Index: sys/vm/vm_map.c =================================================================== --- sys/vm/vm_map.c +++ sys/vm/vm_map.c @@ -798,7 +798,10 @@ map->header.end = min; map->header.start = max; map->flags = 0; - map->root = NULL; + map->root = map->header.right = &map->header; + map->header.left = NULL; + map->header.adj_free = max - min; + map->header.max_free = map->header.adj_free; map->timestamp = 0; map->busy = 0; } @@ -873,91 +876,88 @@ } /* - * vm_map_entry_splay: - * - * The Sleator and Tarjan top-down splay algorithm with the - * following variation. Max_free must be computed bottom-up, so - * on the downward pass, maintain the left and right spines in - * reverse order. Then, make a second pass up each side to fix - * the pointers and compute max_free. The time bound is O(log n) - * amortized. - * - * The new root is the vm_map_entry containing "addr", or else an - * adjacent entry (lower or higher) if addr is not in the tree. - * - * The map must be locked, and leaves it so. - * - * Returns: the new root. + * Walk down the tree until we find addr or a NULL pointer where addr would go, + * breaking off left and right subtrees of nodes less than, or greater than + * addr. llist and rlist are the two sides in reverse order (bottom-up), with + * llist linked by the right pointer and rlist linked by the left pointer in the + * vm_map_entry. */ static vm_map_entry_t -vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) +vm_map_entry_splay_split(vm_offset_t addr, vm_map_entry_t root, + vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist) { vm_map_entry_t llist, rlist; - vm_map_entry_t ltree, rtree; vm_map_entry_t y; - /* Special case of empty tree. */ - if (root == NULL) - return (root); - - /* - * Pass One: Splay down the tree until we find addr or a NULL - * pointer where addr would go. llist and rlist are the two - * sides in reverse order (bottom-up), with llist linked by - * the right pointer and rlist linked by the left pointer in - * the vm_map_entry. Wait until Pass Two to set max_free on - * the two spines. - */ llist = NULL; rlist = NULL; for (;;) { - /* root is never NULL in here. */ - if (addr < root->start) { - y = root->left; - if (y == NULL) - break; - if (addr < y->start && y->left != NULL) { - /* Rotate right and put y on rlist. */ - root->left = y->right; - y->right = root; + /* + * Examine the start node of an entry before the end node if and + * only if we arrive at the entry by following a right pointer. + * Assume we arrive at the root via a left pointer. + */ + while (addr >= root->end) { + y = root->right; + if (y != NULL && addr >= y->start) { + /* Rotate left. */ + root->right = y->left; + y->left = root; vm_map_entry_set_max_free(root); - root = y->left; - y->left = rlist; - rlist = y; - } else { - /* Put root on rlist. */ - root->left = rlist; - rlist = root; root = y; + if (addr < root->end) + break; + y = root->right; + } - } else if (addr >= root->end) { - y = root->right; - if (y == NULL) + /* Put root on llist. */ + root->right = llist; + llist = root; + root = y; + if (root == NULL || addr < root->start) break; - if (addr >= y->end && y->right != NULL) { - /* Rotate left and put y on llist. */ - root->right = y->left; - y->left = root; + } + if (root == NULL || addr >= root->start) + break; + + while (addr < root->start) { + y = root->left; + if (y != NULL && addr < y->end) { + /* Rotate right. */ + root->left = y->right; + y->right = root; vm_map_entry_set_max_free(root); - root = y->right; - y->right = llist; - llist = y; - } else { - /* Put root on llist. */ - root->right = llist; - llist = root; root = y; + if (addr >= root->start) + break; + y = root->left; } - } else + /* Put root on rlist. */ + root->left = rlist; + rlist = root; + root = y; + if (root == NULL || addr >= root->end) + break; + } + if (root == NULL || addr < root->end) break; } + *out_llist = llist; + *out_rlist = rlist; + return (root); +} + +/* + * Walk back up the two spines, flip the pointers and set max_free. The + * subtrees of the root go at the bottom of llist and rlist. + */ +static vm_map_entry_t +vm_map_entry_splay_merge(vm_map_entry_t root, + vm_map_entry_t llist, vm_map_entry_t rlist, + vm_map_entry_t ltree, vm_map_entry_t rtree) +{ + vm_map_entry_t y; - /* - * Pass Two: Walk back up the two spines, flip the pointers - * and set max_free. The subtrees of the root go at the - * bottom of llist and rlist. - */ - ltree = root->left; while (llist != NULL) { y = llist->right; llist->right = ltree; @@ -965,7 +965,7 @@ ltree = llist; llist = y; } - rtree = root->right; + while (rlist != NULL) { y = rlist->left; rlist->left = rtree; @@ -980,10 +980,47 @@ root->left = ltree; root->right = rtree; vm_map_entry_set_max_free(root); - return (root); } +/* + * vm_map_entry_splay: + * + * The