diff --git a/contrib/llvm-project/clang/lib/Sema/SemaInit.cpp b/contrib/llvm-project/clang/lib/Sema/SemaInit.cpp index 91e4cb7b68a2..457fa377355a 100644 --- a/contrib/llvm-project/clang/lib/Sema/SemaInit.cpp +++ b/contrib/llvm-project/clang/lib/Sema/SemaInit.cpp @@ -1,10980 +1,10960 @@ //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for initializers. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExprOpenMP.h" #include "clang/AST/IgnoreExpr.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TargetInfo.h" #include "clang/Sema/Designator.h" #include "clang/Sema/EnterExpressionEvaluationContext.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Ownership.h" #include "clang/Sema/SemaInternal.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace clang; //===----------------------------------------------------------------------===// // Sema Initialization Checking //===----------------------------------------------------------------------===// /// Check whether T is compatible with a wide character type (wchar_t, /// char16_t or char32_t). static bool IsWideCharCompatible(QualType T, ASTContext &Context) { if (Context.typesAreCompatible(Context.getWideCharType(), T)) return true; if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { return Context.typesAreCompatible(Context.Char16Ty, T) || Context.typesAreCompatible(Context.Char32Ty, T); } return false; } enum StringInitFailureKind { SIF_None, SIF_NarrowStringIntoWideChar, SIF_WideStringIntoChar, SIF_IncompatWideStringIntoWideChar, SIF_UTF8StringIntoPlainChar, SIF_PlainStringIntoUTF8Char, SIF_Other }; /// Check whether the array of type AT can be initialized by the Init /// expression by means of string initialization. Returns SIF_None if so, /// otherwise returns a StringInitFailureKind that describes why the /// initialization would not work. static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, ASTContext &Context) { if (!isa(AT) && !isa(AT)) return SIF_Other; // See if this is a string literal or @encode. Init = Init->IgnoreParens(); // Handle @encode, which is a narrow string. if (isa(Init) && AT->getElementType()->isCharType()) return SIF_None; // Otherwise we can only handle string literals. StringLiteral *SL = dyn_cast(Init); if (!SL) return SIF_Other; const QualType ElemTy = Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); auto IsCharOrUnsignedChar = [](const QualType &T) { const BuiltinType *BT = dyn_cast(T.getTypePtr()); return BT && BT->isCharType() && BT->getKind() != BuiltinType::SChar; }; switch (SL->getKind()) { case StringLiteralKind::UTF8: // char8_t array can be initialized with a UTF-8 string. // - C++20 [dcl.init.string] (DR) // Additionally, an array of char or unsigned char may be initialized // by a UTF-8 string literal. if (ElemTy->isChar8Type() || (Context.getLangOpts().Char8 && IsCharOrUnsignedChar(ElemTy.getCanonicalType()))) return SIF_None; [[fallthrough]]; case StringLiteralKind::Ordinary: // char array can be initialized with a narrow string. // Only allow char x[] = "foo"; not char x[] = L"foo"; if (ElemTy->isCharType()) return (SL->getKind() == StringLiteralKind::UTF8 && Context.getLangOpts().Char8) ? SIF_UTF8StringIntoPlainChar : SIF_None; if (ElemTy->isChar8Type()) return SIF_PlainStringIntoUTF8Char; if (IsWideCharCompatible(ElemTy, Context)) return SIF_NarrowStringIntoWideChar; return SIF_Other; // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: // "An array with element type compatible with a qualified or unqualified // version of wchar_t, char16_t, or char32_t may be initialized by a wide // string literal with the corresponding encoding prefix (L, u, or U, // respectively), optionally enclosed in braces. case StringLiteralKind::UTF16: if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) return SIF_None; if (ElemTy->isCharType() || ElemTy->isChar8Type()) return SIF_WideStringIntoChar; if (IsWideCharCompatible(ElemTy, Context)) return SIF_IncompatWideStringIntoWideChar; return SIF_Other; case StringLiteralKind::UTF32: if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) return SIF_None; if (ElemTy->isCharType() || ElemTy->isChar8Type()) return SIF_WideStringIntoChar; if (IsWideCharCompatible(ElemTy, Context)) return SIF_IncompatWideStringIntoWideChar; return SIF_Other; case StringLiteralKind::Wide: if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) return SIF_None; if (ElemTy->isCharType() || ElemTy->isChar8Type()) return SIF_WideStringIntoChar; if (IsWideCharCompatible(ElemTy, Context)) return SIF_IncompatWideStringIntoWideChar; return SIF_Other; case StringLiteralKind::Unevaluated: assert(false && "Unevaluated string literal in initialization"); break; } llvm_unreachable("missed a StringLiteral kind?"); } static StringInitFailureKind IsStringInit(Expr *init, QualType declType, ASTContext &Context) { const ArrayType *arrayType = Context.getAsArrayType(declType); if (!arrayType) return SIF_Other; return IsStringInit(init, arrayType, Context); } bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { return ::IsStringInit(Init, AT, Context) == SIF_None; } /// Update the type of a string literal, including any surrounding parentheses, /// to match the type of the object which it is initializing. static void updateStringLiteralType(Expr *E, QualType Ty) { while (true) { E->setType(Ty); E->setValueKind(VK_PRValue); if (isa(E) || isa(E)) break; E = IgnoreParensSingleStep(E); } } /// Fix a compound literal initializing an array so it's correctly marked /// as an rvalue. static void updateGNUCompoundLiteralRValue(Expr *E) { while (true) { E->setValueKind(VK_PRValue); if (isa(E)) break; E = IgnoreParensSingleStep(E); } } static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, Sema &S) { // Get the length of the string as parsed. auto *ConstantArrayTy = cast(Str->getType()->getAsArrayTypeUnsafe()); uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); if (const IncompleteArrayType *IAT = dyn_cast(AT)) { // C99 6.7.8p14. We have an array of character type with unknown size // being initialized to a string literal. llvm::APInt ConstVal(32, StrLength); // Return a new array type (C99 6.7.8p22). DeclT = S.Context.getConstantArrayType( IAT->getElementType(), ConstVal, nullptr, ArraySizeModifier::Normal, 0); updateStringLiteralType(Str, DeclT); return; } const ConstantArrayType *CAT = cast(AT); // We have an array of character type with known size. However, // the size may be smaller or larger than the string we are initializing. // FIXME: Avoid truncation for 64-bit length strings. if (S.getLangOpts().CPlusPlus) { if (StringLiteral *SL = dyn_cast(Str->IgnoreParens())) { // For Pascal strings it's OK to strip off the terminating null character, // so the example below is valid: // // unsigned char a[2] = "\pa"; if (SL->isPascal()) StrLength--; } // [dcl.init.string]p2 if (StrLength > CAT->getSize().getZExtValue()) S.Diag(Str->getBeginLoc(), diag::err_initializer_string_for_char_array_too_long) << CAT->getSize().getZExtValue() << StrLength << Str->getSourceRange(); } else { // C99 6.7.8p14. if (StrLength-1 > CAT->getSize().getZExtValue()) S.Diag(Str->getBeginLoc(), diag::ext_initializer_string_for_char_array_too_long) << Str->getSourceRange(); } // Set the type to the actual size that we are initializing. If we have // something like: // char x[1] = "foo"; // then this will set the string literal's type to char[1]. updateStringLiteralType(Str, DeclT); } //===----------------------------------------------------------------------===// // Semantic checking for initializer lists. //===----------------------------------------------------------------------===// namespace { /// Semantic checking for initializer lists. /// /// The InitListChecker class contains a set of routines that each /// handle the initialization of a certain kind of entity, e.g., /// arrays, vectors, struct/union types, scalars, etc. The /// InitListChecker itself performs a recursive walk of the subobject /// structure of the type to be initialized, while stepping through /// the initializer list one element at a time. The IList and Index /// parameters to each of the Check* routines contain the active /// (syntactic) initializer list and the index into that initializer /// list that represents the current initializer. Each routine is /// responsible for moving that Index forward as it consumes elements. /// /// Each Check* routine also has a StructuredList/StructuredIndex /// arguments, which contains the current "structured" (semantic) /// initializer list and the index into that initializer list where we /// are copying initializers as we map them over to the semantic /// list. Once we have completed our recursive walk of the subobject /// structure, we will have constructed a full semantic initializer /// list. /// /// C99 designators cause changes in the initializer list traversal, /// because they make the initialization "jump" into a specific /// subobject and then continue the initialization from that /// point. CheckDesignatedInitializer() recursively steps into the /// designated subobject and manages backing out the recursion to /// initialize the subobjects after the one designated. /// /// If an initializer list contains any designators, we build a placeholder /// structured list even in 'verify only' mode, so that we can track which /// elements need 'empty' initializtion. class InitListChecker { Sema &SemaRef; bool hadError = false; bool VerifyOnly; // No diagnostics. bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. bool InOverloadResolution; InitListExpr *FullyStructuredList = nullptr; NoInitExpr *DummyExpr = nullptr; SmallVectorImpl *AggrDeductionCandidateParamTypes = nullptr; NoInitExpr *getDummyInit() { if (!DummyExpr) DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); return DummyExpr; } void CheckImplicitInitList(const InitializedEntity &Entity, InitListExpr *ParentIList, QualType T, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex); void CheckExplicitInitList(const InitializedEntity &Entity, InitListExpr *IList, QualType &T, InitListExpr *StructuredList, bool TopLevelObject = false); void CheckListElementTypes(const InitializedEntity &Entity, InitListExpr *IList, QualType &DeclType, bool SubobjectIsDesignatorContext, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool TopLevelObject = false); void CheckSubElementType(const InitializedEntity &Entity, InitListExpr *IList, QualType ElemType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool DirectlyDesignated = false); void CheckComplexType(const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex); void CheckScalarType(const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex); void CheckReferenceType(const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex); void CheckVectorType(const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex); void CheckStructUnionTypes(const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, CXXRecordDecl::base_class_const_range Bases, RecordDecl::field_iterator Field, bool SubobjectIsDesignatorContext, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool TopLevelObject = false); void CheckArrayType(const InitializedEntity &Entity, InitListExpr *IList, QualType &DeclType, llvm::APSInt elementIndex, bool SubobjectIsDesignatorContext, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex); bool CheckDesignatedInitializer(const InitializedEntity &Entity, InitListExpr *IList, DesignatedInitExpr *DIE, unsigned DesigIdx, QualType &CurrentObjectType, RecordDecl::field_iterator *NextField, llvm::APSInt *NextElementIndex, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool FinishSubobjectInit, bool TopLevelObject); InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, QualType CurrentObjectType, InitListExpr *StructuredList, unsigned StructuredIndex, SourceRange InitRange, bool IsFullyOverwritten = false); void UpdateStructuredListElement(InitListExpr *StructuredList, unsigned &StructuredIndex, Expr *expr); InitListExpr *createInitListExpr(QualType CurrentObjectType, SourceRange InitRange, unsigned ExpectedNumInits); int numArrayElements(QualType DeclType); int numStructUnionElements(QualType DeclType); static RecordDecl *getRecordDecl(QualType DeclType); ExprResult PerformEmptyInit(SourceLocation Loc, const InitializedEntity &Entity); /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, bool UnionOverride = false, bool FullyOverwritten = true) { // Overriding an initializer via a designator is valid with C99 designated // initializers, but ill-formed with C++20 designated initializers. unsigned DiagID = SemaRef.getLangOpts().CPlusPlus ? (UnionOverride ? diag::ext_initializer_union_overrides : diag::ext_initializer_overrides) : diag::warn_initializer_overrides; if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { // In overload resolution, we have to strictly enforce the rules, and so // don't allow any overriding of prior initializers. This matters for a // case such as: // // union U { int a, b; }; // struct S { int a, b; }; // void f(U), f(S); // // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For // consistency, we disallow all overriding of prior initializers in // overload resolution, not only overriding of union members. hadError = true; } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { // If we'll be keeping around the old initializer but overwriting part of // the object it initialized, and that object is not trivially // destructible, this can leak. Don't allow that, not even as an // extension. // // FIXME: It might be reasonable to allow this in cases where the part of // the initializer that we're overriding has trivial destruction. DiagID = diag::err_initializer_overrides_destructed; } else if (!OldInit->getSourceRange().isValid()) { // We need to check on source range validity because the previous // initializer does not have to be an explicit initializer. e.g., // // struct P { int a, b; }; // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; // // There is an overwrite taking place because the first braced initializer // list "{ .a = 2 }" already provides value for .p.b (which is zero). // // Such overwrites are harmless, so we don't diagnose them. (Note that in // C++, this cannot be reached unless we've already seen and diagnosed a // different conformance issue, such as a mixture of designated and // non-designated initializers or a multi-level designator.) return; } if (!VerifyOnly) { SemaRef.Diag(NewInitRange.getBegin(), DiagID) << NewInitRange << FullyOverwritten << OldInit->getType(); SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) << OldInit->getSourceRange(); } } // Explanation on the "FillWithNoInit" mode: // // Assume we have the following definitions (Case#1): // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; // // l.lp.x[1][0..1] should not be filled with implicit initializers because the // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". // // But if we have (Case#2): // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; // // l.lp.x[1][0..1] are implicitly initialized and do not use values from the // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". // // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" // in the InitListExpr, the "holes" in Case#1 are filled not with empty // initializers but with special "NoInitExpr" place holders, which tells the // CodeGen not to generate any initializers for these parts. void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, const InitializedEntity &ParentEntity, InitListExpr *ILE, bool &RequiresSecondPass, bool FillWithNoInit); void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, const InitializedEntity &ParentEntity, InitListExpr *ILE, bool &RequiresSecondPass, bool FillWithNoInit = false); void FillInEmptyInitializations(const InitializedEntity &Entity, InitListExpr *ILE, bool &RequiresSecondPass, InitListExpr *OuterILE, unsigned OuterIndex, bool FillWithNoInit = false); bool CheckFlexibleArrayInit(const InitializedEntity &Entity, Expr *InitExpr, FieldDecl *Field, bool TopLevelObject); void CheckEmptyInitializable(const InitializedEntity &Entity, SourceLocation Loc); public: InitListChecker( Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, bool InOverloadResolution = false, SmallVectorImpl *AggrDeductionCandidateParamTypes = nullptr); InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, SmallVectorImpl &AggrDeductionCandidateParamTypes) : InitListChecker(S, Entity, IL, T, /*VerifyOnly=*/true, /*TreatUnavailableAsInvalid=*/false, /*InOverloadResolution=*/false, &AggrDeductionCandidateParamTypes){}; bool HadError() { return hadError; } // Retrieves the fully-structured initializer list used for // semantic analysis and code generation. InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } }; } // end anonymous namespace ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, const InitializedEntity &Entity) { InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, true); MultiExprArg SubInit; Expr *InitExpr; InitListExpr DummyInitList(SemaRef.Context, Loc, std::nullopt, Loc); // C++ [dcl.init.aggr]p7: // If there are fewer initializer-clauses in the list than there are // members in the aggregate, then each