Index: stable/11/share/man/man9/EVENTHANDLER.9 =================================================================== --- stable/11/share/man/man9/EVENTHANDLER.9 (revision 331726) +++ stable/11/share/man/man9/EVENTHANDLER.9 (revision 331727) @@ -1,387 +1,418 @@ .\" Copyright (c) 2004 Joseph Koshy .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" $FreeBSD$ .\" -.Dd October 1, 2017 +.Dd October 31, 2017 .Dt EVENTHANDLER 9 .Os .Sh NAME .Nm EVENTHANDLER .Nd kernel event handling functions .Sh SYNOPSIS .In sys/eventhandler.h .Fn EVENTHANDLER_DECLARE name type .Fn EVENTHANDLER_DEFINE name func arg priority .Fn EVENTHANDLER_INVOKE name ... .Ft eventhandler_tag .Fn EVENTHANDLER_REGISTER name func arg priority .Fn EVENTHANDLER_DEREGISTER name tag .Fn EVENTHANDLER_DEREGISTER_NOWAIT name tag +.Fn EVENTHANDLER_LIST_DECLARE name +.Fn EVENTHANDLER_LIST_DEFINE name +.Fn EVENTHANDLER_DIRECT_INVOKE name .Ft eventhandler_tag .Fo eventhandler_register .Fa "struct eventhandler_list *list" .Fa "const char *name" .Fa "void *func" .Fa "void *arg" .Fa "int priority" .Fc .Ft void .Fo eventhandler_deregister .Fa "struct eventhandler_list *list" .Fa "eventhandler_tag tag" .Fc .Ft void .Fo eventhandler_deregister_nowait .Fa "struct eventhandler_list *list" .Fa "eventhandler_tag tag" .Fc .Ft "struct eventhandler_list *" .Fn eventhandler_find_list "const char *name" .Ft void .Fn eventhandler_prune_list "struct eventhandler_list *list" .Sh DESCRIPTION The .Nm mechanism provides a way for kernel subsystems to register interest in kernel events and have their callback functions invoked when these events occur. .Pp Callback functions are invoked in order of priority. The relative priority of each callback among other callbacks associated with an event is given by argument .Fa priority , which is an integer ranging from .Dv EVENTHANDLER_PRI_FIRST (highest priority), to .Dv EVENTHANDLER_PRI_LAST (lowest priority). The symbol .Dv EVENTHANDLER_PRI_ANY may be used if the handler does not have a specific priority associated with it. .Pp The normal way to use this subsystem is via the macro interface. -The macros that can be used for working with event handlers and callback -function lists are: +For events that are high frequency it is suggested that you additionally use +.Fn EVENTHANDLER_LIST_DEFINE +so that the event handlers can be invoked directly using +.Fn EVENTHANDLER_DIRECT_INVOKE +(see below). +This saves the invoker from having to do a locked traversal of a global +list of event handler lists. .Bl -tag -width indent .It Fn EVENTHANDLER_DECLARE This macro declares an event handler named by argument .Fa name with callback functions of type .Fa type . .It Fn EVENTHANDLER_DEFINE This macro uses .Xr SYSINIT 9 to register a callback function .Fa func with event handler .Fa name . When invoked, function .Fa func will be invoked with argument .Fa arg as its first parameter along with any additional parameters passed in via macro .Fn EVENTHANDLER_INVOKE (see below). .It Fn EVENTHANDLER_REGISTER This macro registers a callback function .Fa func with event handler .Fa name . When invoked, function .Fa func will be invoked with argument .Fa arg as its first parameter along with any additional parameters passed in via macro .Fn EVENTHANDLER_INVOKE (see below). If registration is successful, .Fn EVENTHANDLER_REGISTER returns a cookie of type .Vt eventhandler_tag . .It Fn EVENTHANDLER_DEREGISTER This macro removes a previously registered callback associated with tag .Fa tag from the event handler named by argument .Fa name . It waits until no threads are running handlers for this event before returning, making it safe to unload a module immediately upon return from this function. .It Fn EVENTHANDLER_DEREGISTER_NOWAIT This macro removes a previously registered callback associated with tag .Fa tag from the event handler named by argument .Fa name . Upon return, one or more threads could still be running the removed function(s), but no new calls will be made. To remove a handler function from within that function, use this version of deregister, to avoid a deadlock. .It Fn EVENTHANDLER_INVOKE This macro is used to invoke all the callbacks associated with event handler .Fa name . This macro is a variadic one. Additional arguments to the macro after the .Fa name parameter are passed as the second and subsequent arguments to each registered callback function. +.It Fn EVENTHANDLER_LIST_DEFINE +This macro defines a reference to an event handler list named by +argument +.Fa name . +It uses +.Xr SYSINIT 9 +to initialize the reference and the eventhandler list. +.It Fn EVENTHANDLER_LIST_DECLARE +This macro declares an event handler list named by argument +.Fa name . +This is only needed for users of +.Fn EVENTHANDLER_DIRECT_INVOKE +which are not in the same compilation unit of that list's definition. +.It Fn EVENTHANDLER_DIRECT_INVOKE +This macro invokes the event handlers registered for the list named by +argument +.Fa name . +This macro can only be used if the list was defined with +.Fn EVENTHANDLER_LIST_DEFINE . +The macro is variadic with the same semantics as +.Fn EVENTHANDLER_INVOKE . .El .Pp The macros are implemented using the following functions: .Bl -tag -width indent .It Fn eventhandler_register The .Fn eventhandler_register function is used to register a callback with a given event. The arguments expected by this function are: .Bl -tag -width ".Fa priority" .It Fa list A pointer to an existing event handler list, or .Dv NULL . If .Fa list is .Dv NULL , the event handler list corresponding to argument .Fa name is used. .It Fa name The name of the event handler list. .It Fa func A pointer to a callback function. Argument .Fa arg is passed to the callback function .Fa func as its first argument when it is invoked. .It Fa priority The relative priority of this callback among all the callbacks registered for this event. Valid values are those in the range .Dv EVENTHANDLER_PRI_FIRST to .Dv EVENTHANDLER_PRI_LAST . .El .Pp The .Fn eventhandler_register function returns a .Fa tag that can later be used with .Fn eventhandler_deregister to remove the particular callback function. .It Fn eventhandler_deregister The .Fn eventhandler_deregister function removes the callback associated with tag .Fa tag from the event handler list pointed to by .Fa list . If .Fa tag is .Va NULL , all callback functions for the event are removed. This function will not return until all threads have exited from the removed handler callback function(s). This function is not safe to call from inside an event handler callback. .It Fn eventhandler_deregister_nowait The .Fn eventhandler_deregister function removes the callback associated with tag .Fa tag from the event handler list pointed to by .Fa list . This function is safe to call from inside an event handler callback. .It Fn eventhandler_find_list The .Fn eventhandler_find_list function returns a pointer to event handler list structure corresponding to event .Fa name . .It Fn eventhandler_prune_list The .Fn eventhandler_prune_list function removes all deregistered callbacks from the event list .Fa list . .El .Ss Kernel Event Handlers The following event handlers are present in the kernel: .Bl -tag -width indent .It Vt acpi_sleep_event Callbacks invoked when the system is being sent to sleep. .It Vt acpi_wakeup_event Callbacks invoked when the system is being woken up. .It Vt app_coredump_start Callbacks invoked at start of application core dump. .It Vt app_coredump_progress Callbacks invoked during progress of application core dump. .It Vt app_coredump_finish Callbacks invoked at finish of application core dump. .It Vt app_coredump_error Callbacks invoked on error of application core dump. .It Vt bpf_track Callbacks invoked when a BPF listener attaches to/detaches from network interface. .It Vt cpufreq_levels_changed Callback invoked when cpu frequency levels have changed. .It Vt cpufreq_post_change Callback invoked after cpu frequency has changed. .It Vt cpufreq_pre_change Callback invoked before cpu frequency has changed. .It Vt dcons_poll Callback invoked to poll for dcons changes. .It Vt dev_clone Callbacks invoked when a new entry is created under .Pa /dev . .It Vt group_attach_event Callback invoked when an interfance has been added to an interface group. .It Vt group_change_event Callback invoked when an change has been made to an interface group. .It Vt group_detach_event Callback invoked when an interfance has been removed from an interface group. .It Vt ifaddr_event Callbacks invoked when an address is set up on a network interface. .It Vt if_clone_event Callbacks invoked when an interface is cloned. .It Vt iflladdr_event Callback invoked when an if link layer address event has happened. .It Vt ifnet_arrival_event Callbacks invoked when a new network interface appears. .It Vt ifnet_departure_event Callbacks invoked when a network interface is taken down. .It Vt ifnet_link_event Callback invoked when an interfance link event has happened. .It Vt kld_load Callbacks invoked after a linker file has been loaded. .It Vt kld_unload Callbacks invoked after a linker file has been successfully unloaded. .It Vt kld_unload_try Callbacks invoked before a linker file is about to be unloaded. These callbacks may be used to return an error and prevent the unload from proceeding. .It Vt lle_event Callback invoked when an link layer event has happened. .It Vt nmbclusters_change Callback invoked when the number of mbuf clusters has changed. .It Vt nmbufs_change Callback invoked when the number of mbufs has changed. .It Vt maxsockets_change Callback invoked when the maximum number of sockets has changed. .It Vt mountroot Callback invoked when root has been mounted. .It Vt power_profile_change Callbacks invoked when the power profile of the system changes. .It Vt power_resume Callback invoked when the system has resumed. .It Vt power_suspend Callback invoked just before the system is suspended. .It Vt process_ctor Callback invoked when a process is created. .It Vt process_dtor Callback invoked when a process is destroyed. .It Vt process_exec Callbacks invoked when a process performs an .Fn exec operation. .It Vt process_exit Callbacks invoked when a process exits. .It Vt process_fini Callback invoked when a process memory is destroyed. This is never called. .It Vt process_fork Callbacks invoked when a process forks a child. .It Vt process_init -Callback invoked when a process is initalized. +Callback invoked when a process is initialized. .It Vt random_adaptor_attach Callback invoked when a new random module has been loaded. .It Vt register_framebuffer Callback invoked when a new frame buffer is registered. .It Vt route_redirect_event Callback invoked when a route gets redirected to a new location. .It Vt shutdown_pre_sync Callbacks invoked at shutdown time, before file systems are synchronized. .It Vt shutdown_post_sync Callbacks invoked at shutdown time, after all file systems are synchronized. .It Vt shutdown_final Callbacks invoked just before halting the system. .It Vt tcp_offload_listen_start Callback invoked for TCP Offload to start listening for new connections. .It Vt tcp_offload_listen_stop Callback invoked ror TCP Offload to stop listening for new connections. .It Vt thread_ctor Callback invoked when a thread object is created. .It Vt thread_dtor Callback invoked when a thread object is destroyed. .It Vt thread_init -Callback invoked when a thread object is initalized. +Callback invoked when a thread object is initialized. .It Vt thread_fini Callback invoked when a thread object is deinitalized. .It Vt usb_dev_configured Callback invoked when a USB device is configured .It Vt unregister_framebuffer Callback invoked when a frame buffer is deregistered. .It Vt vfs_mounted Callback invoked when a file system is mounted. .It Vt vfs_unmounted Callback invoked when a file system is unmounted. .It Vt vlan_config Callback invoked when the vlan configuration has changed. .It Vt vlan_unconfig Callback invoked when a vlan is destroyed. .It Vt vm_lowmem Callbacks invoked when virtual memory is low. .It Vt watchdog_list Callbacks invoked when the system watchdog timer is reinitialized. .El .Sh RETURN VALUES The macro .Fn EVENTHANDLER_REGISTER and function .Fn eventhandler_register return a cookie of type .Vt eventhandler_tag , which may be used in a subsequent call to .Fn EVENTHANDLER_DEREGISTER or .Fn eventhandler_deregister . .Pp The .Fn eventhandler_find_list function returns a pointer to an event handler list corresponding to parameter .Fa name , or .Dv NULL if no such list was found. .Sh HISTORY The .Nm facility first appeared in .Fx 4.0 . .Sh AUTHORS This manual page was written by -.An Joseph Koshy Aq Mt jkoshy@FreeBSD.org . +.An Joseph Koshy Aq Mt jkoshy@FreeBSD.org +and +.An Matt Joras Aq Mt mjoras@FreeBSD.org . Index: stable/11/sys/kern/init_main.c =================================================================== --- stable/11/sys/kern/init_main.c (revision 331726) +++ stable/11/sys/kern/init_main.c (revision 331727) @@ -1,883 +1,888 @@ /*- * Copyright (c) 1995 Terrence R. Lambert * All rights reserved. * * Copyright (c) 1982, 1986, 1989, 1991, 1992, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)init_main.c 8.9 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_init_path.h" #include "opt_verbose_sysinit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void mi_startup(void); /* Should be elsewhere */ /* Components of the first process -- never freed. */ static struct session session0; static struct pgrp pgrp0; struct proc proc0; struct thread0_storage thread0_st __aligned(32); struct vmspace vmspace0; struct proc *initproc; #ifndef BOOTHOWTO #define BOOTHOWTO 0 #endif int boothowto = BOOTHOWTO; /* initialized so that it can be patched */ SYSCTL_INT(_debug, OID_AUTO, boothowto, CTLFLAG_RD, &boothowto, 0, "Boot control flags, passed from loader"); #ifndef BOOTVERBOSE #define BOOTVERBOSE 0 #endif int bootverbose = BOOTVERBOSE; SYSCTL_INT(_debug, OID_AUTO, bootverbose, CTLFLAG_RW, &bootverbose, 0, "Control the output of verbose kernel messages"); #ifdef INVARIANTS FEATURE(invariants, "Kernel compiled with INVARIANTS, may affect performance"); #endif /* * This ensures that there is at least one entry so that the sysinit_set * symbol is not undefined. A sybsystem ID of SI_SUB_DUMMY is never * executed. */ SYSINIT(placeholder, SI_SUB_DUMMY, SI_ORDER_ANY, NULL, NULL); /* * The sysinit table itself. Items are checked off as the are run. * If we want to register new sysinit types, add them to newsysinit. */ SET_DECLARE(sysinit_set, struct sysinit); struct sysinit **sysinit, **sysinit_end; struct sysinit **newsysinit, **newsysinit_end; +EVENTHANDLER_LIST_DECLARE(process_init); +EVENTHANDLER_LIST_DECLARE(thread_init); +EVENTHANDLER_LIST_DECLARE(process_ctor); +EVENTHANDLER_LIST_DECLARE(thread_ctor); + /* * Merge a new sysinit set into the current set, reallocating it if * necessary. This can only be called after malloc is running. */ void sysinit_add(struct sysinit **set, struct sysinit **set_end) { struct sysinit **newset; struct sysinit **sipp; struct sysinit **xipp; int count; count = set_end - set; if (newsysinit) count += newsysinit_end - newsysinit; else count += sysinit_end - sysinit; newset = malloc(count * sizeof(*sipp), M_TEMP, M_NOWAIT); if (newset == NULL) panic("cannot malloc for sysinit"); xipp = newset; if (newsysinit) for (sipp = newsysinit; sipp < newsysinit_end; sipp++) *xipp++ = *sipp; else for (sipp = sysinit; sipp < sysinit_end; sipp++) *xipp++ = *sipp; for (sipp = set; sipp < set_end; sipp++) *xipp++ = *sipp; if (newsysinit) free(newsysinit, M_TEMP); newsysinit = newset; newsysinit_end = newset + count; } #if defined (DDB) && defined(VERBOSE_SYSINIT) static const char * symbol_name(vm_offset_t va, db_strategy_t strategy) { const char *name; c_db_sym_t sym; db_expr_t offset; if (va == 0) return (NULL); sym = db_search_symbol(va, strategy, &offset); if (offset != 0) return (NULL); db_symbol_values(sym, &name, NULL); return (name); } #endif /* * System startup; initialize the world, create process 0, mount root * filesystem, and fork to create init and pagedaemon. Most of the * hard work is done in the lower-level initialization routines including * startup(), which does memory initialization and autoconfiguration. * * This allows simple addition of new kernel subsystems that require * boot time initialization. It also allows substitution of subsystem * (for instance, a scheduler, kernel profiler, or VM system) by object * module. Finally, it allows for optional "kernel threads". */ void mi_startup(void) { register struct sysinit **sipp; /* system initialization*/ register struct sysinit **xipp; /* interior loop of sort*/ register struct sysinit *save; /* bubble*/ #if defined(VERBOSE_SYSINIT) int last; int verbose; #endif if (boothowto & RB_VERBOSE) bootverbose++; if (sysinit == NULL) { sysinit = SET_BEGIN(sysinit_set); sysinit_end = SET_LIMIT(sysinit_set); } restart: /* * Perform a bubble sort of the system initialization objects by * their subsystem (primary key) and order (secondary key). */ for (sipp = sysinit; sipp < sysinit_end; sipp++) { for (xipp = sipp + 1; xipp < sysinit_end; xipp++) { if ((*sipp)->subsystem < (*xipp)->subsystem || ((*sipp)->subsystem == (*xipp)->subsystem && (*sipp)->order <= (*xipp)->order)) continue; /* skip*/ save = *sipp; *sipp = *xipp; *xipp = save; } } #if defined(VERBOSE_SYSINIT) last = SI_SUB_COPYRIGHT; verbose = 0; #if !defined(DDB) printf("VERBOSE_SYSINIT: DDB not enabled, symbol lookups disabled.\n"); #endif #endif /* * Traverse the (now) ordered list of system initialization tasks. * Perform each task, and continue on to the next task. */ for (sipp = sysinit; sipp < sysinit_end; sipp++) { if ((*sipp)->subsystem == SI_SUB_DUMMY) continue; /* skip dummy task(s)*/ if ((*sipp)->subsystem == SI_SUB_DONE) continue; #if defined(VERBOSE_SYSINIT) if ((*sipp)->subsystem > last) { verbose = 1; last = (*sipp)->subsystem; printf("subsystem %x\n", last); } if (verbose) { #if defined(DDB) const char *func, *data; func = symbol_name((vm_offset_t)(*sipp)->func, DB_STGY_PROC); data = symbol_name((vm_offset_t)(*sipp)->udata, DB_STGY_ANY); if (func != NULL && data != NULL) printf(" %s(&%s)... ", func, data); else if (func != NULL) printf(" %s(%p)... ", func, (*sipp)->udata); else #endif printf(" %p(%p)... ", (*sipp)->func, (*sipp)->udata); } #endif /* Call function */ (*((*sipp)->func))((*sipp)->udata); #if defined(VERBOSE_SYSINIT) if (verbose) printf("done.\n"); #endif /* Check off the one we're just done */ (*sipp)->subsystem = SI_SUB_DONE; /* Check if we've installed more sysinit items via KLD */ if (newsysinit != NULL) { if (sysinit != SET_BEGIN(sysinit_set)) free(sysinit, M_TEMP); sysinit = newsysinit; sysinit_end = newsysinit_end; newsysinit = NULL; newsysinit_end = NULL; goto restart; } } mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED); mtx_unlock(&Giant); /* * Now hand over this thread to swapper. */ swapper(); /* NOTREACHED*/ } /* *************************************************************************** **** **** The following SYSINIT's belong elsewhere, but have not yet **** been moved. **** *************************************************************************** */ static void print_caddr_t(void *data) { printf("%s", (char *)data); } static void print_version(void *data __unused) { int len; /* Strip a trailing newline from version. */ len = strlen(version); while (len > 0 && version[len - 1] == '\n') len--; printf("%.*s %s\n", len, version, machine); printf("%s\n", compiler_version); } SYSINIT(announce, SI_SUB_COPYRIGHT, SI_ORDER_FIRST, print_caddr_t, copyright); SYSINIT(trademark, SI_SUB_COPYRIGHT, SI_ORDER_SECOND, print_caddr_t, trademark); SYSINIT(version, SI_SUB_COPYRIGHT, SI_ORDER_THIRD, print_version, NULL); #ifdef WITNESS static char wit_warn[] = "WARNING: WITNESS option enabled, expect reduced performance.\n"; SYSINIT(witwarn, SI_SUB_COPYRIGHT, SI_ORDER_THIRD + 1, print_caddr_t, wit_warn); SYSINIT(witwarn2, SI_SUB_LAST, SI_ORDER_THIRD + 1, print_caddr_t, wit_warn); #endif #ifdef DIAGNOSTIC static char diag_warn[] = "WARNING: DIAGNOSTIC option enabled, expect reduced performance.\n"; SYSINIT(diagwarn, SI_SUB_COPYRIGHT, SI_ORDER_THIRD + 2, print_caddr_t, diag_warn); SYSINIT(diagwarn2, SI_SUB_LAST, SI_ORDER_THIRD + 2, print_caddr_t, diag_warn); #endif static int null_fetch_syscall_args(struct thread *td __unused) { panic("null_fetch_syscall_args"); } static void null_set_syscall_retval(struct thread *td __unused, int error __unused) { panic("null_set_syscall_retval"); } struct sysentvec null_sysvec = { .sv_size = 0, .sv_table = NULL, .sv_mask = 0, .sv_errsize = 0, .sv_errtbl = NULL, .sv_transtrap = NULL, .sv_fixup = NULL, .sv_sendsig = NULL, .sv_sigcode = NULL, .sv_szsigcode = NULL, .sv_name = "null", .sv_coredump = NULL, .sv_imgact_try = NULL, .sv_minsigstksz = 0, .sv_pagesize = PAGE_SIZE, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = PS_STRINGS, .sv_stackprot = VM_PROT_ALL, .sv_copyout_strings = NULL, .sv_setregs = NULL, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = 0, .sv_set_syscall_retval = null_set_syscall_retval, .sv_fetch_syscall_args = null_fetch_syscall_args, .sv_syscallnames = NULL, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, }; /* *************************************************************************** **** **** The two following SYSINIT's are proc0 specific glue code. I am not **** convinced that they can not be safely combined, but their order of **** operation has been maintained as the same as the original init_main.c **** for right now. **** **** These probably belong in init_proc.c or kern_proc.c, since they **** deal with proc0 (the fork template process). **** *************************************************************************** */ /* ARGSUSED*/ static void proc0_init(void *dummy __unused) { struct proc *p; struct thread *td; struct ucred *newcred; vm_paddr_t pageablemem; int i; GIANT_REQUIRED; p = &proc0; td = &thread0; /* * Initialize magic number and osrel. */ p->p_magic = P_MAGIC; p->p_osrel = osreldate; /* * Initialize thread and process structures. */ procinit(); /* set up proc zone */ threadinit(); /* set up UMA zones */ /* * Initialise scheduler resources. * Add scheduler specific parts to proc, thread as needed. */ schedinit(); /* scheduler gets its house in order */ /* * Create process 0 (the swapper). */ LIST_INSERT_HEAD(&allproc, p, p_list); LIST_INSERT_HEAD(PIDHASH(0), p, p_hash); mtx_init(&pgrp0.pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); p->p_pgrp = &pgrp0; LIST_INSERT_HEAD(PGRPHASH(0), &pgrp0, pg_hash); LIST_INIT(&pgrp0.pg_members); LIST_INSERT_HEAD(&pgrp0.pg_members, p, p_pglist); pgrp0.pg_session = &session0; mtx_init(&session0.s_mtx, "session", NULL, MTX_DEF); refcount_init(&session0.s_count, 1); session0.s_leader = p; p->p_sysent = &null_sysvec; p->p_flag = P_SYSTEM | P_INMEM | P_KPROC; p->p_flag2 = 0; p->p_state = PRS_NORMAL; p->p_klist = knlist_alloc(&p->p_mtx); STAILQ_INIT(&p->p_ktr); p->p_nice = NZERO; /* pid_max cannot be greater than PID_MAX */ td->td_tid = PID_MAX + 1; LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash); td->td_state = TDS_RUNNING; td->td_pri_class = PRI_TIMESHARE; td->td_user_pri = PUSER; td->td_base_user_pri = PUSER; td->td_lend_user_pri = PRI_MAX; td->td_priority = PVM; td->td_base_pri = PVM; td->td_oncpu = 0; td->td_flags = TDF_INMEM; td->td_pflags = TDP_KTHREAD; td->td_cpuset = cpuset_thread0(); vm_domain_policy_init(&td->td_vm_dom_policy); vm_domain_policy_set(&td->td_vm_dom_policy, VM_POLICY_NONE, -1); vm_domain_policy_init(&p->p_vm_dom_policy); vm_domain_policy_set(&p->p_vm_dom_policy, VM_POLICY_NONE, -1); prison0_init(); p->p_peers = 0; p->p_leader = p; p->p_reaper = p; LIST_INIT(&p->p_reaplist); strncpy(p->p_comm, "kernel", sizeof (p->p_comm)); strncpy(td->td_name, "swapper", sizeof (td->td_name)); callout_init_mtx(&p->p_itcallout, &p->p_mtx, 0); callout_init_mtx(&p->p_limco, &p->p_mtx, 0); callout_init(&td->td_slpcallout, 1); /* Create credentials. */ newcred = crget(); newcred->cr_ngroups = 1; /* group 0 */ newcred->cr_uidinfo = uifind(0); newcred->cr_ruidinfo = uifind(0); newcred->cr_prison = &prison0; newcred->cr_loginclass = loginclass_find("default"); proc_set_cred_init(p, newcred); #ifdef AUDIT audit_cred_kproc0(newcred); #endif #ifdef MAC mac_cred_create_swapper(newcred); #endif /* Create sigacts. */ p->p_sigacts = sigacts_alloc(); /* Initialize signal state for process 0. */ siginit(&proc0); /* Create the file descriptor table. */ p->p_fd = fdinit(NULL, false); p->p_fdtol = NULL; /* Create the limits structures. */ p->p_limit = lim_alloc(); for (i = 0; i < RLIM_NLIMITS; i++) p->p_limit->pl_rlimit[i].rlim_cur = p->p_limit->pl_rlimit[i].rlim_max = RLIM_INFINITY; p->p_limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur = p->p_limit->pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles; p->p_limit->pl_rlimit[RLIMIT_NPROC].rlim_cur = p->p_limit->pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc; p->p_limit->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz; p->p_limit->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz; p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz; p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz; /* Cast to avoid overflow on i386/PAE. */ pageablemem = ptoa((vm_paddr_t)vm_cnt.v_free_count); p->p_limit->pl_rlimit[RLIMIT_RSS].rlim_cur = p->p_limit->pl_rlimit[RLIMIT_RSS].rlim_max = pageablemem; p->p_limit->pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = pageablemem / 3; p->p_limit->pl_rlimit[RLIMIT_MEMLOCK].rlim_max = pageablemem; p->p_cpulimit = RLIM_INFINITY; PROC_LOCK(p); thread_cow_get_proc(td, p); PROC_UNLOCK(p); /* Initialize resource accounting structures. */ racct_create(&p->p_racct); p->p_stats = pstats_alloc(); /* Allocate a prototype map so we have something to fork. */ p->p_vmspace = &vmspace0; vmspace0.vm_refcnt = 1; pmap_pinit0(vmspace_pmap(&vmspace0)); /* * proc0 is not expected to enter usermode, so there is no special * handling for sv_minuser here, like is done for exec_new_vmspace(). */ vm_map_init(&vmspace0.vm_map, vmspace_pmap(&vmspace0), p->p_sysent->sv_minuser, p->p_sysent->sv_maxuser); /* * Call the init and ctor for the new thread and proc. We wait * to do this until all other structures are fairly sane. */ - EVENTHANDLER_INVOKE(process_init, p); - EVENTHANDLER_INVOKE(thread_init, td); - EVENTHANDLER_INVOKE(process_ctor, p); - EVENTHANDLER_INVOKE(thread_ctor, td); + EVENTHANDLER_DIRECT_INVOKE(process_init, p); + EVENTHANDLER_DIRECT_INVOKE(thread_init, td); + EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); + EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); /* * Charge root for one process. */ (void)chgproccnt(p->p_ucred->cr_ruidinfo, 1, 0); PROC_LOCK(p); racct_add_force(p, RACCT_NPROC, 1); PROC_UNLOCK(p); } SYSINIT(p0init, SI_SUB_INTRINSIC, SI_ORDER_FIRST, proc0_init, NULL); /* ARGSUSED*/ static void proc0_post(void *dummy __unused) { struct timespec ts; struct proc *p; struct rusage ru; struct thread *td; /* * Now we can look at the time, having had a chance to verify the * time from the filesystem. Pretend that proc0 started now. */ sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { microuptime(&p->p_stats->p_start); PROC_STATLOCK(p); rufetch(p, &ru); /* Clears thread stats */ PROC_STATUNLOCK(p); p->p_rux.rux_runtime = 0; p->p_rux.rux_uticks = 0; p->p_rux.rux_sticks = 0; p->p_rux.rux_iticks = 0; FOREACH_THREAD_IN_PROC(p, td) { td->td_runtime = 0; } } sx_sunlock(&allproc_lock); PCPU_SET(switchtime, cpu_ticks()); PCPU_SET(switchticks, ticks); /* * Give the ``random'' number generator a thump. */ nanotime(&ts); srandom(ts.tv_sec ^ ts.tv_nsec); } SYSINIT(p0post, SI_SUB_INTRINSIC_POST, SI_ORDER_FIRST, proc0_post, NULL); static void random_init(void *dummy __unused) { /* * After CPU has been started we have some randomness on most * platforms via get_cyclecount(). For platforms that don't * we will reseed random(9) in proc0_post() as well. */ srandom(get_cyclecount()); } SYSINIT(random, SI_SUB_RANDOM, SI_ORDER_FIRST, random_init, NULL); /* *************************************************************************** **** **** The following SYSINIT's and glue code should be moved to the **** respective files on a per subsystem basis. **** *************************************************************************** */ /* *************************************************************************** **** **** The following code probably belongs in another file, like **** kern/init_init.c. **** *************************************************************************** */ /* * List of paths to try when searching for "init". */ static char init_path[MAXPATHLEN] = #ifdef INIT_PATH __XSTRING(INIT_PATH); #else "/sbin/init:/sbin/oinit:/sbin/init.bak:/rescue/init"; #endif SYSCTL_STRING(_kern, OID_AUTO, init_path, CTLFLAG_RD, init_path, 0, "Path used to search the init process"); /* * Shutdown timeout of init(8). * Unused within kernel, but used to control init(8), hence do not remove. */ #ifndef INIT_SHUTDOWN_TIMEOUT #define INIT_SHUTDOWN_TIMEOUT 120 #endif static int init_shutdown_timeout = INIT_SHUTDOWN_TIMEOUT; SYSCTL_INT(_kern, OID_AUTO, init_shutdown_timeout, CTLFLAG_RW, &init_shutdown_timeout, 0, "Shutdown timeout of init(8). " "Unused within kernel, but used to control init(8)"); /* * Start the initial user process; try exec'ing each pathname in init_path. * The program is invoked with one argument containing the boot flags. */ static void start_init(void *dummy) { vm_offset_t addr; struct execve_args args; int options, error; char *var, *path, *next, *s; char *ucp, **uap, *arg0, *arg1; struct thread *td; struct proc *p; mtx_lock(&Giant); GIANT_REQUIRED; td = curthread; p = td->td_proc; vfs_mountroot(); /* Wipe GELI passphrase from the environment. */ kern_unsetenv("kern.geom.eli.passphrase"); /* * Need just enough stack to hold the faked-up "execve()" arguments. */ addr = p->p_sysent->sv_usrstack - PAGE_SIZE; if (vm_map_find(&p->p_vmspace->vm_map, NULL, 0, &addr, PAGE_SIZE, 0, VMFS_NO_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0) != 0) panic("init: couldn't allocate argument space"); p->p_vmspace->vm_maxsaddr = (caddr_t)addr; p->p_vmspace->vm_ssize = 1; if ((var = kern_getenv("init_path")) != NULL) { strlcpy(init_path, var, sizeof(init_path)); freeenv(var); } for (path = init_path; *path != '\0'; path = next) { while (*path == ':') path++; if (*path == '\0') break; for (next = path; *next != '\0' && *next != ':'; next++) /* nothing */ ; if (bootverbose) printf("start_init: trying %.