Sleator and Tarjan top-down splay algorithm with the + * following variation. Max_free must be computed bottom-up, so + * on the downward pass, maintain the left and right spines in + * reverse order. Then, make a second pass up each side to fix + * the pointers and compute max_free. The time bound is O(log n) + * amortized. + * + * The new root is the vm_map_entry containing "addr", or else + * the next lower entry if addr is not in the tree. + * + * The map must be locked, and leaves it so. + * + */ +static vm_map_entry_t +vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) +{ + vm_map_entry_t llist, rlist; + + root = vm_map_entry_splay_split(addr, root, &llist, &rlist); + if (root == NULL) { + /* + * With no matching node found, and no new node to + * insert, recover the greatest node in the left + * subtree and make it the root. There is such a + * node, since map->header is in the tree and left of + * all addresses. + */ + root = llist; + llist = root->right; + root->right = NULL; + } + return (vm_map_entry_splay_merge(root, llist, rlist, + root->left, root->right)); +} + /* * vm_map_entry_{un,}link: * @@ -991,41 +1028,25 @@ */ static void vm_map_entry_link(vm_map_t map, - vm_map_entry_t after_where, vm_map_entry_t entry) { + vm_map_entry_t llist, rlist, root; - CTR4(KTR_VM, - "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, - map->nentries, entry, after_where); + CTR3(KTR_VM, + "vm_map_entry_link: map %p, nentries %d, entry %p", map, + map->nentries, entry); VM_MAP_ASSERT_LOCKED(map); - KASSERT(after_where->end <= entry->start, - ("vm_map_entry_link: prev end %jx new start %jx overlap", - (uintmax_t)after_where->end, (uintmax_t)entry->start)); - KASSERT(entry->end <= after_where->next->start, - ("vm_map_entry_link: new end %jx next start %jx overlap", - (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); - map->nentries++; - entry->prev = after_where; - entry->next = after_where->next; - entry->next->prev = entry; - after_where->next = entry; - - if (after_where != &map->header) { - if (after_where != map->root) - vm_map_entry_splay(after_where->start, map->root); - entry->right = after_where->right; - entry->left = after_where; - after_where->right = NULL; - after_where->adj_free = entry->start - after_where->end; - vm_map_entry_set_max_free(after_where); - } else { - entry->right = map->root; - entry->left = NULL; - } - entry->adj_free = entry->next->start - entry->end; - vm_map_entry_set_max_free(entry); + root = map->root; + root = vm_map_entry_splay_split(entry->start, root, &llist, &rlist); + KASSERT(root == NULL, + ("vm_map_entry_link: link object already mapped")); + entry->prev = llist; + entry->next = rlist; + llist->next = rlist->prev = entry; + llist->adj_free = entry->start - llist->end; + entry->adj_free = rlist->start - entry->end; + root = vm_map_entry_splay_merge(entry, llist, rlist, NULL, NULL); map->root = entry; } @@ -1033,25 +1054,52 @@ vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry) { - vm_map_entry_t next, prev, root; + vm_map_entry_t llist, root, rlist, tree, y; VM_MAP_ASSERT_LOCKED(map); - if (entry != map->root) - vm_map_entry_splay(entry->start, map->root); - if (entry->left == NULL) - root = entry->right; - else { - root = vm_map_entry_splay(entry->start, entry->left); - root->right = entry->right; - root->adj_free = entry->next->start - root->end; - vm_map_entry_set_max_free(root); + root = vm_map_entry_splay_split(entry->start, map->root, &llist, &rlist); + KASSERT(root != NULL, + ("vm_map_entry_unlink: unlink object not mapped")); + /* + * Walk the left and right spines to reach the predecessor and successor + * of the found node. + */ + tree = root->left; + while (tree != NULL) { + if ((y = tree->right) != NULL) { + /* Rotate left. */ + tree->right = y->left; + y->left = tree; + vm_map_entry_set_max_free(tree); + tree = y; + } + /* Put tree on llist. */ + y = tree->right; + tree->right = llist; + llist = tree; + tree = y; } - map->root = root; - - prev = entry->prev; - next = entry->next; - next->prev = prev; - prev->next = next; + tree = root->right; + while (tree != NULL) { + if ((y = tree->left) != NULL) { + /* Rotate right. */ + tree->left = y->right; + y->right = tree; + vm_map_entry_set_max_free(tree); + tree = y; + } + /* Put tree on rlist. */ + y = tree->left; + tree->left = rlist; + rlist = tree; + tree = y; + } + rlist->prev = llist; + llist->next = rlist; + llist->adj_free = rlist->start - llist->end; + /* Make the new root the predecessor of the found node. */ + map->root = vm_map_entry_splay_merge(llist, llist->right, rlist, + llist->left, NULL); map->nentries--; CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, map->nentries, entry); @@ -1099,21 +1147,31 @@ vm_offset_t address, vm_map_entry_t *entry) /* OUT */ { - vm_map_entry_t