_exp.c k_expf.c k_rem_pio2.c k_sin.c k_sinf.c \ k_tan.c k_tanf.c \ + polevll.c \ s_asinh.c s_asinhf.c s_atan.c s_atanf.c s_carg.c s_cargf.c s_cargl.c \ s_cbrt.c s_cbrtf.c s_ceil.c s_ceilf.c s_clog.c s_clogf.c \ s_copysign.c s_copysignf.c s_cos.c s_cosf.c \ @@ -98,7 +99,7 @@ COMMON_SRCS+= catrigl.c \ e_acoshl.c e_acosl.c e_asinl.c e_atan2l.c e_atanhl.c \ e_coshl.c e_fmodl.c e_hypotl.c \ - e_lgammal.c e_lgammal_r.c \ + e_lgammal.c e_lgammal_r.c e_powl.c \ e_remainderl.c e_sinhl.c e_sqrtl.c \ invtrig.c k_cosl.c k_sinl.c k_tanl.c \ s_asinhl.c s_atanl.c s_cbrtl.c s_ceill.c \ @@ -115,6 +116,7 @@ s_ccosh.c s_ccoshf.c s_cexp.c s_cexpf.c \ s_cimag.c s_cimagf.c s_cimagl.c \ s_conj.c s_conjf.c s_conjl.c \ + s_cpow.c s_cpowf.c s_cpowl.c \ s_cproj.c s_cprojf.c s_creal.c s_crealf.c s_creall.c \ s_csinh.c s_csinhf.c s_ctanh.c s_ctanhf.c @@ -134,7 +136,7 @@ MAN= acos.3 acosh.3 asin.3 asinh.3 atan.3 atan2.3 atanh.3 \ ceil.3 cacos.3 ccos.3 ccosh.3 cexp.3 \ - cimag.3 clog.3 copysign.3 cos.3 cosh.3 csqrt.3 erf.3 \ + cimag.3 clog.3 copysign.3 cos.3 cosh.3 cpow.3 csqrt.3 erf.3 \ exp.3 fabs.3 fdim.3 \ feclearexcept.3 feenableexcept.3 fegetenv.3 \ fegetround.3 fenv.3 floor.3 \ @@ -172,6 +174,7 @@ MLINKS+=copysign.3 copysignf.3 copysign.3 copysignl.3 MLINKS+=cos.3 cosf.3 cos.3 cosl.3 MLINKS+=cosh.3 coshf.3 cosh.3 coshl.3 +MLINKS+=cpow.3 cpowf.3 cpow.3 cpowl.3 MLINKS+=csqrt.3 csqrtf.3 csqrt.3 csqrtl.3 MLINKS+=erf.3 erfc.3 erf.3 erff.3 erf.3 erfcf.3 erf.3 erfl.3 erf.3 erfcl.3 MLINKS+=exp.3 expm1.3 exp.3 expm1f.3 exp.3 expm1l.3 exp.3 pow.3 exp.3 powf.3 \ Index: lib/msun/Symbol.map =================================================================== --- lib/msun/Symbol.map +++ lib/msun/Symbol.map @@ -274,10 +274,10 @@ log1pl; log2l; logl; + powl; sinhl; tanhl; /* Implemented as weak aliases for imprecise versions */ - powl; tgammal; }; @@ -297,6 +297,9 @@ clog; clogf; clogl; + cpow; + cpowf; + cpowl; sincos; sincosf; sincosl; Index: lib/msun/ld128/e_powl.c =================================================================== --- lib/msun/ld128/e_powl.c +++ lib/msun/ld128/e_powl.c @@ -0,0 +1,439 @@ +/*- + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* powl(x,y) return x**y + * + * n + * Method: Let x = 2 * (1+f) + * 1. Compute and return log2(x) in two pieces: + * log2(x) = w1 + w2, + * where w1 has 113-53 = 60 bit trailing zeros. + * 2. Perform y*log2(x) = n+y' by simulating muti-precision + * arithmetic, where |y'|<=0.5. + * 3. Return x**y = 2**n*exp(y'*log2) + * + * Special cases: + * 1. (anything) ** 0 is 1 + * 2. (anything) ** 1 is itself + * 3. (anything) ** NAN is NAN + * 4. NAN ** (anything except 0) is NAN + * 5. +-(|x| > 1) ** +INF is +INF + * 6. +-(|x| > 1) ** -INF is +0 + * 7. +-(|x| < 1) ** +INF is +0 + * 8. +-(|x| < 1) ** -INF is +INF + * 9. +-1 ** +-INF is NAN + * 10. +0 ** (+anything except 0, NAN) is +0 + * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 + * 12. +0 ** (-anything except 0, NAN) is +INF + * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF + * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) + * 15. +INF ** (+anything except 0,NAN) is +INF + * 16. +INF ** (-anything except 0,NAN) is +0 + * 17. -INF ** (anything) = -0 ** (-anything) + * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) + * 19. (-anything except 0 and inf) ** (non-integer) is NAN + * + */ + +#include + +#include "math_private.h" + +static const long double bp[] = { + 1.0L, + 1.5L, +}; + +/* log_2(1.5) */ +static const long double dp_h[] = { + 0.0, + 5.8496250072115607565592654282227158546448E-1L +}; + +/* Low part of log_2(1.5) */ +static const long double dp_l[] = { + 0.0, + 1.0579781240112554492329533686862998106046E-16L +}; + +static const long double zero = 0.0L, + one = 1.0L, + two = 2.0L, + two113 = 1.0384593717069655257060992658440192E34L, + huge = 1.0e3000L, + tiny = 1.0e-3000L; + +/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2)) + z = (x-1)/(x+1) + 1 <= x <= 1.25 + Peak relative error 2.3e-37 */ +static const long double LN[] = +{ + -3.0779177200290054398792536829702930623200E1L, + 