*s\n", (int)(next - path), path); /* * Move out the boot flag argument. */ options = 0; ucp = (char *)p->p_sysent->sv_usrstack; (void)subyte(--ucp, 0); /* trailing zero */ if (boothowto & RB_SINGLE) { (void)subyte(--ucp, 's'); options = 1; } #ifdef notyet if (boothowto & RB_FASTBOOT) { (void)subyte(--ucp, 'f'); options = 1; } #endif #ifdef BOOTCDROM (void)subyte(--ucp, 'C'); options = 1; #endif if (options == 0) (void)subyte(--ucp, '-'); (void)subyte(--ucp, '-'); /* leading hyphen */ arg1 = ucp; /* * Move out the file name (also arg 0). */ (void)subyte(--ucp, 0); for (s = next - 1; s >= path; s--) (void)subyte(--ucp, *s); arg0 = ucp; /* * Move out the arg pointers. */ uap = (char **)rounddown2((intptr_t)ucp, sizeof(intptr_t)); (void)suword((caddr_t)--uap, (long)0); /* terminator */ (void)suword((caddr_t)--uap, (long)(intptr_t)arg1); (void)suword((caddr_t)--uap, (long)(intptr_t)arg0); /* * Point at the arguments. */ args.fname = arg0; args.argv = uap; args.envv = NULL; /* * Now try to exec the program. If can't for any reason * other than it doesn't exist, complain. * * Otherwise, return via fork_trampoline() all the way * to user mode as init! */ if ((error = sys_execve(td, &args)) == 0) { mtx_unlock(&Giant); return; } if (error != ENOENT) printf("exec %.*s: error %d\n", (int)(next - path), path, error); } printf("init: not found in path %s\n", init_path); panic("no init"); } /* * Like kproc_create(), but runs in it's own address space. * We do this early to reserve pid 1. * * Note special case - do not make it runnable yet. Other work * in progress will change this more. */ static void create_init(const void *udata __unused) { struct fork_req fr; struct ucred *newcred, *oldcred; struct thread *td; int error; bzero(&fr, sizeof(fr)); fr.fr_flags = RFFDG | RFPROC | RFSTOPPED; fr.fr_procp = &initproc; error = fork1(&thread0, &fr); if (error) panic("cannot fork init: %d\n", error); KASSERT(initproc->p_pid == 1, ("create_init: initproc->p_pid != 1")); /* divorce init's credentials from the kernel's */ newcred = crget(); sx_xlock(&proctree_lock); PROC_LOCK(initproc); initproc->p_flag |= P_SYSTEM | P_INMEM; initproc->p_treeflag |= P_TREE_REAPER; LIST_INSERT_HEAD(&initproc->p_reaplist, &proc0, p_reapsibling); oldcred = initproc->p_ucred; crcopy(newcred, oldcred); #ifdef MAC mac_cred_create_init(newcred); #endif #ifdef AUDIT audit_cred_proc1(newcred); #endif proc_set_cred(initproc, newcred); td = FIRST_THREAD_IN_PROC(initproc); crfree(td->td_ucred); td->td_ucred = crhold(initproc->p_ucred); PROC_UNLOCK(initproc); sx_xunlock(&proctree_lock); crfree(oldcred); cpu_fork_kthread_handler(FIRST_THREAD_IN_PROC(initproc), start_init, NULL); } SYSINIT(init, SI_SUB_CREATE_INIT, SI_ORDER_FIRST, create_init, NULL); /* * Make it runnable now. */ static void kick_init(const void *udata __unused) { struct thread *td; td = FIRST_THREAD_IN_PROC(initproc); thread_lock(td); TD_SET_CAN_RUN(td); sched_add(td, SRQ_BORING); thread_unlock(td); } SYSINIT(kickinit, SI_SUB_KTHREAD_INIT, SI_ORDER_MIDDLE, kick_init, NULL); Index: stable/11/sys/kern/kern_exec.c =================================================================== --- stable/11/sys/kern/kern_exec.c (revision 331726) +++ stable/11/sys/kern/kern_exec.c (revision 331727) @@ -1,1734 +1,1736 @@ /*- * Copyright (c) 1993, David Greenman * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_capsicum.h" #include "opt_hwpmc_hooks.h" #include "opt_ktrace.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include #endif #include #include #include #ifdef KDTRACE_HOOKS #include dtrace_execexit_func_t dtrace_fasttrap_exec; #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE1(proc, , , exec, "char *"); SDT_PROBE_DEFINE1(proc, , , exec__failure, "int"); SDT_PROBE_DEFINE1(proc, , , exec__success, "char *"); MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments"); int coredump_pack_fileinfo = 1; SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN, &coredump_pack_fileinfo, 0, "Enable file path packing in 'procstat -f' coredump notes"); int coredump_pack_vmmapinfo = 1; SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN, &coredump_pack_vmmapinfo, 0, "Enable file path packing in 'procstat -v' coredump notes"); static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS); static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS); static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS); static int do_execve(struct thread *td, struct image_args *args, struct mac *mac_p); /* XXX This should be vm_size_t. */ SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD| CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU", ""); /* XXX This should be vm_size_t. */ SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD| CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU", ""); SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_stackprot, "I", ""); u_long ps_arg_cache_limit = PAGE_SIZE / 16; SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, &ps_arg_cache_limit, 0, ""); static int disallow_high_osrel; SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW, &disallow_high_osrel, 0, "Disallow execution of binaries built for higher version of the world"); static int map_at_zero = 0; SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0, "Permit processes to map an object at virtual address 0."); +EVENTHANDLER_LIST_DECLARE(process_exec); + static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS) { struct proc *p; int error; p = curproc; #ifdef SCTL_MASK32 if (req->flags & SCTL_MASK32) { unsigned int val; val = (unsigned int)p->p_sysent->sv_psstrings; error = SYSCTL_OUT(req, &val, sizeof(val)); } else #endif error = SYSCTL_OUT(req, &p->p_sysent->sv_psstrings, sizeof(p->p_sysent->sv_psstrings)); return error; } static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS) { struct proc *p; int error; p = curproc; #ifdef SCTL_MASK32 if (req->flags & SCTL_MASK32) { unsigned int val; val = (unsigned int)p->p_sysent->sv_usrstack; error = SYSCTL_OUT(req, &val, sizeof(val)); } else #endif error = SYSCTL_OUT(req, &p->p_sysent->sv_usrstack, sizeof(p->p_sysent->sv_usrstack)); return error; } static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS) { struct proc *p; p = curproc; return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot, sizeof(p->p_sysent->sv_stackprot))); } /* * Each of the items is a pointer to a `const struct execsw', hence the * double pointer here. */ static const struct execsw **execsw; #ifndef _SYS_SYSPROTO_H_ struct execve_args { char *fname; char **argv; char **envv; }; #endif int sys_execve(struct thread *td, struct execve_args *uap) { struct image_args args; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, uap->argv, uap->envv); if (error == 0) error = kern_execve(td, &args, NULL); post_execve(td, error, oldvmspace); return (error); } #ifndef _SYS_SYSPROTO_H_ struct fexecve_args { int fd; char **argv; char **envv; } #endif int sys_fexecve(struct thread *td, struct fexecve_args *uap) { struct image_args args; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = exec_copyin_args(&args, NULL, UIO_SYSSPACE, uap->argv, uap->envv); if (error == 0) { args.fd = uap->fd; error = kern_execve(td, &args, NULL); } post_execve(td, error, oldvmspace); return (error); } #ifndef _SYS_SYSPROTO_H_ struct __mac_execve_args { char *fname; char **argv; char **envv; struct mac *mac_p; }; #endif int sys___mac_execve(struct thread *td, struct __mac_execve_args *uap) { #ifdef MAC struct image_args args; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, uap->argv, uap->envv); if (error == 0) error = kern_execve(td, &args, uap->mac_p); post_execve(td, error, oldvmspace); return (error); #else return (ENOSYS); #endif } int pre_execve(struct thread *td, struct vmspace **oldvmspace) { struct proc *p; int error; KASSERT(td == curthread, ("non-current thread %p", td)); error = 0; p = td->td_proc; if ((p->p_flag & P_HADTHREADS) != 0) { PROC_LOCK(p); if (thread_single(p, SINGLE_BOUNDARY) != 0) error = ERESTART; PROC_UNLOCK(p); } KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0, ("nested execve")); *oldvmspace = p->p_vmspace; return (error); } void post_execve(struct thread *td, int error, struct vmspace *oldvmspace) { struct proc *p; KASSERT(td == curthread, ("non-current thread %p", td)); p = td->td_proc; if ((p->p_flag & P_HADTHREADS) != 0) { PROC_LOCK(p); /* * If success, we upgrade to SINGLE_EXIT state to * force other threads to suicide. */ if (error == 0) thread_single(p, SINGLE_EXIT); else thread_single_end(p, SINGLE_BOUNDARY); PROC_UNLOCK(p); } if ((td->td_pflags & TDP_EXECVMSPC) != 0) { KASSERT(p->p_vmspace != oldvmspace, ("oldvmspace still used")); vmspace_free(oldvmspace); td->td_pflags &= ~TDP_EXECVMSPC; } } /* * XXX: kern_execve has the astonishing property of not always returning to * the caller. If sufficiently bad things happen during the call to * do_execve(), it can end up calling exit1(); as a result, callers must * avoid doing anything which they might need to undo (e.g., allocating * memory). */ int kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p) { AUDIT_ARG_ARGV(args->begin_argv, args->argc, args->begin_envv - args->begin_argv); AUDIT_ARG_ENVV(args->begin_envv, args->envc, args->endp - args->begin_envv); return (do_execve(td, args, mac_p)); } /* * In-kernel implementation of execve(). All arguments are assumed to be * userspace pointers from the passed thread. */ static int do_execve(struct thread *td, struct image_args *args, struct mac *mac_p) { struct proc *p = td->td_proc; struct nameidata nd; struct ucred *oldcred; struct uidinfo *euip = NULL; register_t *stack_base; int error, i; struct image_params image_params, *imgp; struct vattr attr; int (*img_first)(struct image_params *); struct pargs *oldargs = NULL, *newargs = NULL; struct sigacts *oldsigacts = NULL, *newsigacts = NULL; #ifdef KTRACE struct vnode *tracevp = NULL; struct ucred *tracecred = NULL; #endif struct vnode *oldtextvp = NULL, *newtextvp; cap_rights_t rights; int credential_changing; int textset; #ifdef MAC struct label *interpvplabel = NULL; int will_transition; #endif #ifdef HWPMC_HOOKS struct pmckern_procexec pe; #endif static const char fexecv_proc_title[] = "(fexecv)"; imgp = &image_params; /* * Lock the process and set the P_INEXEC flag to indicate that * it should be left alone until we're done here. This is * necessary to avoid race conditions - e.g. in ptrace() - * that might allow a local user to illicitly obtain elevated * privileges. */ PROC_LOCK(p); KASSERT((p->p_flag & P_INEXEC) == 0, ("%s(): process already has P_INEXEC flag", __func__)); p->p_flag |= P_INEXEC; PROC_UNLOCK(p); /* * Initialize part of the common data */ bzero(imgp, sizeof(*imgp)); imgp->proc = p; imgp->attr = &attr; imgp->args = args; oldcred = p->p_ucred; #ifdef MAC error = mac_execve_enter(imgp, mac_p); if (error) goto exec_fail; #endif /* * Translate the file name. namei() returns a vnode pointer * in ni_vp among other things. * * XXXAUDIT: It would be desirable to also audit the name of the * interpreter if this is an interpreted binary. */ if (args->fname != NULL) { NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | FOLLOW | SAVENAME | AUDITVNODE1, UIO_SYSSPACE, args->fname, td); } SDT_PROBE1(proc, , , exec, args->fname); interpret: if (args->fname != NULL) { #ifdef CAPABILITY_MODE /* * While capability mode can't reach this point via direct * path arguments to execve(), we also don't allow * interpreters to be used in capability mode (for now). * Catch indirect lookups and return a permissions error. */ if (IN_CAPABILITY_MODE(td)) { error = ECAPMODE; goto exec_fail; } #endif error = namei(&nd); if (error) goto exec_fail; newtextvp = nd.ni_vp; imgp->vp = newtextvp; } else { AUDIT_ARG_FD(args->fd); /* * Descriptors opened only with O_EXEC or O_RDONLY are allowed. */ error = fgetvp_exec(td, args->fd, cap_rights_init(&rights, CAP_FEXECVE), &newtextvp); if (error) goto exec_fail; vn_lock(newtextvp, LK_EXCLUSIVE | LK_RETRY); AUDIT_ARG_VNODE1(newtextvp); imgp->vp = newtextvp; } /* * Check file permissions (also 'opens' file) */ error = exec_check_permissions(imgp); if (error) goto exec_fail_dealloc; imgp->object = imgp->vp->v_object; if (imgp->object != NULL) vm_object_reference(imgp->object); /* * Set VV_TEXT now so no one can write to the executable while we're * activating it. * * Remember if this was set before and unset it in case this is not * actually an executable image. */ textset = VOP_IS_TEXT(imgp->vp); VOP_SET_TEXT(imgp->vp); error = exec_map_first_page(imgp); if (error) goto exec_fail_dealloc; imgp->proc->p_osrel = 0; /* * Implement image setuid/setgid. * * Determine new credentials before attempting image activators * so that it can be used by process_exec handlers to determine * credential/setid changes. * * Don't honor setuid/setgid if the filesystem prohibits it or if * the process is being traced. * * We disable setuid/setgid/etc in capability mode on the basis * that most setugid applications are not written with that * environment in mind, and will therefore almost certainly operate * incorrectly. In principle there's no reason that setugid * applications might not be useful in capability mode, so we may want * to reconsider this conservative design choice in the future. * * XXXMAC: For the time being, use NOSUID to also prohibit * transitions on the file system. */ credential_changing = 0; credential_changing |= (attr.va_mode & S_ISUID) && oldcred->cr_uid != attr.va_uid; credential_changing |= (attr.va_mode & S_ISGID) && oldcred->cr_gid != attr.va_gid; #ifdef MAC will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp, interpvplabel, imgp); credential_changing |= will_transition; #endif if (credential_changing && #ifdef CAPABILITY_MODE ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) && #endif (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 && (p->p_flag & P_TRACED) == 0) { imgp->credential_setid = true; VOP_UNLOCK(imgp->vp, 0); imgp->newcred = crdup(oldcred); if (attr.va_mode & S_ISUID) { euip = uifind(attr.va_uid); change_euid(imgp->newcred, euip); } vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); if (attr.va_mode & S_ISGID) change_egid(imgp->newcred, attr.va_gid); /* * Implement correct POSIX saved-id behavior. * * XXXMAC: Note that the current logic will save the * uid and gid if a MAC domain transition occurs, even * though maybe it shouldn't. */ change_svuid(imgp->newcred, imgp->newcred->cr_uid); change_svgid(imgp->newcred, imgp->newcred->cr_gid); } else { /* * Implement correct POSIX saved-id behavior. * * XXX: It's not clear that the existing behavior is * POSIX-compliant. A number of sources indicate that the * saved uid/gid should only be updated if the new ruid is * not equal to the old ruid, or the new euid is not equal * to the old euid and the new euid is not equal to the old * ruid. The FreeBSD code always updates the saved uid/gid. * Also, this code uses the new (replaced) euid and egid as * the source, which may or may not be the right ones to use. */ if (oldcred->cr_svuid != oldcred->cr_uid || oldcred->cr_svgid != oldcred->cr_gid) { VOP_UNLOCK(imgp->vp, 0); imgp->newcred = crdup(oldcred); vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); change_svuid(imgp->newcred, imgp->newcred->cr_uid); change_svgid(imgp->newcred, imgp->newcred->cr_gid); } } /* The new credentials are installed into the process later. */ /* * Do the best to calculate the full path to the image file. */ if (args->fname != NULL && args->fname[0] == '/') imgp->execpath = args->fname; else { VOP_UNLOCK(imgp->vp, 0); if (vn_fullpath(td, imgp->vp, &imgp->execpath, &imgp->freepath) != 0) imgp->execpath = args->fname; vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); } /* * If the current process has a special image activator it * wants to try first, call it. For example, emulating shell * scripts differently. */ error = -1; if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL) error = img_first(imgp); /* * Loop through the list of image activators, calling each one. * An activator returns -1 if there is no match, 0 on success, * and an error otherwise. */ for (i = 0; error == -1 && execsw[i]; ++i) { if (execsw[i]->ex_imgact == NULL || execsw[i]->ex_imgact == img_first) { continue; } error = (*execsw[i]->ex_imgact)(imgp); } if (error) { if (error == -1) { if (textset == 0) VOP_UNSET_TEXT(imgp->vp); error = ENOEXEC; } goto exec_fail_dealloc; } /* * Special interpreter operation, cleanup and loop up to try to * activate the interpreter. */ if (imgp->interpreted) { exec_unmap_first_page(imgp); /* * VV_TEXT needs to be unset for scripts. There is a short * period before we determine that something is a script where * VV_TEXT will be set. The vnode lock is held over this * entire period so nothing should illegitimately be blocked. */ VOP_UNSET_TEXT(imgp->vp); /* free name buffer and old vnode */ if (args->fname != NULL) NDFREE(&nd, NDF_ONLY_PNBUF); #ifdef MAC mac_execve_interpreter_enter(newtextvp, &interpvplabel); #endif if (imgp->opened) { VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td); imgp->opened = 0; } vput(newtextvp); vm_object_deallocate(imgp->object); imgp->object = NULL; imgp->credential_setid = false; if (imgp->newcred != NULL) { crfree(imgp->newcred); imgp->newcred = NULL; } imgp->execpath = NULL; free(imgp->freepath, M_TEMP); imgp->freepath = NULL; /* set new name to that of the interpreter */ NDINIT(&nd, LOOKUP, LOCKLEAF | FOLLOW | SAVENAME, UIO_SYSSPACE, imgp->interpreter_name, td); args->fname = imgp->interpreter_name; goto interpret; } /* * NB: We unlock the vnode here because it is believed that none * of the sv_copyout_strings/sv_fixup operations require the vnode. */ VOP_UNLOCK(imgp->vp, 0); if (disallow_high_osrel && P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) { error = ENOEXEC; uprintf("Osrel %d for image %s too high\n", p->p_osrel, imgp->execpath != NULL ? imgp->execpath : ""); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); goto exec_fail_dealloc; } /* ABI enforces the use of Capsicum. Switch into capabilities mode. */ if (SV_PROC_FLAG(p, SV_CAPSICUM)) sys_cap_enter(td, NULL); /* * Copy out strings (args and env) and initialize stack base */ if (p->p_sysent->sv_copyout_strings) stack_base = (*p->p_sysent->sv_copyout_strings)(imgp); else stack_base = exec_copyout_strings(imgp); /* * If custom stack fixup routine present for this process * let it do the stack setup. * Else stuff argument count as first item on stack */ if (p->p_sysent->sv_fixup != NULL) (*p->p_sysent->sv_fixup)(&stack_base, imgp); else suword(--stack_base, imgp->args->argc); if (args->fdp != NULL) { /* Install a brand new file descriptor table. */ fdinstall_remapped(td, args->fdp); args->fdp = NULL; } else { /* * Keep on using the existing file descriptor table. For * security and other reasons, the file descriptor table * cannot be shared after an exec. */ fdunshare(td); /* close files on exec */ fdcloseexec(td); } /* * Malloc things before we need locks. */ i = imgp->args->begin_envv - imgp->args->begin_argv; /* Cache arguments if they fit inside our allowance */ if (ps_arg_cache_limit >= i + sizeof(struct pargs)) { newargs = pargs_alloc(i); bcopy(imgp->args->begin_argv, newargs->ar_args, i); } /* * For security and other reasons, signal handlers cannot * be shared after an exec. The new process gets a copy of the old * handlers. In execsigs(), the new process will have its signals * reset. */ if (sigacts_shared(p->p_sigacts)) { oldsigacts = p->p_sigacts; newsigacts = sigacts_alloc(); sigacts_copy(newsigacts, oldsigacts); } vn_lock(imgp->vp, LK_SHARED | LK_RETRY); PROC_LOCK(p); if (oldsigacts) p->p_sigacts = newsigacts; /* Stop profiling */ stopprofclock(p); /* reset caught signals */ execsigs(p); /* name this process - nameiexec(p, ndp) */ bzero(p->p_comm, sizeof(p->p_comm)); if (args->fname) bcopy(nd.ni_cnd.cn_nameptr, p->p_comm, min(nd.ni_cnd.cn_namelen, MAXCOMLEN)); else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0) bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title)); bcopy(p->p_comm, td->td_name, sizeof(td->td_name)); #ifdef KTR sched_clear_tdname(td); #endif /* * mark as execed, wakeup the process that vforked (if any) and tell * it that it now has its own resources back */ p->p_flag |= P_EXEC; if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0) p->p_flag2 &= ~P2_NOTRACE; if (p->p_flag & P_PPWAIT) { p->p_flag &= ~(P_PPWAIT | P_PPTRACE); cv_broadcast(&p->p_pwait); /* STOPs are no longer ignored, arrange for AST */ signotify(td); } /* * Implement image setuid/setgid installation. */ if (imgp->credential_setid) { /* * Turn off syscall tracing for set-id programs, except for * root. Record any set-id flags first to make sure that * we do not regain any tracing during a possible block. */ setsugid(p); #ifdef KTRACE if (p->p_tracecred != NULL && priv_check_cred(p->p_tracecred, PRIV_DEBUG_DIFFCRED, 0)) ktrprocexec(p, &tracecred, &tracevp); #endif /* * Close any file descriptors 0..2 that reference procfs, * then make sure file descriptors 0..2 are in use. * * Both fdsetugidsafety() and fdcheckstd() may call functions * taking sleepable locks, so temporarily drop our locks. */ PROC_UNLOCK(p); VOP_UNLOCK(imgp->vp, 0); fdsetugidsafety(td); error = fdcheckstd(td); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); if (error != 0) goto exec_fail_dealloc; PROC_LOCK(p); #ifdef MAC if (will_transition) { mac_vnode_execve_transition(oldcred, imgp->newcred, imgp->vp, interpvplabel, imgp); } #endif } else { if (oldcred->cr_uid == oldcred->cr_ruid && oldcred->cr_gid == oldcred->cr_rgid) p->p_flag &= ~P_SUGID; } /* * Set the new credentials. */ if (imgp->newcred != NULL) { proc_set_cred(p, imgp->newcred); crfree(oldcred); oldcred = NULL; } /* * Store the vp for use in procfs. This vnode was referenced by namei * or fgetvp_exec. */ oldtextvp = p->p_textvp; p->p_textvp = newtextvp; #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the exec if it * has declared an interest. */ if (dtrace_fasttrap_exec) dtrace_fasttrap_exec(p); #endif /* * Notify others that we exec'd, and clear the P_INEXEC flag * as we're now a bona fide freshly-execed process. */ KNOTE_LOCKED(p->p_klist, NOTE_EXEC); p->p_flag &= ~P_INEXEC; /* clear "fork but no exec" flag, as we _are_ execing */ p->p_acflag &= ~AFORK; /* * Free any previous argument cache and replace it with * the new argument cache, if any. */ oldargs = p->p_args; p->p_args = newargs; newargs = NULL; #ifdef HWPMC_HOOKS /* * Check if system-wide sampling is in effect or if the * current process is using PMCs. If so, do exec() time * processing. This processing needs to happen AFTER the * P_INEXEC flag is cleared. * * The proc lock needs to be released before taking the PMC * SX. */ if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) { PROC_UNLOCK(p); VOP_UNLOCK(imgp->vp, 0); pe.pm_credentialschanged = credential_changing; pe.pm_entryaddr = imgp->entry_addr; PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); } else PROC_UNLOCK(p); #else /* !HWPMC_HOOKS */ PROC_UNLOCK(p); #endif /* Set values passed into the program in registers. */ if (p->p_sysent->sv_setregs) (*p->p_sysent->sv_setregs)(td, imgp, (u_long)(uintptr_t)stack_base); else exec_setregs(td, imgp, (u_long)(uintptr_t)stack_base); vfs_mark_atime(imgp->vp, td->td_ucred); SDT_PROBE1(proc, , , exec__success, args->fname); exec_fail_dealloc: if (imgp->firstpage != NULL) exec_unmap_first_page(imgp); if (imgp->vp != NULL) { if (args->fname) NDFREE(&nd, NDF_ONLY_PNBUF); if (imgp->opened) VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td); if (error != 0) vput(imgp->vp); else VOP_UNLOCK(imgp->vp, 0); } if (imgp->object != NULL) vm_object_deallocate(imgp->object); free(imgp->freepath, M_TEMP); if (error == 0) { PROC_LOCK(p); if (p->p_ptevents & PTRACE_EXEC) td->td_dbgflags |= TDB_EXEC; PROC_UNLOCK(p); /* * Stop the process here if its stop event mask has * the S_EXEC bit set. */ STOPEVENT(p, S_EXEC, 0); } else { exec_fail: /* we're done here, clear P_INEXEC */ PROC_LOCK(p); p->p_flag &= ~P_INEXEC; PROC_UNLOCK(p); SDT_PROBE1(proc, , , exec__failure, error); } if (imgp->newcred != NULL && oldcred != NULL) crfree(imgp->newcred); #ifdef MAC mac_execve_exit(imgp); mac_execve_interpreter_exit(interpvplabel); #endif exec_free_args(args); /* * Handle deferred decrement of ref counts. */ if (oldtextvp != NULL) vrele(oldtextvp); #ifdef KTRACE if (tracevp != NULL) vrele(tracevp); if (tracecred != NULL) crfree(tracecred); #endif pargs_drop(oldargs); pargs_drop(newargs); if (oldsigacts != NULL) sigacts_free(oldsigacts); if (euip != NULL) uifree(euip); if (error && imgp->vmspace_destroyed) { /* sorry, no more process anymore. exit gracefully */ exit1(td, 0, SIGABRT); /* NOT REACHED */ } #ifdef KTRACE if (error == 0) ktrprocctor(p); #endif return (error); } int exec_map_first_page(imgp) struct image_params *imgp; { int rv, i, after, initial_pagein; vm_page_t ma[VM_INITIAL_PAGEIN]; vm_object_t object; if (imgp->firstpage != NULL) exec_unmap_first_page(imgp); object = imgp->vp->v_object; if (object == NULL) return (EACCES); VM_OBJECT_WLOCK(object); #if VM_NRESERVLEVEL > 0 vm_object_color(object, 0); #endif ma[0] = vm_page_grab(object, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY); if (ma[0]->valid != VM_PAGE_BITS_ALL) { vm_page_xbusy(ma[0]); if (!vm_pager_has_page(object, 0, NULL, &after)) { vm_page_lock(ma[0]); vm_page_free(ma[0]); vm_page_unlock(ma[0]); VM_OBJECT_WUNLOCK(object); return (EIO); } initial_pagein = min(after, VM_INITIAL_PAGEIN); KASSERT(initial_pagein <= object->size, ("%s: initial_pagein %d object->size %ju", __func__, initial_pagein, (uintmax_t )object->size)); for (i = 1; i < initial_pagein; i++) { if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { if (ma[i]->valid) break; if (!vm_page_tryxbusy(ma[i])) break; } else { ma[i] = vm_page_alloc(object, i, VM_ALLOC_NORMAL); if (ma[i] == NULL) break; } } initial_pagein = i; rv = vm_pager_get_pages(object, ma, initial_pagein, NULL, NULL); if (rv != VM_PAGER_OK) { for (i = 0; i < initial_pagein; i++) { vm_page_lock(ma[i]); vm_page_free(ma[i]); vm_page_unlock(ma[i]); } VM_OBJECT_WUNLOCK(object); return (EIO); } vm_page_xunbusy(ma[0]); for (i = 1; i < initial_pagein; i++) vm_page_readahead_finish(ma[i]); } vm_page_lock(ma[0]); vm_page_hold(ma[0]); vm_page_activate(ma[0]); vm_page_unlock(ma[0]); VM_OBJECT_WUNLOCK(object); imgp->firstpage = sf_buf_alloc(ma[0], 0); imgp->image_header = (char *)sf_buf_kva(imgp->firstpage); return (0); } void exec_unmap_first_page(struct image_params *imgp) { vm_page_t m; if (imgp->firstpage != NULL) { m = sf_buf_page(imgp->firstpage); sf_buf_free(imgp->firstpage); imgp->firstpage = NULL; vm_page_lock(m); vm_page_unhold(m); vm_page_unlock(m); } } /* * Destroy old address space, and allocate a new stack. * The new stack is only sgrowsiz large because it is grown * automatically on a page fault. */ int exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv) { int error; struct proc *p = imgp->proc; struct vmspace *vmspace = p->p_vmspace; vm_object_t obj; struct rlimit rlim_stack; vm_offset_t sv_minuser, stack_addr; vm_map_t map; u_long ssiz; imgp->vmspace_destroyed = 1; imgp->sysent = sv; /* May be called with Giant held */ - EVENTHANDLER_INVOKE(process_exec, p, imgp); + EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp); /* * Blow away entire process VM, if address space not shared, * otherwise, create a new VM space so that other threads are * not disrupted */ map = &vmspace->vm_map; if (map_at_zero) sv_minuser = sv->sv_minuser; else sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE); if (vmspace->vm_refcnt == 1 && vm_map_min(map) == sv_minuser && vm_map_max(map) == sv->sv_maxuser) { shmexit(vmspace); pmap_remove_pages(vmspace_pmap(vmspace)); vm_map_remove(map, vm_map_min(map), vm_map_max(map)); /* An exec terminates mlockall(MCL_FUTURE). */ vm_map_lock(map); vm_map_modflags(map, 0, MAP_WIREFUTURE); vm_map_unlock(map); } else { error = vmspace_exec(p, sv_minuser, sv->sv_maxuser); if (error) return (error); vmspace = p->p_vmspace; map = &vmspace->vm_map; } /* Map a shared page */ obj = sv->sv_shared_page_obj; if (obj != NULL) { vm_object_reference(obj); error = vm_map_fixed(map, obj, 0, sv->sv_shared_page_base, sv->sv_shared_page_len, VM_PROT_READ | VM_PROT_EXECUTE, VM_PROT_READ | VM_PROT_EXECUTE, MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE); if (error != KERN_SUCCESS) { vm_object_deallocate(obj); return (vm_mmap_to_errno(error)); } } /* Allocate a new stack */ if (imgp->stack_sz != 0) { ssiz = trunc_page(imgp->stack_sz); PROC_LOCK(p); lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack); PROC_UNLOCK(p); if (ssiz > rlim_stack.rlim_max) ssiz = rlim_stack.rlim_max; if (ssiz > rlim_stack.rlim_cur) { rlim_stack.rlim_cur = ssiz; kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack); } } else if (sv->sv_maxssiz != NULL) { ssiz = *sv->sv_maxssiz; } else { ssiz = maxssiz; } stack_addr = sv->sv_usrstack - ssiz; error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz, obj != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : sv->sv_stackprot, VM_PROT_ALL, MAP_STACK_GROWS_DOWN); if (error != KERN_SUCCESS) return (vm_mmap_to_errno(error)); /* * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they * are still used to enforce the stack rlimit on the process stack. */ vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT; vmspace->vm_maxsaddr = (char *)stack_addr; return (0); } /* * Copy out argument and environment strings from the old process address * space into the temporary string buffer. */ int exec_copyin_args(struct image_args *args, char *fname, enum uio_seg segflg, char **argv, char **envv) { u_long argp, envp; int error; size_t length; bzero(args, sizeof(*args)); if (argv == NULL) return (EFAULT); /* * Allocate demand-paged memory for the file name, argument, and * environment strings. */ error = exec_alloc_args(args); if (error != 0) return (error); /* * Copy the file name. */ if (fname != NULL) { args->fname = args->buf; error = (segflg == UIO_SYSSPACE) ? copystr(fname, args->fname, PATH_MAX, &length) : copyinstr(fname, args->fname, PATH_MAX, &length); if (error != 0) goto err_exit; } else length = 0; args->begin_argv = args->buf + length; args->endp = args->begin_argv; args->stringspace = ARG_MAX; /* * extract arguments first */ for (;;) { error = fueword(argv++, &argp); if (error == -1) { error = EFAULT; goto err_exit; } if (argp == 0) break; error = copyinstr((void *)(uintptr_t)argp, args->endp, args->stringspace, &length); if (error != 0) { if (error == ENAMETOOLONG) error = E2BIG; goto err_exit; } args->stringspace -= length; args->endp += length; args->argc++; } args->begin_envv = args->endp; /* * extract environment strings */ if (envv) { for (;;) { error = fueword(envv++, &envp); if (error == -1) { error = EFAULT; goto err_exit; } if (envp == 0) break; error = copyinstr((void *)(uintptr_t)envp, args->endp, args->stringspace, &length); if (error != 0) { if (error == ENAMETOOLONG) error = E2BIG; goto err_exit; } args->stringspace -= length; args->endp += length; args->envc++; } } return (0); err_exit: exec_free_args(args); return (error); } int exec_copyin_data_fds(struct thread *td, struct image_args *args, const void *data, size_t datalen, const int *fds, size_t fdslen) { struct filedesc *ofdp; const char *p; int *kfds; int error; memset(args, '\0', sizeof(*args)); ofdp = td->td_proc->p_fd; if (datalen >= ARG_MAX || fdslen > ofdp->fd_lastfile + 1) return (E2BIG); error = exec_alloc_args(args); if (error != 0) return (error); args->begin_argv = args->buf; args->stringspace = ARG_MAX; if (datalen > 0) { /* * Argument buffer has been provided. Copy it into the * kernel as a single string and add a terminating null * byte. */ error = copyin(data, args->begin_argv, datalen); if (error != 0) goto err_exit; args->begin_argv[datalen] = '\0'; args->endp = args->begin_argv + datalen + 1; args->stringspace -= datalen + 1; /* * Traditional argument counting. Count the number of * null bytes. */ for (p = args->begin_argv; p < args->endp; ++p) if (*p == '\0') ++args->argc; } else { /* No argument buffer provided. */ args->endp = args->begin_argv; } /* There are no environment variables. */ args->begin_envv = args->endp; /* Create new file descriptor table. */ kfds = malloc(fdslen * sizeof(int), M_TEMP, M_WAITOK); error = copyin(fds, kfds, fdslen * sizeof(int)); if (error != 0) { free(kfds, M_TEMP); goto err_exit; } error = fdcopy_remapped(ofdp, kfds, fdslen, &args->fdp); free(kfds, M_TEMP); if (error != 0) goto err_exit; return (0); err_exit: exec_free_args(args); return (error); } struct exec_args_kva { vm_offset_t addr; u_int gen; SLIST_ENTRY(exec_args_kva) next; }; static DPCPU_DEFINE(struct exec_args_kva *, exec_args_kva); static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist; static struct mtx exec_args_kva_mtx; static u_int exec_args_gen; static void exec_prealloc_args_kva(void *arg __unused) { struct exec_args_kva *argkva; u_int i; SLIST_INIT(&exec_args_kva_freelist); mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF); for (i = 0; i < exec_map_entries; i++) { argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK); argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size); argkva->gen = exec_args_gen; SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); } } SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL); static vm_offset_t exec_alloc_args_kva(void **cookie) { struct exec_args_kva *argkva; argkva = (void *)atomic_readandclear_ptr( (uintptr_t *)DPCPU_PTR(exec_args_kva)); if (argkva == NULL) { mtx_lock(&exec_args_kva_mtx); while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL) (void)mtx_sleep(&exec_args_kva_freelist, &exec_args_kva_mtx, 0, "execkva", 0); SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next); mtx_unlock(&exec_args_kva_mtx); } *(struct exec_args_kva **)cookie = argkva; return (argkva->addr); } static void exec_release_args_kva(struct exec_args_kva *argkva, u_int gen) { vm_offset_t base; base = argkva->addr; if (argkva->gen != gen) { vm_map_madvise(exec_map, base, base + exec_map_entry_size, MADV_FREE); argkva->gen = gen; } if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva), (uintptr_t)NULL, (uintptr_t)argkva)) { mtx_lock(&exec_args_kva_mtx); SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); wakeup_one(&exec_args_kva_freelist); mtx_unlock(&exec_args_kva_mtx); } } static void exec_free_args_kva(void *cookie) { exec_release_args_kva(cookie, exec_args_gen); } static void exec_args_kva_lowmem(void *arg __unused) { SLIST_HEAD(, exec_args_kva) head; struct exec_args_kva *argkva; u_int gen; int i; gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1; /* * Force an madvise of each KVA range. Any currently allocated ranges * will have MADV_FREE applied once they are freed. */ SLIST_INIT(&head); mtx_lock(&exec_args_kva_mtx); SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva); mtx_unlock(&exec_args_kva_mtx); while ((argkva = SLIST_FIRST(&head)) != NULL) { SLIST_REMOVE_HEAD(&head, next); exec_release_args_kva(argkva, gen); } CPU_FOREACH(i) { argkva = (void *)atomic_readandclear_ptr( (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva)); if (argkva != NULL) exec_release_args_kva(argkva, gen); } } EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL, EVENTHANDLER_PRI_ANY); /* * Allocate temporary demand-paged, zero-filled memory for the file name, * argument, and environment strings. */ int exec_alloc_args(struct image_args *args) { args->buf = (char *)exec_alloc_args_kva(&args->bufkva); return (0); } void exec_free_args(struct image_args *args) { if (args->buf != NULL) { exec_free_args_kva(args->bufkva); args->buf = NULL; } if (args->fname_buf != NULL) { free(args->fname_buf, M_TEMP); args->fname_buf = NULL; } if (args->fdp != NULL) fdescfree_remapped(args->fdp); } /* * Copy strings out to the new process address space, constructing new arg * and env vector tables. Return a pointer to the base so that it can be used * as the initial stack pointer. */ register_t * exec_copyout_strings(struct image_params *imgp) { int argc, envc; char **vectp; char *stringp; uintptr_t destp; register_t *stack_base; struct ps_strings *arginfo; struct proc *p; size_t execpath_len; int szsigcode, szps; char canary[sizeof(long) * 8]; szps = sizeof(pagesizes[0]) * MAXPAGESIZES; /* * Calculate string base and vector table pointers. * Also deal with signal trampoline code for this exec type. */ if (imgp->execpath != NULL && imgp->auxargs != NULL) execpath_len = strlen(imgp->execpath) + 1; else execpath_len = 0; p = imgp->proc; szsigcode = 0; arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings; if (p->p_sysent->sv_sigcode_base == 0) { if (p->p_sysent->sv_szsigcode != NULL) szsigcode = *(p->p_sysent->sv_szsigcode); } destp = (uintptr_t)arginfo; /* * install sigcode */ if (szsigcode != 0) { destp -= szsigcode; destp = rounddown2(destp, sizeof(void *)); copyout(p->p_sysent->sv_sigcode, (void *)destp, szsigcode); } /* * Copy the image path for the rtld. */ if (execpath_len != 0) { destp -= execpath_len; imgp->execpathp = destp; copyout(imgp->execpath, (void *)destp, execpath_len); } /* * Prepare the canary for SSP. */ arc4rand(canary, sizeof(canary), 0); destp -= sizeof(canary); imgp->canary = destp; copyout(canary, (void *)destp, sizeof(canary)); imgp->canarylen = sizeof(canary); /* * Prepare the pagesizes array. */ destp -= szps; destp = rounddown2(destp, sizeof(void *)); imgp->pagesizes = destp; copyout(pagesizes, (void *)destp, szps); imgp->pagesizeslen = szps; destp -= ARG_MAX - imgp->args->stringspace; destp = rounddown2(destp, sizeof(void *)); /* * If we have a valid auxargs ptr, prepare some room * on the stack. */ if (imgp->auxargs) { /* * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for * lower compatibility. */ imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size : (AT_COUNT * 2); /* * The '+ 2' is for the null pointers at the end of each of * the arg and env vector sets,and imgp->auxarg_size is room * for argument of Runtime loader. */ vectp = (char **)(destp - (imgp->args->argc + imgp->args->envc + 2 + imgp->auxarg_size) * sizeof(char *)); } else { /* * The '+ 2' is for the null pointers at the end of each of * the arg and env vector sets */ vectp = (char **)(destp - (imgp->args->argc + imgp->args->envc + 2) * sizeof(char *)); } /* * vectp also becomes our initial stack base */ stack_base = (register_t *)vectp; stringp = imgp->args->begin_argv; argc = imgp->args->argc; envc = imgp->args->envc; /* * Copy out strings - arguments and environment. */ copyout(stringp, (void *)destp, ARG_MAX - imgp->args->stringspace); /* * Fill in "ps_strings" struct for ps, w, etc. */ suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp); suword32(&arginfo->ps_nargvstr, argc); /* * Fill in argument portion of vector table. */ for (; argc > 0; --argc) { suword(vectp++, (long)(intptr_t)destp); while (*stringp++ != 0) destp++; destp++; } /* a null vector table pointer separates the argp's from the envp's */ suword(vectp++, 0); suword(&arginfo->ps_envstr, (long)(intptr_t)vectp); suword32(&arginfo->ps_nenvstr, envc); /* * Fill in environment portion of vector table. */ for (; envc > 0; --envc) { suword(vectp++, (long)(intptr_t)destp); while (*stringp++ != 0) destp++; destp++; } /* end of vector table is a null pointer */ suword(vectp, 0); return (stack_base); } /* * Check permissions of file to execute. * Called with imgp->vp locked. * Return 0 for success or error code on failure. */ int exec_check_permissions(struct image_params *imgp) { struct vnode *vp = imgp->vp; struct vattr *attr = imgp->attr; struct thread *td; int error, writecount; td = curthread; /* Get file attributes */ error = VOP_GETATTR(vp, attr, td->td_ucred); if (error) return (error); #ifdef MAC error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp); if (error) return (error); #endif /* * 1) Check if file execution is disabled for the filesystem that * this file resides on. * 2) Ensure that at least one execute bit is on. Otherwise, a * privileged user will always succeed, and we don't want this * to happen unless the file really is executable. * 3) Ensure that the file is a regular file. */ if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 || (attr->va_type != VREG)) return (EACCES); /* * Zero length files can't be exec'd */ if (attr->va_size == 0) return (ENOEXEC); /* * Check for execute permission to file based on current credentials. */ error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); if (error) return (error); /* * Check number of open-for-writes on the file and deny execution * if there are any. */ error = VOP_GET_WRITECOUNT(vp, &writecount); if (error != 0) return (error); if (writecount != 0) return (ETXTBSY); /* * Call filesystem specific open routine (which does nothing in the * general case). */ error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); if (error == 0) imgp->opened = 1; return (error); } /* * Exec handler registration */ int exec_register(const struct execsw *execsw_arg) { const struct execsw **es, **xs, **newexecsw; int count = 2; /* New slot and trailing NULL */ if (execsw) for (es = execsw; *es; es++) count++; newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); xs = newexecsw; if (execsw) for (es = execsw; *es; es++) *xs++ = *es; *xs++ = execsw_arg; *xs = NULL; if (execsw) free(execsw, M_TEMP); execsw = newexecsw; return (0); } int exec_unregister(const struct execsw *execsw_arg) { const struct execsw **es, **xs, **newexecsw; int count = 1; if (execsw == NULL) panic("unregister with no handlers left?\n"); for (es = execsw; *es; es++) { if (*es == execsw_arg) break; } if (*es == NULL) return (ENOENT); for (es = execsw; *es; es++) if (*es != execsw_arg) count++; newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); xs = newexecsw; for (es = execsw; *es; es++) if (*es != execsw_arg) *xs++ = *es; *xs = NULL; if (execsw) free(execsw, M_TEMP); execsw = newexecsw; return (0); } Index: stable/11/sys/kern/kern_exit.c =================================================================== --- stable/11/sys/kern/kern_exit.c (revision 331726) +++ stable/11/sys/kern/kern_exit.c (revision 331727) @@ -1,1342 +1,1344 @@ /*- * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for acct_process() function prototype */ #include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include #include #include #include #include #include #include #ifdef KDTRACE_HOOKS #include dtrace_execexit_func_t dtrace_fasttrap_exit; #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE1(proc, , , exit, "int"); /* Hook for NFS teardown procedure. */ void (*nlminfo_release_p)(struct proc *p); +EVENTHANDLER_LIST_DECLARE(process_exit); + struct proc * proc_realparent(struct proc *child) { struct proc *p, *parent; sx_assert(&proctree_lock, SX_LOCKED); if ((child->p_treeflag & P_TREE_ORPHANED) == 0) { if (child->p_oppid == 0 || child->p_pptr->p_pid == child->p_oppid) parent = child->p_pptr; else parent = initproc; return (parent); } for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) { /* Cannot use LIST_PREV(), since the list head is not known. */ p = __containerof(p->p_orphan.le_prev, struct proc, p_orphan.le_next); KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0, ("missing P_ORPHAN %p", p)); } parent = __containerof(p->p_orphan.le_prev, struct proc, p_orphans.lh_first); return (parent); } void reaper_abandon_children(struct proc *p, bool exiting) { struct proc *p1, *p2, *ptmp; sx_assert(&proctree_lock, SX_LOCKED); KASSERT(p != initproc, ("reaper_abandon_children for initproc")); if ((p->p_treeflag & P_TREE_REAPER) == 0) return; p1 = p->p_reaper; LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) { LIST_REMOVE(p2, p_reapsibling); p2->p_reaper = p1; p2->p_reapsubtree = p->p_reapsubtree; LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling); if (exiting && p2->p_pptr == p) { PROC_LOCK(p2); proc_reparent(p2, p1); PROC_UNLOCK(p2); } } KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty")); p->p_treeflag &= ~P_TREE_REAPER; } static void clear_orphan(struct proc *p) { struct proc *p1; sx_assert(&proctree_lock, SA_XLOCKED); if ((p->p_treeflag & P_TREE_ORPHANED) == 0) return; if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) { p1 = LIST_NEXT(p, p_orphan); if (p1 != NULL) p1->p_treeflag |= P_TREE_FIRST_ORPHAN; p->p_treeflag &= ~P_TREE_FIRST_ORPHAN; } LIST_REMOVE(p, p_orphan); p->p_treeflag &= ~P_TREE_ORPHANED; } /* * exit -- death of process. */ void sys_sys_exit(struct thread *td, struct sys_exit_args *uap) { exit1(td, uap->rval, 0); /* NOTREACHED */ } /* * Exit: deallocate address space and other resources, change proc state to * zombie, and unlink proc from allproc and parent's lists. Save exit status * and rusage for wait(). Check for child processes and orphan them. */ void exit1(struct thread *td, int rval, int signo) { struct proc *p, *nq, *q, *t; struct thread *tdt; ksiginfo_t *ksi, *ksi1; mtx_assert(&Giant, MA_NOTOWNED); KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo)); p = td->td_proc; /* * XXX in case we're rebooting we just let init die in order to * work around an unsolved stack overflow seen very late during * shutdown on sparc64 when the gmirror worker process exists. */ if (p == initproc && rebooting == 0) { printf("init died (signal %d, exit %d)\n", signo, rval); panic("Going nowhere without my init!"); } /* * Deref SU mp, since the thread does not return to userspace. */ td_softdep_cleanup(td); /* * MUST abort all other threads before proceeding past here. */ PROC_LOCK(p); /* * First check if some other thread or external request got * here before us. If so, act appropriately: exit or suspend. * We must ensure that stop requests are handled before we set * P_WEXIT. */ thread_suspend_check(0); while (p->p_flag & P_HADTHREADS) { /* * Kill off the other threads. This requires * some co-operation from other parts of the kernel * so it may not be instantaneous. With this state set * any thread entering the kernel from userspace will * thread_exit() in trap(). Any thread attempting to * sleep will return immediately with EINTR or EWOULDBLOCK * which will hopefully force them to back out to userland * freeing resources as they go. Any thread attempting * to return to userland will thread_exit() from userret(). * thread_exit() will unsuspend us when the last of the * other threads exits. * If there is already a thread singler after resumption, * calling thread_single will fail; in that case, we just * re-check all suspension request, the thread should * either be suspended there or exit. */ if (!thread_single(p, SINGLE_EXIT)) /* * All other activity in this process is now * stopped. Threading support has been turned * off. */ break; /* * Recheck for new stop or suspend requests which * might appear while process lock was dropped in * thread_single(). */ thread_suspend_check(0); } KASSERT(p->p_numthreads == 1, ("exit1: proc %p exiting with %d threads", p, p->p_numthreads)); racct_sub(p, RACCT_NTHR, 1); /* Let event handler change exit status */ p->p_xexit = rval; p->p_xsig = signo; /* * Wakeup anyone in procfs' PIOCWAIT. They should have a hold * on our vmspace, so we should block below until they have * released their reference to us. Note that if they have * requested S_EXIT stops we will block here until they ack * via PIOCCONT. */ _STOPEVENT(p, S_EXIT, 0); /* * Ignore any pending request to stop due to a stop signal. * Once P_WEXIT is set, future requests will be ignored as * well. */ p->p_flag &= ~P_STOPPED_SIG; KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped")); /* * Note that we are exiting and do another wakeup of anyone in * PIOCWAIT in case they aren't listening for S_EXIT stops or * decided to wait again after we told them we are exiting. */ p->p_flag |= P_WEXIT; wakeup(&p->p_stype); /* * Wait for any processes that have a hold on our vmspace to * release their reference. */ while (p->p_lock > 0) msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0); PROC_UNLOCK(p); /* Drain the limit callout while we don't have the proc locked */ callout_drain(&p->p_limco); #ifdef AUDIT /* * The Sun BSM exit token contains two components: an exit status as * passed to exit(), and a return value to indicate what sort of exit * it was. The exit status is WEXITSTATUS(rv), but it's not clear * what the return value is. */ AUDIT_ARG_EXIT(rval, 0); AUDIT_SYSCALL_EXIT(0, td); #endif /* Are we a task leader with peers? */ if (p->p_peers != NULL && p == p->p_leader) { mtx_lock(&ppeers_lock); q = p->p_peers; while (q != NULL) { PROC_LOCK(q); kern_psignal(q, SIGKILL); PROC_UNLOCK(q); q = q->p_peers; } while (p->p_peers != NULL) msleep(p, &ppeers_lock, PWAIT, "exit1", 0); mtx_unlock(&ppeers_lock); } /* * Check if any loadable modules need anything done at process exit. * E.g. SYSV IPC stuff. * Event handler could change exit status. * XXX what if one of these generates an error? */ - EVENTHANDLER_INVOKE(process_exit, p); + EVENTHANDLER_DIRECT_INVOKE(process_exit, p); /* * If parent is waiting for us to exit or exec, * P_PPWAIT is set; we will wakeup the parent below. */ PROC_LOCK(p); stopprofclock(p); p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE); p->p_ptevents = 0; /* * Stop the real interval timer. If the handler is currently * executing, prevent it from rearming itself and let it finish. */ if (timevalisset(&p->p_realtimer.it_value) && _callout_stop_safe(&p->p_itcallout, CS_EXECUTING, NULL) == 0) { timevalclear(&p->p_realtimer.it_interval); msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0); KASSERT(!timevalisset(&p->p_realtimer.it_value), ("realtime timer is still armed")); } PROC_UNLOCK(p); umtx_thread_exit(td); /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pid. */ funsetownlst(&p->p_sigiolst); /* * If this process has an nlminfo data area (for lockd), release it */ if (nlminfo_release_p != NULL && p->p_nlminfo != NULL) (*nlminfo_release_p)(p); /* * Close open files and release open-file table. * This may block! */ fdescfree(td); /* * If this thread tickled GEOM, we need to wait for the giggling to * stop before we return to userland */ if (td->td_pflags & TDP_GEOM) g_waitidle(); /* * Remove ourself from our leader's peer list and wake our leader. */ if (p->p_leader->p_peers != NULL) { mtx_lock(&ppeers_lock); if (p->p_leader->p_peers != NULL) { q = p->p_leader; while (q->p_peers != p) q = q->p_peers; q->p_peers = p->p_peers; wakeup(p->p_leader); } mtx_unlock(&ppeers_lock); } vmspace_exit(td); killjobc(); (void)acct_process(td); #ifdef KTRACE ktrprocexit(td); #endif /* * Release reference to text vnode */ if (p->p_textvp != NULL) { vrele(p->p_textvp); p->p_textvp = NULL; } /* * Release our limits structure. */ lim_free(p->p_limit); p->p_limit = NULL; tidhash_remove(td); /* * Remove proc from allproc queue and pidhash chain. * Place onto zombproc. Unlink from parent's child list. */ sx_xlock(&allproc_lock); LIST_REMOVE(p, p_list); LIST_INSERT_HEAD(&zombproc, p, p_list); LIST_REMOVE(p, p_hash); sx_xunlock(&allproc_lock); /* * Call machine-dependent code to release any * machine-dependent resources other than the address space. * The address space is released by "vmspace_exitfree(p)" in * vm_waitproc(). */ cpu_exit(td); WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid); /* * Reparent all children processes: * - traced ones to the original parent (or init if we are that parent) * - the rest to init */ sx_xlock(&proctree_lock); q = LIST_FIRST(&p->p_children); if (q != NULL) /* only need this if any child is S_ZOMB */ wakeup(q->p_reaper); for (; q != NULL; q = nq) { nq = LIST_NEXT(q, p_sibling); ksi = ksiginfo_alloc(TRUE); PROC_LOCK(q); q->p_sigparent = SIGCHLD; if (!(q->p_flag & P_TRACED)) { proc_reparent(q, q->p_reaper); if (q->p_state == PRS_ZOMBIE) { /* * Inform reaper about the reparented * zombie, since wait(2) has something * new to report. Guarantee queueing * of the SIGCHLD signal, similar to * the _exit() behaviour, by providing * our ksiginfo. Ksi is freed by the * signal delivery. */ if (q->p_ksi == NULL) { ksi1 = NULL; } else { ksiginfo_copy(q->p_ksi, ksi); ksi->ksi_flags |= KSI_INS; ksi1 = ksi; ksi = NULL; } PROC_LOCK(q->p_reaper); pksignal(q->p_reaper, SIGCHLD, ksi1); PROC_UNLOCK(q->p_reaper); } } else { /* * Traced processes are killed since their existence * means someone is screwing up. */ t = proc_realparent(q); if (t == p) { proc_reparent(q, q->p_reaper); } else { PROC_LOCK(t); proc_reparent(q, t); PROC_UNLOCK(t); } /* * Since q was found on our children list, the * proc_reparent() call moved q to the orphan * list due to present P_TRACED flag. Clear * orphan link for q now while q is locked. */ clear_orphan(q); q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE); q->p_flag2 &= ~P2_PTRACE_FSTP; q->p_ptevents = 0; FOREACH_THREAD_IN_PROC(q, tdt) { tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG | TDB_FSTP); } kern_psignal(q, SIGKILL); } PROC_UNLOCK(q); if (ksi != NULL) ksiginfo_free(ksi); } /* * Also get rid of our orphans. */ while ((q = LIST_FIRST(&p->p_orphans)) != NULL) { PROC_LOCK(q); CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid, q->p_pid); clear_orphan(q); PROC_UNLOCK(q); } /* Save exit status. */ PROC_LOCK(p); p->p_xthread = td; /* Tell the prison that we are gone. */ prison_proc_free(p->p_ucred->cr_prison); #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the exit if it * has declared an interest. */ if (dtrace_fasttrap_exit) dtrace_fasttrap_exit(p); #endif /* * Notify interested parties of our demise. */ KNOTE_LOCKED(p->p_klist, NOTE_EXIT); #ifdef KDTRACE_HOOKS int reason = CLD_EXITED; if (WCOREDUMP(signo)) reason = CLD_DUMPED; else if (WIFSIGNALED(signo)) reason = CLD_KILLED; SDT_PROBE1(proc, , , exit, reason); #endif /* * If this is a process with a descriptor, we may not need to deliver * a signal to the parent. proctree_lock is held over * procdesc_exit() to serialize concurrent calls to close() and * exit(). */ if (p->p_procdesc == NULL || procdesc_exit(p)) { /* * Notify parent that we're gone. If parent has the * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN, * notify process 1 instead (and hope it will handle this * situation). */ PROC_LOCK(p->p_pptr); mtx_lock(&p->p_pptr->p_sigacts->ps_mtx); if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) { struct proc *pp; mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); pp = p->p_pptr; PROC_UNLOCK(pp); proc_reparent(p, p->p_reaper); p->p_sigparent = SIGCHLD; PROC_LOCK(p->p_pptr); /* * Notify parent, so in case he was wait(2)ing or * executing waitpid(2) with our pid, he will * continue. */ wakeup(pp); } else mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) childproc_exited(p); else if (p->p_sigparent != 0) { if (p->p_sigparent == SIGCHLD) childproc_exited(p); else /* LINUX thread */ kern_psignal(p->p_pptr, p->p_sigparent); } } else PROC_LOCK(p->p_pptr); sx_xunlock(&proctree_lock); /* * The state PRS_ZOMBIE prevents other proesses from sending * signal to the process, to avoid memory leak, we free memory * for signal queue at the time when the state is set. */ sigqueue_flush(&p->p_sigqueue); sigqueue_flush(&td->td_sigqueue); /* * We have to wait until after acquiring all locks before * changing p_state. We need to avoid all possible context * switches (including ones from blocking on a mutex) while * marked as a zombie. We also have to set the zombie state * before we release the parent process' proc lock to avoid * a lost wakeup. So, we first call wakeup, then we grab the * sched lock, update the state, and release the parent process' * proc lock. */ wakeup(p->p_pptr); cv_broadcast(&p->p_pwait); sched_exit(p->p_pptr, td); PROC_SLOCK(p); p->p_state = PRS_ZOMBIE; PROC_UNLOCK(p->p_pptr); /* * Save our children's rusage information in our exit rusage. */ PROC_STATLOCK(p); ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux); PROC_STATUNLOCK(p); /* * Make sure the scheduler takes this thread out of its tables etc. * This will also release this thread's reference to the ucred. * Other thread parts to release include pcb bits and such. */ thread_exit(); } #ifndef _SYS_SYSPROTO_H_ struct abort2_args { char *why; int nargs; void **args; }; #endif int sys_abort2(struct thread *td, struct abort2_args *uap) { struct proc *p = td->td_proc; struct sbuf *sb; void *uargs[16]; int error, i, sig; /* * Do it right now so we can log either proper call of abort2(), or * note, that invalid argument was passed. 