member not explicitly initialized // ... bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); if (EmptyInitList) { // C++1y / DR1070: // shall be initialized [...] from an empty initializer list. // // We apply the resolution of this DR to C++11 but not C++98, since C++98 // does not have useful semantics for initialization from an init list. // We treat this as copy-initialization, because aggregate initialization // always performs copy-initialization on its elements. // // Only do this if we're initializing a class type, to avoid filling in // the initializer list where possible. InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) InitListExpr(SemaRef.Context, Loc, std::nullopt, Loc); InitExpr->setType(SemaRef.Context.VoidTy); SubInit = InitExpr; Kind = InitializationKind::CreateCopy(Loc, Loc); } else { // C++03: // shall be value-initialized. } InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); // libstdc++4.6 marks the vector default constructor as explicit in // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. // stlport does so too. Look for std::__debug for libstdc++, and for // std:: for stlport. This is effectively a compiler-side implementation of // LWG2193. if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == InitializationSequence::FK_ExplicitConstructor) { OverloadCandidateSet::iterator Best; OverloadingResult O = InitSeq.getFailedCandidateSet() .BestViableFunction(SemaRef, Kind.getLocation(), Best); (void)O; assert(O == OR_Success && "Inconsistent overload resolution"); CXXConstructorDecl *CtorDecl = cast(Best->Function); CXXRecordDecl *R = CtorDecl->getParent(); if (CtorDecl->getMinRequiredArguments() == 0 && CtorDecl->isExplicit() && R->getDeclName() && SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { bool IsInStd = false; for (NamespaceDecl *ND = dyn_cast(R->getDeclContext()); ND && !IsInStd; ND = dyn_cast(ND->getParent())) { if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) IsInStd = true; } if (IsInStd && llvm::StringSwitch(R->getName()) .Cases("basic_string", "deque", "forward_list", true) .Cases("list", "map", "multimap", "multiset", true) .Cases("priority_queue", "queue", "set", "stack", true) .Cases("unordered_map", "unordered_set", "vector", true) .Default(false)) { InitSeq.InitializeFrom( SemaRef, Entity, InitializationKind::CreateValue(Loc, Loc, Loc, true), MultiExprArg(), /*TopLevelOfInitList=*/false, TreatUnavailableAsInvalid); // Emit a warning for this. System header warnings aren't shown // by default, but people working on system headers should see it. if (!VerifyOnly) { SemaRef.Diag(CtorDecl->getLocation(), diag::warn_invalid_initializer_from_system_header); if (Entity.getKind() == InitializedEntity::EK_Member) SemaRef.Diag(Entity.getDecl()->getLocation(), diag::note_used_in_initialization_here); else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) SemaRef.Diag(Loc, diag::note_used_in_initialization_here); } } } } if (!InitSeq) { if (!VerifyOnly) { InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); if (Entity.getKind() == InitializedEntity::EK_Member) SemaRef.Diag(Entity.getDecl()->getLocation(), diag::note_in_omitted_aggregate_initializer) << /*field*/1 << Entity.getDecl(); else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { bool IsTrailingArrayNewMember = Entity.getParent() && Entity.getParent()->isVariableLengthArrayNew(); SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) << (IsTrailingArrayNewMember ? 2 : /*array element*/0) << Entity.getElementIndex(); } } hadError = true; return ExprError(); } return VerifyOnly ? ExprResult() : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); } void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, SourceLocation Loc) { // If we're building a fully-structured list, we'll check this at the end // once we know which elements are actually initialized. Otherwise, we know // that there are no designators so we can just check now. if (FullyStructuredList) return; PerformEmptyInit(Loc, Entity); } void InitListChecker::FillInEmptyInitForBase( unsigned Init, const CXXBaseSpecifier &Base, const InitializedEntity &ParentEntity, InitListExpr *ILE, bool &RequiresSecondPass, bool FillWithNoInit) { InitializedEntity BaseEntity = InitializedEntity::InitializeBase( SemaRef.Context, &Base, false, &ParentEntity); if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { ExprResult BaseInit = FillWithNoInit ? new (SemaRef.Context) NoInitExpr(Base.getType()) : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); if (BaseInit.isInvalid()) { hadError = true; return; } if (!VerifyOnly) { assert(Init < ILE->getNumInits() && "should have been expanded"); ILE->setInit(Init, BaseInit.getAs()); } } else if (InitListExpr *InnerILE = dyn_cast(ILE->getInit(Init))) { FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, ILE, Init, FillWithNoInit); } else if (DesignatedInitUpdateExpr *InnerDIUE = dyn_cast(ILE->getInit(Init))) { FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), RequiresSecondPass, ILE, Init, /*FillWithNoInit =*/true); } } void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, const InitializedEntity &ParentEntity, InitListExpr *ILE, bool &RequiresSecondPass, bool FillWithNoInit) { SourceLocation Loc = ILE->getEndLoc(); unsigned NumInits = ILE->getNumInits(); InitializedEntity MemberEntity = InitializedEntity::InitializeMember(Field, &ParentEntity); if (Init >= NumInits || !ILE->getInit(Init)) { if (const RecordType *RType = ILE->getType()->getAs()) if (!RType->getDecl()->isUnion()) assert((Init < NumInits || VerifyOnly) && "This ILE should have been expanded"); if (FillWithNoInit) { assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); if (Init < NumInits) ILE->setInit(Init, Filler); else ILE->updateInit(SemaRef.Context, Init, Filler); return; } // C++1y [dcl.init.aggr]p7: // If there are fewer initializer-clauses in the list than there are // members in the aggregate, then each member not explicitly initialized // shall be initialized from its brace-or-equal-initializer [...] if (Field->hasInClassInitializer()) { if (VerifyOnly) return; ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); if (DIE.isInvalid()) { hadError = true; return; } SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); if (Init < NumInits) ILE->setInit(Init, DIE.get()); else { ILE->updateInit(SemaRef.Context, Init, DIE.get()); RequiresSecondPass = true; } return; } if (Field->getType()->isReferenceType()) { if (!VerifyOnly) { // C++ [dcl.init.aggr]p9: // If an incomplete or empty initializer-list leaves a // member of reference type uninitialized, the program is // ill-formed. SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) << Field->getType() << (ILE->isSyntacticForm() ? ILE : ILE->getSyntacticForm()) ->getSourceRange(); SemaRef.Diag(Field->getLocation(), diag::note_uninit_reference_member); } hadError = true; return; } ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); if (MemberInit.isInvalid()) { hadError = true; return; } if (hadError || VerifyOnly) { // Do nothing } else if (Init < NumInits) { ILE->setInit(Init, MemberInit.getAs()); } else if (!isa(MemberInit.get())) { // Empty initialization requires a constructor call, so // extend the initializer list to include the constructor // call and make a note that we'll need to take another pass // through the initializer list. ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs()); RequiresSecondPass = true; } } else if (InitListExpr *InnerILE = dyn_cast(ILE->getInit(Init))) { FillInEmptyInitializations(MemberEntity, InnerILE, RequiresSecondPass, ILE, Init, FillWithNoInit); } else if (DesignatedInitUpdateExpr *InnerDIUE = dyn_cast(ILE->getInit(Init))) { FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), RequiresSecondPass, ILE, Init, /*FillWithNoInit =*/true); } } /// Recursively replaces NULL values within the given initializer list /// with expressions that perform value-initialization of the /// appropriate type, and finish off the InitListExpr formation. void InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, InitListExpr *ILE, bool &RequiresSecondPass, InitListExpr *OuterILE, unsigned OuterIndex, bool FillWithNoInit) { assert((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"); // We don't need to do any checks when just filling NoInitExprs; that can't // fail. if (FillWithNoInit && VerifyOnly) return; // If this is a nested initializer list, we might have changed its contents // (and therefore some of its properties, such as instantiation-dependence) // while filling it in. Inform the outer initializer list so that its state // can be updated to match. // FIXME: We should fully build the inner initializers before constructing // the outer InitListExpr instead of mutating AST nodes after they have // been used as subexpressions of other nodes. struct UpdateOuterILEWithUpdatedInit { InitListExpr *Outer; unsigned OuterIndex; ~UpdateOuterILEWithUpdatedInit() { if (Outer) Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); } } UpdateOuterRAII = {OuterILE, OuterIndex}; // A transparent ILE is not performing aggregate initialization and should // not be filled in. if (ILE->isTransparent()) return; if (const RecordType *RType = ILE->getType()->getAs()) { const RecordDecl *RDecl = RType->getDecl(); if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), Entity, ILE, RequiresSecondPass, FillWithNoInit); else if (RDecl->isUnion() && isa(RDecl) && cast(RDecl)->hasInClassInitializer()) { for (auto *Field : RDecl->fields()) { if (Field->hasInClassInitializer()) { FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, FillWithNoInit); break; } } } else { // The fields beyond ILE->getNumInits() are default initialized, so in // order to leave them uninitialized, the ILE is expanded and the extra // fields are then filled with NoInitExpr. unsigned NumElems = numStructUnionElements(ILE->getType()); if (!RDecl->isUnion() && RDecl->hasFlexibleArrayMember()) ++NumElems; if (!VerifyOnly && ILE->getNumInits() < NumElems) ILE->resizeInits(SemaRef.Context, NumElems); unsigned Init = 0; if (auto *CXXRD = dyn_cast(RDecl)) { for (auto &Base : CXXRD->bases()) { if (hadError) return; FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, FillWithNoInit); ++Init; } } for (auto *Field : RDecl->fields()) { if (Field->isUnnamedBitfield()) continue; if (hadError) return; FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, FillWithNoInit); if (hadError) return; ++Init; // Only look at the first initialization of a union. if (RDecl->isUnion()) break; } } return; } QualType ElementType; InitializedEntity ElementEntity = Entity; unsigned NumInits = ILE->getNumInits(); unsigned NumElements = NumInits; if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { ElementType = AType->getElementType(); if (const auto *CAType = dyn_cast(AType)) NumElements = CAType->getSize().getZExtValue(); // For an array new with an unknown bound, ask for one additional element // in order to populate the array filler. if (Entity.isVariableLengthArrayNew()) ++NumElements; ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); } else if (const VectorType *VType = ILE->getType()->getAs()) { ElementType = VType->getElementType(); NumElements = VType->getNumElements(); ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); } else ElementType = ILE->getType(); bool SkipEmptyInitChecks = false; for (unsigned Init = 0; Init != NumElements; ++Init) { if (hadError) return; if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || ElementEntity.getKind() == InitializedEntity::EK_VectorElement) ElementEntity.setElementIndex(Init); if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) return; Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) ILE->setInit(Init, ILE->getArrayFiller()); else if (!InitExpr && !ILE->hasArrayFiller()) { // In VerifyOnly mode, there's no point performing empty initialization // more than once. if (SkipEmptyInitChecks) continue; Expr *Filler = nullptr; if (FillWithNoInit) Filler = new (SemaRef.Context) NoInitExpr(ElementType); else { ExprResult ElementInit = PerformEmptyInit(ILE->getEndLoc(), ElementEntity); if (ElementInit.isInvalid()) { hadError = true; return; } Filler = ElementInit.getAs(); } if (hadError) { // Do nothing } else if (VerifyOnly) { SkipEmptyInitChecks = true; } else if (Init < NumInits) { // For arrays, just set the expression used for value-initialization // of the "holes" in the array. if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) ILE->setArrayFiller(Filler); else ILE->setInit(Init, Filler); } else { // For arrays, just set the expression used for value-initialization // of the rest of elements and exit. if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { ILE->setArrayFiller(Filler); return; } if (!isa(Filler) && !isa(Filler)) { // Empty initialization requires a constructor call, so // extend the initializer list to include the constructor // call and make a note that we'll need to take another pass // through the initializer list. ILE->updateInit(SemaRef.Context, Init, Filler); RequiresSecondPass = true; } } } else if (InitListExpr *InnerILE = dyn_cast_or_null(InitExpr)) { FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, ILE, Init, FillWithNoInit); } else if (DesignatedInitUpdateExpr *InnerDIUE = dyn_cast_or_null(InitExpr)) { FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), RequiresSecondPass, ILE, Init, /*FillWithNoInit =*/true); } } } static bool hasAnyDesignatedInits(const InitListExpr *IL) { for (const Stmt *Init : *IL) if (isa_and_nonnull(Init)) return true; return false; } InitListChecker::InitListChecker( Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, bool InOverloadResolution, SmallVectorImpl *AggrDeductionCandidateParamTypes) : SemaRef(S), VerifyOnly(VerifyOnly), TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), InOverloadResolution(InOverloadResolution), AggrDeductionCandidateParamTypes(AggrDeductionCandidateParamTypes) { if (!VerifyOnly || hasAnyDesignatedInits(IL)) { FullyStructuredList = createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); // FIXME: Check that IL isn't already the semantic form of some other // InitListExpr. If it is, we'd create a broken AST. if (!VerifyOnly) FullyStructuredList->setSyntacticForm(IL); } CheckExplicitInitList(Entity, IL, T, FullyStructuredList, /*TopLevelObject=*/true); if (!hadError && !AggrDeductionCandidateParamTypes && FullyStructuredList) { bool RequiresSecondPass = false; FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, /*OuterILE=*/nullptr, /*OuterIndex=*/0); if (RequiresSecondPass && !hadError) FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, nullptr, 0); } if (hadError && FullyStructuredList) FullyStructuredList->markError(); } int InitListChecker::numArrayElements(QualType DeclType) { // FIXME: use a proper constant int maxElements = 0x7FFFFFFF; if (const ConstantArrayType *CAT = SemaRef.Context.getAsConstantArrayType(DeclType)) { maxElements = static_cast(CAT->getSize().getZExtValue()); } return maxElements; } int InitListChecker::numStructUnionElements(QualType DeclType) { RecordDecl *structDecl = DeclType->castAs()->getDecl(); int InitializableMembers = 0; if (auto *CXXRD = dyn_cast(structDecl)) InitializableMembers += CXXRD->getNumBases(); for (const auto *Field : structDecl->fields()) if (!Field->isUnnamedBitfield()) ++InitializableMembers; if (structDecl->isUnion()) return std::min(InitializableMembers, 1); return InitializableMembers - structDecl->hasFlexibleArrayMember(); } RecordDecl *InitListChecker::getRecordDecl(QualType DeclType) { if (const auto *RT = DeclType->getAs()) return RT->getDecl(); if (const auto *Inject = DeclType->getAs()) return Inject->getDecl(); return nullptr; } /// Determine whether Entity is an entity for which it is idiomatic to elide /// the braces in aggregate initialization. static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { // Recursive initialization of the one and only field within an aggregate // class is considered idiomatic. This case arises in particular for // initialization of std::array, where the C++ standard suggests the idiom of // // std::array arr = {1, 2, 3}; // // (where std::array is an aggregate struct containing a single array field. if (!Entity.getParent()) return false; // Allows elide brace initialization for aggregates with empty base. if (Entity.getKind() == InitializedEntity::EK_Base) { auto *ParentRD = Entity.getParent()->getType()->castAs()->getDecl(); CXXRecordDecl *CXXRD = cast(ParentRD); return CXXRD->getNumBases() == 1 && CXXRD->field_empty(); } // Allow brace elision if the only subobject is a field. if (Entity.getKind() == InitializedEntity::EK_Member) { auto *ParentRD = Entity.getParent()->getType()->castAs()->getDecl(); if (CXXRecordDecl *CXXRD = dyn_cast(ParentRD)) { if (CXXRD->getNumBases()) { return false; } } auto FieldIt = ParentRD->field_begin(); assert(FieldIt != ParentRD->field_end() && "no fields but have initializer for member?"); return ++FieldIt == ParentRD->field_end(); } return false; } /// Check whether the range of the initializer \p ParentIList from element /// \p Index onwards can be used to initialize an object of type \p T. Update /// \p Index to indicate