6.5135778082209159921251824580292116201640E1L, + -4.6312921812152436921591152809994014413540E1L, + 1.2510208195629420304615674658258363295208E1L, + -9.9266909031921425609179910128531667336670E-1L +}; +static const long double LD[] = +{ + -5.129862866715009066465422805058933131960E1L, + 1.452015077564081884387441590064272782044E2L, + -1.524043275549860505277434040464085593165E2L, + 7.236063513651544224319663428634139768808E1L, + -1.494198912340228235853027849917095580053E1L + /* 1.0E0 */ +}; + +/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2))) + 0 <= x <= 0.5 + Peak relative error 5.7e-38 */ +static const long double PN[] = +{ + 5.081801691915377692446852383385968225675E8L, + 9.360895299872484512023336636427675327355E6L, + 4.213701282274196030811629773097579432957E4L, + 5.201006511142748908655720086041570288182E1L, + 9.088368420359444263703202925095675982530E-3L, +}; +static const long double PD[] = +{ + 3.049081015149226615468111430031590411682E9L, + 1.069833887183886839966085436512368982758E8L, + 8.259257717868875207333991924545445705394E5L, + 1.872583833284143212651746812884298360922E3L, + /* 1.0E0 */ +}; + +static const long double + /* ln 2 */ + lg2 = 6.9314718055994530941723212145817656807550E-1L, + lg2_h = 6.9314718055994528622676398299518041312695E-1L, + lg2_l = 2.3190468138462996154948554638754786504121E-17L, + ovt = 8.0085662595372944372e-0017L, + /* 2/(3*log(2)) */ + cp = 9.6179669392597560490661645400126142495110E-1L, + cp_h = 9.6179669392597555432899980587535537779331E-1L, + cp_l = 5.0577616648125906047157785230014751039424E-17L; + +long double +powl(long double x, long double y) +{ + long double z, ax, z_h, z_l, p_h, p_l; + long double yy1, t1, t2, r, s, t, u, v, w; + long double s2, s_h, s_l, t_h, t_l; + int32_t i, j, k, yisint, n; + u_int32_t ix, iy; + int32_t hx, hy; + ieee_quad_shape_type o, p, q; + + p.value = x; + hx = p.parts32.mswhi; + ix = hx & 0x7fffffff; + + q.value = y; + hy = q.parts32.mswhi; + iy = hy & 0x7fffffff; + + + /* y==zero: x**0 = 1 */ + if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0) + return one; + + /* 1.0**y = 1; -1.0**+-Inf = 1 */ + if (x == one) + return one; + if (x == -1.0L && iy == 0x7fff0000 + && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0) + return one; + + /* +-NaN return x+y */ + if ((ix > 0x7fff0000) + || ((ix == 0x7fff0000) + && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0)) + || (iy > 0x7fff0000) + || ((iy == 0x7fff0000) + && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0))) + return x + y; + + /* determine if y is an odd int when x < 0 + * yisint = 0 ... y is not an integer + * yisint = 1 ... y is an odd int + * yisint = 2 ... y is an even int + */ + yisint = 0; + if (hx < 0) + { + if (iy >= 0x40700000) /* 2^113 */ + yisint = 2; /* even integer y */ + else if (iy >= 0x3fff0000) /* 1.0 */ + { + if (floorl (y) == y) + { + z = 0.5 * y; + if (floorl (z) == z) + yisint = 2; + else + yisint = 1; + } + } + } + + /* special value of y */ + if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0) + { + if (iy == 0x7fff0000) /* y is +-inf */ + { + if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi | + p.parts32.lswlo) == 0) + return y - y; /* +-1**inf is NaN */ + else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */ + return (hy >= 0) ? y : zero; + else /* (|x|<1)**-,+inf = inf,0 */ + return (hy < 0) ? -y : zero; + } + if (iy == 0x3fff0000) + { /* y is +-1 */ + if (hy < 0) + return one / x; + else + return x; + } + if (hy == 0x40000000) + return x * x; /* y is 2 */ + if (hy == 0x3ffe0000) + { /* y is 0.5 */ + if (hx >= 0) /* x >= +0 */ + return sqrtl (x); + } + } + + ax = fabsl (x); + /* special value of x */ + if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0) + { + if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000) + { + z = ax; /*x is +-0,+-inf,+-1 */ + if (hy < 0) + z = one / z; /* z = (1/|x|) */ + if (hx < 0) + { + if (((ix - 0x3fff0000) | yisint) == 0) + { + z = (z - z) / (z - z); /* (-1)**non-int is NaN */ + } + else if (yisint == 1) + z = -z; /* (x<0)**odd = -(|x|**odd) */ + } + return