512 is big enough to * handle 16 arguments' descriptions with additional comments. */ sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN); sbuf_clear(sb); sbuf_printf(sb, "%s(pid %d uid %d) aborted: ", p->p_comm, p->p_pid, td->td_ucred->cr_uid); /* * Since we can't return from abort2(), send SIGKILL in cases, where * abort2() was called improperly */ sig = SIGKILL; /* Prevent from DoSes from user-space. */ if (uap->nargs < 0 || uap->nargs > 16) goto out; if (uap->nargs > 0) { if (uap->args == NULL) goto out; error = copyin(uap->args, uargs, uap->nargs * sizeof(void *)); if (error != 0) goto out; } /* * Limit size of 'reason' string to 128. Will fit even when * maximal number of arguments was chosen to be logged. */ if (uap->why != NULL) { error = sbuf_copyin(sb, uap->why, 128); if (error < 0) goto out; } else { sbuf_printf(sb, "(null)"); } if (uap->nargs > 0) { sbuf_printf(sb, "("); for (i = 0;i < uap->nargs; i++) sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]); sbuf_printf(sb, ")"); } /* * Final stage: arguments were proper, string has been * successfully copied from userspace, and copying pointers * from user-space succeed. */ sig = SIGABRT; out: if (sig == SIGKILL) { sbuf_trim(sb); sbuf_printf(sb, " (Reason text inaccessible)"); } sbuf_cat(sb, "\n"); sbuf_finish(sb); log(LOG_INFO, "%s", sbuf_data(sb)); sbuf_delete(sb); exit1(td, 0, sig); return (0); } #ifdef COMPAT_43 /* * The dirty work is handled by kern_wait(). */ int owait(struct thread *td, struct owait_args *uap __unused) { int error, status; error = kern_wait(td, WAIT_ANY, &status, 0, NULL); if (error == 0) td->td_retval[1] = status; return (error); } #endif /* COMPAT_43 */ /* * The dirty work is handled by kern_wait(). */ int sys_wait4(struct thread *td, struct wait4_args *uap) { struct rusage ru, *rup; int error, status; if (uap->rusage != NULL) rup = &ru; else rup = NULL; error = kern_wait(td, uap->pid, &status, uap->options, rup); if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&status, uap->status, sizeof(status)); if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&ru, uap->rusage, sizeof(struct rusage)); return (error); } int sys_wait6(struct thread *td, struct wait6_args *uap) { struct __wrusage wru, *wrup; siginfo_t si, *sip; idtype_t idtype; id_t id; int error, status; idtype = uap->idtype; id = uap->id; if (uap->wrusage != NULL) wrup = &wru; else wrup = NULL; if (uap->info != NULL) { sip = &si; bzero(sip, sizeof(*sip)); } else sip = NULL; /* * We expect all callers of wait6() to know about WEXITED and * WTRAPPED. */ error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip); if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&status, uap->status, sizeof(status)); if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0) error = copyout(&wru, uap->wrusage, sizeof(wru)); if (uap->info != NULL && error == 0) error = copyout(&si, uap->info, sizeof(si)); return (error); } /* * Reap the remains of a zombie process and optionally return status and * rusage. Asserts and will release both the proctree_lock and the process * lock as part of its work. */ void proc_reap(struct thread *td, struct proc *p, int *status, int options) { struct proc *q, *t; sx_assert(&proctree_lock, SA_XLOCKED); PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE")); q = td->td_proc; PROC_SUNLOCK(p); if (status) *status = KW_EXITCODE(p->p_xexit, p->p_xsig); if (options & WNOWAIT) { /* * Only poll, returning the status. Caller does not wish to * release the proc struct just yet. */ PROC_UNLOCK(p); sx_xunlock(&proctree_lock); return; } PROC_LOCK(q); sigqueue_take(p->p_ksi); PROC_UNLOCK(q); /* * If we got the child via a ptrace 'attach', we need to give it back * to the old parent. */ if (p->p_oppid != 0 && p->p_oppid != p->p_pptr->p_pid) { PROC_UNLOCK(p); t = proc_realparent(p); PROC_LOCK(t); PROC_LOCK(p); CTR2(KTR_PTRACE, "wait: traced child %d moved back to parent %d", p->p_pid, t->p_pid); proc_reparent(p, t); p->p_oppid = 0; PROC_UNLOCK(p); pksignal(t, SIGCHLD, p->p_ksi); wakeup(t); cv_broadcast(&p->p_pwait); PROC_UNLOCK(t); sx_xunlock(&proctree_lock); return; } p->p_oppid = 0; PROC_UNLOCK(p); /* * Remove other references to this process to ensure we have an * exclusive reference. */ sx_xlock(&allproc_lock); LIST_REMOVE(p, p_list); /* off zombproc */ sx_xunlock(&allproc_lock); LIST_REMOVE(p, p_sibling); reaper_abandon_children(p, true); LIST_REMOVE(p, p_reapsibling); PROC_LOCK(p); clear_orphan(p); PROC_UNLOCK(p); leavepgrp(p); if (p->p_procdesc != NULL) procdesc_reap(p); sx_xunlock(&proctree_lock); PROC_LOCK(p); knlist_detach(p->p_klist); p->p_klist = NULL; PROC_UNLOCK(p); /* * Removal from allproc list and process group list paired with * PROC_LOCK which was executed during that time should guarantee * nothing can reach this process anymore. As such further locking * is unnecessary. */ p->p_xexit = p->p_xsig = 0; /* XXX: why? */ PROC_LOCK(q); ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux); PROC_UNLOCK(q); /* * Decrement the count of procs running with this uid. */ (void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); /* * Destroy resource accounting information associated with the process. */ #ifdef RACCT if (racct_enable) { PROC_LOCK(p); racct_sub(p, RACCT_NPROC, 1); PROC_UNLOCK(p); } #endif racct_proc_exit(p); /* * Free credentials, arguments, and sigacts. */ crfree(p->p_ucred); proc_set_cred(p, NULL); pargs_drop(p->p_args); p->p_args = NULL; sigacts_free(p->p_sigacts); p->p_sigacts = NULL; /* * Do any thread-system specific cleanups. */ thread_wait(p); /* * Give vm and machine-dependent layer a chance to free anything that * cpu_exit couldn't release while still running in process context. */ vm_waitproc(p); #ifdef MAC mac_proc_destroy(p); #endif /* * Free any domain policy that's still hiding around. */ vm_domain_policy_cleanup(&p->p_vm_dom_policy); KASSERT(FIRST_THREAD_IN_PROC(p), ("proc_reap: no residual thread!")); uma_zfree(proc_zone, p); atomic_add_int(&nprocs, -1); } static int proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id, int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo, int check_only) { struct rusage *rup; sx_assert(&proctree_lock, SA_XLOCKED); PROC_LOCK(p); switch (idtype) { case P_ALL: if (p->p_procdesc != NULL) { PROC_UNLOCK(p); return (0); } break; case P_PID: if (p->p_pid != (pid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_PGID: if (p->p_pgid != (pid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_SID: if (p->p_session->s_sid != (pid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_UID: if (p->p_ucred->cr_uid != (uid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_GID: if (p->p_ucred->cr_gid != (gid_t)id) { PROC_UNLOCK(p); return (0); } break; case P_JAILID: if (p->p_ucred->cr_prison->pr_id != (int)id) { PROC_UNLOCK(p); return (0); } break; /* * It seems that the thread structures get zeroed out * at process exit. This makes it impossible to * support P_SETID, P_CID or P_CPUID. */ default: PROC_UNLOCK(p); return (0); } if (p_canwait(td, p)) { PROC_UNLOCK(p); return (0); } if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) { PROC_UNLOCK(p); return (0); } /* * This special case handles a kthread spawned by linux_clone * (see linux_misc.c). The linux_wait4 and linux_waitpid * functions need to be able to distinguish between waiting * on a process and waiting on a thread. It is a thread if * p_sigparent is not SIGCHLD, and the WLINUXCLONE option * signifies we want to wait for threads and not processes. */ if ((p->p_sigparent != SIGCHLD) ^ ((options & WLINUXCLONE) != 0)) { PROC_UNLOCK(p); return (0); } if (siginfo != NULL) { bzero(siginfo, sizeof(*siginfo)); siginfo->si_errno = 0; /* * SUSv4 requires that the si_signo value is always * SIGCHLD. Obey it despite the rfork(2) interface * allows to request other signal for child exit * notification. */ siginfo->si_signo = SIGCHLD; /* * This is still a rough estimate. We will fix the * cases TRAPPED, STOPPED, and CONTINUED later. */ if (WCOREDUMP(p->p_xsig)) { siginfo->si_code = CLD_DUMPED; siginfo->si_status = WTERMSIG(p->p_xsig); } else if (WIFSIGNALED(p->p_xsig)) { siginfo->si_code = CLD_KILLED; siginfo->si_status = WTERMSIG(p->p_xsig); } else { siginfo->si_code = CLD_EXITED; siginfo->si_status = p->p_xexit; } siginfo->si_pid = p->p_pid; siginfo->si_uid = p->p_ucred->cr_uid; /* * The si_addr field would be useful additional * detail, but apparently the PC value may be lost * when we reach this point. bzero() above sets * siginfo->si_addr to NULL. */ } /* * There should be no reason to limit resources usage info to * exited processes only. A snapshot about any resources used * by a stopped process may be exactly what is needed. */ if (wrusage != NULL) { rup = &wrusage->wru_self; *rup = p->p_ru; PROC_STATLOCK(p); calcru(p, &rup->ru_utime, &rup->ru_stime); PROC_STATUNLOCK(p); rup = &wrusage->wru_children; *rup = p->p_stats->p_cru; calccru(p, &rup->ru_utime, &rup->ru_stime); } if (p->p_state == PRS_ZOMBIE && !check_only) { PROC_SLOCK(p); proc_reap(td, p, status, options); return (-1); } return (1); } int kern_wait(struct thread *td, pid_t pid, int *status, int options, struct rusage *rusage) { struct __wrusage wru, *wrup; idtype_t idtype; id_t id; int ret; /* * Translate the special pid values into the (idtype, pid) * pair for kern_wait6. The WAIT_MYPGRP case is handled by * kern_wait6() on its own. */ if (pid == WAIT_ANY) { idtype = P_ALL; id = 0; } else if (pid < 0) { idtype = P_PGID; id = (id_t)-pid; } else { idtype = P_PID; id = (id_t)pid; } if (rusage != NULL) wrup = &wru; else wrup = NULL; /* * For backward compatibility we implicitly add flags WEXITED * and WTRAPPED here. */ options |= WEXITED | WTRAPPED; ret = kern_wait6(td, idtype, id, status, options, wrup, NULL); if (rusage != NULL) *rusage = wru.wru_self; return (ret); } static void report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo, int *status, int options, int si_code) { bool cont; PROC_LOCK_ASSERT(p, MA_OWNED); sx_assert(&proctree_lock, SA_XLOCKED); MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED || si_code == CLD_CONTINUED); cont = si_code == CLD_CONTINUED; if ((options & WNOWAIT) == 0) { if (cont) p->p_flag &= ~P_CONTINUED; else p->p_flag |= P_WAITED; PROC_LOCK(td->td_proc); sigqueue_take(p->p_ksi); PROC_UNLOCK(td->td_proc); } sx_xunlock(&proctree_lock); if (siginfo != NULL) { siginfo->si_code = si_code; siginfo->si_status = cont ? SIGCONT : p->p_xsig; } if (status != NULL) *status = cont ? SIGCONT : W_STOPCODE(p->p_xsig); PROC_UNLOCK(p); td->td_retval[0] = p->p_pid; } int kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo) { struct proc *p, *q; pid_t pid; int error, nfound, ret; AUDIT_ARG_VALUE((int)idtype); /* XXX - This is likely wrong! */ AUDIT_ARG_PID((pid_t)id); /* XXX - This may be wrong! */ AUDIT_ARG_VALUE(options); q = td->td_proc; if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) { PROC_LOCK(q); id = (id_t)q->p_pgid; PROC_UNLOCK(q); idtype = P_PGID; } /* If we don't know the option, just return. */ if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT | WEXITED | WTRAPPED | WLINUXCLONE)) != 0) return (EINVAL); if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) { /* * We will be unable to find any matching processes, * because there are no known events to look for. * Prefer to return error instead of blocking * indefinitely. */ return (EINVAL); } loop: if (q->p_flag & P_STATCHILD) { PROC_LOCK(q); q->p_flag &= ~P_STATCHILD; PROC_UNLOCK(q); } nfound = 0; sx_xlock(&proctree_lock); LIST_FOREACH(p, &q->p_children, p_sibling) { pid = p->p_pid; ret = proc_to_reap(td, p, idtype, id, status, options, wrusage, siginfo, 0); if (ret == 0) continue; else if (ret == 1) nfound++; else { td->td_retval[0] = pid; return (0); } PROC_LOCK_ASSERT(p, MA_OWNED); if ((options & (WTRAPPED | WUNTRACED)) != 0) PROC_SLOCK(p); if ((options & WTRAPPED) != 0 && (p->p_flag & P_TRACED) != 0 && (p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) != 0 && p->p_suspcount == p->p_numthreads && (p->p_flag & P_WAITED) == 0) { PROC_SUNLOCK(p); CTR4(KTR_PTRACE, "wait: returning trapped pid %d status %#x " "(xstat %d) xthread %d", p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig, p->p_xthread != NULL ? p->p_xthread->td_tid : -1); report_alive_proc(td, p, siginfo, status, options, CLD_TRAPPED); return (0); } if ((options & WUNTRACED) != 0 && (p->p_flag & P_STOPPED_SIG) != 0 && p->p_suspcount == p->p_numthreads && (p->p_flag & P_WAITED) == 0) { PROC_SUNLOCK(p); report_alive_proc(td, p, siginfo, status, options, CLD_STOPPED); return (0); } if ((options & (WTRAPPED | WUNTRACED)) != 0) PROC_SUNLOCK(p); if ((options & WCONTINUED) != 0 && (p->p_flag & P_CONTINUED) != 0) { report_alive_proc(td, p, siginfo, status, options, CLD_CONTINUED); return (0); } PROC_UNLOCK(p); } /* * Look in the orphans list too, to allow the parent to * collect it's child exit status even if child is being * debugged. * * Debugger detaches from the parent upon successful * switch-over from parent to child. At this point due to * re-parenting the parent loses the child to debugger and a * wait4(2) call would report that it has no children to wait * for. By maintaining a list of orphans we allow the parent * to successfully wait until the child becomes a zombie. */ if (nfound == 0) { LIST_FOREACH(p, &q->p_orphans, p_orphan) { ret = proc_to_reap(td, p, idtype, id, NULL, options, NULL, NULL, 1); if (ret != 0) { KASSERT(ret != -1, ("reaped an orphan (pid %d)", (int)td->td_retval[0])); PROC_UNLOCK(p); nfound++; break; } } } if (nfound == 0) { sx_xunlock(&proctree_lock); return (ECHILD); } if (options & WNOHANG) { sx_xunlock(&proctree_lock); td->td_retval[0] = 0; return (0); } PROC_LOCK(q); sx_xunlock(&proctree_lock); if (q->p_flag & P_STATCHILD) { q->p_flag &= ~P_STATCHILD; error = 0; } else error = msleep(q, &q->p_mtx, PWAIT | PCATCH, "wait", 0); PROC_UNLOCK(q); if (error) return (error); goto loop; } /* * Make process 'parent' the new parent of process 'child'. * Must be called with an exclusive hold of proctree lock. */ void proc_reparent(struct proc *child, struct proc *parent) { sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(child, MA_OWNED); if (child->p_pptr == parent) return; PROC_LOCK(child->p_pptr); sigqueue_take(child->p_ksi); PROC_UNLOCK(child->p_pptr); LIST_REMOVE(child, p_sibling); LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); clear_orphan(child); if (child->p_flag & P_TRACED) { if (LIST_EMPTY(&child->p_pptr->p_orphans)) { child->p_treeflag |= P_TREE_FIRST_ORPHAN; LIST_INSERT_HEAD(&child->p_pptr->p_orphans, child, p_orphan); } else { LIST_INSERT_AFTER(LIST_FIRST(&child->p_pptr->p_orphans), child, p_orphan); } child->p_treeflag |= P_TREE_ORPHANED; } child->p_pptr = parent; } Index: stable/11/sys/kern/kern_fork.c =================================================================== --- stable/11/sys/kern/kern_fork.c (revision 331726) +++ stable/11/sys/kern/kern_fork.c (revision 331727) @@ -1,1128 +1,1130 @@ /*- * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_ktrace.h" #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KDTRACE_HOOKS #include dtrace_fork_func_t dtrace_fasttrap_fork; #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); #ifndef _SYS_SYSPROTO_H_ struct fork_args { int dummy; }; #endif +EVENTHANDLER_LIST_DECLARE(process_fork); + /* ARGSUSED */ int sys_fork(struct thread *td, struct fork_args *uap) { struct fork_req fr; int error, pid; bzero(&fr, sizeof(fr)); fr.fr_flags = RFFDG | RFPROC; fr.fr_pidp = &pid; error = fork1(td, &fr); if (error == 0) { td->td_retval[0] = pid; td->td_retval[1] = 0; } return (error); } /* ARGUSED */ int sys_pdfork(struct thread *td, struct pdfork_args *uap) { struct fork_req fr; int error, fd, pid; bzero(&fr, sizeof(fr)); fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; fr.fr_pidp = &pid; fr.fr_pd_fd = &fd; fr.fr_pd_flags = uap->flags; /* * It is necessary to return fd by reference because 0 is a valid file * descriptor number, and the child needs to be able to distinguish * itself from the parent using the return value. */ error = fork1(td, &fr); if (error == 0) { td->td_retval[0] = pid; td->td_retval[1] = 0; error = copyout(&fd, uap->fdp, sizeof(fd)); } return (error); } /* ARGSUSED */ int sys_vfork(struct thread *td, struct vfork_args *uap) { struct fork_req fr; int error, pid; bzero(&fr, sizeof(fr)); fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; fr.fr_pidp = &pid; error = fork1(td, &fr); if (error == 0) { td->td_retval[0] = pid; td->td_retval[1] = 0; } return (error); } int sys_rfork(struct thread *td, struct rfork_args *uap) { struct fork_req fr; int error, pid; /* Don't allow kernel-only flags. */ if ((uap->flags & RFKERNELONLY) != 0) return (EINVAL); AUDIT_ARG_FFLAGS(uap->flags); bzero(&fr, sizeof(fr)); fr.fr_flags = uap->flags; fr.fr_pidp = &pid; error = fork1(td, &fr); if (error == 0) { td->td_retval[0] = pid; td->td_retval[1] = 0; } return (error); } int nprocs = 1; /* process 0 */ int lastpid = 0; SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, "Last used PID"); /* * Random component to lastpid generation. We mix in a random factor to make * it a little harder to predict. We sanity check the modulus value to avoid * doing it in critical paths. Don't let it be too small or we pointlessly * waste randomness entropy, and don't let it be impossibly large. Using a * modulus that is too big causes a LOT more process table scans and slows * down fork processing as the pidchecked caching is defeated. */ static int randompid = 0; static int sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) { int error, pid; error = sysctl_wire_old_buffer(req, sizeof(int)); if (error != 0) return(error); sx_xlock(&allproc_lock); pid = randompid; error = sysctl_handle_int(oidp, &pid, 0, req); if (error == 0 && req->newptr != NULL) { if (pid == 0) randompid = 0; else if (pid == 1) /* generate a random PID modulus between 100 and 1123 */ randompid = 100 + arc4random() % 1024; else if (pid < 0 || pid > pid_max - 100) /* out of range */ randompid = pid_max - 100; else if (pid < 100) /* Make it reasonable */ randompid = 100; else randompid = pid; } sx_xunlock(&allproc_lock); return (error); } SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value"); static int fork_findpid(int flags) { struct proc *p; int trypid; static int pidchecked = 0; /* * Requires allproc_lock in order to iterate over the list * of processes, and proctree_lock to access p_pgrp. */ sx_assert(&allproc_lock, SX_LOCKED); sx_assert(&proctree_lock, SX_LOCKED); /* * Find an unused process ID. We remember a range of unused IDs * ready to use (from lastpid+1 through pidchecked-1). * * If RFHIGHPID is set (used during system boot), do not allocate * low-numbered pids. */ trypid = lastpid + 1; if (flags & RFHIGHPID) { if (trypid < 10) trypid = 10; } else { if (randompid) trypid += arc4random() % randompid; } retry: /* * If the process ID prototype has wrapped around, * restart somewhat above 0, as the low-numbered procs * tend to include daemons that don't exit. */ if (trypid >= pid_max) { trypid = trypid % pid_max; if (trypid < 100) trypid += 100; pidchecked = 0; } if (trypid >= pidchecked) { int doingzomb = 0; pidchecked = PID_MAX; /* * Scan the active and zombie procs to check whether this pid * is in use. Remember the lowest pid that's greater * than trypid, so we can avoid checking for a while. * * Avoid reuse of the process group id, session id or * the reaper subtree id. Note that for process group * and sessions, the amount of reserved pids is * limited by process limit. For the subtree ids, the * id is kept reserved only while there is a * non-reaped process in the subtree, so amount of * reserved pids is limited by process limit times * two. */ p = LIST_FIRST(&allproc); again: for (; p != NULL; p = LIST_NEXT(p, p_list)) { while (p->p_pid == trypid || p->p_reapsubtree == trypid || (p->p_pgrp != NULL && (p->p_pgrp->pg_id == trypid || (p->p_session != NULL && p->p_session->s_sid == trypid)))) { trypid++; if (trypid >= pidchecked) goto retry; } if (p->p_pid > trypid && pidchecked > p->p_pid) pidchecked = p->p_pid; if (p->p_pgrp != NULL) { if (p->p_pgrp->pg_id > trypid && pidchecked > p->p_pgrp->pg_id) pidchecked = p->p_pgrp->pg_id; if (p->p_session != NULL && p->p_session->s_sid > trypid && pidchecked > p->p_session->s_sid) pidchecked = p->p_session->s_sid; } } if (!doingzomb) { doingzomb = 1; p = LIST_FIRST(&zombproc); goto again; } } /* * RFHIGHPID does not mess with the lastpid counter during boot. */ if (flags & RFHIGHPID) pidchecked = 0; else lastpid = trypid; return (trypid); } static int fork_norfproc(struct thread *td, int flags) { int error; struct proc *p1; KASSERT((flags & RFPROC) == 0, ("fork_norfproc called with RFPROC set")); p1 = td->td_proc; if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && (flags & (RFCFDG | RFFDG))) { PROC_LOCK(p1); if (thread_single(p1, SINGLE_BOUNDARY)) { PROC_UNLOCK(p1); return (ERESTART); } PROC_UNLOCK(p1); } error = vm_forkproc(td, NULL, NULL, NULL, flags); if (error) goto fail; /* * Close all file descriptors. */ if (flags & RFCFDG) { struct filedesc *fdtmp; fdtmp = fdinit(td->td_proc->p_fd, false); fdescfree(td); p1->p_fd = fdtmp; } /* * Unshare file descriptors (from parent). */ if (flags & RFFDG) fdunshare(td); fail: if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && (flags & (RFCFDG | RFFDG))) { PROC_LOCK(p1); thread_single_end(p1, SINGLE_BOUNDARY); PROC_UNLOCK(p1); } return (error); } static void do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, struct vmspace *vm2, struct file *fp_procdesc) { struct proc *p1, *pptr; int trypid; struct filedesc *fd; struct filedesc_to_leader *fdtol; struct sigacts *newsigacts; sx_assert(&proctree_lock, SX_SLOCKED); sx_assert(&allproc_lock, SX_XLOCKED); p1 = td->td_proc; trypid = fork_findpid(fr->fr_flags); sx_sunlock(&proctree_lock); p2->p_state = PRS_NEW; /* protect against others */ p2->p_pid = trypid; AUDIT_ARG_PID(p2->p_pid); LIST_INSERT_HEAD(&allproc, p2, p_list); allproc_gen++; LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); tidhash_add(td2); PROC_LOCK(p2); PROC_LOCK(p1); sx_xunlock(&allproc_lock); bcopy(&p1->p_startcopy, &p2->p_startcopy, __rangeof(struct proc, p_startcopy, p_endcopy)); p2->p_elf_machine = p1->p_elf_machine; p2->p_elf_flags = p1->p_elf_flags; pargs_hold(p2->p_args); PROC_UNLOCK(p1); bzero(&p2->p_startzero, __rangeof(struct proc, p_startzero, p_endzero)); p2->p_ptevents = 0; /* Tell the prison that we exist. */ prison_proc_hold(p2->p_ucred->cr_prison); PROC_UNLOCK(p2); /* * Malloc things while we don't hold any locks. */ if (fr->fr_flags & RFSIGSHARE) newsigacts = NULL; else newsigacts = sigacts_alloc(); /* * Copy filedesc. */ if (fr->fr_flags & RFCFDG) { fd = fdinit(p1->p_fd, false); fdtol = NULL; } else if (fr->fr_flags & RFFDG) { fd = fdcopy(p1->p_fd); fdtol = NULL; } else { fd = fdshare(p1->p_fd); if (p1->p_fdtol == NULL) p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, p1->p_leader); if ((fr->fr_flags & RFTHREAD) != 0) { /* * Shared file descriptor table, and shared * process leaders. */ fdtol = p1->p_fdtol; FILEDESC_XLOCK(p1->p_fd); fdtol->fdl_refcount++; FILEDESC_XUNLOCK(p1->p_fd); } else { /* * Shared file descriptor table, and different * process leaders. */ fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p1->p_fd, p2); } } /* * Make a proc table entry for the new process. * Start by zeroing the section of proc that is zero-initialized, * then copy the section that is copied directly from the parent. */ PROC_LOCK(p2); PROC_LOCK(p1); bzero(&td2->td_startzero, __rangeof(struct thread, td_startzero, td_endzero)); td2->td_sleeptimo = 0; bzero(&td2->td_si, sizeof(td2->td_si)); bcopy(&td->td_startcopy, &td2->td_startcopy, __rangeof(struct thread, td_startcopy, td_endcopy)); td2->td_sa = td->td_sa; bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); td2->td_sigstk = td->td_sigstk; td2->td_flags = TDF_INMEM; td2->td_lend_user_pri = PRI_MAX; #ifdef VIMAGE td2->td_vnet = NULL; td2->td_vnet_lpush = NULL; #endif /* * Allow the scheduler to initialize the child. */ thread_lock(td); sched_fork(td, td2); thread_unlock(td); /* * Duplicate sub-structures as needed. * Increase reference counts on shared objects. */ p2->p_flag = P_INMEM; p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP); p2->p_swtick = ticks; if (p1->p_flag & P_PROFIL) startprofclock(p2); /* * Whilst the proc lock is held, copy the VM domain data out * using the VM domain method. */ vm_domain_policy_init(&p2->p_vm_dom_policy); vm_domain_policy_localcopy(&p2->p_vm_dom_policy, &p1->p_vm_dom_policy); if (fr->fr_flags & RFSIGSHARE) { p2->p_sigacts = sigacts_hold(p1->p_sigacts); } else { sigacts_copy(newsigacts, p1->p_sigacts); p2->p_sigacts = newsigacts; } if (fr->fr_flags & RFTSIGZMB) p2->p_sigparent = RFTSIGNUM(fr->fr_flags); else if (fr->fr_flags & RFLINUXTHPN) p2->p_sigparent = SIGUSR1; else p2->p_sigparent = SIGCHLD; p2->p_textvp = p1->p_textvp; p2->p_fd = fd; p2->p_fdtol = fdtol; if (p1->p_flag2 & P2_INHERIT_PROTECTED) { p2->p_flag |= P_PROTECTED; p2->p_flag2 |= P2_INHERIT_PROTECTED; } /* * p_limit is copy-on-write. Bump its refcount. */ lim_fork(p1, p2); thread_cow_get_proc(td2, p2); pstats_fork(p1->p_stats, p2->p_stats); PROC_UNLOCK(p1); PROC_UNLOCK(p2); /* Bump references to the text vnode (for procfs). */ if (p2->p_textvp) vrefact(p2->p_textvp); /* * Set up linkage for kernel based threading. */ if ((fr->fr_flags & RFTHREAD) != 0) { mtx_lock(&ppeers_lock); p2->p_peers = p1->p_peers; p1->p_peers = p2; p2->p_leader = p1->p_leader; mtx_unlock(&ppeers_lock); PROC_LOCK(p1->p_leader); if ((p1->p_leader->p_flag & P_WEXIT) != 0) { PROC_UNLOCK(p1->p_leader); /* * The task leader is exiting, so process p1 is * going to be killed shortly. Since p1 obviously * isn't dead yet, we know that the leader is either * sending SIGKILL's to all the processes in this * task or is sleeping waiting for all the peers to * exit. We let p1 complete the fork, but we need * to go ahead and kill the new process p2 since * the task leader may not get a chance to send * SIGKILL to it. We leave it on the list so that * the task leader will wait for this new process * to commit suicide. */ PROC_LOCK(p2); kern_psignal(p2, SIGKILL); PROC_UNLOCK(p2); } else PROC_UNLOCK(p1->p_leader); } else { p2->p_peers = NULL; p2->p_leader = p2; } sx_xlock(&proctree_lock); PGRP_LOCK(p1->p_pgrp); PROC_LOCK(p2); PROC_LOCK(p1); /* * Preserve some more flags in subprocess. P_PROFIL has already * been preserved. */ p2->p_flag |= p1->p_flag & P_SUGID; td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING; SESS_LOCK(p1->p_session); if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) p2->p_flag |= P_CONTROLT; SESS_UNLOCK(p1->p_session); if (fr->fr_flags & RFPPWAIT) p2->p_flag |= P_PPWAIT; p2->p_pgrp = p1->p_pgrp; LIST_INSERT_AFTER(p1, p2, p_pglist); PGRP_UNLOCK(p1->p_pgrp); LIST_INIT(&p2->p_children); LIST_INIT(&p2->p_orphans); callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); /* * If PF_FORK is set, the child process inherits the * procfs ioctl flags from its parent. */ if (p1->p_pfsflags & PF_FORK) { p2->p_stops = p1->p_stops; p2->p_pfsflags = p1->p_pfsflags; } /* * This begins the section where we must prevent the parent * from being swapped. */ _PHOLD(p1); PROC_UNLOCK(p1); /* * Attach the new process to its parent. * * If RFNOWAIT is set, the newly created process becomes a child * of init. This effectively disassociates the child from the * parent. */ if ((fr->fr_flags & RFNOWAIT) != 0) { pptr = p1->p_reaper; p2->p_reaper = pptr; } else { p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? p1 : p1->p_reaper; pptr = p1; } p2->p_pptr = pptr; LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); LIST_INIT(&p2->p_reaplist); LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); if (p2->p_reaper == p1) p2->p_reapsubtree = p2->p_pid; sx_xunlock(&proctree_lock); /* Inform accounting that we have forked. */ p2->p_acflag = AFORK; PROC_UNLOCK(p2); #ifdef KTRACE ktrprocfork(p1, p2); #endif /* * Finish creating the child process. It will return via a different * execution path later. (ie: directly into user mode) */ vm_forkproc(td, p2, td2, vm2, fr->fr_flags); if (fr->fr_flags == (RFFDG | RFPROC)) { PCPU_INC(cnt.v_forks); PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { PCPU_INC(cnt.v_vforks); PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else if (p1 == &proc0) { PCPU_INC(cnt.v_kthreads); PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else { PCPU_INC(cnt.v_rforks); PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } /* * Associate the process descriptor with the process before anything * can happen that might cause that process to need the descriptor. * However, don't do this until after fork(2) can no longer fail. */ if (fr->fr_flags & RFPROCDESC) procdesc_new(p2, fr->fr_pd_flags); /* * Both processes are set up, now check if any loadable modules want * to adjust anything. */ - EVENTHANDLER_INVOKE(process_fork, p1, p2, fr->fr_flags); + EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); /* * Set the child start time and mark the process as being complete. */ PROC_LOCK(p2); PROC_LOCK(p1); microuptime(&p2->p_stats->p_start); PROC_SLOCK(p2); p2->p_state = PRS_NORMAL; PROC_SUNLOCK(p2); #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the new process so that any * tracepoints inherited from the parent can be removed. We have to do * this only after p_state is PRS_NORMAL since the fasttrap module will * use pfind() later on. */ if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) dtrace_fasttrap_fork(p1, p2); #endif /* * Hold the process so that it cannot exit after we make it runnable, * but before we wait for the debugger. */ _PHOLD(p2); if (p1->p_ptevents & PTRACE_FORK) { /* * Arrange for debugger to receive the fork event. * * We can report PL_FLAG_FORKED regardless of * P_FOLLOWFORK settings, but it does not make a sense * for runaway child. */ td->td_dbgflags |= TDB_FORK; td->td_dbg_forked = p2->p_pid; td2->td_dbgflags |= TDB_STOPATFORK; } if (fr->fr_flags & RFPPWAIT) { td->td_pflags |= TDP_RFPPWAIT; td->td_rfppwait_p = p2; td->td_dbgflags |= TDB_VFORK; } PROC_UNLOCK(p2); /* * Now can be swapped. */ _PRELE(p1); PROC_UNLOCK(p1); /* * Tell any interested parties about the new process. */ knote_fork(p1->p_klist, p2->p_pid); SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); if (fr->fr_flags & RFPROCDESC) { procdesc_finit(p2->p_procdesc, fp_procdesc); fdrop(fp_procdesc, td); } if ((fr->fr_flags & RFSTOPPED) == 0) { /* * If RFSTOPPED not requested, make child runnable and * add to run queue. */ thread_lock(td2); TD_SET_CAN_RUN(td2); sched_add(td2, SRQ_BORING); thread_unlock(td2); if (fr->fr_pidp != NULL) *fr->fr_pidp = p2->p_pid; } else { *fr->fr_procp = p2; } PROC_LOCK(p2); /* * Wait until debugger is attached to child. */ while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0) cv_wait(&p2->p_dbgwait, &p2->p_mtx); _PRELE(p2); racct_proc_fork_done(p2); PROC_UNLOCK(p2); } int fork1(struct thread *td, struct fork_req *fr) { struct proc *p1, *newproc; struct thread *td2; struct vmspace *vm2; struct file *fp_procdesc; vm_ooffset_t mem_charged; int error, nprocs_new, ok; static int curfail; static struct timeval lastfail; int flags, pages; flags = fr->fr_flags; pages = fr->fr_pages; if ((flags & RFSTOPPED) != 0) MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); else MPASS(fr->fr_procp == NULL); /* Check for the undefined or unimplemented flags. */ if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) return (EINVAL); /* Signal value requires RFTSIGZMB. */ if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) return (EINVAL); /* Can't copy and clear. */ if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) return (EINVAL); /* Check the validity of the signal number. */ if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) return (EINVAL); if ((flags & RFPROCDESC) != 0) { /* Can't not create a process yet get a process descriptor. */ if ((flags & RFPROC) == 0) return (EINVAL); /* Must provide a place to put a procdesc if creating one. */ if (fr->fr_pd_fd == NULL) return (EINVAL); /* Check if we are using supported flags. */ if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) return (EINVAL); } p1 = td->td_proc; /* * Here we don't create a new process, but we divorce * certain parts of a process from itself. */ if ((flags & RFPROC) == 0) { if (fr->fr_procp != NULL) *fr->fr_procp = NULL; else if (fr->fr_pidp != NULL) *fr->fr_pidp = 0; return (fork_norfproc(td, flags)); } fp_procdesc = NULL; newproc = NULL; vm2 = NULL; /* * Increment the nprocs resource before allocations occur. * Although process entries are dynamically created, we still * keep a global limit on the maximum number we will * create. There are hard-limits as to the number of processes * that can run, established by the KVA and memory usage for * the process data. * * Don't allow a nonprivileged user to use the last ten * processes; don't let root exceed the limit. */ nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred, PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) { error = EAGAIN; sx_xlock(&allproc_lock); if (ppsratecheck(&lastfail, &curfail, 1)) { printf("maxproc limit exceeded by uid %u (pid %d); " "see tuning(7) and login.conf(5)\n", td->td_ucred->cr_ruid, p1->p_pid); } sx_xunlock(&allproc_lock); goto fail2; } /* * If required, create a process descriptor in the parent first; we * will abandon it if something goes wrong. We don't finit() until * later. */ if (flags & RFPROCDESC) { error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, fr->fr_pd_flags, fr->fr_pd_fcaps); if (error != 0) goto fail2; } mem_charged = 0; if (pages == 0) pages = kstack_pages; /* Allocate new proc. */ newproc = uma_zalloc(proc_zone, M_WAITOK); td2 = FIRST_THREAD_IN_PROC(newproc); if (td2 == NULL) { td2 = thread_alloc(pages); if (td2 == NULL) { error = ENOMEM; goto fail2; } proc_linkup(newproc, td2); } else { if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { if (td2->td_kstack != 0) vm_thread_dispose(td2); if (!thread_alloc_stack(td2, pages)) { error = ENOMEM; goto fail2; } } } if ((flags & RFMEM) == 0) { vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); if (vm2 == NULL) { error = ENOMEM; goto fail2; } if (!swap_reserve(mem_charged)) { /* * The swap reservation failed. The accounting * from the entries of the copied vm2 will be * subtracted in vmspace_free(), so force the * reservation there. */ swap_reserve_force(mem_charged); error = ENOMEM; goto fail2; } } else vm2 = NULL; /* * XXX: This is ugly; when we copy resource usage, we need to bump * per-cred resource counters. */ proc_set_cred_init(newproc, crhold(td->td_ucred)); /* * Initialize resource accounting for the child process. */ error = racct_proc_fork(p1, newproc); if (error != 0) { error = EAGAIN; goto fail1; } #ifdef MAC mac_proc_init(newproc); #endif newproc->p_klist = knlist_alloc(&newproc->p_mtx); STAILQ_INIT(&newproc->p_ktr); /* We have to lock the process tree while we look for a pid. */ sx_slock(&proctree_lock); sx_xlock(&allproc_lock); /* * Increment the count of procs running with this uid. Don't allow * a nonprivileged user to exceed their current limit. * * XXXRW: Can we avoid privilege here if it's not needed? */ error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0); if (error == 0) ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0); else { ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC)); } if (ok) { do_fork(td, fr, newproc, td2, vm2, fp_procdesc); return (0); } error = EAGAIN; sx_sunlock(&proctree_lock); sx_xunlock(&allproc_lock); #ifdef MAC mac_proc_destroy(newproc); #endif racct_proc_exit(newproc); fail1: crfree(newproc->p_ucred); newproc->p_ucred = NULL; fail2: if (vm2 != NULL) vmspace_free(vm2); uma_zfree(proc_zone, newproc); if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { fdclose(td, fp_procdesc, *fr->fr_pd_fd); fdrop(fp_procdesc, td); } atomic_add_int(&nprocs, -1); pause("fork", hz / 2); return (error); } /* * Handle the return of a child process from fork1(). This function * is called from the MD fork_trampoline() entry point. */ void fork_exit(void (*callout)(void *, struct trapframe *), void *arg, struct trapframe *frame) { struct proc *p; struct thread *td; struct thread *dtd; td = curthread; p = td->td_proc; KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", td, td_get_sched(td), p->p_pid, td->td_name); sched_fork_exit(td); /* * Processes normally resume in mi_switch() after being * cpu_switch()'ed to, but when children start up they arrive here * instead, so we must do much the same things as mi_switch() would. */ if ((dtd = PCPU_GET(deadthread))) { PCPU_SET(deadthread, NULL); thread_stash(dtd); } thread_unlock(td); /* * cpu_fork_kthread_handler intercepts this function call to * have this call a non-return function to stay in kernel mode. * initproc has its own fork handler, but it does return. */ KASSERT(callout != NULL, ("NULL callout in fork_exit")); callout(arg, frame); /* * Check if a kernel thread misbehaved and returned from its main * function. */ if (p->p_flag & P_KPROC) { printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", td->td_name, p->p_pid); kthread_exit(); } mtx_assert(&Giant, MA_NOTOWNED); if (p->p_sysent->sv_schedtail != NULL) (p->p_sysent->sv_schedtail)(td); td->td_pflags &= ~TDP_FORKING; } /* * Simplified back end of syscall(), used when returning from fork() * directly into user mode. This function is passed in to fork_exit() * as the first parameter and is called when returning to a new * userland process. */ void fork_return(struct thread *td, struct trapframe *frame) { struct proc *p, *dbg; p = td->td_proc; if (td->td_dbgflags & TDB_STOPATFORK) { sx_xlock(&proctree_lock); PROC_LOCK(p); if (p->p_pptr->p_ptevents & PTRACE_FORK) { /* * If debugger still wants auto-attach for the * parent's children, do it now. */ dbg = p->p_pptr->p_pptr; proc_set_traced(p, true); CTR2(KTR_PTRACE, "fork_return: attaching to new child pid %d: oppid %d", p->p_pid, p->p_oppid); proc_reparent(p, dbg); sx_xunlock(&proctree_lock); td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; ptracestop(td, SIGSTOP, NULL); td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); } else { /* * ... otherwise clear the request. */ sx_xunlock(&proctree_lock); td->td_dbgflags &= ~TDB_STOPATFORK; cv_broadcast(&p->p_dbgwait); } PROC_UNLOCK(p); } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { /* * This is the start of a new thread in a traced * process. Report a system call exit event. */ PROC_LOCK(p); td->td_dbgflags |= TDB_SCX; _STOPEVENT(p, S_SCX, td->td_sa.code); if ((p->p_ptevents & PTRACE_SCX) != 0 || (td->td_dbgflags & TDB_BORN) != 0) ptracestop(td, SIGTRAP, NULL); td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); PROC_UNLOCK(p); } userret(td, frame); #ifdef KTRACE if (KTRPOINT(td, KTR_SYSRET)) ktrsysret(SYS_fork, 0, 0); #endif } Index: stable/11/sys/kern/kern_proc.c =================================================================== --- stable/11/sys/kern/kern_proc.c (revision 331726) +++ stable/11/sys/kern/kern_proc.c (revision 331727) @@ -1,3151 +1,3162 @@ /*- * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_ddb.h" #include "opt_ktrace.h" #include "opt_kstack_pages.h" #include "opt_stack.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #ifdef COMPAT_FREEBSD32 #include #include #endif SDT_PROVIDER_DEFINE(proc); SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", "int"); SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", "int"); SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", "struct thread *"); SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); MALLOC_DEFINE(M_SESSION, "session", "session header"); static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); static void doenterpgrp(struct proc *, struct pgrp *); static void orphanpg(struct pgrp *pg); static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread); static void pgadjustjobc(struct pgrp *pgrp, int entering); static void pgdelete(struct pgrp *); static int proc_ctor(void *mem, int size, void *arg, int flags); static void proc_dtor(void *mem, int size, void *arg); static int proc_init(void *mem, int size, int flags); static void proc_fini(void *mem, int size); static void pargs_free(struct pargs *pa); static struct proc *zpfind_locked(pid_t pid); /* * Other process lists */ struct pidhashhead *pidhashtbl; u_long pidhash; struct pgrphashhead *pgrphashtbl; u_long pgrphash; struct proclist allproc; struct proclist zombproc; struct sx __exclusive_cache_line allproc_lock; struct sx __exclusive_cache_line proctree_lock; struct mtx __exclusive_cache_line ppeers_lock; uma_zone_t proc_zone; /* * The offset of various fields in struct proc and struct thread. * These are used by kernel debuggers to enumerate kernel threads and * processes. */ const int proc_off_p_pid = offsetof(struct proc, p_pid); const int proc_off_p_comm = offsetof(struct proc, p_comm); const int proc_off_p_list = offsetof(struct proc, p_list); const int proc_off_p_threads = offsetof(struct proc, p_threads); const int thread_off_td_tid = offsetof(struct thread, td_tid); const int thread_off_td_name = offsetof(struct thread, td_name); const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); const int thread_off_td_pcb = offsetof(struct thread, td_pcb); const int thread_off_td_plist = offsetof(struct thread, td_plist); +EVENTHANDLER_LIST_DEFINE(process_ctor); +EVENTHANDLER_LIST_DEFINE(process_dtor); +EVENTHANDLER_LIST_DEFINE(process_init); +EVENTHANDLER_LIST_DEFINE(process_fini); +EVENTHANDLER_LIST_DEFINE(process_exit); +EVENTHANDLER_LIST_DEFINE(process_fork); +EVENTHANDLER_LIST_DEFINE(process_exec); + +EVENTHANDLER_LIST_DECLARE(thread_ctor); +EVENTHANDLER_LIST_DECLARE(thread_dtor); + int kstack_pages = KSTACK_PAGES; SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "Kernel stack size in pages"); static int vmmap_skip_res_cnt = 0; SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, &vmmap_skip_res_cnt, 0, "Skip calculation of the pages resident count in kern.proc.vmmap"); CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); #ifdef COMPAT_FREEBSD32 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); #endif /* * Initialize global process hashing structures. */ void procinit(void) { sx_init(&allproc_lock, "allproc"); sx_init(&proctree_lock, "proctree"); mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); LIST_INIT(&allproc); LIST_INIT(&zombproc); pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), proc_ctor, proc_dtor, proc_init, proc_fini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uihashinit(); } /* * Prepare a proc for use. */ static int proc_ctor(void *mem, int size, void *arg, int flags) { struct proc *p; struct thread *td; p = (struct proc *)mem; SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); - EVENTHANDLER_INVOKE(process_ctor, p); + EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); td = FIRST_THREAD_IN_PROC(p); if (td != NULL) { /* Make sure all thread constructors are executed */ - EVENTHANDLER_INVOKE(thread_ctor, td); + EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); } return (0); } /* * Reclaim a proc after use. */ static void proc_dtor(void *mem, int size, void *arg) { struct proc *p; struct thread *td; /* INVARIANTS checks go here */ p = (struct proc *)mem; td = FIRST_THREAD_IN_PROC(p); SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); if (td != NULL) { #ifdef INVARIANTS KASSERT((p->p_numthreads == 1), ("bad number of threads in exiting process")); KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); #endif /* Free all OSD associated to this thread. */ osd_thread_exit(td); td_softdep_cleanup(td); MPASS(td->td_su == NULL); /* Make sure all thread destructors are executed */ - EVENTHANDLER_INVOKE(thread_dtor, td); + EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); } - EVENTHANDLER_INVOKE(process_dtor, p); + EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); if (p->p_ksi != NULL) KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); SDT_PROBE3(proc, , dtor, return, p, size, arg); } /* * Initialize type-stable parts of a proc (when newly created). */ static int proc_init(void *mem, int size, int flags) { struct proc *p; p = (struct proc *)mem; SDT_PROBE3(proc, , init, entry, p, size, flags); mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); cv_init(&p->p_pwait, "ppwait"); cv_init(&p->p_dbgwait, "dbgwait"); TAILQ_INIT(&p->p_threads); /* all threads in proc */ - EVENTHANDLER_INVOKE(process_init, p); + EVENTHANDLER_DIRECT_INVOKE(process_init, p); p->p_stats = pstats_alloc(); p->p_pgrp = NULL; SDT_PROBE3(proc, , init, return, p, size, flags); return (0); } /* * UMA should ensure that this function is never called. * Freeing a proc structure would violate type stability. */ static void proc_fini(void *mem, int size) { #ifdef notnow struct proc *p; p = (struct proc *)mem; - EVENTHANDLER_INVOKE(process_fini, p); + EVENTHANDLER_DIRECT_INVOKE(process_fini, p); pstats_free(p->p_stats); thread_free(FIRST_THREAD_IN_PROC(p)); mtx_destroy(&p->p_mtx); if (p->p_ksi != NULL) ksiginfo_free(p->p_ksi); #else panic("proc reclaimed"); #endif } /* * Is p an inferior of the current process? */ int inferior(struct proc *p) { sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_OWNED); for (; p != curproc; p = proc_realparent(p)) { if (p->p_pid == 0) return (0); } return (1); } struct proc * pfind_locked(pid_t pid) { struct proc *p; sx_assert(&allproc_lock, SX_LOCKED); LIST_FOREACH(p, PIDHASH(pid), p_hash) { if (p->p_pid == pid) { PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); p = NULL; } break; } } return (p); } /* * Locate a process by number; return only "live" processes -- i.e., neither * zombies nor newly born but incompletely initialized processes. By not * returning processes in the PRS_NEW state, we allow callers to avoid * testing for that condition to avoid dereferencing p_ucred, et al. */ struct proc * pfind(pid_t pid) { struct proc *p; sx_slock(&allproc_lock); p = pfind_locked(pid); sx_sunlock(&allproc_lock); return (p); } static struct proc * pfind_tid_locked(pid_t tid) { struct proc *p; struct thread *td; sx_assert(&allproc_lock, SX_LOCKED); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } FOREACH_THREAD_IN_PROC(p, td) { if (td->td_tid == tid) goto found; } PROC_UNLOCK(p); } found: return (p); } /* * Locate a process group by number. * The caller must hold proctree_lock. */ struct pgrp * pgfind(pgid) register pid_t pgid; { register struct pgrp *pgrp; sx_assert(&proctree_lock, SX_LOCKED); LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { if (pgrp->pg_id == pgid) { PGRP_LOCK(pgrp); return (pgrp); } } return (NULL); } /* * Locate process and do additional manipulations, depending on flags. */ int pget(pid_t pid, int flags, struct proc **pp) { struct proc *p; int error; sx_slock(&allproc_lock); if (pid <= PID_MAX) { p = pfind_locked(pid); if (p == NULL && (flags & PGET_NOTWEXIT) == 0) p = zpfind_locked(pid); } else if ((flags & PGET_NOTID) == 0) { p = pfind_tid_locked(pid); } else { p = NULL; } sx_sunlock(&allproc_lock); if (p == NULL) return (ESRCH); if ((flags & PGET_CANSEE) != 0) { error = p_cansee(curthread, p); if (error != 0) goto errout; } if ((flags & PGET_CANDEBUG) != 0) { error = p_candebug(curthread, p); if (error != 0) goto errout; } if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { error = EPERM; goto errout; } if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { error = ESRCH; goto errout; } if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { /* * XXXRW: Not clear ESRCH is the right error during proc * execve(). */ error = ESRCH; goto errout; } if ((flags & PGET_HOLD) != 0) { _PHOLD(p); PROC_UNLOCK(p); } *pp = p; return (0); errout: PROC_UNLOCK(p); return (error); } /* * Create a new process group. * pgid must be equal to the pid of p. * Begin a new session if required. */ int enterpgrp(p, pgid, pgrp, sess) register struct proc *p; pid_t pgid; struct pgrp *pgrp; struct session *sess; { sx_assert(&proctree_lock, SX_XLOCKED); KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); KASSERT(p->p_pid == pgid, ("enterpgrp: new pgrp and pid != pgid")); KASSERT(pgfind(pgid) == NULL, ("enterpgrp: pgrp with pgid exists")); KASSERT(!SESS_LEADER(p), ("enterpgrp: session leader attempted setpgrp")); mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); if (sess != NULL) { /* * new session */ mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); PROC_LOCK(p); p->p_flag &= ~P_CONTROLT; PROC_UNLOCK(p); PGRP_LOCK(pgrp); sess->s_leader = p; sess->s_sid = p->p_pid; refcount_init(&sess->s_count, 1); sess->s_ttyvp = NULL; sess->s_ttydp = NULL; sess->s_ttyp = NULL; bcopy(p->p_session->s_login, sess->s_login, sizeof(sess->s_login)); pgrp->pg_session = sess; KASSERT(p == curproc, ("enterpgrp: mksession and p != curproc")); } else { pgrp->pg_session = p->p_session; sess_hold(pgrp->pg_session); PGRP_LOCK(pgrp); } pgrp->pg_id = pgid; LIST_INIT(&pgrp->pg_members); /* * As we have an exclusive lock of proctree_lock, * this should not deadlock. */ LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); pgrp->pg_jobc = 0; SLIST_INIT(&pgrp->pg_sigiolst); PGRP_UNLOCK(pgrp); doenterpgrp(p, pgrp); return (0); } /* * Move p to an existing process group */ int enterthispgrp(p, pgrp) register struct proc *p; struct pgrp *pgrp; { sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); KASSERT(pgrp->pg_session == p->p_session, ("%s: pgrp's session %p, p->p_session %p.\n", __func__, pgrp->pg_session, p->p_session)); KASSERT(pgrp != p->p_pgrp, ("%s: p belongs to pgrp.", __func__)); doenterpgrp(p, pgrp); return (0); } /* * Move p to a process group */ static void doenterpgrp(p, pgrp) struct proc *p; struct pgrp *pgrp; { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); savepgrp = p->p_pgrp; /* * Adjust eligibility of affected pgrps to participate in job control. * Increment eligibility counts before decrementing, otherwise we * could reach 0 spuriously during the first call. */ fixjobc(p, pgrp, 1); fixjobc(p, p->p_pgrp, 0); PGRP_LOCK(pgrp); PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = pgrp; PROC_UNLOCK(p); LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); PGRP_UNLOCK(savepgrp); PGRP_UNLOCK(pgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); } /* * remove process from process group */ int leavepgrp(p) register struct proc *p; { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); savepgrp = p->p_pgrp; PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = NULL; PROC_UNLOCK(p); PGRP_UNLOCK(savepgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); return (0); } /* * delete a process group */ static void pgdelete(pgrp) register struct pgrp *pgrp; { struct session *savesess; struct tty *tp; sx_assert(&proctree_lock, SX_XLOCKED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pgid. */ funsetownlst(&pgrp->pg_sigiolst); PGRP_LOCK(pgrp); tp = pgrp->pg_session->s_ttyp; LIST_REMOVE(pgrp, pg_hash); savesess = pgrp->pg_session; PGRP_UNLOCK(pgrp); /* Remove the reference to the pgrp before deallocating it. */ if (tp != NULL) { tty_lock(tp); tty_rel_pgrp(tp, pgrp); } mtx_destroy(&pgrp->pg_mtx); free(pgrp, M_PGRP); sess_release(savesess); } static void pgadjustjobc(pgrp, entering) struct pgrp *pgrp; int entering; { PGRP_LOCK(pgrp); if (entering) pgrp->pg_jobc++; else { --pgrp->pg_jobc; if (pgrp->pg_jobc == 0) orphanpg(pgrp); } PGRP_UNLOCK(pgrp); } /* * Adjust pgrp jobc counters when specified process changes process group. * We count the number of processes in each process group that "qualify" * the group for terminal job control (those with a parent in a different * process group of the same session). If that count reaches zero, the * process group becomes orphaned. Check both the specified process' * process group and that of its children. * entering == 0 => p is leaving specified group. * entering == 1 => p is entering specified group. */ void fixjobc(struct proc *p, struct pgrp *pgrp, int entering) { struct pgrp *hispgrp; struct session *mysession; struct proc *q; sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Check p's parent to see whether p qualifies its own process * group; if so, adjust count for p's process group. */ mysession = pgrp->pg_session; if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && hispgrp->pg_session == mysession) pgadjustjobc(pgrp, entering); /* * Check this process' children to see whether they qualify * their process groups; if so, adjust counts for children's * process groups. */ LIST_FOREACH(q, &p->p_children, p_sibling) { hispgrp = q->p_pgrp; if (hispgrp == pgrp || hispgrp->pg_session != mysession) continue; if (q->p_state == PRS_ZOMBIE) continue; pgadjustjobc(hispgrp, entering); } } void killjobc(void) { struct session *sp; struct tty *tp; struct proc *p; struct vnode *ttyvp; p = curproc; MPASS(p->p_flag & P_WEXIT); /* * Do a quick check to see if there is anything to do with the * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). */ PROC_LOCK(p); if (!SESS_LEADER(p) && (p->p_pgrp == p->p_pptr->p_pgrp) && LIST_EMPTY(&p->p_children)) { PROC_UNLOCK(p); return; } PROC_UNLOCK(p); sx_xlock(&proctree_lock); if (SESS_LEADER(p)) { sp = p->p_session; /* * s_ttyp is not zero'd; we use this to indicate that * the session once had a controlling terminal. (for * logging and informational purposes) */ SESS_LOCK(sp); ttyvp = sp->s_ttyvp; tp = sp->s_ttyp; sp->s_ttyvp = NULL; sp->s_ttydp = NULL; sp->s_leader = NULL; SESS_UNLOCK(sp); /* * Signal foreground pgrp and revoke access to * controlling terminal if it has not been revoked * already. * * Because the TTY may have been revoked in the mean * time and could already have a new session associated * with it, make sure we don't send a SIGHUP to a * foreground process group that does not belong to this * session. */ if (tp != NULL) { tty_lock(tp); if (tp->t_session == sp) tty_signal_pgrp(tp, SIGHUP); tty_unlock(tp); } if (ttyvp != NULL) { sx_xunlock(&proctree_lock); if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { VOP_REVOKE(ttyvp, REVOKEALL); VOP_UNLOCK(ttyvp, 0); } vrele(ttyvp); sx_xlock(&proctree_lock); } } fixjobc(p, p->p_pgrp, 0); sx_xunlock(&proctree_lock); } /* * A process group has become orphaned; * if there are any stopped processes in the group, * hang-up all process in that group. */ static void orphanpg(pg) struct pgrp *pg; { register struct proc *p; PGRP_LOCK_ASSERT(pg, MA_OWNED); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { PROC_UNLOCK(p); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); kern_psignal(p, SIGHUP); kern_psignal(p, SIGCONT); PROC_UNLOCK(p); } return; } PROC_UNLOCK(p); } } void sess_hold(struct session *s) { refcount_acquire(&s->s_count); } void sess_release(struct session *s) { if (refcount_release(&s->s_count)) { if (s->s_ttyp != NULL) { tty_lock(s->s_ttyp); tty_rel_sess(s->s_ttyp, s); } mtx_destroy(&s->s_mtx); free(s, M_SESSION); } } #ifdef DDB DB_SHOW_COMMAND(pgrpdump, pgrpdump) { register struct pgrp *pgrp; register struct proc *p; register int i; for (i = 0; i <= pgrphash; i++) { if (!LIST_EMPTY(&pgrphashtbl[i])) { printf("\tindx %d\n", i); LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { printf( "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", (void *)pgrp, (long)pgrp->pg_id, (void *)pgrp->pg_session, pgrp->pg_session->s_count, (void *)LIST_FIRST(&pgrp->pg_members)); LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { printf("\t\tpid %ld addr %p pgrp %p\n", (long)p->p_pid, (void *)p, (void *)p->p_pgrp); } } } } } #endif /* DDB */ /* * Calculate the kinfo_proc members which contain process-wide * informations. * Must be called with the target process locked. */ static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) { struct thread *td; PROC_LOCK_ASSERT(p, MA_OWNED); kp->ki_estcpu = 0; kp->ki_pctcpu = 0; FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); kp->ki_pctcpu += sched_pctcpu(td); kp->ki_estcpu += sched_estcpu(td); thread_unlock(td); } } /* * Clear kinfo_proc and fill in any information that is common * to all threads in the process. * Must be called with the target process locked. */ static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) { struct thread *td0; struct tty *tp; struct session *sp; struct ucred *cred; struct sigacts *ps; struct timeval boottime; /* For proc_realparent. */ sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_OWNED); bzero(kp, sizeof(*kp)); kp->ki_structsize = sizeof(*kp); kp->ki_paddr = p; kp->ki_addr =/* p->p_addr; */0; /* XXX */ kp->ki_args = p->p_args; kp->ki_textvp = p->p_textvp; #ifdef KTRACE kp->ki_tracep = p->p_tracevp; kp->ki_traceflag = p->p_traceflag; #endif kp->ki_fd = p->p_fd; kp->ki_vmspace = p->p_vmspace; kp->ki_flag = p->p_flag; kp->ki_flag2 = p->p_flag2; cred = p->p_ucred; if (cred) { kp->ki_uid = cred->cr_uid; kp->ki_ruid = cred->cr_ruid; kp->ki_svuid = cred->cr_svuid; kp->ki_cr_flags = 0; if (cred->cr_flags & CRED_FLAG_CAPMODE) kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; /* XXX bde doesn't like KI_NGROUPS */ if (cred->cr_ngroups > KI_NGROUPS) { kp->ki_ngroups = KI_NGROUPS; kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; } else kp->ki_ngroups = cred->cr_ngroups; bcopy(cred->cr_groups, kp->ki_groups, kp->ki_ngroups * sizeof(gid_t)); kp->ki_rgid = cred->cr_rgid; kp->ki_svgid = cred->cr_svgid; /* If jailed(cred), emulate the old P_JAILED flag. */ if (jailed(cred)) { kp->ki_flag |= P_JAILED; /* If inside the jail, use 0 as a jail ID. */ if (cred->cr_prison != curthread->td_ucred->cr_prison) kp->ki_jid = cred->cr_prison->pr_id; } strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, sizeof(kp->ki_loginclass)); } ps = p->p_sigacts; if (ps) { mtx_lock(&ps->ps_mtx); kp->ki_sigignore = ps->ps_sigignore; kp->ki_sigcatch = ps->ps_sigcatch; mtx_unlock(&ps->ps_mtx); } if (p->p_state != PRS_NEW && p->p_state != PRS_ZOMBIE && p->p_vmspace != NULL) { struct vmspace *vm = p->p_vmspace; kp->ki_size = vm->vm_map.size; kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ FOREACH_THREAD_IN_PROC(p, td0) { if (!TD_IS_SWAPPED(td0)) kp->ki_rssize += td0->td_kstack_pages; } kp->ki_swrss = vm->vm_swrss; kp->ki_tsize = vm->vm_tsize; kp->ki_dsize = vm->vm_dsize; kp->ki_ssize = vm->vm_ssize; } else if (p->p_state == PRS_ZOMBIE) kp->ki_stat = SZOMB; if (kp->ki_flag & P_INMEM) kp->ki_sflag = PS_INMEM; else kp->ki_sflag = 0; /* Calculate legacy swtime as seconds since 'swtick'. */ kp->ki_swtime = (ticks - p->p_swtick) / hz; kp->ki_pid = p->p_pid; kp->ki_nice = p->p_nice; kp->ki_fibnum = p->p_fibnum; kp->ki_start = p->p_stats->p_start; getboottime(&boottime); timevaladd(&kp->ki_start, &boottime); PROC_STATLOCK(p); rufetch(p, &kp->ki_rusage); kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); PROC_STATUNLOCK(p); calccru(p, &kp->ki_childutime, &kp->ki_childstime); /* Some callers want child times in a single value. */ kp->ki_childtime = kp->ki_childstime; timevaladd(&kp->ki_childtime, &kp->ki_childutime); FOREACH_THREAD_IN_PROC(p, td0) kp->ki_cow += td0->td_cow; tp = NULL; if (p->p_pgrp) { kp->ki_pgid = p->p_pgrp->pg_id; kp->ki_jobc = p->p_pgrp->pg_jobc; sp = p->p_pgrp->pg_session; if (sp != NULL) { kp->ki_sid = sp->s_sid; SESS_LOCK(sp); strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login)); if (sp->s_ttyvp) kp->ki_kiflag |= KI_CTTY; if (SESS_LEADER(p)) kp->ki_kiflag |= KI_SLEADER; /* XXX proctree_lock */ tp = sp->s_ttyp; SESS_UNLOCK(sp); } } if ((p->p_flag & P_CONTROLT) && tp != NULL) { kp->ki_tdev = tty_udev(tp); kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; if (tp->t_session) kp->ki_tsid = tp->t_session->s_sid; } else kp->ki_tdev = NODEV; if (p->p_comm[0] != '\0') strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); if (p->p_sysent && p->p_sysent->sv_name != NULL && p->p_sysent->sv_name[0] != '\0') strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); kp->ki_siglist = p->p_siglist; kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); kp->ki_acflag = p->p_acflag; kp->ki_lock = p->p_lock; if (p->p_pptr) { kp->ki_ppid = proc_realparent(p)->p_pid; if (p->p_flag & P_TRACED) kp->ki_tracer = p->p_pptr->p_pid; } } /* * Fill in information that is thread specific. Must be called with * target process locked. If 'preferthread' is set, overwrite certain * process-related fields that are maintained for both threads and * processes. */ static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) { struct proc *p; p = td->td_proc; kp->ki_tdaddr = td; PROC_LOCK_ASSERT(p, MA_OWNED); if (preferthread) PROC_STATLOCK(p); thread_lock(td); if (td->td_wmesg != NULL) strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); else bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= sizeof(kp->ki_tdname)) { strlcpy(kp->ki_moretdname, td->td_name + sizeof(kp->ki_tdname) - 1, sizeof(kp->ki_moretdname)); } else { bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); } if (TD_ON_LOCK(td)) { kp->ki_kiflag |= KI_LOCKBLOCK; strlcpy(kp->ki_lockname, td->td_lockname, sizeof(kp->ki_lockname)); } else { kp->ki_kiflag &= ~KI_LOCKBLOCK; bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); } if (p->p_state == PRS_NORMAL) { /* approximate. */ if (TD_ON_RUNQ(td) || TD_CAN_RUN(td) || TD_IS_RUNNING(td)) { kp->ki_stat = SRUN; } else if (P_SHOULDSTOP(p)) { kp->ki_stat = SSTOP; } else if (TD_IS_SLEEPING(td)) { kp->ki_stat = SSLEEP; } else if (TD_ON_LOCK(td)) { kp->ki_stat = SLOCK; } else { kp->ki_stat = SWAIT; } } else if (p->p_state == PRS_ZOMBIE) { kp->ki_stat = SZOMB; } else { kp->ki_stat = SIDL; } /* Things in the thread */ kp->ki_wchan = td->td_wchan; kp->ki_pri.pri_level = td->td_priority; kp->ki_pri.pri_native = td->td_base_pri; /* * Note: legacy fields; clamp at the old NOCPU value and/or * the maximum u_char CPU value. */ if (td->td_lastcpu == NOCPU) kp->ki_lastcpu_old = NOCPU_OLD; else if (td->td_lastcpu > MAXCPU_OLD) kp->ki_lastcpu_old = MAXCPU_OLD; else kp->ki_lastcpu_old = td->td_lastcpu; if (td->td_oncpu == NOCPU) kp->ki_oncpu_old = NOCPU_OLD; else if (td->td_oncpu > MAXCPU_OLD) kp->ki_oncpu_old = MAXCPU_OLD; else kp->ki_oncpu_old = td->td_oncpu; kp->ki_lastcpu = td->td_lastcpu; kp->ki_oncpu = td->td_oncpu; kp->ki_tdflags = td->td_flags; kp->ki_tid = td->td_tid; kp->ki_numthreads = p->p_numthreads; kp->ki_pcb = td->td_pcb; kp->ki_kstack = (void *)td->td_kstack; kp->ki_slptime = (ticks - td->td_slptick) / hz; kp->ki_pri.pri_class = td->td_pri_class; kp->ki_pri.pri_user = td->td_user_pri; if (preferthread) { rufetchtd(td, &kp->ki_rusage); kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); kp->ki_pctcpu = sched_pctcpu(td); kp->ki_estcpu = sched_estcpu(td); kp->ki_cow = td->td_cow; } /* We can't get this anymore but ps etc never used it anyway. */ kp->ki_rqindex = 0; if (preferthread) kp->ki_siglist = td->td_siglist; kp->ki_sigmask = td->td_sigmask; thread_unlock(td); if (preferthread) PROC_STATUNLOCK(p); } /* * Fill in a kinfo_proc structure for the specified process. * Must be called with the target process locked. */ void fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) { MPASS(FIRST_THREAD_IN_PROC(p) != NULL); fill_kinfo_proc_only(p, kp); fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); fill_kinfo_aggregate(p, kp); } struct pstats * pstats_alloc(void) { return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); } /* * Copy parts of p_stats; zero the rest of p_stats (statistics). */ void pstats_fork(struct pstats *src, struct pstats *dst) { bzero(&dst->pstat_startzero, __rangeof(struct pstats, pstat_startzero, pstat_endzero)); bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); } void pstats_free(struct pstats *ps) { free(ps, M_SUBPROC); } static struct proc * zpfind_locked(pid_t pid) { struct proc *p; sx_assert(&allproc_lock, SX_LOCKED); LIST_FOREACH(p, &zombproc, p_list) { if (p->p_pid == pid) { PROC_LOCK(p); break; } } return (p); } /* * Locate a zombie process by number */ struct proc * zpfind(pid_t pid) { struct proc *p; sx_slock(&allproc_lock); p = zpfind_locked(pid); sx_sunlock(&allproc_lock); return (p); } #ifdef COMPAT_FREEBSD32 /* * This function is typically used to copy out the kernel address, so * it can be replaced by assignment of zero. */ static inline uint32_t ptr32_trim(void *ptr) { uintptr_t uptr; uptr = (uintptr_t)ptr; return ((uptr > UINT_MAX) ? 