how many elements of the list were consumed. /// /// This also fills in \p StructuredList, from element \p StructuredIndex /// onwards, with the fully-braced, desugared form of the initialization. void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, InitListExpr *ParentIList, QualType T, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex) { int maxElements = 0; if (T->isArrayType()) maxElements = numArrayElements(T); else if (T->isRecordType()) maxElements = numStructUnionElements(T); else if (T->isVectorType()) maxElements = T->castAs()->getNumElements(); else llvm_unreachable("CheckImplicitInitList(): Illegal type"); if (maxElements == 0) { if (!VerifyOnly) SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), diag::err_implicit_empty_initializer); ++Index; hadError = true; return; } // Build a structured initializer list corresponding to this subobject. InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( ParentIList, Index, T, StructuredList, StructuredIndex, SourceRange(ParentIList->getInit(Index)->getBeginLoc(), ParentIList->getSourceRange().getEnd())); unsigned StructuredSubobjectInitIndex = 0; // Check the element types and build the structural subobject. unsigned StartIndex = Index; CheckListElementTypes(Entity, ParentIList, T, /*SubobjectIsDesignatorContext=*/false, Index, StructuredSubobjectInitList, StructuredSubobjectInitIndex); if (StructuredSubobjectInitList) { StructuredSubobjectInitList->setType(T); unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); // Update the structured sub-object initializer so that it's ending // range corresponds with the end of the last initializer it used. if (EndIndex < ParentIList->getNumInits() && ParentIList->getInit(EndIndex)) { SourceLocation EndLoc = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); StructuredSubobjectInitList->setRBraceLoc(EndLoc); } // Complain about missing braces. if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && !isIdiomaticBraceElisionEntity(Entity)) { SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), diag::warn_missing_braces) << StructuredSubobjectInitList->getSourceRange() << FixItHint::CreateInsertion( StructuredSubobjectInitList->getBeginLoc(), "{") << FixItHint::CreateInsertion( SemaRef.getLocForEndOfToken( StructuredSubobjectInitList->getEndLoc()), "}"); } // Warn if this type won't be an aggregate in future versions of C++. auto *CXXRD = T->getAsCXXRecordDecl(); if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), diag::warn_cxx20_compat_aggregate_init_with_ctors) << StructuredSubobjectInitList->getSourceRange() << T; } } } /// Warn that \p Entity was of scalar type and was initialized by a /// single-element braced initializer list. static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, SourceRange Braces) { // Don't warn during template instantiation. If the initialization was // non-dependent, we warned during the initial parse; otherwise, the // type might not be scalar in some uses of the template. if (S.inTemplateInstantiation()) return; unsigned DiagID = 0; switch (Entity.getKind()) { case InitializedEntity::EK_VectorElement: case InitializedEntity::EK_ComplexElement: case InitializedEntity::EK_ArrayElement: case InitializedEntity::EK_Parameter: case InitializedEntity::EK_Parameter_CF_Audited: case InitializedEntity::EK_TemplateParameter: case InitializedEntity::EK_Result: case InitializedEntity::EK_ParenAggInitMember: // Extra braces here are suspicious. DiagID = diag::warn_braces_around_init; break; case InitializedEntity::EK_Member: // Warn on aggregate initialization but not on ctor init list or // default member initializer. if (Entity.getParent()) DiagID = diag::warn_braces_around_init; break; case InitializedEntity::EK_Variable: case InitializedEntity::EK_LambdaCapture: // No warning, might be direct-list-initialization. // FIXME: Should we warn for copy-list-initialization in these cases? break; case InitializedEntity::EK_New: case InitializedEntity::EK_Temporary: case InitializedEntity::EK_CompoundLiteralInit: // No warning, braces are part of the syntax of the underlying construct. break; case InitializedEntity::EK_RelatedResult: // No warning, we already warned when initializing the result. break; case InitializedEntity::EK_Exception: case InitializedEntity::EK_Base: case InitializedEntity::EK_Delegating: case InitializedEntity::EK_BlockElement: case InitializedEntity::EK_LambdaToBlockConversionBlockElement: case InitializedEntity::EK_Binding: case InitializedEntity::EK_StmtExprResult: llvm_unreachable("unexpected braced scalar init"); } if (DiagID) { S.Diag(Braces.getBegin(), DiagID) << Entity.getType()->isSizelessBuiltinType() << Braces << FixItHint::CreateRemoval(Braces.getBegin()) << FixItHint::CreateRemoval(Braces.getEnd()); } } /// Check whether the initializer \p IList (that was written with explicit /// braces) can be used to initialize an object of type \p T. /// /// This also fills in \p StructuredList with the fully-braced, desugared /// form of the initialization. void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, InitListExpr *IList, QualType &T, InitListExpr *StructuredList, bool TopLevelObject) { unsigned Index = 0, StructuredIndex = 0; CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, Index, StructuredList, StructuredIndex, TopLevelObject); if (StructuredList) { QualType ExprTy = T; if (!ExprTy->isArrayType()) ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); if (!VerifyOnly) IList->setType(ExprTy); StructuredList->setType(ExprTy); } if (hadError) return; // Don't complain for incomplete types, since we'll get an error elsewhere. if (Index < IList->getNumInits() && !T->isIncompleteType()) { // We have leftover initializers bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || (SemaRef.getLangOpts().OpenCL && T->isVectorType()); hadError = ExtraInitsIsError; if (VerifyOnly) { return; } else if (StructuredIndex == 1 && IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == SIF_None) { unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers_in_char_array_initializer : diag::ext_excess_initializers_in_char_array_initializer; SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) << IList->getInit(Index)->getSourceRange(); } else if (T->isSizelessBuiltinType()) { unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers_for_sizeless_type : diag::ext_excess_initializers_for_sizeless_type; SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) << T << IList->getInit(Index)->getSourceRange(); } else { int initKind = T->isArrayType() ? 0 : T->isVectorType() ? 1 : T->isScalarType() ? 2 : T->isUnionType() ? 3 : 4; unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers : diag::ext_excess_initializers; SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) << initKind << IList->getInit(Index)->getSourceRange(); } } if (!VerifyOnly) { if (T->isScalarType() && IList->getNumInits() == 1 && !isa(IList->getInit(0))) warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); // Warn if this is a class type that won't be an aggregate in future // versions of C++. auto *CXXRD = T->getAsCXXRecordDecl(); if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { // Don't warn if there's an equivalent default constructor that would be // used instead. bool HasEquivCtor = false; if (IList->getNumInits() == 0) { auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); HasEquivCtor = CD && !CD->isDeleted(); } if (!HasEquivCtor) { SemaRef.Diag(IList->getBeginLoc(), diag::warn_cxx20_compat_aggregate_init_with_ctors) << IList->getSourceRange() << T; } } } } void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, InitListExpr *IList, QualType &DeclType, bool SubobjectIsDesignatorContext, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool TopLevelObject) { if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { // Explicitly braced initializer for complex type can be real+imaginary // parts. CheckComplexType(Entity, IList, DeclType, Index, StructuredList, StructuredIndex); } else if (DeclType->isScalarType()) { CheckScalarType(Entity, IList, DeclType, Index, StructuredList, StructuredIndex); } else if (DeclType->isVectorType()) { CheckVectorType(Entity, IList, DeclType, Index, StructuredList, StructuredIndex); } else if (const RecordDecl *RD = getRecordDecl(DeclType)) { auto Bases = CXXRecordDecl::base_class_const_range(CXXRecordDecl::base_class_const_iterator(), CXXRecordDecl::base_class_const_iterator()); if (DeclType->isRecordType()) { assert(DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"); if (auto *CXXRD = dyn_cast(RD)) Bases = CXXRD->bases(); } else { Bases = cast(RD)->bases(); } CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), SubobjectIsDesignatorContext, Index, StructuredList, StructuredIndex, TopLevelObject); } else if (DeclType->isArrayType()) { llvm::APSInt Zero( SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), false); CheckArrayType(Entity, IList, DeclType, Zero, SubobjectIsDesignatorContext, Index, StructuredList, StructuredIndex); } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { // This type is invalid, issue a diagnostic. ++Index; if (!VerifyOnly) SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) << DeclType; hadError = true; } else if (DeclType->isReferenceType()) { CheckReferenceType(Entity, IList, DeclType, Index, StructuredList, StructuredIndex); } else if (DeclType->isObjCObjectType()) { if (!VerifyOnly) SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; hadError = true; } else if (DeclType->isOCLIntelSubgroupAVCType() || DeclType->isSizelessBuiltinType()) { // Checks for scalar type are sufficient for these types too. CheckScalarType(Entity, IList, DeclType, Index, StructuredList, StructuredIndex); } else if (DeclType->isDependentType()) { // C++ [over.match.class.deduct]p1.5: // brace elision is not considered for any aggregate element that has a // dependent non-array type or an array type with a value-dependent bound ++Index; assert(AggrDeductionCandidateParamTypes); AggrDeductionCandidateParamTypes->push_back(DeclType); } else { if (!VerifyOnly) SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) << DeclType; hadError = true; } } void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, InitListExpr *IList, QualType ElemType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool DirectlyDesignated) { Expr *expr = IList->getInit(Index); if (ElemType->isReferenceType()) return CheckReferenceType(Entity, IList, ElemType, Index, StructuredList, StructuredIndex); if (InitListExpr *SubInitList = dyn_cast(expr)) { if (SubInitList->getNumInits() == 1 && IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == SIF_None) { // FIXME: It would be more faithful and no less correct to include an // InitListExpr in the semantic form of the initializer list in this case. expr = SubInitList->getInit(0); } // Nested aggregate initialization and C++ initialization are handled later. } else if (isa(expr)) { // This happens during template instantiation when we see an InitListExpr // that we've already checked once. assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && "found implicit initialization for the wrong type"); UpdateStructuredListElement(StructuredList, StructuredIndex, expr); ++Index; return; } if (SemaRef.getLangOpts().CPlusPlus || isa(expr)) { // C++ [dcl.init.aggr]p2: // Each member is copy-initialized from the corresponding // initializer-clause. // FIXME: Better EqualLoc? InitializationKind Kind = InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); // Vector elements can be initialized from other vectors in which case // we need initialization entity with a type of a vector (and not a vector // element!) initializing multiple vector elements. auto TmpEntity = (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) ? InitializedEntity::InitializeTemporary(ElemType) : Entity; if (TmpEntity.getType()->isDependentType()) { // C++ [over.match.class.deduct]p1.5: // brace elision is not considered for any aggregate element that has a // dependent non-array type or an array type with a value-dependent // bound assert(AggrDeductionCandidateParamTypes); if (!isa_and_nonnull( SemaRef.Context.getAsArrayType(ElemType))) { ++Index; AggrDeductionCandidateParamTypes->push_back(ElemType); return; } } else { InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, /*TopLevelOfInitList*/ true); // C++14 [dcl.init.aggr]p13: // If the assignment-expression can initialize a member, the member is // initialized. Otherwise [...] brace elision is assumed // // Brace elision is never performed if the element is not an // assignment-expression. if (Seq || isa(expr)) { if (!VerifyOnly) { ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); if (Result.isInvalid()) hadError = true; UpdateStructuredListElement(StructuredList, StructuredIndex, Result.getAs()); } else if (!Seq) { hadError = true; } else if (StructuredList) { UpdateStructuredListElement(StructuredList, StructuredIndex, getDummyInit()); } ++Index; if (AggrDeductionCandidateParamTypes) AggrDeductionCandidateParamTypes->push_back(ElemType); return; } } // Fall through for subaggregate initialization } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { // FIXME: Need to handle atomic aggregate types with implicit init lists. return CheckScalarType(Entity, IList, ElemType, Index, StructuredList, StructuredIndex); } else if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) { // arrayType can be incomplete if we're initializing a flexible // array member. There's nothing we can do with the completed // type here, though. if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { // FIXME: Should we do this checking in verify-only mode? if (!VerifyOnly) CheckStringInit(expr, ElemType, arrayType, SemaRef); if (StructuredList) UpdateStructuredListElement(StructuredList, StructuredIndex, expr); ++Index; return; } // Fall through for subaggregate initialization. } else { assert((ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && "Unexpected type"); // C99 6.7.8p13: // // The initializer for a structure or union object that has // automatic storage duration shall be either an initializer // list as described below, or a single expression that has // compatible structure or union type. In the latter case, the // initial value of the object, including unnamed members, is // that of the expression. ExprResult ExprRes = expr; if (SemaRef.CheckSingleAssignmentConstraints( ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { if (ExprRes.isInvalid()) hadError = true; else { ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); if (ExprRes.isInvalid()) hadError = true; } UpdateStructuredListElement(StructuredList, StructuredIndex, ExprRes.getAs()); ++Index; return; } ExprRes.get(); // Fall through for subaggregate initialization } // C++ [dcl.init.aggr]p12: // // [...] Otherwise, if the member is itself a non-empty // subaggregate, brace elision is assumed and the initializer is // considered for the initialization of the first member of // the subaggregate. // OpenCL vector initializer is handled elsewhere. if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || ElemType->isAggregateType()) { CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, StructuredIndex); ++StructuredIndex; // In C++20, brace elision is not permitted for a designated initializer. if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) { if (InOverloadResolution) hadError = true; if (!VerifyOnly) { SemaRef.Diag(expr->getBeginLoc(), diag::ext_designated_init_brace_elision) << expr->getSourceRange() << FixItHint::CreateInsertion(expr->getBeginLoc(), "{") << FixItHint::CreateInsertion( SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}"); } } } else { if (!VerifyOnly) { // We cannot initialize this element, so let PerformCopyInitialization // produce the appropriate diagnostic. We already checked that this // initialization will fail. ExprResult Copy = SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, /*TopLevelOfInitList=*/true); (void)Copy; assert(Copy.isInvalid() && "expected non-aggregate initialization to fail"); } hadError = true; ++Index; ++StructuredIndex; } } void InitListChecker::CheckComplexType(const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex) { assert(Index == 0 && "Index in explicit init list must be zero"); // As an extension, clang supports complex initializers, which initialize // a complex number component-wise. When an explicit initializer list for // a complex number contains two initializers, this extension kicks in: // it expects the initializer list to contain two elements convertible to // the element type of the complex type. The first element initializes // the real part, and the second element intitializes the imaginary part. if (IList->getNumInits() < 2) return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, StructuredIndex); // This is an extension in C. (The builtin _Complex type does not exist // in the C++ standard.) if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) << IList->getSourceRange(); // Initialize the complex number. QualType elementType = DeclType->castAs()->getElementType(); InitializedEntity ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); for (unsigned i = 0; i < 2; ++i) { ElementEntity.setElementIndex(Index); CheckSubElementType(ElementEntity, IList, elementType, Index, StructuredList, StructuredIndex); } } void InitListChecker::CheckScalarType(const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex) { if (Index >= IList->getNumInits()) { if (!VerifyOnly) { if (SemaRef.getLangOpts().CPlusPlus) { if (DeclType->isSizelessBuiltinType()) SemaRef.Diag(IList->getBeginLoc(), SemaRef.getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_empty_sizeless_initializer : diag::err_empty_sizeless_initializer) << DeclType << IList->getSourceRange(); else SemaRef.Diag(IList->getBeginLoc(), SemaRef.getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_empty_scalar_initializer : diag::err_empty_scalar_initializer) << IList->getSourceRange(); } } hadError = SemaRef.getLangOpts().CPlusPlus && !SemaRef.getLangOpts().CPlusPlus11; ++Index; ++StructuredIndex; return; } Expr *expr = IList->getInit(Index); if (InitListExpr *SubIList = dyn_cast(expr)) { // FIXME: This is invalid, and accepting it causes overload resolution // to pick the wrong overload in some corner cases. if (!VerifyOnly) SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, StructuredIndex); return; } else if (isa(expr)) { if (!VerifyOnly) SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_or_sizeless_init) << DeclType->isSizelessBuiltinType() << DeclType << expr->getSourceRange(); hadError = true; ++Index; ++StructuredIndex; return; } ExprResult Result; if (VerifyOnly) { if (SemaRef.CanPerformCopyInitialization(Entity, expr)) Result = getDummyInit(); else Result = ExprError(); } else { Result = SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, /*TopLevelOfInitList=*/true); } Expr *ResultExpr = nullptr; if (Result.isInvalid()) hadError = true; // types weren't compatible. else { ResultExpr = Result.getAs(); if (ResultExpr != expr && !VerifyOnly) { // The type was promoted, update initializer list. // FIXME: Why are we updating the syntactic init list? IList->setInit(Index, ResultExpr); } } UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); ++Index; if (AggrDeductionCandidateParamTypes) AggrDeductionCandidateParamTypes->push_back(DeclType); } void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex) { if (Index >= IList->getNumInits()) { // FIXME: It would be wonderful if we could point at the actual member. In // general, it would be useful to pass location information down the stack, // so that we know the location (or decl) of the "current object" being // initialized. if (!VerifyOnly) SemaRef.Diag(IList->getBeginLoc(), diag::err_init_reference_member_uninitialized) << DeclType << IList->getSourceRange(); hadError = true; ++Index; ++StructuredIndex; return; } Expr *expr = IList->getInit(Index); if (isa(expr) && !SemaRef.getLangOpts().CPlusPlus11) { if (!VerifyOnly) SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) << DeclType << IList->getSourceRange(); hadError = true; ++Index; ++StructuredIndex; return; } ExprResult Result; if (VerifyOnly) { if (SemaRef.CanPerformCopyInitialization(Entity,expr)) Result = getDummyInit(); else Result = ExprError(); } else { Result = SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, /*TopLevelOfInitList=*/true); } if (Result.isInvalid()) hadError = true; expr = Result.getAs(); // FIXME: Why are we updating the syntactic init list? if (!VerifyOnly && expr) IList->setInit(Index, expr); UpdateStructuredListElement(StructuredList, StructuredIndex, expr); ++Index; if (AggrDeductionCandidateParamTypes) AggrDeductionCandidateParamTypes->push_back(DeclType); } void InitListChecker::CheckVectorType(const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex) { const VectorType *VT = DeclType->castAs(); unsigned maxElements = VT->getNumElements(); unsigned numEltsInit = 0; QualType elementType = VT->getElementType(); if (Index >= IList->getNumInits()) { // Make sure the element type can be value-initialized. CheckEmptyInitializable( InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), IList->getEndLoc()); return; } if (!SemaRef.getLangOpts().OpenCL && !SemaRef.getLangOpts().HLSL ) { // If the initializing element is a vector, try to copy-initialize // instead of breaking it apart (which is doomed to failure anyway). Expr *Init = IList->getInit(Index); if (!isa(Init) && Init->getType()->isVectorType()) { ExprResult Result; if (VerifyOnly) { if (SemaRef.CanPerformCopyInitialization(Entity, Init)) Result = getDummyInit(); else Result = ExprError(); } else { Result = SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, /*TopLevelOfInitList=*/true); } Expr *ResultExpr = nullptr; if (Result.isInvalid()) hadError = true; // types weren't compatible. else { ResultExpr = Result.getAs(); if (ResultExpr != Init && !VerifyOnly) { // The type was promoted, update initializer list. // FIXME: Why are we updating the syntactic init list? IList->setInit(Index, ResultExpr); } } UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); ++Index; if (AggrDeductionCandidateParamTypes) AggrDeductionCandidateParamTypes->push_back(elementType); return; } InitializedEntity ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { // Don't attempt to go past the end of the init list if (Index >= IList->getNumInits()) { CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); break; } ElementEntity.setElementIndex(Index); CheckSubElementType(ElementEntity, IList, elementType, Index, StructuredList, StructuredIndex); } if (VerifyOnly) return; bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); const VectorType *T = Entity.getType()->castAs(); if (isBigEndian && (T->getVectorKind() == VectorKind::Neon || T->getVectorKind() == VectorKind::NeonPoly)) { // The ability to use vector initializer lists is a GNU vector extension // and is unrelated to the NEON intrinsics in arm_neon.h. On little // endian machines it works fine, however on big endian machines it // exhibits surprising behaviour: // // uint32x2_t x = {42, 64}; // return vget_lane_u32(x, 0); // Will return 64. // // Because of this, explicitly call out that it is non-portable. // SemaRef.Diag(IList->getBeginLoc(), diag::warn_neon_vector_initializer_non_portable); const char *typeCode; unsigned typeSize = SemaRef.Context.getTypeSize(elementType); if (elementType->isFloatingType()) typeCode = "f"; else if (elementType->isSignedIntegerType()) typeCode = "s"; else if (elementType->isUnsignedIntegerType()) typeCode = "u"; else llvm_unreachable("Invalid element type!"); SemaRef.Diag(IList->getBeginLoc(), SemaRef.Context.getTypeSize(VT) > 64 ? diag::note_neon_vector_initializer_non_portable_q : diag::note_neon_vector_initializer_non_portable) << typeCode << typeSize; } return; } InitializedEntity ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); // OpenCL and HLSL initializers allow vectors to be constructed from vectors. for (unsigned i = 0; i < maxElements; ++i) { // Don't attempt to go past the end of the init list if (Index >= IList->getNumInits()) break; ElementEntity.setElementIndex(Index); QualType IType = IList->getInit(Index)->getType(); if (!IType->isVectorType()) { CheckSubElementType(ElementEntity, IList, elementType, Index, StructuredList, StructuredIndex); ++numEltsInit; } else { QualType VecType; const VectorType *IVT = IType->castAs(); unsigned numIElts = IVT->getNumElements(); if (IType->isExtVectorType()) VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); else VecType = SemaRef.Context.getVectorType(elementType, numIElts, IVT->getVectorKind()); CheckSubElementType(ElementEntity, IList, VecType, Index, StructuredList, StructuredIndex); numEltsInit += numIElts; } } // OpenCL and HLSL require all elements to be initialized. if (numEltsInit != maxElements) { if (!VerifyOnly) SemaRef.Diag(IList->getBeginLoc(), diag::err_vector_incorrect_num_initializers) << (numEltsInit < maxElements) << maxElements << numEltsInit; hadError = true; } } /// Check if the type of a class element has an accessible destructor, and marks /// it referenced. Returns true if we shouldn't form a reference to the /// destructor. /// /// Aggregate initialization requires a class element's destructor be /// accessible per 11.6.1 [dcl.init.aggr]: /// /// The destructor for each element of class type is potentially invoked /// (15.4 [class.dtor]) from the context where the aggregate initialization /// occurs. static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, Sema &SemaRef) { auto *CXXRD = ElementType->getAsCXXRecordDecl(); if (!CXXRD) return false; CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); SemaRef.CheckDestructorAccess(Loc, Destructor, SemaRef.PDiag(diag::err_access_dtor_temp) << ElementType); SemaRef.MarkFunctionReferenced(Loc, Destructor); return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); } void InitListChecker::CheckArrayType(const InitializedEntity &Entity, InitListExpr *IList, QualType &DeclType, llvm::APSInt elementIndex, bool SubobjectIsDesignatorContext, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex) { const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); if (!VerifyOnly) { if (checkDestructorReference(arrayType->getElementType(), IList->getEndLoc(), SemaRef)) { hadError = true; return; } } // Check for the special-case of initializing an array with a string. if (Index < IList->getNumInits()) { if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == SIF_None) { // We place the string literal directly into the resulting // initializer list. This is the only place where the structure // of the structured initializer list doesn't match exactly, // because doing so would involve allocating one character // constant for each string. // FIXME: Should we do these checks in verify-only mode too? if (!VerifyOnly) CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); if (StructuredList) { UpdateStructuredListElement(StructuredList, StructuredIndex, IList->getInit(Index)); StructuredList->resizeInits(SemaRef.Context, StructuredIndex); } ++Index; if (AggrDeductionCandidateParamTypes) AggrDeductionCandidateParamTypes->push_back(DeclType); return; } } if (const VariableArrayType *VAT = dyn_cast(arrayType)) { // Check for VLAs; in standard C it would be possible to check this // earlier, but I don't know where clang accepts VLAs (gcc accepts // them in all sorts of strange places). bool HasErr = IList->getNumInits() != 0 || SemaRef.getLangOpts().CPlusPlus; if (!VerifyOnly) { // C23 6.7.10p4: An entity of variable length array type shall not be // initialized except by an empty initializer. // // The C extension warnings are issued from ParseBraceInitializer() and // do not need to be issued here. However, we continue to issue an error // in the case there are initializers or we are compiling C++. We allow // use of VLAs in C++, but it's not clear we want to allow {} to zero // init a VLA in C++ in all cases (such as with non-trivial constructors). // FIXME: should we allow this construct in C++ when it makes sense to do // so? if (HasErr) SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), diag::err_variable_object_no_init) << VAT->getSizeExpr()->getSourceRange(); } hadError = HasErr; ++Index; ++StructuredIndex; return; } // We might know the maximum number of elements in advance. llvm::APSInt maxElements(elementIndex.getBitWidth(), elementIndex.isUnsigned()); bool maxElementsKnown = false; if (const ConstantArrayType *CAT = dyn_cast(arrayType)) { maxElements = CAT->getSize(); elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); elementIndex.setIsUnsigned(maxElements.isUnsigned()); maxElementsKnown = true; } QualType elementType = arrayType->getElementType(); while (Index < IList->getNumInits()) { Expr *Init = IList->getInit(Index); if (DesignatedInitExpr *DIE = dyn_cast(Init)) { // If we're not the subobject that matches up with the '{' for // the designator, we shouldn't be handling the // designator. Return immediately. if (!SubobjectIsDesignatorContext) return; // Handle this designated initializer. elementIndex will be // updated to be the next array element we'll initialize. if (CheckDesignatedInitializer(Entity, IList, DIE, 0, DeclType, nullptr, &elementIndex, Index, StructuredList, StructuredIndex, true, false)) { hadError = true; continue; } if (elementIndex.getBitWidth() > maxElements.getBitWidth()) maxElements = maxElements.extend(elementIndex.getBitWidth()); else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) elementIndex = elementIndex.extend(maxElements.getBitWidth()); elementIndex.setIsUnsigned(maxElements.isUnsigned()); // If the array is of incomplete type, keep track of the number of // elements in the initializer. if (!maxElementsKnown && elementIndex > maxElements) maxElements = elementIndex; continue; } // If we know the maximum number of elements, and we've already // hit it, stop consuming elements in the initializer list. if (maxElementsKnown && elementIndex == maxElements) break; InitializedEntity ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, Entity); // Check this element. CheckSubElementType(ElementEntity, IList, elementType, Index, StructuredList, StructuredIndex); ++elementIndex; // If the array is of incomplete type, keep track of the number of // elements in the initializer. if (!maxElementsKnown && elementIndex > maxElements) maxElements = elementIndex; } if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { // If this is an incomplete array type, the actual type needs to // be calculated here. llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { // Sizing an array implicitly to zero is not allowed by ISO C, // but is supported by GNU. SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); } DeclType = SemaRef.Context.getConstantArrayType( elementType, maxElements, nullptr, ArraySizeModifier::Normal, 0); } if (!hadError) { // If there are any members of the array that get value-initialized, check // that is possible. That happens if we know the bound and don't have // enough elements, or if we're performing an array new with an unknown // bound. if ((maxElementsKnown && elementIndex < maxElements) || Entity.isVariableLengthArrayNew()) CheckEmptyInitializable( InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), IList->getEndLoc()); } } bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, Expr *InitExpr, FieldDecl *Field, bool TopLevelObject) { // Handle GNU flexible array initializers. unsigned FlexArrayDiag; if (isa(InitExpr) && cast(InitExpr)->getNumInits() == 0) { // Empty flexible array init always allowed as an extension FlexArrayDiag = diag::ext_flexible_array_init; } else if (!TopLevelObject) { // Disallow flexible array init on non-top-level object FlexArrayDiag = diag::err_flexible_array_init; } else if (Entity.getKind() != InitializedEntity::EK_Variable) { // Disallow flexible array init on anything which is not a variable. FlexArrayDiag = diag::err_flexible_array_init; } else if (cast(Entity.getDecl())->hasLocalStorage()) { // Disallow flexible array init on local variables. FlexArrayDiag = diag::err_flexible_array_init; } else { // Allow other cases. FlexArrayDiag = diag::ext_flexible_array_init; } if (!VerifyOnly) { SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) << InitExpr->getBeginLoc(); SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) << Field; } return FlexArrayDiag != diag::ext_flexible_array_init; } void InitListChecker::CheckStructUnionTypes( const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, CXXRecordDecl::base_class_const_range Bases, RecordDecl::field_iterator Field, bool SubobjectIsDesignatorContext, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool TopLevelObject) { const RecordDecl *RD = getRecordDecl(DeclType); // If the record is invalid, some of it's members are invalid. To avoid // confusion, we forgo checking the initializer for the entire record. if (RD->isInvalidDecl()) { // Assume it was supposed to consume a single initializer. ++Index; hadError = true; return; } if (RD->isUnion() && IList->getNumInits() == 0) { if (!VerifyOnly) for (FieldDecl *FD : RD->fields()) { QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { hadError = true; return; } } // If there's a default initializer, use it. if (isa(RD) && cast(RD)->hasInClassInitializer()) { if (!StructuredList) return; for (RecordDecl::field_iterator FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) { if (Field->hasInClassInitializer()) { StructuredList->setInitializedFieldInUnion(*Field); // FIXME: Actually build a CXXDefaultInitExpr? return; } } } // Value-initialize the first member of the union that isn't an unnamed // bitfield. for (RecordDecl::field_iterator FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) { if (!Field->isUnnamedBitfield()) { CheckEmptyInitializable( InitializedEntity::InitializeMember(*Field, &Entity), IList->getEndLoc()); if (StructuredList) StructuredList->setInitializedFieldInUnion(*Field); break; } } return; } bool InitializedSomething = false; // If we have any base classes, they are initialized prior to the fields. for (auto I = Bases.begin(), E = Bases.end(); I != E; ++I) { auto &Base = *I; Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; // Designated inits always initialize fields, so if we see one, all // remaining base classes have no explicit initializer. if (Init && isa(Init)) Init = nullptr; // C++ [over.match.class.deduct]p1.6: // each non-trailing aggregate element that is a pack expansion is assumed // to correspond to no elements of the initializer list, and (1.7) a // trailing aggregate element that is a pack expansion is assumed to // correspond to all remaining elements of the initializer list (if any). // C++ [over.match.class.deduct]p1.9: // ... except that additional parameter packs of the form P_j... are // inserted into the parameter list in their original aggregate element // position corresponding to each non-trailing aggregate element of // type P_j that was skipped because it was a parameter pack, and the // trailing sequence of parameters corresponding to a trailing // aggregate element that is a pack expansion (if any) is replaced // by a single parameter of the form T_n.... if (AggrDeductionCandidateParamTypes && Base.isPackExpansion()) { AggrDeductionCandidateParamTypes->push_back( SemaRef.Context.getPackExpansionType(Base.getType(), std::nullopt)); // Trailing pack expansion if (I + 1 == E && RD->field_empty()) { if (Index < IList->getNumInits()) Index = IList->getNumInits(); return; } continue; } SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); InitializedEntity BaseEntity = InitializedEntity::InitializeBase( SemaRef.Context, &Base, false, &Entity); if (Init) { CheckSubElementType(BaseEntity, IList, Base.getType(), Index, StructuredList, StructuredIndex); InitializedSomething = true; } else { CheckEmptyInitializable(BaseEntity, InitLoc); } if (!VerifyOnly) if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { hadError = true; return; } } // If structDecl is a forward declaration, this loop won't do // anything except look at designated initializers; That's okay, // because an error should get printed out elsewhere. It might be // worthwhile to skip over the rest of the initializer, though. RecordDecl::field_iterator FieldEnd = RD->field_end(); size_t NumRecordDecls = llvm::count_if(RD->decls(), [&](const Decl *D) { return isa(D) || isa(D); }); bool CheckForMissingFields = !