z; + } + } + + /* (x<0)**(non-int) is NaN */ + if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0) + return (x - x) / (x - x); + + /* |y| is huge. + 2^-16495 = 1/2 of smallest representable value. + If (1 - 1/131072)^y underflows, y > 1.4986e9 */ + if (iy > 0x401d654b) + { + /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */ + if (iy > 0x407d654b) + { + if (ix <= 0x3ffeffff) + return (hy < 0) ? huge * huge : tiny * tiny; + if (ix >= 0x3fff0000) + return (hy > 0) ? huge * huge : tiny * tiny; + } + /* over/underflow if x is not close to one */ + if (ix < 0x3ffeffff) + return (hy < 0) ? huge * huge : tiny * tiny; + if (ix > 0x3fff0000) + return (hy > 0) ? huge * huge : tiny * tiny; + } + + n = 0; + /* take care subnormal number */ + if (ix < 0x00010000) + { + ax *= two113; + n -= 113; + o.value = ax; + ix = o.parts32.mswhi; + } + n += ((ix) >> 16) - 0x3fff; + j = ix & 0x0000ffff; + /* determine interval */ + ix = j | 0x3fff0000; /* normalize ix */ + if (j <= 0x3988) + k = 0; /* |x|> 31) - 1) | (yisint - 1)) == 0) + s = -one; /* (-ve)**(odd int) */ + + /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */ + yy1 = y; + o.value = yy1; + o.parts32.lswlo = 0; + o.parts32.lswhi &= 0xf8000000; + yy1 = o.value; + p_l = (y - yy1) * t1 + y * t2; + p_h = yy1 * t1; + z = p_l + p_h; + o.value = z; + j = o.parts32.mswhi; + if (j >= 0x400d0000) /* z >= 16384 */ + { + /* if z > 16384 */ + if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi | + o.parts32.lswlo) != 0) + return s * huge * huge; /* overflow */ + else + { + if (p_l + ovt > z - p_h) + return s * huge * huge; /* overflow */ + } + } + else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */ + { + /* z < -16495 */ + if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi | + o.parts32.lswlo) + != 0) + return s * tiny * tiny; /* underflow */ + else + { + if (p_l <= z - p_h) + return s * tiny * tiny; /* underflow */ + } + } + /* compute 2**(p_h+p_l) */ + i = j & 0x7fffffff; + k = (i >> 16) - 0x3fff; + n = 0; + if (i > 0x3ffe0000) + { /* if |z| > 0.5, set n = [z+0.5] */ + n = floorl (z + 0.5L); + t = n; + p_h -= t; + } + t = p_l + p_h; + o.value = t; + o.parts32.lswlo = 0; + o.parts32.lswhi &= 0xf8000000; + t = o.value; + u = t * lg2_h; + v = (p_l - (t - p_h)) * lg2 + t * lg2_l; + z = u + v; + w = v - (z - u); + /* exp(z) */ + t = z * z; + u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4]))); + v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t))); + t1 = z - t * u / v; + r = (z * t1) / (t1 - two) - (w + z * w); + z = one - (r - z); + o.value = z; + j = o.parts32.mswhi; + j += (n << 16); + if ((j >> 16) <= 0) + z = scalbnl (z, n); /* subnormal output */ + else + { + o.parts32.mswhi = j; + z = o.value; + } + return s * z; +} Index: lib/msun/ld80/e_powl.c =================================================================== --- lib/msun/ld80/e_powl.c +++ lib/msun/ld80/e_powl.c @@ -0,0 +1,613 @@ +/*- + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* powl.c + * + * Power function, long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, z, powl(); + * + * z = powl( x, y ); + * + * + * + * DESCRIPTION: + * + * Computes x raised to the yth power. Analytically, + * + * x**y = exp( y log(x) ). + * + * Following Cody and Waite, this program uses a lookup table + * of 2**-i/32 and pseudo extended precision arithmetic to + * obtain several extra bits of accuracy in both the logarithm + * and the exponential. + * + * + * + * ACCURACY: + * + * The relative error of pow(x,y) can be estimated + * by y dl ln(2), where dl is the absolute error of + * the internally computed base 2 logarithm. At the ends + * of the approximation interval the logarithm equal 1/32 + * and its relative error is about 1 lsb = 1.1e-19. Hence + * the predicted relative error in the result is 2.3e-21 y . + * + * Relative error: + * arithmetic domain # trials peak rms + * + * IEEE +-1000 40000 2.8e-18 3.7e-19 + * .001 < x < 1000, with log(x) uniformly distributed. + * -1000 < y < 1000, y uniformly distributed. + * + * IEEE 0,8700 60000 6.5e-18 1.0e-18 + * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed. + * + * + * ERROR MESSAGES: + * + * message condition value returned + * pow overflow x**y > MAXNUM INFINITY + * pow underflow x**y < 1/MAXNUM 0.0 + * pow domain x<0 and y noninteger 0.0 + * + */ + +#include +#include + +#include "math_private.h" + +/* Table size */ +#define NXT 32 +/* log2(Table size) */ +#define LNXT 5 + +/* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z) + * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1 + */ +static long double P[] = { + 8.3319510773868690346226E-4L, + 4.9000050881978028599627E-1L, + 1.7500123722550302671919E0L, + 1.4000100839971580279335E0L, +}; +static long double Q[] = { +/* 1.0000000000000000000000E0L,*/ + 5.2500282295834889175431E0L, + 8.4000598057587009834666E0L, + 4.2000302519914740834728E0L, +}; +/* A[i] = 2^(-i/32), rounded to IEEE long double precision. + * If i is even, A[i] + B[i/2] gives additional accuracy. + */ +static long double A[33] = { + 1.0000000000000000000000E0L, + 9.7857206208770013448287E-1L, + 9.5760328069857364691013E-1L, + 9.3708381705514995065011E-1L, + 9.1700404320467123175367E-1L, + 8.9735453750155359320742E-1L, + 8.7812608018664974155474E-1L, + 8.5930964906123895780165E-1L, + 8.4089641525371454301892E-1L, + 8.2287773907698242225554E-1L, + 8.0524516597462715409607E-1L, + 7.8799042255394324325455E-1L, + 7.7110541270397041179298E-1L, + 7.5458221379671136985669E-1L, + 7.3841307296974965571198E-1L, + 7.2259040348852331001267E-1L, + 7.0710678118654752438189E-1L, + 6.9195494098191597746178E-1L, + 6.7712777346844636413344E-1L, + 6.6261832157987064729696E-1L, + 6.4841977732550483296079E-1L, + 6.3452547859586661129850E-1L, + 6.2092890603674202431705E-1L, + 6.0762367999023443907803E-1L, + 5.9460355750136053334378E-1L, + 5.8186242938878875689693E-1L, + 5.6939431737834582684856E-1L, + 5.5719337129794626814472E-1L, + 5.4525386633262882960438E-1L, + 5.3357020033841180906486E-1L, + 5.2213689121370692017331E-1L, + 5.1094857432705833910408E-1L, + 5.0000000000000000000000E-1L, +}; +static long double B[17] = { + 0.0000000000000000000000E0L, + 2.6176170809902549338711E-20L, +-1.0126791927256478897086E-20L, + 1.3438228172316276937655E-21L, + 1.2207982955417546912101E-20L, +-6.3084814358060867200133E-21L, + 1.3164426894366316434230E-20L, +-1.8527916071632873716786E-20L, + 1.8950325588932570796551E-20L, + 1.5564775779538780478155E-20L, + 6.0859793637556860974380E-21L, +-2.0208749253662532228949E-20L, + 1.4966292219224761844552E-20L, + 3.3540909728056476875639E-21L, +-8.6987564101742849540743E-22L, +-1.2327176863327626135542E-20L, + 0.0000000000000000000000E0L, +}; + +/* 2^x = 1 + x P(x), + * on the interval -1/32 <= x <= 0 + */ +static long double R[] = { + 1.5089970579127659901157E-5L, + 1.5402715328927013076125E-4L, + 1.3333556028915671091390E-3L, + 9.6181291046036762031786E-3L, + 5.5504108664798463044015E-2L, + 2.4022650695910062854352E-1L, + 6.9314718055994530931447E-1L, +}; + +#define douba(k) A[k] +#define doubb(k) B[k] +#define MEXP (NXT*16384.0L) +/* The following if denormal numbers are supported, else -MEXP: */ +#define MNEXP (-NXT*(16384.0L+64.0L)) +/* log2(e) - 1 */ +#define LOG2EA 0.44269504088896340735992L + +#define F W +#define Fa Wa +#define Fb Wb +#define G W +#define Ga Wa +#define Gb u +#define H W +#define Ha Wb +#define Hb Wb + +static const long double MAXLOGL = 1.1356523406294143949492E4L; +static const long double MINLOGL = -1.13994985314888605586758E4L; +static const long double LOGE2L = 6.9314718055994530941723E-1L; +static volatile long double z; +static long double w, W, Wa, Wb, ya, yb, u; +static const long double huge = 0x1p10000L; +#if 0 /* XXX Prevent gcc from erroneously constant folding this. */ +static const long double twom10000 = 0x1p-10000L; +#else +static volatile long double twom10000 = 0x1p-10000L; +#endif + +static long double reducl( long double ); +static long double powil ( long double, int ); + +long double +powl(long double x, long double y) +{ +/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */ +int i, nflg, iyflg, yoddint; +long