0 : uptr); } #define PTRTRIM_CP(src,dst,fld) \ do { (dst).fld = ptr32_trim((src).fld); } while (0) static void freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) { int i; bzero(ki32, sizeof(struct kinfo_proc32)); ki32->ki_structsize = sizeof(struct kinfo_proc32); CP(*ki, *ki32, ki_layout); PTRTRIM_CP(*ki, *ki32, ki_args); PTRTRIM_CP(*ki, *ki32, ki_paddr); PTRTRIM_CP(*ki, *ki32, ki_addr); PTRTRIM_CP(*ki, *ki32, ki_tracep); PTRTRIM_CP(*ki, *ki32, ki_textvp); PTRTRIM_CP(*ki, *ki32, ki_fd); PTRTRIM_CP(*ki, *ki32, ki_vmspace); PTRTRIM_CP(*ki, *ki32, ki_wchan); CP(*ki, *ki32, ki_pid); CP(*ki, *ki32, ki_ppid); CP(*ki, *ki32, ki_pgid); CP(*ki, *ki32, ki_tpgid); CP(*ki, *ki32, ki_sid); CP(*ki, *ki32, ki_tsid); CP(*ki, *ki32, ki_jobc); CP(*ki, *ki32, ki_tdev); CP(*ki, *ki32, ki_siglist); CP(*ki, *ki32, ki_sigmask); CP(*ki, *ki32, ki_sigignore); CP(*ki, *ki32, ki_sigcatch); CP(*ki, *ki32, ki_uid); CP(*ki, *ki32, ki_ruid); CP(*ki, *ki32, ki_svuid); CP(*ki, *ki32, ki_rgid); CP(*ki, *ki32, ki_svgid); CP(*ki, *ki32, ki_ngroups); for (i = 0; i < KI_NGROUPS; i++) CP(*ki, *ki32, ki_groups[i]); CP(*ki, *ki32, ki_size); CP(*ki, *ki32, ki_rssize); CP(*ki, *ki32, ki_swrss); CP(*ki, *ki32, ki_tsize); CP(*ki, *ki32, ki_dsize); CP(*ki, *ki32, ki_ssize); CP(*ki, *ki32, ki_xstat); CP(*ki, *ki32, ki_acflag); CP(*ki, *ki32, ki_pctcpu); CP(*ki, *ki32, ki_estcpu); CP(*ki, *ki32, ki_slptime); CP(*ki, *ki32, ki_swtime); CP(*ki, *ki32, ki_cow); CP(*ki, *ki32, ki_runtime); TV_CP(*ki, *ki32, ki_start); TV_CP(*ki, *ki32, ki_childtime); CP(*ki, *ki32, ki_flag); CP(*ki, *ki32, ki_kiflag); CP(*ki, *ki32, ki_traceflag); CP(*ki, *ki32, ki_stat); CP(*ki, *ki32, ki_nice); CP(*ki, *ki32, ki_lock); CP(*ki, *ki32, ki_rqindex); CP(*ki, *ki32, ki_oncpu); CP(*ki, *ki32, ki_lastcpu); /* XXX TODO: wrap cpu value as appropriate */ CP(*ki, *ki32, ki_oncpu_old); CP(*ki, *ki32, ki_lastcpu_old); bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); CP(*ki, *ki32, ki_tracer); CP(*ki, *ki32, ki_flag2); CP(*ki, *ki32, ki_fibnum); CP(*ki, *ki32, ki_cr_flags); CP(*ki, *ki32, ki_jid); CP(*ki, *ki32, ki_numthreads); CP(*ki, *ki32, ki_tid); CP(*ki, *ki32, ki_pri); freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); PTRTRIM_CP(*ki, *ki32, ki_pcb); PTRTRIM_CP(*ki, *ki32, ki_kstack); PTRTRIM_CP(*ki, *ki32, ki_udata); PTRTRIM_CP(*ki, *ki32, ki_tdaddr); CP(*ki, *ki32, ki_sflag); CP(*ki, *ki32, ki_tdflags); } #endif int kern_proc_out(struct proc *p, struct sbuf *sb, int flags) { struct thread *td; struct kinfo_proc ki; #ifdef COMPAT_FREEBSD32 struct kinfo_proc32 ki32; #endif int error; PROC_LOCK_ASSERT(p, MA_OWNED); MPASS(FIRST_THREAD_IN_PROC(p) != NULL); error = 0; fill_kinfo_proc(p, &ki); if ((flags & KERN_PROC_NOTHREADS) != 0) { #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { freebsd32_kinfo_proc_out(&ki, &ki32); if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) error = ENOMEM; } else #endif if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) error = ENOMEM; } else { FOREACH_THREAD_IN_PROC(p, td) { fill_kinfo_thread(td, &ki, 1); #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { freebsd32_kinfo_proc_out(&ki, &ki32); if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) error = ENOMEM; } else #endif if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) error = ENOMEM; if (error != 0) break; } } PROC_UNLOCK(p); return (error); } static int sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, int doingzomb) { struct sbuf sb; struct kinfo_proc ki; struct proc *np; int error, error2; pid_t pid; pid = p->p_pid; sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = kern_proc_out(p, &sb, flags); error2 = sbuf_finish(&sb); sbuf_delete(&sb); if (error != 0) return (error); else if (error2 != 0) return (error2); if (doingzomb) np = zpfind(pid); else { if (pid == 0) return (0); np = pfind(pid); } if (np == NULL) return (ESRCH); if (np != p) { PROC_UNLOCK(np); return (ESRCH); } PROC_UNLOCK(np); return (0); } static int sysctl_kern_proc(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int flags, doingzomb, oid_number; int error = 0; oid_number = oidp->oid_number; if (oid_number != KERN_PROC_ALL && (oid_number & KERN_PROC_INC_THREAD) == 0) flags = KERN_PROC_NOTHREADS; else { flags = 0; oid_number &= ~KERN_PROC_INC_THREAD; } #ifdef COMPAT_FREEBSD32 if (req->flags & SCTL_MASK32) flags |= KERN_PROC_MASK32; #endif if (oid_number == KERN_PROC_PID) { if (namelen != 1) return (EINVAL); error = sysctl_wire_old_buffer(req, 0); if (error) return (error); sx_slock(&proctree_lock); error = pget((pid_t)name[0], PGET_CANSEE, &p); if (error == 0) error = sysctl_out_proc(p, req, flags, 0); sx_sunlock(&proctree_lock); return (error); } switch (oid_number) { case KERN_PROC_ALL: if (namelen != 0) return (EINVAL); break; case KERN_PROC_PROC: if (namelen != 0 && namelen != 1) return (EINVAL); break; default: if (namelen != 1) return (EINVAL); break; } if (!req->oldptr) { /* overestimate by 5 procs */ error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); if (error) return (error); } error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sx_slock(&proctree_lock); sx_slock(&allproc_lock); for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { if (!doingzomb) p = LIST_FIRST(&allproc); else p = LIST_FIRST(&zombproc); for (; p != NULL; p = LIST_NEXT(p, p_list)) { /* * Skip embryonic processes. */ PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } KASSERT(p->p_ucred != NULL, ("process credential is NULL for non-NEW proc")); /* * Show a user only appropriate processes. */ if (p_cansee(curthread, p)) { PROC_UNLOCK(p); continue; } /* * TODO - make more efficient (see notes below). * do by session. */ switch (oid_number) { case KERN_PROC_GID: if (p->p_ucred->cr_gid != (gid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_PGRP: /* could do this by traversing pgrp */ if (p->p_pgrp == NULL || p->p_pgrp->pg_id != (pid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_RGID: if (p->p_ucred->cr_rgid != (gid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_SESSION: if (p->p_session == NULL || p->p_session->s_sid != (pid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_TTY: if ((p->p_flag & P_CONTROLT) == 0 || p->p_session == NULL) { PROC_UNLOCK(p); continue; } /* XXX proctree_lock */ SESS_LOCK(p->p_session); if (p->p_session->s_ttyp == NULL || tty_udev(p->p_session->s_ttyp) != (dev_t)name[0]) { SESS_UNLOCK(p->p_session); PROC_UNLOCK(p); continue; } SESS_UNLOCK(p->p_session); break; case KERN_PROC_UID: if (p->p_ucred->cr_uid != (uid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_RUID: if (p->p_ucred->cr_ruid != (uid_t)name[0]) { PROC_UNLOCK(p); continue; } break; case KERN_PROC_PROC: break; default: break; } error = sysctl_out_proc(p, req, flags, doingzomb); if (error) { sx_sunlock(&allproc_lock); sx_sunlock(&proctree_lock); return (error); } } } sx_sunlock(&allproc_lock); sx_sunlock(&proctree_lock); return (0); } struct pargs * pargs_alloc(int len) { struct pargs *pa; pa = malloc(sizeof(struct pargs) + len, M_PARGS, M_WAITOK); refcount_init(&pa->ar_ref, 1); pa->ar_length = len; return (pa); } static void pargs_free(struct pargs *pa) { free(pa, M_PARGS); } void pargs_hold(struct pargs *pa) { if (pa == NULL) return; refcount_acquire(&pa->ar_ref); } void pargs_drop(struct pargs *pa) { if (pa == NULL) return; if (refcount_release(&pa->ar_ref)) pargs_free(pa); } static int proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, size_t len) { ssize_t n; /* * This may return a short read if the string is shorter than the chunk * and is aligned at the end of the page, and the following page is not * mapped. */ n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); if (n <= 0) return (ENOMEM); return (0); } #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ enum proc_vector_type { PROC_ARG, PROC_ENV, PROC_AUX, }; #ifdef COMPAT_FREEBSD32 static int get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, size_t *vsizep, enum proc_vector_type type) { struct freebsd32_ps_strings pss; Elf32_Auxinfo aux; vm_offset_t vptr, ptr; uint32_t *proc_vector32; char **proc_vector; size_t vsize, size; int i, error; error = 0; if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, sizeof(pss)) != sizeof(pss)) return (ENOMEM); switch (type) { case PROC_ARG: vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); vsize = pss.ps_nargvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(int32_t); break; case PROC_ENV: vptr = (vm_offset_t)PTRIN(pss.ps_envstr); vsize = pss.ps_nenvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(int32_t); break; case PROC_AUX: vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + (pss.ps_nenvstr + 1) * sizeof(int32_t); if (vptr % 4 != 0) return (ENOEXEC); for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != sizeof(aux)) return (ENOMEM); if (aux.a_type == AT_NULL) break; ptr += sizeof(aux); } if (aux.a_type != AT_NULL) return (ENOEXEC); vsize = i + 1; size = vsize * sizeof(aux); break; default: KASSERT(0, ("Wrong proc vector type: %d", type)); return (EINVAL); } proc_vector32 = malloc(size, M_TEMP, M_WAITOK); if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { error = ENOMEM; goto done; } if (type == PROC_AUX) { *proc_vectorp = (char **)proc_vector32; *vsizep = vsize; return (0); } proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); for (i = 0; i < (int)vsize; i++) proc_vector[i] = PTRIN(proc_vector32[i]); *proc_vectorp = proc_vector; *vsizep = vsize; done: free(proc_vector32, M_TEMP); return (error); } #endif static int get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, size_t *vsizep, enum proc_vector_type type) { struct ps_strings pss; Elf_Auxinfo aux; vm_offset_t vptr, ptr; char **proc_vector; size_t vsize, size; int i; #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32) != 0) return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); #endif if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, sizeof(pss)) != sizeof(pss)) return (ENOMEM); switch (type) { case PROC_ARG: vptr = (vm_offset_t)pss.ps_argvstr; vsize = pss.ps_nargvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(char *); break; case PROC_ENV: vptr = (vm_offset_t)pss.ps_envstr; vsize = pss.ps_nenvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(char *); break; case PROC_AUX: /* * The aux array is just above env array on the stack. Check * that the address is naturally aligned. */ vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) * sizeof(char *); #if __ELF_WORD_SIZE == 64 if (vptr % sizeof(uint64_t) != 0) #else if (vptr % sizeof(uint32_t) != 0) #endif return (ENOEXEC); /* * We count the array size reading the aux vectors from the * stack until AT_NULL vector is returned. So (to keep the code * simple) we read the process stack twice: the first time here * to find the size and the second time when copying the vectors * to the allocated proc_vector. */ for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != sizeof(aux)) return (ENOMEM); if (aux.a_type == AT_NULL) break; ptr += sizeof(aux); } /* * If the PROC_AUXV_MAX entries are iterated over, and we have * not reached AT_NULL, it is most likely we are reading wrong * data: either the process doesn't have auxv array or data has * been modified. Return the error in this case. */ if (aux.a_type != AT_NULL) return (ENOEXEC); vsize = i + 1; size = vsize * sizeof(aux); break; default: KASSERT(0, ("Wrong proc vector type: %d", type)); return (EINVAL); /* In case we are built without INVARIANTS. */ } proc_vector = malloc(size, M_TEMP, M_WAITOK); if (proc_readmem(td, p, vptr, proc_vector, size) != size) { free(proc_vector, M_TEMP); return (ENOMEM); } *proc_vectorp = proc_vector; *vsizep = vsize; return (0); } #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ static int get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, enum proc_vector_type type) { size_t done, len, nchr, vsize; int error, i; char **proc_vector, *sptr; char pss_string[GET_PS_STRINGS_CHUNK_SZ]; PROC_ASSERT_HELD(p); /* * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. */ nchr = 2 * (PATH_MAX + ARG_MAX); error = get_proc_vector(td, p, &proc_vector, &vsize, type); if (error != 0) return (error); for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { /* * The program may have scribbled into its argv array, e.g. to * remove some arguments. If that has happened, break out * before trying to read from NULL. */ if (proc_vector[i] == NULL) break; for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { error = proc_read_string(td, p, sptr, pss_string, sizeof(pss_string)); if (error != 0) goto done; len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); if (done + len >= nchr) len = nchr - done - 1; sbuf_bcat(sb, pss_string, len); if (len != GET_PS_STRINGS_CHUNK_SZ) break; done += GET_PS_STRINGS_CHUNK_SZ; } sbuf_bcat(sb, "", 1); done += len + 1; } done: free(proc_vector, M_TEMP); return (error); } int proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) { return (get_ps_strings(curthread, p, sb, PROC_ARG)); } int proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) { return (get_ps_strings(curthread, p, sb, PROC_ENV)); } int proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) { size_t vsize, size; char **auxv; int error; error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); if (error == 0) { #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32) != 0) size = vsize * sizeof(Elf32_Auxinfo); else #endif size = vsize * sizeof(Elf_Auxinfo); if (sbuf_bcat(sb, auxv, size) != 0) error = ENOMEM; free(auxv, M_TEMP); } return (error); } /* * This sysctl allows a process to retrieve the argument list or process * title for another process without groping around in the address space * of the other process. It also allow a process to set its own "process * title to a string of its own choice. */ static int sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct pargs *newpa, *pa; struct proc *p; struct sbuf sb; int flags, error = 0, error2; if (namelen != 1) return (EINVAL); flags = PGET_CANSEE; if (req->newptr != NULL) flags |= PGET_ISCURRENT; error = pget((pid_t)name[0], flags, &p); if (error) return (error); pa = p->p_args; if (pa != NULL) { pargs_hold(pa); PROC_UNLOCK(p); error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); pargs_drop(pa); } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { _PHOLD(p); PROC_UNLOCK(p); sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = proc_getargv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); if (error == 0 && error2 != 0) error = error2; } else { PROC_UNLOCK(p); } if (error != 0 || req->newptr == NULL) return (error); if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) return (ENOMEM); newpa = pargs_alloc(req->newlen); error = SYSCTL_IN(req, newpa->ar_args, req->newlen); if (error != 0) { pargs_free(newpa); return (error); } PROC_LOCK(p); pa = p->p_args; p->p_args = newpa; PROC_UNLOCK(p); pargs_drop(pa); return (0); } /* * This sysctl allows a process to retrieve environment of another process. */ static int sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct sbuf sb; int error, error2; if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); if ((p->p_flag & P_SYSTEM) != 0) { PRELE(p); return (0); } sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = proc_getenvv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); return (error != 0 ? error : error2); } /* * This sysctl allows a process to retrieve ELF auxiliary vector of * another process. */ static int sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct sbuf sb; int error, error2; if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); if ((p->p_flag & P_SYSTEM) != 0) { PRELE(p); return (0); } sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = proc_getauxv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); return (error != 0 ? error : error2); } /* * This sysctl allows a process to retrieve the path of the executable for * itself or another process. */ static int sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) { pid_t *pidp = (pid_t *)arg1; unsigned int arglen = arg2; struct proc *p; struct vnode *vp; char *retbuf, *freebuf; int error; if (arglen != 1) return (EINVAL); if (*pidp == -1) { /* -1 means this process */ p = req->td->td_proc; } else { error = pget(*pidp, PGET_CANSEE, &p); if (error != 0) return (error); } vp = p->p_textvp; if (vp == NULL) { if (*pidp != -1) PROC_UNLOCK(p); return (0); } vref(vp); if (*pidp != -1) PROC_UNLOCK(p); error = vn_fullpath(req->td, vp, &retbuf, &freebuf); vrele(vp); if (error) return (error); error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); free(freebuf, M_TEMP); return (error); } static int sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) { struct proc *p; char *sv_name; int *name; int namelen; int error; namelen = arg2; if (namelen != 1) return (EINVAL); name = (int *)arg1; error = pget((pid_t)name[0], PGET_CANSEE, &p); if (error != 0) return (error); sv_name = p->p_sysent->sv_name; PROC_UNLOCK(p); return (sysctl_handle_string(oidp, sv_name, 0, req)); } #ifdef KINFO_OVMENTRY_SIZE CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); #endif #ifdef COMPAT_FREEBSD7 static int sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) { vm_map_entry_t entry, tmp_entry; unsigned int last_timestamp; char *fullpath, *freepath; struct kinfo_ovmentry *kve; struct vattr va; struct ucred *cred; int error, *name; struct vnode *vp; struct proc *p; vm_map_t map; struct vmspace *vm; name = (int *)arg1; error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); vm = vmspace_acquire_ref(p); if (vm == NULL) { PRELE(p); return (ESRCH); } kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); map = &vm->vm_map; vm_map_lock_read(map); for (entry = map->header.next; entry != &map->header; entry = entry->next) { vm_object_t obj, tobj, lobj; vm_offset_t addr; if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) continue; bzero(kve, sizeof(*kve)); kve->kve_structsize = sizeof(*kve); kve->kve_private_resident = 0; obj = entry->object.vm_object; if (obj != NULL) { VM_OBJECT_RLOCK(obj); if (obj->shadow_count == 1) kve->kve_private_resident = obj->resident_page_count; } kve->kve_resident = 0; addr = entry->start; while (addr < entry->end) { if (pmap_extract(map->pmap, addr)) kve->kve_resident++; addr += PAGE_SIZE; } for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { if (tobj != obj) { VM_OBJECT_RLOCK(tobj); kve->kve_offset += tobj->backing_object_offset; } if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); lobj = tobj; } kve->kve_start = (void*)entry->start; kve->kve_end = (void*)entry->end; kve->kve_offset += (off_t)entry->offset; if (entry->protection & VM_PROT_READ) kve->kve_protection |= KVME_PROT_READ; if (entry->protection & VM_PROT_WRITE) kve->kve_protection |= KVME_PROT_WRITE; if (entry->protection & VM_PROT_EXECUTE) kve->kve_protection |= KVME_PROT_EXEC; if (entry->eflags & MAP_ENTRY_COW) kve->kve_flags |= KVME_FLAG_COW; if (entry->eflags & MAP_ENTRY_NEEDS_COPY) kve->kve_flags |= KVME_FLAG_NEEDS_COPY; if (entry->eflags & MAP_ENTRY_NOCOREDUMP) kve->kve_flags |= KVME_FLAG_NOCOREDUMP; last_timestamp = map->timestamp; vm_map_unlock_read(map); kve->kve_fileid = 0; kve->kve_fsid = 0; freepath = NULL; fullpath = ""; if (lobj) { vp = NULL; switch (lobj->type) { case OBJT_DEFAULT: kve->kve_type = KVME_TYPE_DEFAULT; break; case OBJT_VNODE: kve->kve_type = KVME_TYPE_VNODE; vp = lobj->handle; vref(vp); break; case OBJT_SWAP: if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { kve->kve_type = KVME_TYPE_VNODE; if ((lobj->flags & OBJ_TMPFS) != 0) { vp = lobj->un_pager.swp.swp_tmpfs; vref(vp); } } else { kve->kve_type = KVME_TYPE_SWAP; } break; case OBJT_DEVICE: kve->kve_type = KVME_TYPE_DEVICE; break; case OBJT_PHYS: kve->kve_type = KVME_TYPE_PHYS; break; case OBJT_DEAD: kve->kve_type = KVME_TYPE_DEAD; break; case OBJT_SG: kve->kve_type = KVME_TYPE_SG; break; default: kve->kve_type = KVME_TYPE_UNKNOWN; break; } if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); kve->kve_ref_count = obj->ref_count; kve->kve_shadow_count = obj->shadow_count; VM_OBJECT_RUNLOCK(obj); if (vp != NULL) { vn_fullpath(curthread, vp, &fullpath, &freepath); cred = curthread->td_ucred; vn_lock(vp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(vp, &va, cred) == 0) { kve->kve_fileid = va.va_fileid; kve->kve_fsid = va.va_fsid; } vput(vp); } } else { kve->kve_type = KVME_TYPE_NONE; kve->kve_ref_count = 0; kve->kve_shadow_count = 0; } strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); if (freepath != NULL) free(freepath, M_TEMP); error = SYSCTL_OUT(req, kve, sizeof(*kve)); vm_map_lock_read(map); if (error) break; if (last_timestamp != map->timestamp) { vm_map_lookup_entry(map, addr - 1, &tmp_entry); entry = tmp_entry; } } vm_map_unlock_read(map); vmspace_free(vm); PRELE(p); free(kve, M_TEMP); return (error); } #endif /* COMPAT_FREEBSD7 */ #ifdef KINFO_VMENTRY_SIZE CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); #endif void kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, int *resident_count, bool *super) { vm_object_t obj, tobj; vm_page_t m, m_adv; vm_offset_t addr; vm_paddr_t locked_pa; vm_pindex_t pi, pi_adv, pindex; *super = false; *resident_count = 0; if (vmmap_skip_res_cnt) return; locked_pa = 0; obj = entry->object.vm_object; addr = entry->start; m_adv = NULL; pi = OFF_TO_IDX(entry->offset); for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { if (m_adv != NULL) { m = m_adv; } else { pi_adv = atop(entry->end - addr); pindex = pi; for (tobj = obj;; tobj = tobj->backing_object) { m = vm_page_find_least(tobj, pindex); if (m != NULL) { if (m->pindex == pindex) break; if (pi_adv > m->pindex - pindex) { pi_adv = m->pindex - pindex; m_adv = m; } } if (tobj->backing_object == NULL) goto next; pindex += OFF_TO_IDX(tobj-> backing_object_offset); } } m_adv = NULL; if (m->psind != 0 && addr + pagesizes[1] <= entry->end && (addr & (pagesizes[1] - 1)) == 0 && (pmap_mincore(map->pmap, addr, &locked_pa) & MINCORE_SUPER) != 0) { *super = true; pi_adv = atop(pagesizes[1]); } else { /* * We do not test the found page on validity. * Either the page is busy and being paged in, * or it was invalidated. The first case * should be counted as resident, the second * is not so clear; we do account both. */ pi_adv = 1; } *resident_count += pi_adv; next:; } PA_UNLOCK_COND(locked_pa); } /* * Must be called with the process locked and will return unlocked. */ int kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) { vm_map_entry_t entry, tmp_entry; struct vattr va; vm_map_t map; vm_object_t obj, tobj, lobj; char *fullpath, *freepath; struct kinfo_vmentry *kve; struct ucred *cred; struct vnode *vp; struct vmspace *vm; vm_offset_t addr; unsigned int last_timestamp; int error; bool super; PROC_LOCK_ASSERT(p, MA_OWNED); _PHOLD(p); PROC_UNLOCK(p); vm = vmspace_acquire_ref(p); if (vm == NULL) { PRELE(p); return (ESRCH); } kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); error = 0; map = &vm->vm_map; vm_map_lock_read(map); for (entry = map->header.next; entry != &map->header; entry = entry->next) { if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) continue; addr = entry->end; bzero(kve, sizeof(*kve)); obj = entry->object.vm_object; if (obj != NULL) { for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { VM_OBJECT_RLOCK(tobj); kve->kve_offset += tobj->backing_object_offset; lobj = tobj; } if (obj->backing_object == NULL) kve->kve_private_resident = obj->resident_page_count; kern_proc_vmmap_resident(map, entry, &kve->kve_resident, &super); if (super) kve->kve_flags |= KVME_FLAG_SUPER; for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { if (tobj != obj && tobj != lobj) VM_OBJECT_RUNLOCK(tobj); } } else { lobj = NULL; } kve->kve_start = entry->start; kve->kve_end = entry->end; kve->kve_offset += entry->offset; if (entry->protection & VM_PROT_READ) kve->kve_protection |= KVME_PROT_READ; if (entry->protection & VM_PROT_WRITE) kve->kve_protection |= KVME_PROT_WRITE; if (entry->protection & VM_PROT_EXECUTE) kve->kve_protection |= KVME_PROT_EXEC; if (entry->eflags & MAP_ENTRY_COW) kve->kve_flags |= KVME_FLAG_COW; if (entry->eflags & MAP_ENTRY_NEEDS_COPY) kve->kve_flags |= KVME_FLAG_NEEDS_COPY; if (entry->eflags & MAP_ENTRY_NOCOREDUMP) kve->kve_flags |= KVME_FLAG_NOCOREDUMP; if (entry->eflags & MAP_ENTRY_GROWS_UP) kve->kve_flags |= KVME_FLAG_GROWS_UP; if (entry->eflags & MAP_ENTRY_GROWS_DOWN) kve->kve_flags |= KVME_FLAG_GROWS_DOWN; last_timestamp = map->timestamp; vm_map_unlock_read(map); freepath = NULL; fullpath = ""; if (lobj != NULL) { vp = NULL; switch (lobj->type) { case OBJT_DEFAULT: kve->kve_type = KVME_TYPE_DEFAULT; break; case OBJT_VNODE: kve->kve_type = KVME_TYPE_VNODE; vp = lobj->handle; vref(vp); break; case OBJT_SWAP: if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { kve->kve_type = KVME_TYPE_VNODE; if ((lobj->flags & OBJ_TMPFS) != 0) { vp = lobj->un_pager.swp.swp_tmpfs; vref(vp); } } else { kve->kve_type = KVME_TYPE_SWAP; } break; case OBJT_DEVICE: kve->kve_type = KVME_TYPE_DEVICE; break; case OBJT_PHYS: kve->kve_type = KVME_TYPE_PHYS; break; case OBJT_DEAD: kve->kve_type = KVME_TYPE_DEAD; break; case OBJT_SG: kve->kve_type = KVME_TYPE_SG; break; case OBJT_MGTDEVICE: kve->kve_type = KVME_TYPE_MGTDEVICE; break; default: kve->kve_type = KVME_TYPE_UNKNOWN; break; } if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); kve->kve_ref_count = obj->ref_count; kve->kve_shadow_count = obj->shadow_count; VM_OBJECT_RUNLOCK(obj); if (vp != NULL) { vn_fullpath(curthread, vp, &fullpath, &freepath); kve->kve_vn_type = vntype_to_kinfo(vp->v_type); cred = curthread->td_ucred; vn_lock(vp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(vp, &va, cred) == 0) { kve->kve_vn_fileid = va.va_fileid; kve->kve_vn_fsid = va.va_fsid; kve->kve_vn_mode = MAKEIMODE(va.va_type, va.va_mode); kve->kve_vn_size = va.va_size; kve->kve_vn_rdev = va.va_rdev; kve->kve_status = KF_ATTR_VALID; } vput(vp); } } else { kve->kve_type = KVME_TYPE_NONE; kve->kve_ref_count = 0; kve->kve_shadow_count = 0; } strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); if (freepath != NULL) free(freepath, M_TEMP); /* Pack record size down */ if ((flags & KERN_VMMAP_PACK_KINFO) != 0) kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + strlen(kve->kve_path) + 1; else kve->kve_structsize = sizeof(*kve); kve->kve_structsize = roundup(kve->kve_structsize, sizeof(uint64_t)); /* Halt filling and truncate rather than exceeding maxlen */ if (maxlen != -1 && maxlen < kve->kve_structsize) { error = 0; vm_map_lock_read(map); break; } else if (maxlen != -1) maxlen -= kve->kve_structsize; if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) error = ENOMEM; vm_map_lock_read(map); if (error != 0) break; if (last_timestamp != map->timestamp) { vm_map_lookup_entry(map, addr - 1, &tmp_entry); entry = tmp_entry; } } vm_map_unlock_read(map); vmspace_free(vm); PRELE(p); free(kve, M_TEMP); return (error); } static int sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) { struct proc *p; struct sbuf sb; int error, error2, *name; name = (int *)arg1; sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); if (error != 0) { sbuf_delete(&sb); return (error); } error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); error2 = sbuf_finish(&sb); sbuf_delete(&sb); return (error != 0 ? error : error2); } #if defined(STACK) || defined(DDB) static int sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) { struct kinfo_kstack *kkstp; int error, i, *name, numthreads; lwpid_t *lwpidarray; struct thread *td; struct stack *st; struct sbuf sb; struct proc *p; name = (int *)arg1; error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); if (error != 0) return (error); kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); st = stack_create(); lwpidarray = NULL; PROC_LOCK(p); do { if (lwpidarray != NULL) { free(lwpidarray, M_TEMP); lwpidarray = NULL; } numthreads = p->p_numthreads; PROC_UNLOCK(p); lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, M_WAITOK | M_ZERO); PROC_LOCK(p); } while (numthreads < p->p_numthreads); /* * XXXRW: During the below loop, execve(2) and countless other sorts * of changes could have taken place. Should we check to see if the * vmspace has been replaced, or the like, in order to prevent * giving a snapshot that spans, say, execve(2), with some threads * before and some after? Among other things, the credentials could * have changed, in which case the right to extract debug info might * no longer be assured. */ i = 0; FOREACH_THREAD_IN_PROC(p, td) { KASSERT(i < numthreads, ("sysctl_kern_proc_kstack: numthreads")); lwpidarray[i] = td->td_tid; i++; } numthreads = i; for (i = 0; i < numthreads; i++) { td = thread_find(p, lwpidarray[i]); if (td == NULL) { continue; } bzero(kkstp, sizeof(*kkstp)); (void)sbuf_new(&sb, kkstp->kkst_trace, sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); thread_lock(td); kkstp->kkst_tid = td->td_tid; if (TD_IS_SWAPPED(td)) { kkstp->kkst_state = KKST_STATE_SWAPPED; } else if (TD_IS_RUNNING(td)) { if (stack_save_td_running(st, td) == 0) kkstp->kkst_state = KKST_STATE_STACKOK; else kkstp->kkst_state = KKST_STATE_RUNNING; } else { kkstp->kkst_state = KKST_STATE_STACKOK; stack_save_td(st, td); } thread_unlock(td); PROC_UNLOCK(p); stack_sbuf_print(&sb, st); sbuf_finish(&sb); sbuf_delete(&sb); error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); PROC_LOCK(p); if (error) break; } _PRELE(p); PROC_UNLOCK(p); if (lwpidarray != NULL) free(lwpidarray, M_TEMP); stack_destroy(st); free(kkstp, M_TEMP); return (error); } #endif /* * This sysctl allows a process to retrieve the full list of groups from * itself or another process. */ static int sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) { pid_t *pidp = (pid_t *)arg1; unsigned int arglen = arg2; struct proc *p; struct ucred *cred; int error; if (arglen != 1) return (EINVAL); if (*pidp == -1) { /* -1 means this process */ p = req->td->td_proc; PROC_LOCK(p); } else { error = pget(*pidp, PGET_CANSEE, &p); if (error != 0) return (error); } cred = crhold(p->p_ucred); PROC_UNLOCK(p); error = SYSCTL_OUT(req, cred->cr_groups, cred->cr_ngroups * sizeof(gid_t)); crfree(cred); return (error); } /* * This sysctl allows a process to retrieve or/and set the resource limit for * another process. */ static int sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct rlimit rlim; struct proc *p; u_int which; int flags, error; if (namelen != 2) return (EINVAL); which = (u_int)name[1]; if (which >= RLIM_NLIMITS) return (EINVAL); if (req->newptr != NULL && req->newlen != sizeof(rlim)) return (EINVAL); flags = PGET_HOLD | PGET_NOTWEXIT; if (req->newptr != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; error = pget((pid_t)name[0], flags, &p); if (error != 0) return (error); /* * Retrieve limit. */ if (req->oldptr != NULL) { PROC_LOCK(p); lim_rlimit_proc(p, which, &rlim); PROC_UNLOCK(p); } error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); if (error != 0) goto errout; /* * Set limit. */ if (req->newptr != NULL) { error = SYSCTL_IN(req, &rlim, sizeof(rlim)); if (error == 0) error = kern_proc_setrlimit(curthread, p, which, &rlim); } errout: PRELE(p); return (error); } /* * This sysctl allows a process to retrieve ps_strings structure location of * another process. */ static int sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; vm_offset_t ps_strings; int error; #ifdef COMPAT_FREEBSD32 uint32_t ps_strings32; #endif if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_CANDEBUG, &p); if (error != 0) return (error); #ifdef COMPAT_FREEBSD32 if ((req->flags & SCTL_MASK32) != 0) { /* * We return 0 if the 32 bit emulation request is for a 64 bit * process. */ ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? PTROUT(p->p_sysent->sv_psstrings) : 0; PROC_UNLOCK(p); error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); return (error); } #endif ps_strings = p->p_sysent->sv_psstrings; PROC_UNLOCK(p); error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); return (error); } /* * This sysctl allows a process to retrieve umask of another process. */ static int sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int error; u_short fd_cmask; if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); FILEDESC_SLOCK(p->p_fd); fd_cmask = p->p_fd->fd_cmask; FILEDESC_SUNLOCK(p->p_fd); PRELE(p); error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); return (error); } /* * This sysctl allows a process to set and retrieve binary osreldate of * another process. */ static int sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int flags, error, osrel; if (namelen != 1) return (EINVAL); if (req->newptr != NULL && req->newlen != sizeof(osrel)) return (EINVAL); flags = PGET_HOLD | PGET_NOTWEXIT; if (req->newptr != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; error = pget((pid_t)name[0], flags, &p); if (error != 0) return (error); error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); if (error != 0) goto errout; if (req->newptr != NULL) { error = SYSCTL_IN(req, &osrel, sizeof(osrel)); if (error != 0) goto errout; if (osrel < 0) { error = EINVAL; goto errout; } p->p_osrel = osrel; } errout: PRELE(p); return (error); } static int sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct kinfo_sigtramp kst; const struct sysentvec *sv; int error; #ifdef COMPAT_FREEBSD32 struct kinfo_sigtramp32 kst32; #endif if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_CANDEBUG, &p); if (error != 0) return (error); sv = p->p_sysent; #ifdef COMPAT_FREEBSD32 if ((req->flags & SCTL_MASK32) != 0) { bzero(&kst32, sizeof(kst32)); if (SV_PROC_FLAG(p, SV_ILP32)) { if (sv->sv_sigcode_base != 0) { kst32.ksigtramp_start = sv->sv_sigcode_base; kst32.ksigtramp_end = sv->sv_sigcode_base + *sv->sv_szsigcode; } else { kst32.ksigtramp_start = sv->sv_psstrings - *sv->sv_szsigcode; kst32.ksigtramp_end = sv->sv_psstrings; } } PROC_UNLOCK(p); error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); return (error); } #endif bzero(&kst, sizeof(kst)); if (sv->sv_sigcode_base != 0) { kst.ksigtramp_start = (char *)sv->sv_sigcode_base; kst.ksigtramp_end = (char *)sv->sv_sigcode_base + *sv->sv_szsigcode; } else { kst.ksigtramp_start = (char *)sv->sv_psstrings - *sv->sv_szsigcode; kst.ksigtramp_end = (char *)sv->sv_psstrings; } PROC_UNLOCK(p); error = SYSCTL_OUT(req, &kst, sizeof(kst)); return (error); } SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Return process table, no threads"); static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_args, "Process argument list"); static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_env, "Process environment"); static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Return process table, no threads"); #ifdef COMPAT_FREEBSD7 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); #endif static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); #if defined(STACK) || defined(DDB) static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); #endif static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, "Process resource limits"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, "Process ps_strings location"); static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, "Process binary osreldate"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, "Process signal trampoline location"); int allproc_gen; /* * stop_all_proc() purpose is to stop all process which have usermode, * except current process for obvious reasons. This makes it somewhat * unreliable when invoked from multithreaded process. The service * must not be user-callable anyway. */ void stop_all_proc(void) { struct proc *cp, *p; int r, gen; bool restart, seen_stopped, seen_exiting, stopped_some; cp = curproc; allproc_loop: sx_xlock(&allproc_lock); gen = allproc_gen; seen_exiting = seen_stopped = stopped_some = restart = false; LIST_REMOVE(cp, p_list); LIST_INSERT_HEAD(&allproc, cp, p_list); for (;;) { p = LIST_NEXT(cp, p_list); if (p == NULL) break; LIST_REMOVE(cp, p_list); LIST_INSERT_AFTER(p, cp, p_list); PROC_LOCK(p); if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { PROC_UNLOCK(p); continue; } if ((p->p_flag & P_WEXIT) != 0) { seen_exiting = true; PROC_UNLOCK(p); continue; } if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { /* * Stopped processes are tolerated when there * are no other processes which might continue * them. P_STOPPED_SINGLE but not * P_TOTAL_STOP process still has at least one * thread running. */ seen_stopped = true; PROC_UNLOCK(p); continue; } _PHOLD(p); sx_xunlock(&allproc_lock); r = thread_single(p, SINGLE_ALLPROC); if (r != 0) restart = true; else stopped_some = true; _PRELE(p); PROC_UNLOCK(p); sx_xlock(&allproc_lock); } /* Catch forked children we did not see in iteration. */ if (gen != allproc_gen) restart = true; sx_xunlock(&allproc_lock); if (restart || stopped_some || seen_exiting || seen_stopped) { kern_yield(PRI_USER); goto allproc_loop; } } void resume_all_proc(void) { struct proc *cp, *p; cp = curproc; sx_xlock(&allproc_lock); again: LIST_REMOVE(cp, p_list); LIST_INSERT_HEAD(&allproc, cp, p_list); for (;;) { p = LIST_NEXT(cp, p_list); if (p == NULL) break; LIST_REMOVE(cp, p_list); LIST_INSERT_AFTER(p, cp, p_list); PROC_LOCK(p); if ((p->p_flag & P_TOTAL_STOP) != 0) { sx_xunlock(&allproc_lock); _PHOLD(p); thread_single_end(p, SINGLE_ALLPROC); _PRELE(p); PROC_UNLOCK(p); sx_xlock(&allproc_lock); } else { PROC_UNLOCK(p); } } /* Did the loop above missed any stopped process ? */ LIST_FOREACH(p, &allproc, p_list) { /* No need for proc lock. */ if ((p->p_flag & P_TOTAL_STOP) != 0) goto again; } sx_xunlock(&allproc_lock); } /* #define TOTAL_STOP_DEBUG 1 */ #ifdef TOTAL_STOP_DEBUG volatile static int ap_resume; #include static int sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) { int error, val; val = 0; ap_resume = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (val != 0) { stop_all_proc(); syncer_suspend(); while (ap_resume == 0) ; syncer_resume(); resume_all_proc(); } return (0); } SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, sysctl_debug_stop_all_proc, "I", ""); #endif Index: stable/11/sys/kern/kern_thread.c =================================================================== --- stable/11/sys/kern/kern_thread.c (revision 331726) +++ stable/11/sys/kern/kern_thread.c (revision 331727) @@ -1,1260 +1,1265 @@ /*- * Copyright (C) 2001 Julian Elischer . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice(s), this list of conditions and the following disclaimer as * the first lines of this file unmodified other than the possible * addition of one or more copyright notices. * 2. Redistributions in binary form must reproduce the above copyright * notice(s), this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #include "opt_witness.h" #include "opt_hwpmc_hooks.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include #endif #include #include #include #include #include #include /* * Asserts below verify the stability of struct thread and struct proc * layout, as exposed by KBI to modules. On head, the KBI is allowed * to drift, change to the structures must be accompanied by the * assert update. * * On the stable branches after KBI freeze, conditions must not be * violated. Typically new fields are moved to the end of the * structures. */ #ifdef __amd64__ _Static_assert(offsetof(struct thread, td_flags) == 0xe4, "struct thread KBI td_flags"); _Static_assert(offsetof(struct thread, td_pflags) == 0xec, "struct thread KBI td_pflags"); _Static_assert(offsetof(struct thread, td_frame) == 0x418, "struct thread KBI td_frame"); _Static_assert(offsetof(struct thread, td_emuldata) == 0x4c0, "struct thread KBI td_emuldata"); _Static_assert(offsetof(struct proc, p_flag) == 0xb0, "struct proc KBI p_flag"); _Static_assert(offsetof(struct proc, p_pid) == 0xbc, "struct proc KBI p_pid"); _Static_assert(offsetof(struct proc, p_filemon) == 0x3c0, "struct proc KBI p_filemon"); _Static_assert(offsetof(struct proc, p_comm) == 0x3d0, "struct proc KBI p_comm"); _Static_assert(offsetof(struct proc, p_emuldata) == 0x4a0, "struct proc KBI p_emuldata"); #endif #ifdef __i386__ _Static_assert(offsetof(struct thread, td_flags) == 0x8c, "struct thread KBI td_flags"); _Static_assert(offsetof(struct thread, td_pflags) == 0x94, "struct thread KBI td_pflags"); _Static_assert(offsetof(struct thread, td_frame) == 0x2c0, "struct thread KBI td_frame"); _Static_assert(offsetof(struct thread, td_emuldata) == 0x30c, "struct thread KBI td_emuldata"); _Static_assert(offsetof(struct proc, p_flag) == 0x68, "struct proc KBI p_flag"); _Static_assert(offsetof(struct proc, p_pid) == 0x74, "struct proc KBI p_pid"); _Static_assert(offsetof(struct proc, p_filemon) == 0x268, "struct proc KBI p_filemon"); _Static_assert(offsetof(struct proc, p_comm) == 0x274, "struct proc KBI p_comm"); _Static_assert(offsetof(struct proc, p_emuldata) == 0x2f4, "struct proc KBI p_emuldata"); #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE(proc, , , lwp__exit); /* * thread related storage. */ static uma_zone_t thread_zone; TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); static struct mtx zombie_lock; MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN); static void thread_zombie(struct thread *); static int thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary); #define TID_BUFFER_SIZE 1024 struct mtx tid_lock; static struct unrhdr *tid_unrhdr; static lwpid_t tid_buffer[TID_BUFFER_SIZE]; static int tid_head, tid_tail; static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash"); struct tidhashhead *tidhashtbl; u_long tidhash; struct rwlock tidhash_lock; +EVENTHANDLER_LIST_DEFINE(thread_ctor); +EVENTHANDLER_LIST_DEFINE(thread_dtor); +EVENTHANDLER_LIST_DEFINE(thread_init); +EVENTHANDLER_LIST_DEFINE(thread_fini); + static lwpid_t tid_alloc(void) { lwpid_t tid; tid = alloc_unr(tid_unrhdr); if (tid != -1) return (tid); mtx_lock(&tid_lock); if (tid_head == tid_tail) { mtx_unlock(&tid_lock); return (-1); } tid = tid_buffer[tid_head]; tid_head = (tid_head + 1) % TID_BUFFER_SIZE; mtx_unlock(&tid_lock); return (tid); } static void tid_free(lwpid_t tid) { lwpid_t tmp_tid = -1; mtx_lock(&tid_lock); if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) { tmp_tid = tid_buffer[tid_head]; tid_head = (tid_head + 1) % TID_BUFFER_SIZE; } tid_buffer[tid_tail] = tid; tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE; mtx_unlock(&tid_lock); if (tmp_tid != -1) free_unr(tid_unrhdr, tmp_tid); } /* * Prepare a thread for use. */ static int thread_ctor(void *mem, int size, void *arg, int flags) { struct thread *td; td = (struct thread *)mem; td->td_state = TDS_INACTIVE; td->td_oncpu = NOCPU; td->td_tid = tid_alloc(); /* * Note that td_critnest begins life as 1 because the thread is not * running and is thereby implicitly waiting to be on the receiving * end of a context switch. */ td->td_critnest = 1; td->td_lend_user_pri = PRI_MAX; - EVENTHANDLER_INVOKE(thread_ctor, td); + EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); #ifdef AUDIT audit_thread_alloc(td); #endif umtx_thread_alloc(td); return (0); } /* * Reclaim a thread after use. */ static void thread_dtor(void *mem, int size, void *arg) { struct thread *td; td = (struct thread *)mem; #ifdef INVARIANTS /* Verify that this thread is in a safe state to free. */ switch (td->td_state) { case TDS_INHIBITED: case TDS_RUNNING: case TDS_CAN_RUN: case TDS_RUNQ: /* * We must never unlink a thread that is in one of * these states, because it is currently active. */ panic("bad state for thread unlinking"); /* NOTREACHED */ case TDS_INACTIVE: break; default: panic("bad thread state"); /* NOTREACHED */ } #endif #ifdef AUDIT audit_thread_free(td); #endif /* Free all OSD associated to this thread. */ osd_thread_exit(td); td_softdep_cleanup(td); MPASS(td->td_su == NULL); - EVENTHANDLER_INVOKE(thread_dtor, td); + EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); tid_free(td->td_tid); } /* * Initialize type-stable parts of a thread (when newly created). */ static int thread_init(void *mem, int size, int flags) { struct thread *td; td = (struct thread *)mem; td->td_sleepqueue = sleepq_alloc(); td->td_turnstile = turnstile_alloc(); td->td_rlqe = NULL; - EVENTHANDLER_INVOKE(thread_init, td); + EVENTHANDLER_DIRECT_INVOKE(thread_init, td); umtx_thread_init(td); td->td_kstack = 0; td->td_sel = NULL; return (0); } /* * Tear down type-stable parts of a thread (just before being discarded). */ static void thread_fini(void *mem, int size) { struct thread *td; td = (struct thread *)mem; - EVENTHANDLER_INVOKE(thread_fini, td); + EVENTHANDLER_DIRECT_INVOKE(thread_fini, td); rlqentry_free(td->td_rlqe); turnstile_free(td->td_turnstile); sleepq_free(td->td_sleepqueue); umtx_thread_fini(td); seltdfini(td); } /* * For a newly created process, * link up all the structures and its initial threads etc. * called from: * {arch}/{arch}/machdep.c {arch}_init(), init386() etc. * proc_dtor() (should go away) * proc_init() */ void proc_linkup0(struct proc *p, struct thread *td) { TAILQ_INIT(&p->p_threads); /* all threads in proc */ proc_linkup(p, td); } void proc_linkup(struct proc *p, struct thread *td) { sigqueue_init(&p->p_sigqueue, p); p->p_ksi = ksiginfo_alloc(1); if (p->p_ksi != NULL) { /* XXX p_ksi may be null if ksiginfo zone is not ready */ p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; } LIST_INIT(&p->p_mqnotifier); p->p_numthreads = 0; thread_link(td, p); } /* * Initialize global thread allocation resources. */ void threadinit(void) { mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); /* * pid_max cannot be greater than PID_MAX. * leave one number for thread0. */ tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock); thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), thread_ctor, thread_dtor, thread_init, thread_fini, 32 - 1, UMA_ZONE_NOFREE); tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash); rw_init(&tidhash_lock, "tidhash"); } /* * Place an unused thread on the zombie list. * Use the slpq as that must be unused by now. */ void thread_zombie(struct thread *td) { mtx_lock_spin(&zombie_lock); TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq); mtx_unlock_spin(&zombie_lock); } /* * Release a thread that has exited after cpu_throw(). */ void thread_stash(struct thread *td) { atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1); thread_zombie(td); } /* * Reap zombie resources. */ void thread_reap(void) { struct thread *td_first, *td_next; /* * Don't even bother to lock if none at this instant, * we really don't care about the next instant. */ if (!TAILQ_EMPTY(&zombie_threads)) { mtx_lock_spin(&zombie_lock); td_first = TAILQ_FIRST(&zombie_threads); if (td_first) TAILQ_INIT(&zombie_threads); mtx_unlock_spin(&zombie_lock); while (td_first) { td_next = TAILQ_NEXT(td_first, td_slpq); thread_cow_free(td_first); thread_free(td_first); td_first = td_next; } } } /* * Allocate a thread. */ struct thread * thread_alloc(int pages) { struct thread *td; thread_reap(); /* check if any zombies to get */ td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK); KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack")); if (!vm_thread_new(td, pages)) { uma_zfree(thread_zone, td); return (NULL); } cpu_thread_alloc(td); vm_domain_policy_init(&td->td_vm_dom_policy); return (td); } int thread_alloc_stack(struct thread *td, int pages) { KASSERT(td->td_kstack == 0, ("thread_alloc_stack called on a thread with kstack")); if (!vm_thread_new(td, pages)) return (0); cpu_thread_alloc(td); return (1); } /* * Deallocate a thread. */ void thread_free(struct thread *td) { lock_profile_thread_exit(td); if (td->td_cpuset) cpuset_rel(td->td_cpuset); td->td_cpuset = NULL; cpu_thread_free(td); if (td->td_kstack != 0) vm_thread_dispose(td); vm_domain_policy_cleanup(&td->td_vm_dom_policy); callout_drain(&td->td_slpcallout); uma_zfree(thread_zone, td); } void thread_cow_get_proc(struct thread *newtd, struct proc *p) { PROC_LOCK_ASSERT(p, MA_OWNED); newtd->td_ucred = crhold(p->p_ucred); newtd->td_limit = lim_hold(p->p_limit); newtd->td_cowgen = p->p_cowgen; } void thread_cow_get(struct thread *newtd, struct thread *td) { newtd->td_ucred = crhold(td->td_ucred); newtd->td_limit = lim_hold(td->td_limit); newtd->td_cowgen = td->td_cowgen; } void thread_cow_free(struct thread *td) { if (td->td_ucred != NULL) crfree(td->td_ucred); if (td->td_limit != NULL) lim_free(td->td_limit); } void thread_cow_update(struct thread *td) { struct proc *p; struct ucred *oldcred; struct plimit *oldlimit; p = td->td_proc; oldcred = NULL; oldlimit = NULL; PROC_LOCK(p); if (td->td_ucred != p->p_ucred) { oldcred = td->td_ucred; td->td_ucred = crhold(p->p_ucred); } if (td->td_limit != p->p_limit) { oldlimit = td->td_limit; td->td_limit = lim_hold(p->p_limit); } td->td_cowgen = p->p_cowgen; PROC_UNLOCK(p); if (oldcred != NULL) crfree(oldcred); if (oldlimit != NULL) lim_free(oldlimit); } /* * Discard the current thread and exit from its context. * Always called with scheduler locked. * * Because we can't free a thread while we're operating under its context, * push the current thread into our CPU's deadthread holder. This means * we needn't worry about someone else grabbing our context before we * do a cpu_throw(). */ void thread_exit(void) { uint64_t runtime, new_switchtime; struct thread *td; struct thread *td2; struct proc *p; int wakeup_swapper; td = curthread; p = td->td_proc; PROC_SLOCK_ASSERT(p, MA_OWNED); mtx_assert(&Giant, MA_NOTOWNED); PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT(p != NULL, ("thread exiting without a process")); CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, (long)p->p_pid, td->td_name); SDT_PROBE0(proc, , , lwp__exit); KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); #ifdef AUDIT AUDIT_SYSCALL_EXIT(0, td); #endif /* * drop FPU & debug register state storage, or any other * architecture specific resources that * would not be on a new untouched process. */ cpu_thread_exit(td); /* * The last thread is left attached to the process * So that the whole bundle gets recycled. Skip * all this stuff if we never had threads. * EXIT clears all sign of other threads when * it goes to single threading, so the last thread always * takes the short path. */ if (p->p_flag & P_HADTHREADS) { if (p->p_numthreads > 1) { atomic_add_int(&td->td_proc->p_exitthreads, 1); thread_unlink(td); td2 = FIRST_THREAD_IN_PROC(p); sched_exit_thread(td2, td); /* * The test below is NOT true if we are the * sole exiting thread. P_STOPPED_SINGLE is unset * in exit1() after it is the only survivor. */ if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { if (p->p_numthreads == p->p_suspcount) { thread_lock(p->p_singlethread); wakeup_swapper = thread_unsuspend_one( p->p_singlethread, p, false); thread_unlock(p->p_singlethread); if (wakeup_swapper) kick_proc0(); } } PCPU_SET(deadthread, td); } else { /* * The last thread is exiting.. but not through exit() */ panic ("thread_exit: Last thread exiting on its own"); } } #ifdef HWPMC_HOOKS /* * If this thread is part of a process that is being tracked by hwpmc(4), * inform the module of the thread's impending exit. */ if (PMC_PROC_IS_USING_PMCS(td->td_proc)) PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); #endif PROC_UNLOCK(p); PROC_STATLOCK(p); thread_lock(td); PROC_SUNLOCK(p); /* Do the same timestamp bookkeeping that mi_switch() would do. */ new_switchtime = cpu_ticks(); runtime = new_switchtime - PCPU_GET(switchtime); td->td_runtime += runtime; td->td_incruntime += runtime; PCPU_SET(switchtime, new_switchtime); PCPU_SET(switchticks, ticks); PCPU_INC(cnt.v_swtch); /* Save our resource usage in our process. */ td->td_ru.ru_nvcsw++; ruxagg(p, td); rucollect(&p->p_ru, &td->td_ru); PROC_STATUNLOCK(p); td->td_state = TDS_INACTIVE; #ifdef WITNESS witness_thread_exit(td); #endif CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); sched_throw(td); panic("I'm a teapot!"); /* NOTREACHED */ } /* * Do any thread specific cleanups that may be needed in wait() * called with Giant, proc and schedlock not held. */ void thread_wait(struct proc *p) { struct thread *td; mtx_assert(&Giant, MA_NOTOWNED); KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()")); KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking")); td = FIRST_THREAD_IN_PROC(p); /* Lock the last thread so we spin until it exits cpu_throw(). */ thread_lock(td); thread_unlock(td); lock_profile_thread_exit(td); cpuset_rel(td->td_cpuset); td->td_cpuset = NULL; cpu_thread_clean(td); thread_cow_free(td); callout_drain(&td->td_slpcallout); thread_reap(); /* check for zombie threads etc. */ } /* * Link a thread to a process. * set up anything that needs to be initialized for it to * be used by the process. */ void thread_link(struct thread *td, struct proc *p) { /* * XXX This can't be enabled because it's called for proc0 before * its lock has been created. * PROC_LOCK_ASSERT(p, MA_OWNED); */ td->td_state = TDS_INACTIVE; td->td_proc = p; td->td_flags = TDF_INMEM; LIST_INIT(&td->td_contested); LIST_INIT(&td->td_lprof[0]); LIST_INIT(&td->td_lprof[1]); sigqueue_init(&td->td_sigqueue, p); callout_init(&td->td_slpcallout, 1); TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist); p->p_numthreads++; } /* * Called from: * thread_exit() */ void thread_unlink(struct thread *td) { struct proc *p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); TAILQ_REMOVE(&p->p_threads, td, td_plist); p->p_numthreads--; /* could clear a few other things here */ /* Must NOT clear links to proc! */ } static int calc_remaining(struct proc *p, int mode) { int remaining; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); if (mode == SINGLE_EXIT) remaining = p->p_numthreads; else if (mode == SINGLE_BOUNDARY) remaining = p->p_numthreads - p->p_boundary_count; else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC) remaining = p->p_numthreads - p->p_suspcount; else panic("calc_remaining: wrong mode %d", mode); return (remaining); } static int remain_for_mode(int mode) { return (mode == SINGLE_ALLPROC ? 