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); bool HasDesignatedInit = false; llvm::SmallPtrSet InitializedFields; while (Index < IList->getNumInits()) { Expr *Init = IList->getInit(Index); SourceLocation InitLoc = Init->getBeginLoc(); if (DesignatedInitExpr *DIE = dyn_cast(Init)) { // If we're not the subobject that matches up with the '{' for // the designator, we shouldn't be handling the // designator. Return immediately. if (!SubobjectIsDesignatorContext) return; HasDesignatedInit = true; // Handle this designated initializer. Field will be updated to // the next field that we'll be initializing. bool DesignatedInitFailed = CheckDesignatedInitializer( Entity, IList, DIE, 0, DeclType, &Field, nullptr, Index, StructuredList, StructuredIndex, true, TopLevelObject); if (DesignatedInitFailed) hadError = true; // Find the field named by the designated initializer. DesignatedInitExpr::Designator *D = DIE->getDesignator(0); if (!VerifyOnly && D->isFieldDesignator()) { FieldDecl *F = D->getFieldDecl(); InitializedFields.insert(F); if (!DesignatedInitFailed) { QualType ET = SemaRef.Context.getBaseElementType(F->getType()); if (checkDestructorReference(ET, InitLoc, SemaRef)) { hadError = true; return; } } } InitializedSomething = true; // Disable check for missing fields when designators are used. // This matches gcc behaviour. if (!SemaRef.getLangOpts().CPlusPlus) CheckForMissingFields = false; continue; } // Check if this is an initializer of forms: // // struct foo f = {}; // struct foo g = {0}; // // These are okay for randomized structures. [C99 6.7.8p19] // // Also, if there is only one element in the structure, we allow something // like this, because it's really not randomized in the tranditional sense. // // struct foo h = {bar}; auto IsZeroInitializer = [&](const Expr *I) { if (IList->getNumInits() == 1) { if (NumRecordDecls == 1) return true; if (const auto *IL = dyn_cast(I)) return IL->getValue().isZero(); } return false; }; // Don't allow non-designated initializers on randomized structures. if (RD->isRandomized() && !IsZeroInitializer(Init)) { if (!VerifyOnly) SemaRef.Diag(InitLoc, diag::err_non_designated_init_used); hadError = true; break; } if (Field == FieldEnd) { // We've run out of fields. We're done. break; } // We've already initialized a member of a union. We're done. if (InitializedSomething && RD->isUnion()) break; // If we've hit the flexible array member at the end, we're done. if (Field->getType()->isIncompleteArrayType()) break; if (Field->isUnnamedBitfield()) { // Don't initialize unnamed bitfields, e.g. "int : 20;" ++Field; continue; } // Make sure we can use this declaration. bool InvalidUse; if (VerifyOnly) InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); else InvalidUse = SemaRef.DiagnoseUseOfDecl( *Field, IList->getInit(Index)->getBeginLoc()); if (InvalidUse) { ++Index; ++Field; hadError = true; continue; } if (!VerifyOnly) { QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); if (checkDestructorReference(ET, InitLoc, SemaRef)) { hadError = true; return; } } InitializedEntity MemberEntity = InitializedEntity::InitializeMember(*Field, &Entity); CheckSubElementType(MemberEntity, IList, Field->getType(), Index, StructuredList, StructuredIndex); InitializedSomething = true; InitializedFields.insert(*Field); if (RD->isUnion() && StructuredList) { // Initialize the first field within the union. StructuredList->setInitializedFieldInUnion(*Field); } ++Field; } // Emit warnings for missing struct field initializers. if (!VerifyOnly && InitializedSomething && CheckForMissingFields && !RD->isUnion()) { // It is possible we have one or more unnamed bitfields remaining. // Find first (if any) named field and emit warning. for (RecordDecl::field_iterator it = HasDesignatedInit ? RD->field_begin() : Field, end = RD->field_end(); it != end; ++it) { if (HasDesignatedInit && InitializedFields.count(*it)) continue; if (!it->isUnnamedBitfield() && !it->hasInClassInitializer() && !it->getType()->isIncompleteArrayType()) { SemaRef.Diag(IList->getSourceRange().getEnd(), diag::warn_missing_field_initializers) << *it; break; } } } // Check that any remaining fields can be value-initialized if we're not // building a structured list. (If we are, we'll check this later.) if (!StructuredList && Field != FieldEnd && !RD->isUnion() && !Field->getType()->isIncompleteArrayType()) { for (; Field != FieldEnd && !hadError; ++Field) { if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) CheckEmptyInitializable( InitializedEntity::InitializeMember(*Field, &Entity), IList->getEndLoc()); } } // Check that the types of the remaining fields have accessible destructors. if (!VerifyOnly) { // If the initializer expression has a designated initializer, check the // elements for which a designated initializer is not provided too. RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() : Field; for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { QualType ET = SemaRef.Context.getBaseElementType(I->getType()); if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { hadError = true; return; } } } if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || Index >= IList->getNumInits()) return; if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, TopLevelObject)) { hadError = true; ++Index; return; } InitializedEntity MemberEntity = InitializedEntity::InitializeMember(*Field, &Entity); if (isa(IList->getInit(Index)) || AggrDeductionCandidateParamTypes) CheckSubElementType(MemberEntity, IList, Field->getType(), Index, StructuredList, StructuredIndex); else CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, StructuredList, StructuredIndex); } /// Expand a field designator that refers to a member of an /// anonymous struct or union into a series of field designators that /// refers to the field within the appropriate subobject. /// static void ExpandAnonymousFieldDesignator(Sema &SemaRef, DesignatedInitExpr *DIE, unsigned DesigIdx, IndirectFieldDecl *IndirectField) { typedef DesignatedInitExpr::Designator Designator; // Build the replacement designators. SmallVector Replacements; for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), PE = IndirectField->chain_end(); PI != PE; ++PI) { if (PI + 1 == PE) Replacements.push_back(Designator::CreateFieldDesignator( (IdentifierInfo *)nullptr, DIE->getDesignator(DesigIdx)->getDotLoc(), DIE->getDesignator(DesigIdx)->getFieldLoc())); else Replacements.push_back(Designator::CreateFieldDesignator( (IdentifierInfo *)nullptr, SourceLocation(), SourceLocation())); assert(isa(*PI)); Replacements.back().setFieldDecl(cast(*PI)); } // Expand the current designator into the set of replacement // designators, so we have a full subobject path down to where the // member of the anonymous struct/union is actually stored. DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], &Replacements[0] + Replacements.size()); } static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, DesignatedInitExpr *DIE) { unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; SmallVector IndexExprs(NumIndexExprs); for (unsigned I = 0; I < NumIndexExprs; ++I) IndexExprs[I] = DIE->getSubExpr(I + 1); return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), IndexExprs, DIE->getEqualOrColonLoc(), DIE->usesGNUSyntax(), DIE->getInit()); } namespace { // Callback to only accept typo corrections that are for field members of // the given struct or union. class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { public: explicit FieldInitializerValidatorCCC(const RecordDecl *RD) : Record(RD) {} bool ValidateCandidate(const TypoCorrection &candidate) override { FieldDecl *FD = candidate.getCorrectionDeclAs(); return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); } std::unique_ptr clone() override { return std::make_unique(*this); } private: const RecordDecl *Record; }; } // end anonymous namespace /// Check the well-formedness of a C99 designated initializer. /// /// Determines whether the designated initializer @p DIE, which /// resides at the given @p Index within the initializer list @p /// IList, is well-formed for a current object of type @p DeclType /// (C99 6.7.8). The actual subobject that this designator refers to /// within the current subobject is returned in either /// @p NextField or @p NextElementIndex (whichever is appropriate). /// /// @param IList The initializer list in which this designated /// initializer occurs. /// /// @param DIE The designated initializer expression. /// /// @param DesigIdx The index of the current designator. /// /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), /// into which the designation in @p DIE should refer. /// /// @param NextField If non-NULL and the first designator in @p DIE is /// a field, this will be set to the field declaration corresponding /// to the field named by the designator. On input, this is expected to be /// the next field that would be initialized in the absence of designation, /// if the complete object being initialized is a struct. /// /// @param NextElementIndex If non-NULL and the first designator in @p /// DIE is an array designator or GNU array-range designator, this /// will be set to the last index initialized by this designator. /// /// @param Index Index into @p IList where the designated initializer /// @p DIE occurs. /// /// @param StructuredList The initializer list expression that /// describes all of the subobject initializers in the order they'll /// actually be initialized. /// /// @returns true if there was an error, false otherwise. bool InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, InitListExpr *IList, DesignatedInitExpr *DIE, unsigned DesigIdx, QualType &CurrentObjectType, RecordDecl::field_iterator *NextField, llvm::APSInt *NextElementIndex, unsigned &Index, InitListExpr *StructuredList, unsigned &StructuredIndex, bool FinishSubobjectInit, bool TopLevelObject) { if (DesigIdx == DIE->size()) { // C++20 designated initialization can result in direct-list-initialization // of the designated subobject. This is the only way that we can end up // performing direct initialization as part of aggregate initialization, so // it needs special handling. if (DIE->isDirectInit()) { Expr *Init = DIE->getInit(); assert(isa(Init) && "designator result in direct non-list initialization?"); InitializationKind Kind = InitializationKind::CreateDirectList( DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); InitializationSequence Seq(SemaRef, Entity, Kind, Init, /*TopLevelOfInitList*/ true); if (StructuredList) { ExprResult Result = VerifyOnly ? getDummyInit() : Seq.Perform(SemaRef, Entity, Kind, Init); UpdateStructuredListElement(StructuredList, StructuredIndex, Result.get()); } ++Index; if (AggrDeductionCandidateParamTypes) AggrDeductionCandidateParamTypes->push_back(CurrentObjectType); return !Seq; } // Check the actual initialization for the designated object type. bool prevHadError = hadError; // Temporarily remove the designator expression from the // initializer list that the child calls see, so that we don't try // to re-process the designator. unsigned OldIndex = Index; IList->setInit(OldIndex, DIE->getInit()); CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList, StructuredIndex, /*DirectlyDesignated=*/true); // Restore the designated initializer expression in the syntactic // form of the initializer list. if (IList->getInit(OldIndex) != DIE->getInit()) DIE->setInit(IList->getInit(OldIndex)); IList->setInit(OldIndex, DIE); return hadError && !prevHadError; } DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); bool IsFirstDesignator = (DesigIdx == 0); if (IsFirstDesignator ? FullyStructuredList : StructuredList) { // Determine the structural initializer list that corresponds to the // current subobject. if (IsFirstDesignator) StructuredList = FullyStructuredList; else { Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? StructuredList->getInit(StructuredIndex) : nullptr; if (!ExistingInit && StructuredList->hasArrayFiller()) ExistingInit = StructuredList->getArrayFiller(); if (!ExistingInit) StructuredList = getStructuredSubobjectInit( IList, Index, CurrentObjectType, StructuredList, StructuredIndex, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); else if (InitListExpr *Result = dyn_cast(ExistingInit)) StructuredList = Result; else { // We are creating an initializer list that initializes the // subobjects of the current object, but there was already an // initialization that completely initialized the current // subobject, e.g., by a compound literal: // // struct X { int a, b; }; // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; // // Here, xs[0].a == 1 and xs[0].b == 3, since the second, // designated initializer re-initializes only its current object // subobject [0].b. diagnoseInitOverride(ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()), /*UnionOverride=*/false, /*FullyOverwritten=*/false); if (!VerifyOnly) { if (DesignatedInitUpdateExpr *E = dyn_cast(ExistingInit)) StructuredList = E->getUpdater(); else { DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), ExistingInit, DIE->getEndLoc()); StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); StructuredList = DIUE->getUpdater(); } } else { // We don't need to track the structured representation of a // designated init update of an already-fully-initialized object in // verify-only mode. The only reason we would need the structure is // to determine where the uninitialized "holes" are, and in this // case, we know there aren't any and we can't introduce any. StructuredList = nullptr; } } } } if (D->isFieldDesignator()) { // C99 6.7.8p7: // // If a designator has the form // // . identifier // // then the current object (defined below) shall have // structure or union type and the identifier shall be the // name of a member of that type. RecordDecl *RD = getRecordDecl(CurrentObjectType); if (!RD) { SourceLocation Loc = D->getDotLoc(); if (Loc.isInvalid()) Loc = D->getFieldLoc(); if (!VerifyOnly) SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; ++Index; return true; } FieldDecl *KnownField = D->getFieldDecl(); if (!KnownField) { const IdentifierInfo *FieldName = D->getFieldName(); ValueDecl *VD = SemaRef.tryLookupUnambiguousFieldDecl(RD, FieldName); if (auto *FD = dyn_cast_if_present(VD)) { KnownField = FD; } else if (auto *IFD = dyn_cast_if_present(VD)) { // In verify mode, don't modify the original. if (VerifyOnly) DIE = CloneDesignatedInitExpr(SemaRef, DIE); ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); D = DIE->getDesignator(DesigIdx); KnownField = cast(*IFD->chain_begin()); } if (!KnownField) { if (VerifyOnly) { ++Index; return true; // No typo correction when just trying this out. } // We found a placeholder variable if (SemaRef.DiagRedefinedPlaceholderFieldDecl(DIE->getBeginLoc(), RD, FieldName)) { ++Index; return true; } // Name lookup found something, but it wasn't a field. if (DeclContextLookupResult Lookup = RD->lookup(FieldName); !Lookup.empty()) { SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) << FieldName; SemaRef.Diag(Lookup.front()->getLocation(), diag::note_field_designator_found); ++Index; return