e; + +if( y == 0.0L ) + return( 1.0L ); + +if( x == 1.0L ) + return( 1.0L ); + +if( isnan(x) ) + return( x ); +if( isnan(y) ) + return( y ); + +if( y == 1.0L ) + return( x ); + +if( !isfinite(y) && x == -1.0L ) + return( 1.0L ); + +if( y >= LDBL_MAX ) + { + if( x > 1.0L ) + return( INFINITY ); + if( x > 0.0L && x < 1.0L ) + return( 0.0L ); + if( x < -1.0L ) + return( INFINITY ); + if( x > -1.0L && x < 0.0L ) + return( 0.0L ); + } +if( y <= -LDBL_MAX ) + { + if( x > 1.0L ) + return( 0.0L ); + if( x > 0.0L && x < 1.0L ) + return( INFINITY ); + if( x < -1.0L ) + return( 0.0L ); + if( x > -1.0L && x < 0.0L ) + return( INFINITY ); + } +if( x >= LDBL_MAX ) + { + if( y > 0.0L ) + return( INFINITY ); + return( 0.0L ); + } + +w = floorl(y); +/* Set iyflg to 1 if y is an integer. */ +iyflg = 0; +if( w == y ) + iyflg = 1; + +/* Test for odd integer y. */ +yoddint = 0; +if( iyflg ) + { + ya = fabsl(y); + ya = floorl(0.5L * ya); + yb = 0.5L * fabsl(w); + if( ya != yb ) + yoddint = 1; + } + +if( x <= -LDBL_MAX ) + { + if( y > 0.0L ) + { + if( yoddint ) + return( -INFINITY ); + return( INFINITY ); + } + if( y < 0.0L ) + { + if( yoddint ) + return( -0.0L ); + return( 0.0 ); + } + } + + +nflg = 0; /* flag = 1 if x<0 raised to integer power */ +if( x <= 0.0L ) + { + if( x == 0.0L ) + { + if( y < 0.0 ) + { + if( signbit(x) && yoddint ) + return( -INFINITY ); + return( INFINITY ); + } + if( y > 0.0 ) + { + if( signbit(x) && yoddint ) + return( -0.0L ); + return( 0.0 ); + } + if( y == 0.0L ) + return( 1.0L ); /* 0**0 */ + else + return( 0.0L ); /* 0**y */ + } + else + { + if( iyflg == 0 ) + return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */ + nflg = 1; + } + } + +/* Integer power of an integer. */ + +if( iyflg ) + { + i = w; + w = floorl(x); + if( (w == x) && (fabsl(y) < 32768.0) ) + { + w = powil( x, (int) y ); + return( w ); + } + } + + +if( nflg ) + x = fabsl(x); + +/* separate significand from exponent */ +x = frexpl( x, &i ); +e = i; + +/* find significand in antilog table A[] */ +i = 1; +if( x <= douba(17) ) + i = 17; +if( x <= douba(i+8) ) + i += 8; +if( x <= douba(i+4) ) + i += 4; +if( x <= douba(i+2) ) + i += 2; +if( x >= douba(1) ) + i = -1; +i += 1; + + +/* Find (x - A[i])/A[i] + * in order to compute log(x/A[i]): + * + * log(x) = log( a x/a ) = log(a) + log(x/a) + * + * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a + */ +x -= douba(i); +x -= doubb(i/2); +x /= douba(i); + + +/* rational approximation for log(1+v): + * + * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) + */ +z = x*x; +w = x * ( z * __polevll( x, P, 3 ) / __p1evll( x, Q, 3 ) ); +w = w - ldexpl( z, -1 ); /* w - 0.5 * z */ + +/* Convert to base 2 logarithm: + * multiply by log2(e) = 1 + LOG2EA + */ +z = LOG2EA * w; +z += w; +z += LOG2EA * x; +z += x; + +/* Compute exponent term of the base 2 logarithm. */ +w = -i; +w = ldexpl( w, -LNXT ); /* divide by NXT */ +w += e; +/* Now base 2 log of x is w + z. */ + +/* Multiply base 2 log by y, in extended precision. */ + +/* separate y into large part ya + * and small part yb less than 1/NXT + */ +ya = reducl(y); +yb = y - ya; + +/* (w+z)(ya+yb) + * = w*ya + w*yb + z*y + */ +F = z * y + w * yb; +Fa = reducl(F); +Fb = F - Fa; + +G = Fa + w * ya; +Ga = reducl(G); +Gb = G - Ga; + +H = Fb + Gb; +Ha = reducl(H); +w = ldexpl( Ga+Ha, LNXT ); + +/* Test the power of 2 for overflow */ +if( w > MEXP ) + return (huge * huge); /* overflow */ + +if( w < MNEXP ) + return (twom10000 * twom10000); /* underflow */ + +e = w; +Hb = H - Ha; + +if( Hb > 0.0L ) + { + e += 1; + Hb -= (1.0L/NXT); /*0.0625L;*/ + } + +/* Now the product y * log2(x) = Hb + e/NXT. + * + * Compute base 2 exponential of Hb, + * where -0.0625 <= Hb <= 0. + */ +z = Hb * __polevll( Hb, R, 6 ); /* z = 2**Hb - 1 */ + +/* Express e/NXT as an integer plus a negative number of (1/NXT)ths. + * Find lookup table entry for the fractional power of 2. + */ +if( e < 0 ) + i = 0; +else + i = 1; +i = e/NXT + i; +e = NXT*i - e; +w = douba( e ); +z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ +z = z + w; +z = ldexpl( z, i ); /* multiply