cur; + vm_map_entry_t cur, lbound; boolean_t locked; + /* + * If the address is out of range, fail immediately. + */ + if (address < vm_map_min(map)) { + *entry = &map->header; + return (FALSE); + } + if (address >= vm_map_max(map)) { + *entry = map->header.prev; + return (FALSE); + } + /* * If the map is empty, then the map entry immediately preceding * "address" is the map's header. */ cur = map->root; - if (cur == NULL) - *entry = &map->header; - else if (address >= cur->start && cur->end > address) { + if (address >= cur->start && cur->end > address) { *entry = cur; return (TRUE); - } else if ((locked = vm_map_locked(map)) || - sx_try_upgrade(&map->lock)) { + } + if ((locked = vm_map_locked(map)) || sx_try_upgrade(&map->lock)) { /* * Splay requires a write lock on the map. However, it only * restructures the binary search tree; it does not otherwise @@ -1123,42 +1181,40 @@ map->root = cur = vm_map_entry_splay(address, cur); if (!locked) sx_downgrade(&map->lock); - - /* - * If "address" is contained within a map entry, the new root - * is that map entry. Otherwise, the new root is a map entry - * immediately before or after "address". - */ - if (address >= cur->start) { - *entry = cur; - if (cur->end > address) - return (TRUE); - } else - *entry = cur->prev; - } else + } else { /* * Since the map is only locked for read access, perform a * standard binary search tree lookup for "address". */ + lbound = NULL; for (;;) { - if (address < cur->start) { - if (cur->left == NULL) { - *entry = cur->prev; + /* + * Examine the start node of an entry before the end + * node if and only if we arrive at the entry by + * following a right pointer. Assume we arrive at the + * root via a left pointer. + */ + while (address >= cur->end) { + lbound = cur; + cur = cur->right; + if (cur == NULL || address < cur->start) break; - } + } + if (cur == NULL || address >= cur->start) + break; + while (address < cur->start) { cur = cur->left; - } else if (cur->end > address) { - *entry = cur; - return (TRUE); - } else { - if (cur->right == NULL) { - *entry = cur; + if (cur == NULL || address >= cur->end) break; - } - cur = cur->right; } + if (cur == NULL || address < cur->end) + break; } - return (FALSE); + if (cur == NULL) + cur = lbound; + } + *entry = cur; + return (cur->end > address); } /* @@ -1350,7 +1406,7 @@ /* * Insert the new entry into the list */ - vm_map_entry_link(map, prev_entry, new_entry); + vm_map_entry_link(map, new_entry); if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) map->size += new_entry->end - new_entry->start; @@ -1402,27 +1458,12 @@ if (start + length > vm_map_max(map) || start + length < start) return (1); - /* Empty tree means wide open address space. */ - if (map->root == NULL) { - *addr = start; - return (0); - } - - /* - * After splay, if start comes before root node, then there - * must be a gap from start to the root. - */ - map->root = vm_map_entry_splay(start, map->root); - if (start + length <= map->root->start) { - *addr = start; - return (0); - } - /* * Root is the last node that might begin its gap before * start, and this is the last comparison where address * wrap might be a problem. */ + map->root = vm_map_entry_splay(start, map->root); st = (start > map->root->end) ? start : map->root->end; if (length <= map->root->end + map->root->adj_free - st) { *addr = st; @@ -1797,7 +1838,7 @@ if (new_entry->cred != NULL) crhold(entry->cred); - vm_map_entry_link(map, entry->prev, new_entry); + vm_map_entry_link(map, new_entry); if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { vm_object_reference(new_entry->object.vm_object); @@ -1879,7 +1920,7 @@ if (new_entry->cred != NULL) crhold(entry->cred); - vm_map_entry_link(map, entry, new_entry); + vm_map_entry_link(map, new_entry); if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { vm_object_reference(new_entry->object.vm_object); @@ -3532,8 +3573,7 @@ * Insert the entry into the new map -- we know we're * inserting at the end of the new map. */ - vm_map_entry_link(new_map, new_map->header.prev, - new_entry); + vm_map_entry_link(new_map, new_entry); vmspace_map_entry_forked(vm1, vm2, new_entry); /* @@ -3560,8 +3600,7 @@ new_entry->wired_count = 0; new_entry->object.vm_object = NULL; new_entry->cred = NULL; - vm_map_entry_link(new_map, new_map->header.prev, - new_entry); + vm_map_entry_link(new_map, new_entry); vmspace_map_entry_forked(vm1, vm2, new_entry); vm_map_copy_entry(old_map, new_map, old_entry, new_entry, fork_charge); @@ -3584,8 +3623,7 @@ new_entry->max_protection = old_entry->max_protection; new_entry->inheritance = VM_INHERIT_ZERO; - vm_map_entry_link(new_map, new_map->header.prev, - new_entry); + vm_map_entry_link(new_map, new_entry); vmspace_map_entry_forked(vm1, vm2, new_entry); new_entry->cred = curthread->td_ucred;