true; } // Name lookup didn't find anything. // Determine whether this was a typo for another field name. FieldInitializerValidatorCCC CCC(RD); if (TypoCorrection Corrected = SemaRef.CorrectTypo( DeclarationNameInfo(FieldName, D->getFieldLoc()), Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, Sema::CTK_ErrorRecovery, RD)) { SemaRef.diagnoseTypo( Corrected, SemaRef.PDiag(diag::err_field_designator_unknown_suggest) << FieldName << CurrentObjectType); KnownField = Corrected.getCorrectionDeclAs(); hadError = true; } else { // Typo correction didn't find anything. SourceLocation Loc = D->getFieldLoc(); // The loc can be invalid with a "null" designator (i.e. an anonymous // union/struct). Do our best to approximate the location. if (Loc.isInvalid()) Loc = IList->getBeginLoc(); SemaRef.Diag(Loc, diag::err_field_designator_unknown) << FieldName << CurrentObjectType << DIE->getSourceRange(); ++Index; return true; } } } unsigned NumBases = 0; if (auto *CXXRD = dyn_cast(RD)) NumBases = CXXRD->getNumBases(); unsigned FieldIndex = NumBases; for (auto *FI : RD->fields()) { if (FI->isUnnamedBitfield()) continue; if (declaresSameEntity(KnownField, FI)) { KnownField = FI; break; } ++FieldIndex; } RecordDecl::field_iterator Field = RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); // All of the fields of a union are located at the same place in // the initializer list. if (RD->isUnion()) { FieldIndex = 0; if (StructuredList) { FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { assert(StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"); Expr *ExistingInit = StructuredList->getInit(0); if (ExistingInit) { // We're about to throw away an initializer, emit warning. diagnoseInitOverride( ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()), /*UnionOverride=*/true, /*FullyOverwritten=*/SemaRef.getLangOpts().CPlusPlus ? false : true); } // remove existing initializer StructuredList->resizeInits(SemaRef.Context, 0); StructuredList->setInitializedFieldInUnion(nullptr); } StructuredList->setInitializedFieldInUnion(*Field); } } // Make sure we can use this declaration. bool InvalidUse; if (VerifyOnly) InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); else InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); if (InvalidUse) { ++Index; return true; } // C++20 [dcl.init.list]p3: // The ordered identifiers in the designators of the designated- // initializer-list shall form a subsequence of the ordered identifiers // in the direct non-static data members of T. // // Note that this is not a condition on forming the aggregate // initialization, only on actually performing initialization, // so it is not checked in VerifyOnly mode. // // FIXME: This is the only reordering diagnostic we produce, and it only // catches cases where we have a top-level field designator that jumps // backwards. This is the only such case that is reachable in an // otherwise-valid C++20 program, so is the only case that's required for // conformance, but for consistency, we should diagnose all the other // cases where a designator takes us backwards too. if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && NextField && (*NextField == RD->field_end() || (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { // Find the field that we just initialized. FieldDecl *PrevField = nullptr; for (auto FI = RD->field_begin(); FI != RD->field_end(); ++FI) { if (FI->isUnnamedBitfield()) continue; if (*NextField != RD->field_end() && declaresSameEntity(*FI, **NextField)) break; PrevField = *FI; } if (PrevField && PrevField->getFieldIndex() > KnownField->getFieldIndex()) { SemaRef.Diag(DIE->getInit()->getBeginLoc(), diag::ext_designated_init_reordered) << KnownField << PrevField << DIE->getSourceRange(); unsigned OldIndex = StructuredIndex - 1; if (StructuredList && OldIndex <= StructuredList->getNumInits()) { if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_field_init) << PrevField << PrevInit->getSourceRange(); } } } } // Update the designator with the field declaration. if (!VerifyOnly) D->setFieldDecl(*Field); // Make sure that our non-designated initializer list has space // for a subobject corresponding to this field. if (StructuredList && FieldIndex >= StructuredList->getNumInits()) StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); // This designator names a flexible array member. if (Field->getType()->isIncompleteArrayType()) { bool Invalid = false; if ((DesigIdx + 1) != DIE->size()) { // We can't designate an object within the flexible array // member (because GCC doesn't allow it). if (!VerifyOnly) { DesignatedInitExpr::Designator *NextD = DIE->getDesignator(DesigIdx + 1); SemaRef.Diag(NextD->getBeginLoc(), diag::err_designator_into_flexible_array_member) << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) << *Field; } Invalid = true; } if (!hadError && !isa(DIE->getInit()) && !isa(DIE->getInit())) { // The initializer is not an initializer list. if (!VerifyOnly) { SemaRef.Diag(DIE->getInit()->getBeginLoc(), diag::err_flexible_array_init_needs_braces) << DIE->getInit()->getSourceRange(); SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) << *Field; } Invalid = true; } // Check GNU flexible array initializer. if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, TopLevelObject)) Invalid = true; if (Invalid) { ++Index; return true; } // Initialize the array. bool prevHadError = hadError; unsigned newStructuredIndex = FieldIndex; unsigned OldIndex = Index; IList->setInit(Index, DIE->getInit()); InitializedEntity MemberEntity = InitializedEntity::InitializeMember(*Field, &Entity); CheckSubElementType(MemberEntity, IList, Field->getType(), Index, StructuredList, newStructuredIndex); IList->setInit(OldIndex, DIE); if (hadError && !prevHadError) { ++Field; ++FieldIndex; if (NextField) *NextField = Field; StructuredIndex = FieldIndex; return true; } } else { // Recurse to check later designated subobjects. QualType FieldType = Field->getType(); unsigned newStructuredIndex = FieldIndex; InitializedEntity MemberEntity = InitializedEntity::InitializeMember(*Field, &Entity); if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, FieldType, nullptr, nullptr, Index, StructuredList, newStructuredIndex, FinishSubobjectInit, false)) return true; } // Find the position of the next field to be initialized in this // subobject. ++Field; ++FieldIndex; // If this the first designator, our caller will continue checking // the rest of this struct/class/union subobject. if (IsFirstDesignator) { if (Field != RD->field_end() && Field->isUnnamedBitfield()) ++Field; if (NextField) *NextField = Field; StructuredIndex = FieldIndex; return false; } if (!FinishSubobjectInit) return false; // We've already initialized something in the union; we're done. if (RD->isUnion()) return hadError; // Check the remaining fields within this class/struct/union subobject. bool prevHadError = hadError; auto NoBases = CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), CXXRecordDecl::base_class_iterator()); CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, false, Index, StructuredList, FieldIndex); return hadError && !prevHadError; } // C99 6.7.8p6: // // If a designator has the form // // [ constant-expression ] // // then the current object (defined below) shall have array // type and the expression shall be an integer constant // expression. If the array is of unknown size, any // nonnegative value is valid. // // Additionally, cope with the GNU extension that permits // designators of the form // // [ constant-expression ... constant-expression ] const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); if (!AT) { if (!VerifyOnly) SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) << CurrentObjectType; ++Index; return true; } Expr *IndexExpr = nullptr; llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; if (D->isArrayDesignator()) { IndexExpr = DIE->getArrayIndex(*D); DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); DesignatedEndIndex = DesignatedStartIndex; } else { assert(D->isArrayRangeDesignator() && "Need array-range designator"); DesignatedStartIndex = DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); DesignatedEndIndex = DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); IndexExpr = DIE->getArrayRangeEnd(*D); // Codegen can't handle evaluating array range designators that have side // effects, because we replicate the AST value for each initialized element. // As such, set the sawArrayRangeDesignator() bit if we initialize multiple // elements with something that has a side effect, so codegen can emit an // "error unsupported" error instead of miscompiling the app. if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) FullyStructuredList->sawArrayRangeDesignator(); } if (isa(AT)) { llvm::APSInt MaxElements(cast(AT)->getSize(), false); DesignatedStartIndex = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); DesignatedEndIndex = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); if (DesignatedEndIndex >= MaxElements) { if (!VerifyOnly) SemaRef.Diag(IndexExpr->getBeginLoc(), diag::err_array_designator_too_large) << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10) << IndexExpr->getSourceRange(); ++Index; return true; } } else { unsigned DesignatedIndexBitWidth = ConstantArrayType::getMaxSizeBits(SemaRef.Context); DesignatedStartIndex = DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); DesignatedEndIndex = DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); DesignatedStartIndex.setIsUnsigned(true); DesignatedEndIndex.setIsUnsigned(true); } bool IsStringLiteralInitUpdate = StructuredList && StructuredList->isStringLiteralInit(); if (IsStringLiteralInitUpdate && VerifyOnly) { // We're just verifying an update to a string literal init. We don't need // to split the string up into individual characters to do that. StructuredList = nullptr; } else if (IsStringLiteralInitUpdate) { // We're modifying a string literal init; we have to decompose the string // so we can modify the individual characters. ASTContext &Context = SemaRef.Context; Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts(); // Compute the character type QualType CharTy = AT->getElementType(); // Compute the type of the integer literals. QualType PromotedCharTy = CharTy; if (Context.isPromotableIntegerType(CharTy)) PromotedCharTy = Context.getPromotedIntegerType(CharTy); unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); if (StringLiteral *SL = dyn_cast(SubExpr)) { // Get the length of the string. uint64_t StrLen = SL->getLength(); if (cast(AT)->getSize().ult(StrLen)) StrLen = cast(AT)->getSize().getZExtValue(); StructuredList->resizeInits(Context, StrLen); // Build a literal for each character in the string, and put them into // the init list. for (unsigned i = 0, e = StrLen; i != e; ++i) { llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); Expr *Init = new (Context) IntegerLiteral( Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); if (CharTy != PromotedCharTy) Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init, nullptr, VK_PRValue, FPOptionsOverride()); StructuredList->updateInit(Context, i, Init); } } else { ObjCEncodeExpr *E = cast(SubExpr); std::string Str; Context.getObjCEncodingForType(E->getEncodedType(), Str); // Get the length of the string. uint64_t StrLen = Str.size(); if (cast(AT)->getSize().ult(StrLen)) StrLen = cast(AT)->getSize().getZExtValue(); StructuredList->resizeInits(Context, StrLen); // Build a literal for each character in the string, and put them into // the init list. for (unsigned i = 0, e = StrLen; i != e; ++i) { llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); Expr *Init = new (Context) IntegerLiteral( Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); if (CharTy != PromotedCharTy) Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init, nullptr, VK_PRValue, FPOptionsOverride()); StructuredList->updateInit(Context, i, Init); } } } // Make sure that our non-designated initializer list has space // for a subobject corresponding to this array element. if (StructuredList && DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) StructuredList->resizeInits(SemaRef.Context, DesignatedEndIndex.getZExtValue() + 1); // Repeatedly perform subobject initializations in the range // [DesignatedStartIndex, DesignatedEndIndex]. // Move to the next designator unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); unsigned OldIndex = Index; InitializedEntity ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); while (DesignatedStartIndex <= DesignatedEndIndex) { // Recurse to check later designated subobjects. QualType ElementType = AT->getElementType(); Index = OldIndex; ElementEntity.setElementIndex(ElementIndex); if (CheckDesignatedInitializer( ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, nullptr, Index, StructuredList, ElementIndex, FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), false)) return true; // Move to the next index in the array that we'll be initializing. ++DesignatedStartIndex; ElementIndex = DesignatedStartIndex.getZExtValue(); } // If this the first designator, our caller will continue checking // the rest of this array subobject. if (IsFirstDesignator) { if (NextElementIndex) *NextElementIndex = DesignatedStartIndex; StructuredIndex = ElementIndex; return false; } if (!FinishSubobjectInit) return false; // Check the remaining elements within this array subobject. bool prevHadError = hadError; CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, /*SubobjectIsDesignatorContext=*/false, Index, StructuredList, ElementIndex); return hadError && !prevHadError; } // Get the structured initializer list for a subobject of type // @p CurrentObjectType. InitListExpr * InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, QualType CurrentObjectType, InitListExpr *StructuredList, unsigned StructuredIndex, SourceRange InitRange, bool IsFullyOverwritten) { if (!StructuredList) return nullptr; Expr *ExistingInit = nullptr; if (StructuredIndex < StructuredList->getNumInits()) ExistingInit = StructuredList->getInit(StructuredIndex); if (InitListExpr *Result = dyn_cast_or_null(ExistingInit)) // There might have already been initializers for subobjects of the current // object, but a subsequent initializer list will overwrite the entirety // of the current object. (See DR 253 and C99 6.7.8p21). e.g., // // struct P { char x[6]; }; // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; // // The first designated initializer is ignored, and l.x is just "f". if (!IsFullyOverwritten) return Result; if (ExistingInit) { // We are creating an initializer list that initializes the // subobjects of the current object, but there was already an // initialization that completely initialized the current // subobject: // // struct X { int a, b; }; // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; // // Here, xs[0].a == 1 and xs[0].b == 3, since the second, // designated initializer overwrites the [0].b initializer // from the prior initialization. // // When the existing initializer is an expression rather than an // initializer list, we cannot decompose and update it in this way. // For example: // // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; // // This case is handled by CheckDesignatedInitializer. diagnoseInitOverride(ExistingInit, InitRange); } unsigned ExpectedNumInits = 0; if (Index < IList->getNumInits()) { if (auto *Init = dyn_cast_or_null(IList->getInit(Index))) ExpectedNumInits = Init->getNumInits(); else ExpectedNumInits = IList->getNumInits() - Index; } InitListExpr *Result = createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); // Link this new initializer list into the structured initializer // lists. StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); return Result; } InitListExpr * InitListChecker::createInitListExpr(QualType CurrentObjectType, SourceRange InitRange, unsigned ExpectedNumInits) { InitListExpr *Result = new (SemaRef.Context) InitListExpr( SemaRef.Context, InitRange.getBegin(), std::nullopt, InitRange.getEnd()); QualType ResultType = CurrentObjectType; if (!ResultType->isArrayType()) ResultType = ResultType.getNonLValueExprType(SemaRef.Context); Result->setType(ResultType); // Pre-allocate storage for the structured initializer list. unsigned NumElements = 0; if (const ArrayType *AType = SemaRef.Context.getAsArrayType(CurrentObjectType)) { if (const ConstantArrayType *CAType = dyn_cast(AType)) { NumElements = CAType->getSize().getZExtValue(); // Simple heuristic so that we don't allocate a very large // initializer with many empty entries at the end. if (NumElements > ExpectedNumInits) NumElements = 0; } } else if (const VectorType *VType = CurrentObjectType->getAs()) { NumElements = VType->getNumElements(); } else if (CurrentObjectType->isRecordType()) { NumElements = numStructUnionElements(CurrentObjectType); } else if (CurrentObjectType->isDependentType()) { NumElements = 1; } Result->reserveInits(SemaRef.Context, NumElements); return Result; } /// Update the initializer at index @p StructuredIndex within the /// structured initializer list to the value @p expr. void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, unsigned &StructuredIndex, Expr *expr) { // No structured initializer list to update if (!StructuredList) return; if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, StructuredIndex, expr)) { // This initializer overwrites a previous initializer. // No need to diagnose when `expr` is nullptr because a more relevant // diagnostic has already been issued and this diagnostic is potentially // noise. if (expr) diagnoseInitOverride(PrevInit, expr->getSourceRange()); } ++StructuredIndex; } /// Determine whether we can perform aggregate initialization for the purposes /// of overload resolution. bool Sema::CanPerformAggregateInitializationForOverloadResolution( const InitializedEntity &Entity, InitListExpr *From) { QualType Type = Entity.getType(); InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, /*TreatUnavailableAsInvalid=*/false, /*InOverloadResolution=*/true); return !Check.HadError(); } /// Check that the given Index expression is a valid array designator /// value. This is essentially just a wrapper around /// VerifyIntegerConstantExpression that also checks for negative values /// and produces a reasonable diagnostic if there is a /// failure. Returns the index expression, possibly with an implicit cast /// added, on success. If everything went okay, Value will receive the /// value of the constant expression. static ExprResult CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { SourceLocation Loc = Index->getBeginLoc(); // Make sure this is an integer constant expression. ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold); if (Result.isInvalid()) return Result; if (Value.isSigned() && Value.isNegative()) return S.Diag(Loc, diag::err_array_designator_negative) << toString(Value, 10) << Index->getSourceRange(); Value.setIsUnsigned(true); return Result; } ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, SourceLocation EqualOrColonLoc, bool GNUSyntax, ExprResult Init) { typedef DesignatedInitExpr::Designator ASTDesignator; bool Invalid = false; SmallVector Designators; SmallVector InitExpressions; // Build designators and check array designator expressions. for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { const Designator &D = Desig.getDesignator(Idx); if (D.isFieldDesignator()) { Designators.push_back(ASTDesignator::CreateFieldDesignator( D.getFieldDecl(), D.getDotLoc(), D.getFieldLoc())); } else if (D.isArrayDesignator()) { Expr *Index = static_cast(D.getArrayIndex()); llvm::APSInt IndexValue; if (!Index->isTypeDependent() && !Index->isValueDependent()) Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); if (!Index) Invalid = true; else { Designators.push_back(ASTDesignator::CreateArrayDesignator( InitExpressions.size(), D.getLBracketLoc(), D.getRBracketLoc())); InitExpressions.push_back(Index); } } else if (D.isArrayRangeDesignator()) { Expr *StartIndex = static_cast(D.getArrayRangeStart()); Expr *EndIndex = static_cast(D.getArrayRangeEnd()); llvm::APSInt StartValue; llvm::APSInt EndValue; bool StartDependent = StartIndex->isTypeDependent() || StartIndex->isValueDependent(); bool EndDependent = EndIndex->isTypeDependent() || EndIndex->isValueDependent(); if (!StartDependent) StartIndex = CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); if (!EndDependent) EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); if (!StartIndex || !EndIndex) Invalid = true; else { // Make sure we're comparing values with the same bit width. if (StartDependent || EndDependent) { // Nothing to compute. } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) EndValue = EndValue.extend(StartValue.getBitWidth()); else if (StartValue.getBitWidth() < EndValue.getBitWidth()) StartValue = StartValue.extend(EndValue.getBitWidth()); if (!StartDependent && !EndDependent && EndValue < StartValue) { Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) << toString(StartValue, 10) << toString(EndValue, 10) << StartIndex->getSourceRange() << EndIndex->getSourceRange(); Invalid = true; } else { Designators.push_back(ASTDesignator::CreateArrayRangeDesignator( InitExpressions.size(), D.getLBracketLoc(), D.getEllipsisLoc(), D.getRBracketLoc())); InitExpressions.push_back(StartIndex); InitExpressions.push_back(EndIndex); } } } } if (Invalid || Init.isInvalid()) return ExprError(); return DesignatedInitExpr::Create(Context, Designators, InitExpressions, EqualOrColonLoc, GNUSyntax, Init.getAs()); } //===----------------------------------------------------------------------===// // Initialization entity //===----------------------------------------------------------------------===// InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, const InitializedEntity &Parent) : Parent(&Parent), Index(Index) { if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { Kind = EK_ArrayElement; Type = AT->getElementType(); } else if (const VectorType *VT = Parent.getType()->getAs()) { Kind = EK_VectorElement; Type = VT->getElementType(); } else { const ComplexType *CT = Parent.getType()->getAs(); assert(CT && "Unexpected type"); Kind = EK_ComplexElement; Type = CT->getElementType(); } } InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context, const CXXBaseSpecifier *Base, bool IsInheritedVirtualBase, const InitializedEntity *Parent) { InitializedEntity Result; Result.Kind = EK_Base; Result.Parent = Parent; Result.Base = {Base, IsInheritedVirtualBase}; Result.Type = Base->getType(); return Result; } DeclarationName InitializedEntity::getName() const { switch (getKind()) { case EK_Parameter: case EK_Parameter_CF_Audited: { ParmVarDecl *D = Parameter.getPointer(); return (D ? D->getDeclName() : DeclarationName()); } case EK_Variable: case EK_Member: case EK_ParenAggInitMember: case EK_Binding: case EK_TemplateParameter: return Variable.VariableOrMember->getDeclName(); case EK_LambdaCapture: return DeclarationName(Capture.VarID); case EK_Result: case EK_StmtExprResult: case EK_Exception: case EK_New: case EK_Temporary: case EK_Base: case EK_Delegating: case EK_ArrayElement: case EK_VectorElement: case EK_ComplexElement: case EK_BlockElement: case EK_LambdaToBlockConversionBlockElement: case EK_CompoundLiteralInit: case EK_RelatedResult: return DeclarationName(); } llvm_unreachable("Invalid EntityKind!"); } ValueDecl *InitializedEntity::getDecl() const { switch (getKind()) { case EK_Variable: case EK_Member: case EK_ParenAggInitMember: case EK_Binding: case EK_TemplateParameter: return Variable.VariableOrMember; case EK_Parameter: case EK_Parameter_CF_Audited: return Parameter.getPointer(); case EK_Result: case EK_StmtExprResult: case EK_Exception: case EK_New: case EK_Temporary: case EK_Base: case EK_Delegating: case EK_ArrayElement: case EK_VectorElement: case EK_ComplexElement: case EK_BlockElement: case EK_LambdaToBlockConversionBlockElement: case EK_LambdaCapture: case EK_CompoundLiteralInit: case EK_RelatedResult: return nullptr; } llvm_unreachable("Invalid EntityKind!"); } bool InitializedEntity::allowsNRVO() const { switch (getKind()) { case EK_Result: case EK_Exception: return LocAndNRVO.NRVO; case EK_StmtExprResult: case EK_Variable: case EK_Parameter: case EK_Parameter_CF_Audited: case EK_TemplateParameter: case EK_Member: case EK_ParenAggInitMember: case EK_Binding: case EK_New: case EK_Temporary: case EK_CompoundLiteralInit: case EK_Base: case EK_Delegating: case EK_ArrayElement: case EK_VectorElement: case EK_ComplexElement: case EK_BlockElement: case EK_LambdaToBlockConversionBlockElement: case EK_LambdaCapture: case EK_RelatedResult: break; } return false; } unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { assert(getParent() != this); unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; for (unsigned I = 0; I != Depth; ++I) OS << "`-"; switch (getKind()) { case EK_Variable: OS << "Variable"; break; case EK_Parameter: OS << "Parameter"; break; case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; break; case EK_TemplateParameter: OS << "TemplateParameter"; break; case EK_Result: OS << "Result"; break; case EK_StmtExprResult: OS << "StmtExprResult"; break; case EK_Exception: OS << "Exception"; break; case EK_Member: case EK_ParenAggInitMember: OS << "Member"; break; case EK_Binding: OS << "Binding"; break; case EK_New: OS << "New"; break; case EK_Temporary: OS << "Temporary"; break; case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; case EK_RelatedResult: OS << "RelatedResult"; break; case EK_Base: OS << "Base"; break; case EK_Delegating: OS << "Delegating"; break; case EK_ArrayElement: OS << "ArrayElement " << Index; break; case EK_VectorElement: OS << "VectorElement " << Index; break; case EK_ComplexElement: OS << "ComplexElement " << Index; break; case EK_BlockElement: OS << "Block"; break; case EK_LambdaToBlockConversionBlockElement: OS << "Block (lambda)"; break; case EK_LambdaCapture: OS << "LambdaCapture "; OS << DeclarationName(Capture.VarID); break; } if (auto *D = getDecl()) { OS << " "; D->printQualifiedName(OS); } OS << " '" << getType() << "'\n"; return Depth + 1; } LLVM_DUMP_METHOD void InitializedEntity::dump() const { dumpImpl(llvm::errs()); } //===----------------------------------------------------------------------===// // Initialization sequence //===----------------------------------------------------------------------===// void InitializationSequence::Step::Destroy() { switch (Kind) { case SK_ResolveAddressOfOverloadedFunction: case SK_CastDerivedToBasePRValue: case SK_CastDerivedToBaseXValue: case SK_CastDerivedToBaseLValue: case SK_BindReference: case SK_BindReferenceToTemporary: case SK_FinalCopy: case SK_ExtraneousCopyToTemporary: case SK_UserConversion: case SK_QualificationConversionPRValue: case SK_QualificationConversionXValue: case SK_QualificationConversionLValue: case SK_FunctionReferenceConversion: case SK_AtomicConversion: case SK_ListInitialization: case SK_UnwrapInitList: case SK_RewrapInitList: case SK_ConstructorInitialization: case SK_ConstructorInitializationFromList: case SK_ZeroInitialization: case SK_CAssignment: case SK_StringInit: case SK_ObjCObjectConversion: case SK_ArrayLoopIndex: case SK_ArrayLoopInit: case SK_ArrayInit: case SK_GNUArrayInit: case SK_ParenthesizedArrayInit: case SK_PassByIndirectCopyRestore: case SK_PassByIndirectRestore: case SK_ProduceObjCObject: case SK_StdInitializerList: case SK_StdInitializerListConstructorCall: case SK_OCLSamplerInit: case SK_OCLZeroOpaqueType: case SK_ParenthesizedListInit: break; case SK_ConversionSequence: case SK_ConversionSequenceNoNarrowing: delete ICS; } } bool InitializationSequence::isDirectReferenceBinding() const { // There can be some lvalue adjustments after the SK_BindReference step. for (const Step &S : llvm::reverse(Steps)) { if (S.Kind == SK_BindReference) return true; if (S.Kind == SK_BindReferenceToTemporary) return false; } return false; } bool InitializationSequence::isAmbiguous() const { if (!Failed()) return false; switch (getFailureKind()) { case FK_TooManyInitsForReference: case FK_ParenthesizedListInitForReference: case FK_ArrayNeedsInitList: case FK_ArrayNeedsInitListOrStringLiteral: case FK_ArrayNeedsInitListOrWideStringLiteral: case FK_NarrowStringIntoWideCharArray: case FK_WideStringIntoCharArray: case FK_IncompatWideStringIntoWideChar: case FK_PlainStringIntoUTF8Char: case FK_UTF8StringIntoPlainChar: case FK_AddressOfOverloadFailed: // FIXME: Could do better case FK_NonConstLValueReferenceBindingToTemporary: case FK_NonConstLValueReferenceBindingToBitfield: case FK_NonConstLValueReferenceBindingToVectorElement: case FK_NonConstLValueReferenceBindingToMatrixElement: case FK_NonConstLValueReferenceBindingToUnrelated: case FK_RValueReferenceBindingToLValue: case FK_ReferenceAddrspaceMismatchTemporary: case FK_ReferenceInitDropsQualifiers: case FK_ReferenceInitFailed: case FK_ConversionFailed: case FK_ConversionFromPropertyFailed: case FK_TooManyInitsForScalar: case FK_ParenthesizedListInitForScalar: case FK_ReferenceBindingToInitList: case FK_InitListBadDestinationType: case FK_DefaultInitOfConst: case FK_Incomplete: case FK_ArrayTypeMismatch: case FK_NonConstantArrayInit: case FK_ListInitializationFailed: case FK_VariableLengthArrayHasInitializer: case FK_PlaceholderType: case FK_ExplicitConstructor: case FK_AddressOfUnaddressableFunction: case FK_ParenthesizedListInitFailed: case FK_DesignatedInitForNonAggregate: return false; case FK_ReferenceInitOverloadFailed: case FK_UserConversionOverloadFailed: case FK_ConstructorOverloadFailed: case FK_ListConstructorOverloadFailed: return FailedOverloadResult == OR_Ambiguous; } llvm_unreachable("Invalid EntityKind!"); } bool InitializationSequence::isConstructorInitialization() const { return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; } void InitializationSequence ::AddAddressOverloadResolutionStep(FunctionDecl *Function, DeclAccessPair Found, bool HadMultipleCandidates) { Step S; S.Kind = SK_ResolveAddressOfOverloadedFunction; S.Type = Function->getType(); S.Function.HadMultipleCandidates = HadMultipleCandidates; S.Function.Function = Function; S.Function.FoundDecl = Found; Steps.push_back(S); } void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, ExprValueKind VK) { Step S; switch (VK) { case VK_PRValue: S.Kind = SK_CastDerivedToBasePRValue; break; case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; } S.Type = BaseType; Steps.push_back(S); } void InitializationSequence::AddReferenceBindingStep(QualType T, bool BindingTemporary) { Step S; S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddFinalCopy(QualType T) { Step S; S.Kind = SK_FinalCopy; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { Step S; S.Kind = SK_ExtraneousCopyToTemporary; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddUserConversionStep(FunctionDecl *Function, DeclAccessPair FoundDecl, QualType T, bool HadMultipleCandidates) { Step S; S.Kind = SK_UserConversion; S.Type = T; S.Function.HadMultipleCandidates = HadMultipleCandidates; S.Function.Function = Function; S.Function.FoundDecl = FoundDecl; Steps.push_back(S); } void InitializationSequence::AddQualificationConversionStep(QualType Ty, ExprValueKind VK) { Step S; S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning switch (VK) { case VK_PRValue: S.Kind = SK_QualificationConversionPRValue; break; case VK_XValue: S.Kind = SK_QualificationConversionXValue; break; case VK_LValue: S.Kind = SK_QualificationConversionLValue; break; } S.Type = Ty; Steps.push_back(S); } void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) { Step S; S.Kind = SK_FunctionReferenceConversion; S.Type = Ty; Steps.push_back(S); } void InitializationSequence::AddAtomicConversionStep(QualType Ty) { Step S; S.Kind = SK_AtomicConversion; S.Type = Ty; Steps.push_back(S); } void InitializationSequence::AddConversionSequenceStep( const ImplicitConversionSequence &ICS, QualType T, bool TopLevelOfInitList) { Step S; S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing : SK_ConversionSequence; S.Type = T; S.ICS = new ImplicitConversionSequence(ICS); Steps.push_back(S); } void InitializationSequence::AddListInitializationStep(QualType T) { Step S; S.Kind = SK_ListInitialization; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddConstructorInitializationStep( DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { Step S; S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall : SK_ConstructorInitializationFromList : SK_ConstructorInitialization; S.Type = T; S.Function.HadMultipleCandidates = HadMultipleCandidates; S.Function.Function = Constructor; S.Function.FoundDecl = FoundDecl; Steps.push_back(S); } void InitializationSequence::AddZeroInitializationStep(QualType T) { Step S; S.Kind = SK_ZeroInitialization; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddCAssignmentStep(QualType T) { Step S; S.Kind = SK_CAssignment; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddStringInitStep(QualType T) { Step S; S.Kind = SK_StringInit; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddObjCObjectConversionStep(QualType T) { Step S; S.Kind = SK_ObjCObjectConversion; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { Step S; S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { Step S; S.Kind = SK_ArrayLoopIndex; S.Type = EltT; Steps.insert(Steps.begin(), S); S.Kind = SK_ArrayLoopInit; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { Step S; S.Kind = SK_ParenthesizedArrayInit; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, bool shouldCopy) { Step s; s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore : SK_PassByIndirectRestore); s.Type = type; Steps.push_back(s); } void InitializationSequence::AddProduceObjCObjectStep(QualType T) { Step S; S.Kind = SK_ProduceObjCObject; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { Step S; S.Kind = SK_StdInitializerList; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddOCLSamplerInitStep(QualType T) { Step S; S.Kind = SK_OCLSamplerInit; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { Step S; S.Kind = SK_OCLZeroOpaqueType; S.Type = T; Steps.push_back(S); } void InitializationSequence::AddParenthesizedListInitStep(QualType T) { Step S; S.Kind = SK_ParenthesizedListInit; S.Type = T; Steps.push_back(S); } void