by integer power of 2 */ + +if( nflg ) + { +/* For negative x, + * find out if the integer exponent + * is odd or even. + */ + w = ldexpl( y, -1 ); + w = floorl(w); + w = ldexpl( w, 1 ); + if( w != y ) + z = -z; /* odd exponent */ + } + +return( z ); +} + + +/* Find a multiple of 1/NXT that is within 1/NXT of x. */ +static long double +reducl(long double x) +{ +long double t; + +t = ldexpl( x, LNXT ); +t = floorl( t ); +t = ldexpl( t, -LNXT ); +return(t); +} + +/* powil.c + * + * Real raised to integer power, long double precision + * + * + * + * SYNOPSIS: + * + * long double x, y, powil(); + * int n; + * + * y = powil( x, n ); + * + * + * + * DESCRIPTION: + * + * Returns argument x raised to the nth power. + * The routine efficiently decomposes n as a sum of powers of + * two. The desired power is a product of two-to-the-kth + * powers of x. Thus to compute the 32767 power of x requires + * 28 multiplications instead of 32767 multiplications. + * + * + * + * ACCURACY: + * + * + * Relative error: + * arithmetic x domain n domain # trials peak rms + * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18 + * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18 + * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17 + * + * Returns MAXNUM on overflow, zero on underflow. + * + */ + +static long double +powil(long double x, int nn) +{ +long double ww, y; +long double s; +int n, e, sign, asign, lx; + +if( x == 0.0L ) + { + if( nn == 0 ) + return( 1.0L ); + else if( nn < 0 ) + return( LDBL_MAX ); + else + return( 0.0L ); + } + +if( nn == 0 ) + return( 1.0L ); + + +if( x < 0.0L ) + { + asign = -1; + x = -x; + } +else + asign = 0; + + +if( nn < 0 ) + { + sign = -1; + n = -nn; + } +else + { + sign = 1; + n = nn; + } + +/* Overflow detection */ + +/* Calculate approximate logarithm of answer */ +s = x; +s = frexpl( s, &lx ); +e = (lx - 1)*n; +if( (e == 0) || (e > 64) || (e < -64) ) + { + s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L); + s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L; + } +else + { + s = LOGE2L * e; + } + +if( s > MAXLOGL ) + return (huge * huge); /* overflow */ + +if( s < MINLOGL ) + return (twom10000 * twom10000); /* underflow */ +/* Handle tiny denormal answer, but with less accuracy + * since roundoff error in 1.0/x will be amplified. + * The precise demarcation should be the gradual underflow threshold. + */ +if( s < (-MAXLOGL+2.0L) ) + { + x = 1.0L/x; + sign = -sign; + } + +/* First bit of the power */ +if( n & 1 ) + y = x; + +else + { + y = 1.0L; + asign = 0; + } + +ww = x; +n >>= 1; +while( n ) + { + ww = ww * ww; /* arg to the 2-to-the-kth power */ + if( n & 1 ) /* if that bit is set, then include in product */ + y *= ww; + n >>= 1; + } + +if( asign ) + y = -y; /* odd power of negative number */ +if( sign < 0 ) + y = 1.0L/y; +return(y); +} Index: lib/msun/man/complex.3 =================================================================== --- lib/msun/man/complex.3 +++ lib/msun/man/complex.3 @@ -24,7 +24,7 @@ .\" .\" $FreeBSD$ .\" -.Dd June 6, 2018 +.Dd June 19, 2018 .Dt COMPLEX 3 .Os .Sh NAME @@ -101,6 +101,7 @@ catanh arc hyperbolic tangent ccos cosine ccosh hyperbolic cosine +cpow power function csin sine csinh hyperbolic sine ctan tangent @@ -120,7 +121,3 @@ .In complex.h functions described here conform to .St -isoC-99 . -.Sh BUGS -The power functions -.Fn cpow -are not implemented. Index: lib/msun/man/cpow.3 =================================================================== --- lib/msun/man/cpow.3 +++ lib/msun/man/cpow.3 @@ -0,0 +1,62 @@ +.\" Copyright (c) 2011 Martynas Venckus +.\" +.\" Permission to use, copy, modify, and distribute this software for any +.\" purpose with or without fee is hereby granted, provided that the above +.\" copyright notice and this permission notice appear in all copies. +.\" +.\" THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES +.\" WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF +.\" MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR +.\" ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES +.\" WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN +.\" ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF +.\" OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. +.\" +.Dd $Mdocdate: June 5 2013 $ +.Dt CPOW 3 +.Os +.Sh NAME +.Nm cpow , +.Nm cpowf , +.Nm cpowl +.Nd complex power functions +.Sh SYNOPSIS +.In complex.h +.Ft double complex +.Fn cpow "double complex x" "double complex z" +.Ft float complex +.Fn cpowf "float complex x" "float complex z" +.Ft long double complex +.Fn cpowl "long double complex x" "long double complex z" +.Sh DESCRIPTION +The +.Fn cpow , +.Fn cpowf +and +.Fn cpowl +functions compute the complex number +.Fa x +raised to the complex power +.Fa z , +with a branch cut along the negative real axis for the first argument. +.Sh RETURN VALUES +The +.Fn cpow , +.Fn cpowf +and +.Fn cpowl +functions return the complex number +.Fa x +raised to the complex power +.Fa z . +.Sh SEE ALSO +.Xr cexp 3 , +.Xr clog 3 +.Sh STANDARDS +The +.Fn cpow , +.Fn cpowf +and +.Fn cpowl +functions conform to +.St -isoC-99 . Index: lib/msun/src/e_pow.c =================================================================== --- lib/msun/src/e_pow.c +++ lib/msun/src/e_pow.c @@ -304,3 +304,7 @@ else SET_HIGH_WORD(z,j); return s*z; } + +#if (LDBL_MANT_DIG == 53) +__weak_reference(pow, powl); +#endif Index: lib/msun/src/imprecise.c =================================================================== --- lib/msun/src/imprecise.c +++ lib/msun/src/imprecise.c @@ -50,14 +50,6 @@ __weak_reference(imprecise_## x, x);\ WARN_IMPRECISE(x) -long double -imprecise_powl(long double x, long double y) -{ - - return pow(x, y); -} -DECLARE_WEAK(powl); - #define DECLARE_IMPRECISE(f) \ long double imprecise_ ## f ## l(long double v) { return f(v); }\ DECLARE_WEAK(f ## l) Index: lib/msun/src/math_private.h =================================================================== --- lib/msun/src/math_private.h +++ lib/msun/src/math_private.h @@ -48,10 +48,51 @@ #define IEEE_WORD_ORDER BYTE_ORDER #endif +/* A union which permits us to convert between a long double and + four 32 bit ints. */ + #if IEEE_WORD_ORDER == BIG_ENDIAN typedef union { + long double value; + struct { + u_int32_t mswhi; + u_int32_t mswlo; + u_int32_t lswhi; + u_int32_t lswlo; + } parts32; + struct { + u_int64_t msw; + u_int64_t lsw; + } parts64; +} ieee_quad_shape_type; + +#endif + +#if IEEE_WORD_ORDER == LITTLE_ENDIAN + +typedef union +{ + long double value; + struct { + u_int32_t lswlo; + u_int32_t lswhi; + u_int32_t mswlo; + u_int32_t mswhi; + } parts32; + struct { + u_int64_t lsw; + u_int64_t msw; + } parts64; +} ieee_quad_shape_type; + +#endif + +#if IEEE_WORD_ORDER == BIG_ENDIAN + +typedef union +{ double value; struct { @@ -786,5 +827,8 @@ long double __kernel_sinl(long double, long double, int); long double __kernel_cosl(long double, long double); long double __kernel_tanl(long double, long double, int); + +long double __p1evll(long double, void *, int); +long double __polevll(long double, void *, int); #endif /* !_MATH_PRIVATE_H_ */ Index: lib/msun/src/polevll.c =================================================================== --- lib/msun/src/polevll.c +++ lib/msun/src/polevll.c @@ -0,0 +1,102 @@ +/*- + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* polevll.c + * p1evll.c + * + * Evaluate polynomial + * + * + * + * SYNOPSIS: + * + * int N; + * long double x, y, coef[N+1], polevl[]; + * + * y = polevll( x, coef, N ); + * + * + * + * DESCRIPTION: + * + * Evaluates polynomial of degree N: + * + * 2 N + * y = C + C x + C x +...