0 : 1); } static int weed_inhib(int mode, struct thread *td2, struct proc *p) { int wakeup_swapper; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); THREAD_LOCK_ASSERT(td2, MA_OWNED); wakeup_swapper = 0; switch (mode) { case SINGLE_EXIT: if (TD_IS_SUSPENDED(td2)) wakeup_swapper |= thread_unsuspend_one(td2, p, true); if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) wakeup_swapper |= sleepq_abort(td2, EINTR); break; case SINGLE_BOUNDARY: case SINGLE_NO_EXIT: if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0) wakeup_swapper |= thread_unsuspend_one(td2, p, false); if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) wakeup_swapper |= sleepq_abort(td2, ERESTART); break; case SINGLE_ALLPROC: /* * ALLPROC suspend tries to avoid spurious EINTR for * threads sleeping interruptable, by suspending the * thread directly, similarly to sig_suspend_threads(). * Since such sleep is not performed at the user * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP * is used to avoid immediate un-suspend. */ if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY | TDF_ALLPROCSUSP)) == 0) wakeup_swapper |= thread_unsuspend_one(td2, p, false); if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) { if ((td2->td_flags & TDF_SBDRY) == 0) { thread_suspend_one(td2); td2->td_flags |= TDF_ALLPROCSUSP; } else { wakeup_swapper |= sleepq_abort(td2, ERESTART); } } break; } return (wakeup_swapper); } /* * Enforce single-threading. * * Returns 1 if the caller must abort (another thread is waiting to * exit the process or similar). Process is locked! * Returns 0 when you are successfully the only thread running. * A process has successfully single threaded in the suspend mode when * There are no threads in user mode. Threads in the kernel must be * allowed to continue until they get to the user boundary. They may even * copy out their return values and data before suspending. They may however be * accelerated in reaching the user boundary as we will wake up * any sleeping threads that are interruptable. (PCATCH). */ int thread_single(struct proc *p, int mode) { struct thread *td; struct thread *td2; int remaining, wakeup_swapper; td = curthread; KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY || mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT, ("invalid mode %d", mode)); /* * If allowing non-ALLPROC singlethreading for non-curproc * callers, calc_remaining() and remain_for_mode() should be * adjusted to also account for td->td_proc != p. For now * this is not implemented because it is not used. */ KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) || (mode != SINGLE_ALLPROC && td->td_proc == p), ("mode %d proc %p curproc %p", mode, p, td->td_proc)); mtx_assert(&Giant, MA_NOTOWNED); PROC_LOCK_ASSERT(p, MA_OWNED); if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC) return (0); /* Is someone already single threading? */ if (p->p_singlethread != NULL && p->p_singlethread != td) return (1); if (mode == SINGLE_EXIT) { p->p_flag |= P_SINGLE_EXIT; p->p_flag &= ~P_SINGLE_BOUNDARY; } else { p->p_flag &= ~P_SINGLE_EXIT; if (mode == SINGLE_BOUNDARY) p->p_flag |= P_SINGLE_BOUNDARY; else p->p_flag &= ~P_SINGLE_BOUNDARY; } if (mode == SINGLE_ALLPROC) p->p_flag |= P_TOTAL_STOP; p->p_flag |= P_STOPPED_SINGLE; PROC_SLOCK(p); p->p_singlethread = td; remaining = calc_remaining(p, mode); while (remaining != remain_for_mode(mode)) { if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) goto stopme; wakeup_swapper = 0; FOREACH_THREAD_IN_PROC(p, td2) { if (td2 == td) continue; thread_lock(td2); td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK; if (TD_IS_INHIBITED(td2)) { wakeup_swapper |= weed_inhib(mode, td2, p); #ifdef SMP } else if (TD_IS_RUNNING(td2) && td != td2) { forward_signal(td2); #endif } thread_unlock(td2); } if (wakeup_swapper) kick_proc0(); remaining = calc_remaining(p, mode); /* * Maybe we suspended some threads.. was it enough? */ if (remaining == remain_for_mode(mode)) break; stopme: /* * Wake us up when everyone else has suspended. * In the mean time we suspend as well. */ thread_suspend_switch(td, p); remaining = calc_remaining(p, mode); } if (mode == SINGLE_EXIT) { /* * Convert the process to an unthreaded process. The * SINGLE_EXIT is called by exit1() or execve(), in * both cases other threads must be retired. */ KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads")); p->p_singlethread = NULL; p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS); /* * Wait for any remaining threads to exit cpu_throw(). */ while (p->p_exitthreads != 0) { PROC_SUNLOCK(p); PROC_UNLOCK(p); sched_relinquish(td); PROC_LOCK(p); PROC_SLOCK(p); } } else if (mode == SINGLE_BOUNDARY) { /* * Wait until all suspended threads are removed from * the processors. The thread_suspend_check() * increments p_boundary_count while it is still * running, which makes it possible for the execve() * to destroy vmspace while our other threads are * still using the address space. * * We lock the thread, which is only allowed to * succeed after context switch code finished using * the address space. */ FOREACH_THREAD_IN_PROC(p, td2) { if (td2 == td) continue; thread_lock(td2); KASSERT((td2->td_flags & TDF_BOUNDARY) != 0, ("td %p not on boundary", td2)); KASSERT(TD_IS_SUSPENDED(td2), ("td %p is not suspended", td2)); thread_unlock(td2); } } PROC_SUNLOCK(p); return (0); } bool thread_suspend_check_needed(void) { struct proc *p; struct thread *td; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 && (td->td_dbgflags & TDB_SUSPEND) != 0)); } /* * Called in from locations that can safely check to see * whether we have to suspend or at least throttle for a * single-thread event (e.g. fork). * * Such locations include userret(). * If the "return_instead" argument is non zero, the thread must be able to * accept 0 (caller may continue), or 1 (caller must abort) as a result. * * The 'return_instead' argument tells the function if it may do a * thread_exit() or suspend, or whether the caller must abort and back * out instead. * * If the thread that set the single_threading request has set the * P_SINGLE_EXIT bit in the process flags then this call will never return * if 'return_instead' is false, but will exit. * * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 *---------------+--------------------+--------------------- * 0 | returns 0 | returns 0 or 1 * | when ST ends | immediately *---------------+--------------------+--------------------- * 1 | thread exits | returns 1 * | | immediately * 0 = thread_exit() or suspension ok, * other = return error instead of stopping the thread. * * While a full suspension is under effect, even a single threading * thread would be suspended if it made this call (but it shouldn't). * This call should only be made from places where * thread_exit() would be safe as that may be the outcome unless * return_instead is set. */ int thread_suspend_check(int return_instead) { struct thread *td; struct proc *p; int wakeup_swapper; td = curthread; p = td->td_proc; mtx_assert(&Giant, MA_NOTOWNED); PROC_LOCK_ASSERT(p, MA_OWNED); while (thread_suspend_check_needed()) { if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { KASSERT(p->p_singlethread != NULL, ("singlethread not set")); /* * The only suspension in action is a * single-threading. Single threader need not stop. * It is safe to access p->p_singlethread unlocked * because it can only be set to our address by us. */ if (p->p_singlethread == td) return (0); /* Exempt from stopping. */ } if ((p->p_flag & P_SINGLE_EXIT) && return_instead) return (EINTR); /* Should we goto user boundary if we didn't come from there? */ if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) return (ERESTART); /* * Ignore suspend requests if they are deferred. */ if ((td->td_flags & TDF_SBDRY) != 0) { KASSERT(return_instead, ("TDF_SBDRY set for unsafe thread_suspend_check")); KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) != (TDF_SEINTR | TDF_SERESTART), ("both TDF_SEINTR and TDF_SERESTART")); return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0); } /* * If the process is waiting for us to exit, * this thread should just suicide. * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. */ if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { PROC_UNLOCK(p); /* * Allow Linux emulation layer to do some work * before thread suicide. */ if (__predict_false(p->p_sysent->sv_thread_detach != NULL)) (p->p_sysent->sv_thread_detach)(td); umtx_thread_exit(td); kern_thr_exit(td); panic("stopped thread did not exit"); } PROC_SLOCK(p); thread_stopped(p); if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { if (p->p_numthreads == p->p_suspcount + 1) { thread_lock(p->p_singlethread); wakeup_swapper = thread_unsuspend_one( p->p_singlethread, p, false); thread_unlock(p->p_singlethread); if (wakeup_swapper) kick_proc0(); } } PROC_UNLOCK(p); thread_lock(td); /* * When a thread suspends, it just * gets taken off all queues. */ thread_suspend_one(td); if (return_instead == 0) { p->p_boundary_count++; td->td_flags |= TDF_BOUNDARY; } PROC_SUNLOCK(p); mi_switch(SW_INVOL | SWT_SUSPEND, NULL); thread_unlock(td); PROC_LOCK(p); } return (0); } void thread_suspend_switch(struct thread *td, struct proc *p) { KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); /* * We implement thread_suspend_one in stages here to avoid * dropping the proc lock while the thread lock is owned. */ if (p == td->td_proc) { thread_stopped(p); p->p_suspcount++; } PROC_UNLOCK(p); thread_lock(td); td->td_flags &= ~TDF_NEEDSUSPCHK; TD_SET_SUSPENDED(td); sched_sleep(td, 0); PROC_SUNLOCK(p); DROP_GIANT(); mi_switch(SW_VOL | SWT_SUSPEND, NULL); thread_unlock(td); PICKUP_GIANT(); PROC_LOCK(p); PROC_SLOCK(p); } void thread_suspend_one(struct thread *td) { struct proc *p; p = td->td_proc; PROC_SLOCK_ASSERT(p, MA_OWNED); THREAD_LOCK_ASSERT(td, MA_OWNED); KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); p->p_suspcount++; td->td_flags &= ~TDF_NEEDSUSPCHK; TD_SET_SUSPENDED(td); sched_sleep(td, 0); } static int thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary) { THREAD_LOCK_ASSERT(td, MA_OWNED); KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); TD_CLR_SUSPENDED(td); td->td_flags &= ~TDF_ALLPROCSUSP; if (td->td_proc == p) { PROC_SLOCK_ASSERT(p, MA_OWNED); p->p_suspcount--; if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) { td->td_flags &= ~TDF_BOUNDARY; p->p_boundary_count--; } } return (setrunnable(td)); } /* * Allow all threads blocked by single threading to continue running. */ void thread_unsuspend(struct proc *p) { struct thread *td; int wakeup_swapper; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); wakeup_swapper = 0; if (!P_SHOULDSTOP(p)) { FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); if (TD_IS_SUSPENDED(td)) { wakeup_swapper |= thread_unsuspend_one(td, p, true); } thread_unlock(td); } } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && p->p_numthreads == p->p_suspcount) { /* * Stopping everything also did the job for the single * threading request. Now we've downgraded to single-threaded, * let it continue. */ if (p->p_singlethread->td_proc == p) { thread_lock(p->p_singlethread); wakeup_swapper = thread_unsuspend_one( p->p_singlethread, p, false); thread_unlock(p->p_singlethread); } } if (wakeup_swapper) kick_proc0(); } /* * End the single threading mode.. */ void thread_single_end(struct proc *p, int mode) { struct thread *td; int wakeup_swapper; KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY || mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT, ("invalid mode %d", mode)); PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) || (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0), ("mode %d does not match P_TOTAL_STOP", mode)); KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread, ("thread_single_end from other thread %p %p", curthread, p->p_singlethread)); KASSERT(mode != SINGLE_BOUNDARY || (p->p_flag & P_SINGLE_BOUNDARY) != 0, ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag)); p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY | P_TOTAL_STOP); PROC_SLOCK(p); p->p_singlethread = NULL; wakeup_swapper = 0; /* * If there are other threads they may now run, * unless of course there is a blanket 'stop order' * on the process. The single threader must be allowed * to continue however as this is a bad place to stop. */ if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) { FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); if (TD_IS_SUSPENDED(td)) { wakeup_swapper |= thread_unsuspend_one(td, p, mode == SINGLE_BOUNDARY); } thread_unlock(td); } } KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0, ("inconsistent boundary count %d", p->p_boundary_count)); PROC_SUNLOCK(p); if (wakeup_swapper) kick_proc0(); } struct thread * thread_find(struct proc *p, lwpid_t tid) { struct thread *td; PROC_LOCK_ASSERT(p, MA_OWNED); FOREACH_THREAD_IN_PROC(p, td) { if (td->td_tid == tid) break; } return (td); } /* Locate a thread by number; return with proc lock held. */ struct thread * tdfind(lwpid_t tid, pid_t pid) { #define RUN_THRESH 16 struct thread *td; int run = 0; rw_rlock(&tidhash_lock); LIST_FOREACH(td, TIDHASH(tid), td_hash) { if (td->td_tid == tid) { if (pid != -1 && td->td_proc->p_pid != pid) { td = NULL; break; } PROC_LOCK(td->td_proc); if (td->td_proc->p_state == PRS_NEW) { PROC_UNLOCK(td->td_proc); td = NULL; break; } if (run > RUN_THRESH) { if (rw_try_upgrade(&tidhash_lock)) { LIST_REMOVE(td, td_hash); LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash); rw_wunlock(&tidhash_lock); return (td); } } break; } run++; } rw_runlock(&tidhash_lock); return (td); } void tidhash_add(struct thread *td) { rw_wlock(&tidhash_lock); LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash); rw_wunlock(&tidhash_lock); } void tidhash_remove(struct thread *td) { rw_wlock(&tidhash_lock); LIST_REMOVE(td, td_hash); rw_wunlock(&tidhash_lock); } Index: stable/11/sys/kern/subr_eventhandler.c =================================================================== --- stable/11/sys/kern/subr_eventhandler.c (revision 331726) +++ stable/11/sys/kern/subr_eventhandler.c (revision 331727) @@ -1,296 +1,316 @@ /*- * Copyright (c) 1999 Michael Smith * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_EVENTHANDLER, "eventhandler", "Event handler records"); -/* List of 'slow' lists */ +/* List of all eventhandler lists */ static TAILQ_HEAD(, eventhandler_list) eventhandler_lists; static int eventhandler_lists_initted = 0; static struct mtx eventhandler_mutex; struct eventhandler_entry_generic { struct eventhandler_entry ee; void (* func)(void); }; static struct eventhandler_list *_eventhandler_find_list(const char *name); /* * Initialize the eventhandler mutex and list. */ static void eventhandler_init(void *dummy __unused) { TAILQ_INIT(&eventhandler_lists); mtx_init(&eventhandler_mutex, "eventhandler", NULL, MTX_DEF); atomic_store_rel_int(&eventhandler_lists_initted, 1); } SYSINIT(eventhandlers, SI_SUB_EVENTHANDLER, SI_ORDER_FIRST, eventhandler_init, NULL); -/* - * Insertion is O(n) due to the priority scan, but optimises to O(1) - * if all priorities are identical. - */ -static eventhandler_tag -eventhandler_register_internal(struct eventhandler_list *list, - const char *name, eventhandler_tag epn) +static struct eventhandler_list * +eventhandler_find_or_create_list(const char *name) { - struct eventhandler_list *new_list; - struct eventhandler_entry *ep; - - KASSERT(eventhandler_lists_initted, ("eventhandler registered too early")); - KASSERT(epn != NULL, ("%s: cannot register NULL event", __func__)); + struct eventhandler_list *list, *new_list; - /* lock the eventhandler lists */ - mtx_lock(&eventhandler_mutex); - - /* Do we need to find/create the (slow) list? */ - if (list == NULL) { /* look for a matching, existing list */ list = _eventhandler_find_list(name); /* Do we need to create the list? */ if (list == NULL) { mtx_unlock(&eventhandler_mutex); - new_list = malloc(sizeof(struct eventhandler_list) + - strlen(name) + 1, M_EVENTHANDLER, M_WAITOK); + new_list = malloc(sizeof(*new_list) + strlen(name) + 1, + M_EVENTHANDLER, M_WAITOK | M_ZERO); /* If someone else created it already, then use that one. */ mtx_lock(&eventhandler_mutex); list = _eventhandler_find_list(name); if (list != NULL) { free(new_list, M_EVENTHANDLER); } else { CTR2(KTR_EVH, "%s: creating list \"%s\"", __func__, name); list = new_list; - list->el_flags = 0; - list->el_runcount = 0; - bzero(&list->el_lock, sizeof(list->el_lock)); - list->el_name = (char *)list + sizeof(struct eventhandler_list); + TAILQ_INIT(&list->el_entries); + list->el_name = (char *)(list + 1); strcpy(list->el_name, name); + mtx_init(&list->el_lock, list->el_name, "eventhandler list", + MTX_DEF); TAILQ_INSERT_HEAD(&eventhandler_lists, list, el_link); } } + return (list); +} + +/* + * Insertion is O(n) due to the priority scan, but optimises to O(1) + * if all priorities are identical. + */ +static eventhandler_tag +eventhandler_register_internal(struct eventhandler_list *list, + const char *name, eventhandler_tag epn) +{ + struct eventhandler_entry *ep; + + KASSERT(eventhandler_lists_initted, ("eventhandler registered too early")); + KASSERT(epn != NULL, ("%s: cannot register NULL event", __func__)); + + /* Do we need to find/create the list? */ + if (list == NULL) { + mtx_lock(&eventhandler_mutex); + list = eventhandler_find_or_create_list(name); + mtx_unlock(&eventhandler_mutex); } - if (!(list->el_flags & EHL_INITTED)) { - TAILQ_INIT(&list->el_entries); - mtx_init(&list->el_lock, name, "eventhandler list", MTX_DEF); - atomic_store_rel_int(&list->el_flags, EHL_INITTED); - } - mtx_unlock(&eventhandler_mutex); KASSERT(epn->ee_priority != EHE_DEAD_PRIORITY, ("%s: handler for %s registered with dead priority", __func__, name)); /* sort it into the list */ CTR4(KTR_EVH, "%s: adding item %p (function %p) to \"%s\"", __func__, epn, ((struct eventhandler_entry_generic *)epn)->func, name); EHL_LOCK(list); TAILQ_FOREACH(ep, &list->el_entries, ee_link) { if (ep->ee_priority != EHE_DEAD_PRIORITY && epn->ee_priority < ep->ee_priority) { TAILQ_INSERT_BEFORE(ep, epn, ee_link); break; } } if (ep == NULL) TAILQ_INSERT_TAIL(&list->el_entries, epn, ee_link); EHL_UNLOCK(list); return(epn); } eventhandler_tag eventhandler_register(struct eventhandler_list *list, const char *name, void *func, void *arg, int priority) { struct eventhandler_entry_generic *eg; /* allocate an entry for this handler, populate it */ eg = malloc(sizeof(struct eventhandler_entry_generic), M_EVENTHANDLER, M_WAITOK | M_ZERO); eg->func = func; eg->ee.ee_arg = arg; eg->ee.ee_priority = priority; return (eventhandler_register_internal(list, name, &eg->ee)); } #ifdef VIMAGE struct eventhandler_entry_generic_vimage { struct eventhandler_entry ee; vimage_iterator_func_t func; /* Vimage iterator function. */ struct eventhandler_entry_vimage v_ee; /* Original func, arg. */ }; eventhandler_tag vimage_eventhandler_register(struct eventhandler_list *list, const char *name, void *func, void *arg, int priority, vimage_iterator_func_t iterfunc) { struct eventhandler_entry_generic_vimage *eg; /* allocate an entry for this handler, populate it */ eg = malloc(sizeof(struct eventhandler_entry_generic_vimage), M_EVENTHANDLER, M_WAITOK | M_ZERO); eg->func = iterfunc; eg->v_ee.func = func; eg->v_ee.ee_arg = arg; eg->ee.ee_arg = &eg->v_ee; eg->ee.ee_priority = priority; return (eventhandler_register_internal(list, name, &eg->ee)); } #endif static void _eventhandler_deregister(struct eventhandler_list *list, eventhandler_tag tag, bool wait) { struct eventhandler_entry *ep = tag; EHL_LOCK_ASSERT(list, MA_OWNED); if (ep != NULL) { /* remove just this entry */ if (list->el_runcount == 0) { CTR3(KTR_EVH, "%s: removing item %p from \"%s\"", __func__, ep, list->el_name); TAILQ_REMOVE(&list->el_entries, ep, ee_link); free(ep, M_EVENTHANDLER); } else { CTR3(KTR_EVH, "%s: marking item %p from \"%s\" as dead", __func__, ep, list->el_name); ep->ee_priority = EHE_DEAD_PRIORITY; } } else { /* remove entire list */ if (list->el_runcount == 0) { CTR2(KTR_EVH, "%s: removing all items from \"%s\"", __func__, list->el_name); while (!TAILQ_EMPTY(&list->el_entries)) { ep = TAILQ_FIRST(&list->el_entries); TAILQ_REMOVE(&list->el_entries, ep, ee_link); free(ep, M_EVENTHANDLER); } } else { CTR2(KTR_EVH, "%s: marking all items from \"%s\" as dead", __func__, list->el_name); TAILQ_FOREACH(ep, &list->el_entries, ee_link) ep->ee_priority = EHE_DEAD_PRIORITY; } } while (wait && list->el_runcount > 0) mtx_sleep(list, &list->el_lock, 0, "evhrm", 0); EHL_UNLOCK(list); } void eventhandler_deregister(struct eventhandler_list *list, eventhandler_tag tag) { _eventhandler_deregister(list, tag, true); } void eventhandler_deregister_nowait(struct eventhandler_list *list, eventhandler_tag tag) { _eventhandler_deregister(list, tag, false); } /* * Internal version for use when eventhandler list is already locked. */ static struct eventhandler_list * _eventhandler_find_list(const char *name) { struct eventhandler_list *list; mtx_assert(&eventhandler_mutex, MA_OWNED); TAILQ_FOREACH(list, &eventhandler_lists, el_link) { if (!strcmp(name, list->el_name)) break; } return (list); } /* * Lookup a "slow" list by name. Returns with the list locked. */ struct eventhandler_list * eventhandler_find_list(const char *name) { struct eventhandler_list *list; if (!eventhandler_lists_initted) return(NULL); /* scan looking for the requested list */ mtx_lock(&eventhandler_mutex); list = _eventhandler_find_list(name); if (list != NULL) EHL_LOCK(list); mtx_unlock(&eventhandler_mutex); return(list); } /* * Prune "dead" entries from an eventhandler list. */ void eventhandler_prune_list(struct eventhandler_list *list) { struct eventhandler_entry *ep, *en; int pruned = 0; CTR2(KTR_EVH, "%s: pruning list \"%s\"", __func__, list->el_name); EHL_LOCK_ASSERT(list, MA_OWNED); TAILQ_FOREACH_SAFE(ep, &list->el_entries, ee_link, en) { if (ep->ee_priority == EHE_DEAD_PRIORITY) { TAILQ_REMOVE(&list->el_entries, ep, ee_link); free(ep, M_EVENTHANDLER); pruned++; } } if (pruned > 0) wakeup(list); +} + +/* + * Create (or get the existing) list so the pointer can be stored by + * EVENTHANDLER_LIST_DEFINE. + */ +struct eventhandler_list * +eventhandler_create_list(const char *name) +{ + struct eventhandler_list *list; + + KASSERT(eventhandler_lists_initted, + ("eventhandler list created too early")); + + mtx_lock(&eventhandler_mutex); + list = eventhandler_find_or_create_list(name); + mtx_unlock(&eventhandler_mutex); + + return (list); } Index: stable/11/sys/sys/eventhandler.h =================================================================== --- stable/11/sys/sys/eventhandler.h (revision 331726) +++ stable/11/sys/sys/eventhandler.h (revision 331727) @@ -1,300 +1,329 @@ /*- * Copyright (c) 1999 Michael Smith * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_EVENTHANDLER_H_ #define _SYS_EVENTHANDLER_H_ #include #include #include #include struct eventhandler_entry { TAILQ_ENTRY(eventhandler_entry) ee_link; int ee_priority; #define EHE_DEAD_PRIORITY (-1) void *ee_arg; }; #ifdef VIMAGE struct eventhandler_entry_vimage { void (* func)(void); /* Original function registered. */ void *ee_arg; /* Original argument registered. */ void *sparep[2]; }; #endif struct eventhandler_list { char *el_name; - int el_flags; -#define EHL_INITTED (1<<0) + int el_flags; /* Unused. */ u_int el_runcount; struct mtx el_lock; TAILQ_ENTRY(eventhandler_list) el_link; TAILQ_HEAD(,eventhandler_entry) el_entries; }; typedef struct eventhandler_entry *eventhandler_tag; #define EHL_LOCK(p) mtx_lock(&(p)->el_lock) #define EHL_UNLOCK(p) mtx_unlock(&(p)->el_lock) #define EHL_LOCK_ASSERT(p, x) mtx_assert(&(p)->el_lock, x) /* * Macro to invoke the handlers for a given event. */ #define _EVENTHANDLER_INVOKE(name, list, ...) do { \ struct eventhandler_entry *_ep; \ struct eventhandler_entry_ ## name *_t; \ \ - KASSERT((list)->el_flags & EHL_INITTED, \ - ("eventhandler_invoke: running non-inited list")); \ EHL_LOCK_ASSERT((list), MA_OWNED); \ (list)->el_runcount++; \ KASSERT((list)->el_runcount > 0, \ ("eventhandler_invoke: runcount overflow")); \ CTR0(KTR_EVH, "eventhandler_invoke(\"" __STRING(name) "\")"); \ TAILQ_FOREACH(_ep, &((list)->el_entries), ee_link) { \ if (_ep->ee_priority != EHE_DEAD_PRIORITY) { \ EHL_UNLOCK((list)); \ _t = (struct eventhandler_entry_ ## name *)_ep; \ CTR1(KTR_EVH, "eventhandler_invoke: executing %p", \ (void *)_t->eh_func); \ _t->eh_func(_ep->ee_arg , ## __VA_ARGS__); \ EHL_LOCK((list)); \ } \ } \ KASSERT((list)->el_runcount > 0, \ ("eventhandler_invoke: runcount underflow")); \ (list)->el_runcount--; \ if ((list)->el_runcount == 0) \ eventhandler_prune_list(list); \ EHL_UNLOCK((list)); \ } while (0) /* - * Slow handlers are entirely dynamic; lists are created - * when entries are added to them, and thus have no concept of "owner", - * - * Slow handlers need to be declared, but do not need to be defined. The + * You can optionally use the EVENTHANDLER_LIST and EVENTHANDLER_DIRECT macros + * to pre-define a symbol for the eventhandler list. This symbol can be used by + * EVENTHANDLER_DIRECT_INVOKE, which has the advantage of not needing to do a + * locked search of the global list of eventhandler lists. At least + * EVENTHANDLER_LIST_DEFINE must be be used for EVENTHANDLER_DIRECT_INVOKE to + * work. EVENTHANDLER_LIST_DECLARE is only needed if the call to + * EVENTHANDLER_DIRECT_INVOKE is in a different compilation unit from + * EVENTHANDLER_LIST_DEFINE. If the events are even relatively high frequency + * it is suggested that you directly define a list for them. + */ +#define EVENTHANDLER_LIST_DECLARE(name) \ +extern struct eventhandler_list *_eventhandler_list_ ## name \ + +#define EVENTHANDLER_LIST_DEFINE(name) \ +struct eventhandler_list *_eventhandler_list_ ## name ; \ +static void _ehl_init_ ## name (void * ctx __unused) \ +{ \ + _eventhandler_list_ ## name = eventhandler_create_list(#name); \ +} \ +SYSINIT(name ## _ehl_init, SI_SUB_EVENTHANDLER, SI_ORDER_ANY, \ + _ehl_init_ ## name, NULL); \ + struct __hack + +#define EVENTHANDLER_DIRECT_INVOKE(name, ...) do { \ + struct eventhandler_list *_el; \ + \ + _el = _eventhandler_list_ ## name ; \ + if (!TAILQ_EMPTY(&_el->el_entries)) { \ + EHL_LOCK(_el); \ + _EVENTHANDLER_INVOKE(name, _el , ## __VA_ARGS__); \ + } \ +} while (0) + +/* + * Event handlers need to be declared, but do not need to be defined. The * declaration must be in scope wherever the handler is to be invoked. */ #define EVENTHANDLER_DECLARE(name, type) \ struct eventhandler_entry_ ## name \ { \ struct eventhandler_entry ee; \ type eh_func; \ }; \ struct __hack #define EVENTHANDLER_DEFINE(name, func, arg, priority) \ static eventhandler_tag name ## _tag; \ static void name ## _evh_init(void *ctx) \ { \ name ## _tag = EVENTHANDLER_REGISTER(name, func, ctx, \ priority); \ } \ SYSINIT(name ## _evh_init, SI_SUB_CONFIGURE, SI_ORDER_ANY, \ name ## _evh_init, arg); \ struct __hack #define EVENTHANDLER_INVOKE(name, ...) \ do { \ struct eventhandler_list *_el; \ \ if ((_el = eventhandler_find_list(#name)) != NULL) \ _EVENTHANDLER_INVOKE(name, _el , ## __VA_ARGS__); \ } while (0) #define EVENTHANDLER_REGISTER(name, func, arg, priority) \ eventhandler_register(NULL, #name, func, arg, priority) #define EVENTHANDLER_DEREGISTER(name, tag) \ do { \ struct eventhandler_list *_el; \ \ if ((_el = eventhandler_find_list(#name)) != NULL) \ eventhandler_deregister(_el, tag); \ } while(0) #define EVENTHANDLER_DEREGISTER_NOWAIT(name, tag) \ do { \ struct eventhandler_list *_el; \ \ if ((_el = eventhandler_find_list(#name)) != NULL) \ eventhandler_deregister_nowait(_el, tag); \ } while(0) eventhandler_tag eventhandler_register(struct eventhandler_list *list, const char *name, void *func, void *arg, int priority); void eventhandler_deregister(struct eventhandler_list *list, eventhandler_tag tag); void eventhandler_deregister_nowait(struct eventhandler_list *list, eventhandler_tag tag); struct eventhandler_list *eventhandler_find_list(const char *name); void eventhandler_prune_list(struct eventhandler_list *list); +struct eventhandler_list *eventhandler_create_list(const char *name); #ifdef VIMAGE typedef void (*vimage_iterator_func_t)(void *, ...); eventhandler_tag vimage_eventhandler_register(struct eventhandler_list *list, const char *name, void *func, void *arg, int priority, vimage_iterator_func_t); #endif /* * Standard system event queues. */ /* Generic priority levels */ #define EVENTHANDLER_PRI_FIRST 0 #define EVENTHANDLER_PRI_ANY 10000 #define EVENTHANDLER_PRI_LAST 20000 /* Shutdown events */ typedef void (*shutdown_fn)(void *, int); #define SHUTDOWN_PRI_FIRST EVENTHANDLER_PRI_FIRST #define SHUTDOWN_PRI_DEFAULT EVENTHANDLER_PRI_ANY #define SHUTDOWN_PRI_LAST EVENTHANDLER_PRI_LAST EVENTHANDLER_DECLARE(shutdown_pre_sync, shutdown_fn); /* before fs sync */ EVENTHANDLER_DECLARE(shutdown_post_sync, shutdown_fn); /* after fs sync */ EVENTHANDLER_DECLARE(shutdown_final, shutdown_fn); /* Power state change events */ typedef void (*power_change_fn)(void *); EVENTHANDLER_DECLARE(power_resume, power_change_fn); EVENTHANDLER_DECLARE(power_suspend, power_change_fn); EVENTHANDLER_DECLARE(power_suspend_early, power_change_fn); /* Low memory event */ typedef void (*vm_lowmem_handler_t)(void *, int); #define LOWMEM_PRI_DEFAULT EVENTHANDLER_PRI_FIRST EVENTHANDLER_DECLARE(vm_lowmem, vm_lowmem_handler_t); /* Root mounted event */ typedef void (*mountroot_handler_t)(void *); EVENTHANDLER_DECLARE(mountroot, mountroot_handler_t); /* File system mount events */ struct mount; struct vnode; struct thread; typedef void (*vfs_mounted_notify_fn)(void *, struct mount *, struct vnode *, struct thread *); typedef void (*vfs_unmounted_notify_fn)(void *, struct mount *, struct thread *); EVENTHANDLER_DECLARE(vfs_mounted, vfs_mounted_notify_fn); EVENTHANDLER_DECLARE(vfs_unmounted, vfs_unmounted_notify_fn); /* * Process events * process_fork and exit handlers are called without Giant. * exec handlers are called with Giant, but that is by accident. */ struct proc; struct image_params; typedef void (*exitlist_fn)(void *, struct proc *); typedef void (*forklist_fn)(void *, struct proc *, struct proc *, int); typedef void (*execlist_fn)(void *, struct proc *, struct image_params *); typedef void (*proc_ctor_fn)(void *, struct proc *); typedef void (*proc_dtor_fn)(void *, struct proc *); typedef void (*proc_init_fn)(void *, struct proc *); typedef void (*proc_fini_fn)(void *, struct proc *); EVENTHANDLER_DECLARE(process_ctor, proc_ctor_fn); EVENTHANDLER_DECLARE(process_dtor, proc_dtor_fn); EVENTHANDLER_DECLARE(process_init, proc_init_fn); EVENTHANDLER_DECLARE(process_fini, proc_fini_fn); EVENTHANDLER_DECLARE(process_exit, exitlist_fn); EVENTHANDLER_DECLARE(process_fork, forklist_fn); EVENTHANDLER_DECLARE(process_exec, execlist_fn); /* * application dump event */ typedef void (*app_coredump_start_fn)(void *, struct thread *, char *name); typedef void (*app_coredump_progress_fn)(void *, struct thread *td, int byte_count); typedef void (*app_coredump_finish_fn)(void *, struct thread *td); typedef void (*app_coredump_error_fn)(void *, struct thread *td, char *msg, ...); EVENTHANDLER_DECLARE(app_coredump_start, app_coredump_start_fn); EVENTHANDLER_DECLARE(app_coredump_progress, app_coredump_progress_fn); EVENTHANDLER_DECLARE(app_coredump_finish, app_coredump_finish_fn); EVENTHANDLER_DECLARE(app_coredump_error, app_coredump_error_fn); typedef void (*thread_ctor_fn)(void *, struct thread *); typedef void (*thread_dtor_fn)(void *, struct thread *); typedef void (*thread_fini_fn)(void *, struct thread *); typedef void (*thread_init_fn)(void *, struct thread *); EVENTHANDLER_DECLARE(thread_ctor, thread_ctor_fn); EVENTHANDLER_DECLARE(thread_dtor, thread_dtor_fn); EVENTHANDLER_DECLARE(thread_init, thread_init_fn); EVENTHANDLER_DECLARE(thread_fini, thread_fini_fn); typedef void (*uma_zone_chfn)(void *); EVENTHANDLER_DECLARE(nmbclusters_change, uma_zone_chfn); EVENTHANDLER_DECLARE(nmbufs_change, uma_zone_chfn); EVENTHANDLER_DECLARE(maxsockets_change, uma_zone_chfn); /* Kernel linker file load and unload events */ struct linker_file; typedef void (*kld_load_fn)(void *, struct linker_file *); typedef void (*kld_unload_fn)(void *, const char *, caddr_t, size_t); typedef void (*kld_unload_try_fn)(void *, struct linker_file *, int *); EVENTHANDLER_DECLARE(kld_load, kld_load_fn); EVENTHANDLER_DECLARE(kld_unload, kld_unload_fn); EVENTHANDLER_DECLARE(kld_unload_try, kld_unload_try_fn); /* Generic graphics framebuffer interface */ struct fb_info; typedef void (*register_framebuffer_fn)(void *, struct fb_info *); typedef void (*unregister_framebuffer_fn)(void *, struct fb_info *); EVENTHANDLER_DECLARE(register_framebuffer, register_framebuffer_fn); EVENTHANDLER_DECLARE(unregister_framebuffer, unregister_framebuffer_fn); /* Veto ada attachment */ struct cam_path; struct ata_params; typedef void (*ada_probe_veto_fn)(void *, struct cam_path *, struct ata_params *, int *); EVENTHANDLER_DECLARE(ada_probe_veto, ada_probe_veto_fn); /* newbus device events */ enum evhdev_detach { EVHDEV_DETACH_BEGIN, /* Before detach() is called */ EVHDEV_DETACH_COMPLETE, /* After detach() returns 0 */ EVHDEV_DETACH_FAILED /* After detach() returns err */ }; typedef void (*device_attach_fn)(void *, device_t); typedef void (*device_detach_fn)(void *, device_t, enum evhdev_detach); EVENTHANDLER_DECLARE(device_attach, device_attach_fn); EVENTHANDLER_DECLARE(device_detach, device_detach_fn); #endif /* _SYS_EVENTHANDLER_H_ */ Index: stable/11 =================================================================== --- stable/11 (revision 331726) +++ stable/11 (revision 331727) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r325621-325622,331227