+ C x + * 0 1 2 N + * + * Coefficients are stored in reverse order: + * + * coef[0] = C , ..., coef[N] = C . + * N 0 + * + * The function p1evll() assumes that coef[N] = 1.0 and is + * omitted from the array. Its calling arguments are + * otherwise the same as polevll(). + * + * + * SPEED: + * + * In the interest of speed, there are no checks for out + * of bounds arithmetic. This routine is used by most of + * the functions in the library. Depending on available + * equipment features, the user may wish to rewrite the + * program in microcode or assembly language. + * + */ + +#include + +#include "math_private.h" + +/* + * Polynomial evaluator: + * P[0] x^n + P[1] x^(n-1) + ... + P[n] + */ +long double +__polevll(long double x, void *PP, int n) +{ + long double y; + long double *P; + + P = (long double *)PP; + y = *P++; + do { + y = y * x + *P++; + } while (--n); + + return (y); +} + +/* + * Polynomial evaluator: + * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n] + */ +long double +__p1evll(long double x, void *PP, int n) +{ + long double y; + long double *P; + + P = (long double *)PP; + n -= 1; + y = x + *P++; + do { + y = y * x + *P++; + } while (--n); + + return (y); +} Index: lib/msun/src/s_cpow.c =================================================================== --- lib/msun/src/s_cpow.c +++ lib/msun/src/s_cpow.c @@ -0,0 +1,71 @@ +/*- + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* cpow + * + * Complex power function + * + * + * + * SYNOPSIS: + * + * double complex cpow(); + * double complex a, z, w; + * + * w = cpow (a, z); + * + * + * + * DESCRIPTION: + * + * Raises complex A to the complex Zth power. + * Definition is per AMS55 # 4.2.8, + * analytically equivalent to cpow(a,z) = cexp(z clog(a)). + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE -10,+10 30000 9.4e-15 1.5e-15 + * + */ + +#include +#include +#include + +double complex +cpow(double complex a, double complex z) +{ + double complex w; + double x, y, r, theta, absa, arga; + + x = creal (z); + y = cimag (z); + absa = cabs (a); + if (absa == 0.0) { + return (0.0 + 0.0 * I); + } + arga = carg (a); + r = pow (absa, x); + theta = x * arga; + if (y != 0.0) { + r = r * exp (-y * arga); + theta = theta + y * log (absa); + } + w = r * cos (theta) + (r * sin (theta)) * I; + return (w); +} Index: lib/msun/src/s_cpowf.c =================================================================== --- lib/msun/src/s_cpowf.c +++ lib/msun/src/s_cpowf.c @@ -0,0 +1,70 @@ +/*- + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* cpowf + * + * Complex power function + * + * + * + * SYNOPSIS: + * + * float complex cpowf(); + * float complex a, z, w; + * + * w = cpowf (a, z); + * + * + * + * DESCRIPTION: + * + * Raises complex A to the complex Zth power. + * Definition is per AMS55 # 4.2.8, + * analytically equivalent to cpow(a,z) = cexp(z clog(a)). + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE -10,+10 30000 9.4e-15 1.5e-15 + * + */ + +#include +#include + +float complex +cpowf(float complex a, float complex z) +{ + float complex w; + float x, y, r, theta, absa, arga; + + x = crealf(z); + y = cimagf(z); + absa = cabsf (a); + if (absa == 0.0f) { + return (0.0f + 0.0f * I); + } + arga = cargf (a); + r = powf (absa, x); + theta = x * arga; + if (y != 0.0f) { + r = r * expf (-y * arga); + theta = theta + y * logf (absa); + } + w = r * cosf (theta) + (r * sinf (theta)) * I; + return (w); +} Index: lib/msun/src/s_cpowl.c =================================================================== --- lib/msun/src/s_cpowl.c +++ lib/msun/src/s_cpowl.c @@ -0,0 +1,70 @@ +/*- + * Copyright (c) 2008 Stephen L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* cpowl + * + * Complex power function + * + * + * + * SYNOPSIS: + * + * long double complex cpowl(); + * long double complex a, z, w; + * + * w = cpowl (a, z); + * + * + * + * DESCRIPTION: + * + * Raises complex A to the complex Zth power. + * Definition is per AMS55 # 4.2.8, + * analytically equivalent to cpow(a,z) = cexp(z clog(a)). + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE -10,+10 30000 9.4e-15 1.5e-15 + * + */ + +#include +#include + +long double complex +cpowl(long double complex a, long double complex z) +{ + long double complex w; + long double x, y, r, theta, absa, arga; + + x = creall(z); + y = cimagl(z); + absa = cabsl(a); + if (absa == 0.0L) { + return (0.0L + 0.0L * I); + } + arga = cargl(a); + r = powl(absa, x); + theta = x * arga; + if (y != 0.0L) { + r = r * expl(-y * arga); + theta = theta + y * logl(absa); + } + w = r * cosl(theta) + (r * sinl(theta)) * I; + return (w); +}