InitializationSequence::RewrapReferenceInitList(QualType T, InitListExpr *Syntactic) { assert(Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."); Step S; S.Kind = SK_UnwrapInitList; S.Type = Syntactic->getInit(0)->getType(); Steps.insert(Steps.begin(), S); S.Kind = SK_RewrapInitList; S.Type = T; S.WrappingSyntacticList = Syntactic; Steps.push_back(S); } void InitializationSequence::SetOverloadFailure(FailureKind Failure, OverloadingResult Result) { setSequenceKind(FailedSequence); this->Failure = Failure; this->FailedOverloadResult = Result; } //===----------------------------------------------------------------------===// // Attempt initialization //===----------------------------------------------------------------------===// /// Tries to add a zero initializer. Returns true if that worked. static bool maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, const InitializedEntity &Entity) { if (Entity.getKind() != InitializedEntity::EK_Variable) return false; VarDecl *VD = cast(Entity.getDecl()); if (VD->getInit() || VD->getEndLoc().isMacroID()) return false; QualType VariableTy = VD->getType().getCanonicalType(); SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); if (!Init.empty()) { Sequence.AddZeroInitializationStep(Entity.getType()); Sequence.SetZeroInitializationFixit(Init, Loc); return true; } return false; } static void MaybeProduceObjCObject(Sema &S, InitializationSequence &Sequence, const InitializedEntity &Entity) { if (!S.getLangOpts().ObjCAutoRefCount) return; /// When initializing a parameter, produce the value if it's marked /// __attribute__((ns_consumed)). if (Entity.isParameterKind()) { if (!Entity.isParameterConsumed()) return; assert(Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"); Sequence.AddProduceObjCObjectStep(Entity.getType()); /// When initializing a return value, if the return type is a /// retainable type, then returns need to immediately retain the /// object. If an autorelease is required, it will be done at the /// last instant. } else if (Entity.getKind() == InitializedEntity::EK_Result || Entity.getKind() == InitializedEntity::EK_StmtExprResult) { if (!Entity.getType()->isObjCRetainableType()) return; Sequence.AddProduceObjCObjectStep(Entity.getType()); } } static void TryListInitialization(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, InitListExpr *InitList, InitializationSequence &Sequence, bool TreatUnavailableAsInvalid); /// When initializing from init list via constructor, handle /// initialization of an object of type std::initializer_list. /// /// \return true if we have handled initialization of an object of type /// std::initializer_list, false otherwise. static bool TryInitializerListConstruction(Sema &S, InitListExpr *List, QualType DestType, InitializationSequence &Sequence, bool TreatUnavailableAsInvalid) { QualType E; if (!S.isStdInitializerList(DestType, &E)) return false; if (!S.isCompleteType(List->getExprLoc(), E)) { Sequence.setIncompleteTypeFailure(E); return true; } // Try initializing a temporary array from the init list. QualType ArrayType = S.Context.getConstantArrayType( E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), List->getNumInits()), nullptr, clang::ArraySizeModifier::Normal, 0); InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(ArrayType); InitializationKind Kind = InitializationKind::CreateDirectList( List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); TryListInitialization(S, HiddenArray, Kind, List, Sequence, TreatUnavailableAsInvalid); if (Sequence) Sequence.AddStdInitializerListConstructionStep(DestType); return true; } /// Determine if the constructor has the signature of a copy or move /// constructor for the type T of the class in which it was found. That is, /// determine if its first parameter is of type T or reference to (possibly /// cv-qualified) T. static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, const ConstructorInfo &Info) { if (Info.Constructor->getNumParams() == 0) return false; QualType ParmT = Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); QualType ClassT = Ctx.getRecordType(cast(Info.FoundDecl->getDeclContext())); return Ctx.hasSameUnqualifiedType(ParmT, ClassT); } static OverloadingResult ResolveConstructorOverload( Sema &S, SourceLocation DeclLoc, MultiExprArg Args, OverloadCandidateSet &CandidateSet, QualType DestType, DeclContext::lookup_result Ctors, OverloadCandidateSet::iterator &Best, bool CopyInitializing, bool AllowExplicit, bool OnlyListConstructors, bool IsListInit, bool RequireActualConstructor, bool SecondStepOfCopyInit = false) { CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); for (NamedDecl *D : Ctors) { auto Info = getConstructorInfo(D); if (!Info.Constructor || Info.Constructor->isInvalidDecl()) continue; if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) continue; // C++11 [over.best.ics]p4: // ... and the constructor or user-defined conversion function is a // candidate by // - 13.3.1.3, when the argument is the temporary in the second step // of a class copy-initialization, or // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] // - the second phase of 13.3.1.7 when the initializer list has exactly // one element that is itself an initializer list, and the target is // the first parameter of a constructor of class X, and the conversion // is to X or reference to (possibly cv-qualified X), // user-defined conversion sequences are not considered. bool SuppressUserConversions = SecondStepOfCopyInit || (IsListInit && Args.size() == 1 && isa(Args[0]) && hasCopyOrMoveCtorParam(S.Context, Info)); if (Info.ConstructorTmpl) S.AddTemplateOverloadCandidate( Info.ConstructorTmpl, Info.FoundDecl, /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, /*PartialOverloading=*/false, AllowExplicit); else { // C++ [over.match.copy]p1: // - When initializing a temporary to be bound to the first parameter // of a constructor [for type T] that takes a reference to possibly // cv-qualified T as its first argument, called with a single // argument in the context of direct-initialization, explicit // conversion functions are also considered. // FIXME: What if a constructor template instantiates to such a signature? bool AllowExplicitConv = AllowExplicit && !CopyInitializing && Args.size() == 1 && hasCopyOrMoveCtorParam(S.Context, Info); S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, CandidateSet, SuppressUserConversions, /*PartialOverloading=*/false, AllowExplicit, AllowExplicitConv); } } // FIXME: Work around a bug in C++17 guaranteed copy elision. // // When initializing an object of class type T by constructor // ([over.match.ctor]) or by list-initialization ([over.match.list]) // from a single expression of class type U, conversion functions of // U that convert to the non-reference type cv T are candidates. // Explicit conversion functions are only candidates during // direct-initialization. // // Note: SecondStepOfCopyInit is only ever true in this case when // evaluating whether to produce a C++98 compatibility warning. if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && !RequireActualConstructor && !SecondStepOfCopyInit) { Expr *Initializer = Args[0]; auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { const auto &Conversions = SourceRD->getVisibleConversionFunctions(); for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { NamedDecl *D = *I; CXXRecordDecl *ActingDC = cast(D->getDeclContext()); D = D->getUnderlyingDecl(); FunctionTemplateDecl *ConvTemplate = dyn_cast(D); CXXConversionDecl *Conv; if (ConvTemplate) Conv = cast(ConvTemplate->getTemplatedDecl()); else Conv = cast(D); if (ConvTemplate) S.AddTemplateConversionCandidate( ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, AllowExplicit, AllowExplicit, /*AllowResultConversion*/ false); else S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, AllowExplicit, AllowExplicit, /*AllowResultConversion*/ false); } } } // Perform overload resolution and return the result. return CandidateSet.BestViableFunction(S, DeclLoc, Best); } /// Attempt initialization by constructor (C++ [dcl.init]), which /// enumerates the constructors of the initialized entity and performs overload /// resolution to select the best. /// \param DestType The destination class type. /// \param DestArrayType The destination type, which is either DestType or /// a (possibly multidimensional) array of DestType. /// \param IsListInit Is this list-initialization? /// \param IsInitListCopy Is this non-list-initialization resulting from a /// list-initialization from {x} where x is the same -/// aggregate type as the entity? +/// type as the entity? static void TryConstructorInitialization(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, QualType DestType, QualType DestArrayType, InitializationSequence &Sequence, bool IsListInit = false, bool IsInitListCopy = false) { assert(((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list " "argument."); InitListExpr *ILE = (IsListInit || IsInitListCopy) ? cast(Args[0]) : nullptr; MultiExprArg UnwrappedArgs = ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; // The type we're constructing needs to be complete. if (!S.isCompleteType(Kind.getLocation(), DestType)) { Sequence.setIncompleteTypeFailure(DestType); return; } bool RequireActualConstructor = !(Entity.getKind() != InitializedEntity::EK_Base && Entity.getKind() != InitializedEntity::EK_Delegating && Entity.getKind() != InitializedEntity::EK_LambdaToBlockConversionBlockElement); - bool CopyElisionPossible = false; - auto ElideConstructor = [&] { - // Convert qualifications if necessary. - Sequence.AddQualificationConversionStep(DestType, VK_PRValue); - if (ILE) - Sequence.RewrapReferenceInitList(DestType, ILE); - }; - // C++17 [dcl.init]p17: // - If the initializer expression is a prvalue and the cv-unqualified // version of the source type is the same class as the class of the // destination, the initializer expression is used to initialize the // destination object. // Per DR (no number yet), this does not apply when initializing a base // class or delegating to another constructor from a mem-initializer. // ObjC++: Lambda captured by the block in the lambda to block conversion // should avoid copy elision. if (S.getLangOpts().CPlusPlus17 && !RequireActualConstructor && UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() && S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { - if (ILE && !DestType->isAggregateType()) { - // CWG2311: T{ prvalue_of_type_T } is not eligible for copy elision - // Make this an elision if this won't call an initializer-list - // constructor. (Always on an aggregate type or check constructors first.) - assert(!IsInitListCopy && - "IsInitListCopy only possible with aggregate types"); - CopyElisionPossible = true; - } else { - ElideConstructor(); - return; - } + // Convert qualifications if necessary. + Sequence.AddQualificationConversionStep(DestType, VK_PRValue); + if (ILE) + Sequence.RewrapReferenceInitList(DestType, ILE); + return; } const RecordType *DestRecordType = DestType->getAs(); assert(DestRecordType && "Constructor initialization requires record type"); CXXRecordDecl *DestRecordDecl = cast(DestRecordType->getDecl()); // Build the candidate set directly in the initialization sequence // structure, so that it will persist if we fail. OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); // Determine whether we are allowed to call explicit constructors or // explicit conversion operators. bool AllowExplicit = Kind.AllowExplicit() || IsListInit; bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; // - Otherwise, if T is a class type, constructors are considered. The // applicable constructors are enumerated, and the best one is chosen // through overload resolution. DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); OverloadingResult Result = OR_No_Viable_Function; OverloadCandidateSet::iterator Best; bool AsInitializerList = false; // C++11 [over.match.list]p1, per DR1467: // When objects of non-aggregate type T are list-initialized, such that // 8.5.4 [dcl.init.list] specifies that overload resolution is performed // according to the rules in this section, overload resolution selects // the constructor in two phases: // // - Initially, the candidate functions are the initializer-list // constructors of the class T and the argument list consists of the // initializer list as a single argument. if (IsListInit) { AsInitializerList = true; // If the initializer list has no elements and T has a default constructor, // the first phase is omitted. if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) Result = ResolveConstructorOverload( S, Kind.getLocation(), Args, CandidateSet, DestType, Ctors, Best, CopyInitialization, AllowExplicit, /*OnlyListConstructors=*/true, IsListInit, RequireActualConstructor); - - if (CopyElisionPossible && Result == OR_No_Viable_Function) { - // No initializer list candidate - ElideConstructor(); - return; - } } // C++11 [over.match.list]p1: // - If no viable initializer-list constructor is found, overload resolution // is performed again, where the candidate functions are all the // constructors of the class T and the argument list consists of the // elements of the initializer list. if (Result == OR_No_Viable_Function) { AsInitializerList = false; Result = ResolveConstructorOverload( S, Kind.getLocation(), UnwrappedArgs, CandidateSet, DestType, Ctors, Best, CopyInitialization, AllowExplicit, /*OnlyListConstructors=*/false, IsListInit, RequireActualConstructor); } if (Result) { Sequence.SetOverloadFailure( IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed : InitializationSequence::FK_ConstructorOverloadFailed, Result); if (Result != OR_Deleted) return; } bool HadMultipleCandidates = (CandidateSet.size() > 1); // In C++17, ResolveConstructorOverload can select a conversion function // instead of a constructor. if (auto *CD = dyn_cast(Best->Function)) { // Add the user-defined conversion step that calls the conversion function. QualType ConvType = CD->getConversionType(); assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && "should not have selected this conversion function"); Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, HadMultipleCandidates); if (!S.Context.hasSameType(ConvType, DestType)) Sequence.AddQualificationConversionStep(DestType, VK_PRValue); if (IsListInit) Sequence.RewrapReferenceInitList(Entity.getType(), ILE); return; } CXXConstructorDecl *CtorDecl = cast(Best->Function); if (Result != OR_Deleted) { // C++11 [dcl.init]p6: // If a program calls for the default initialization of an object // of a const-qualified type T, T shall be a class type with a // user-provided default constructor. // C++ core issue 253 proposal: // If the implicit default constructor initializes all subobjects, no // initializer should be required. // The 253 proposal is for example needed to process libstdc++ headers // in 5.x. if (Kind.getKind() == InitializationKind::IK_Default && Entity.getType().isConstQualified()) { if (!CtorDecl->getParent()->allowConstDefaultInit()) { if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); return; } } // C++11 [over.match.list]p1: // In copy-list-initialization, if an explicit constructor is chosen, the // initializer is ill-formed. if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); return; } } // [class.copy.elision]p3: // In some copy-initialization contexts, a two-stage overload resolution // is performed. // If the first overload resolution selects a deleted function, we also // need the initialization sequence to decide whether to perform the second // overload resolution. // For deleted functions in other contexts, there is no need to get the // initialization sequence. if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy) return; // Add the constructor initialization step. Any cv-qualification conversion is // subsumed by the initialization. Sequence.AddConstructorInitializationStep( Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, IsListInit | IsInitListCopy, AsInitializerList); } static bool ResolveOverloadedFunctionForReferenceBinding(Sema &S, Expr *Initializer, QualType &SourceType, QualType &UnqualifiedSourceType, QualType UnqualifiedTargetType, InitializationSequence &Sequence) { if (S.Context.getCanonicalType(UnqualifiedSourceType) == S.Context.OverloadTy) { DeclAccessPair Found; bool HadMultipleCandidates = false; if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer, UnqualifiedTargetType, false, Found, &HadMultipleCandidates)) { Sequence.AddAddressOverloadResolutionStep(Fn, Found, HadMultipleCandidates); SourceType = Fn->getType(); UnqualifiedSourceType = SourceType.getUnqualifiedType(); } else if (!UnqualifiedTargetType->isRecordType()) { Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); return true; } } return false; } static void TryReferenceInitializationCore(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, Expr *Initializer, QualType cv1T1, QualType T1, Qualifiers T1Quals, QualType cv2T2, QualType T2, Qualifiers T2Quals, InitializationSequence &Sequence, bool TopLevelOfInitList); static void TryValueInitialization(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, InitializationSequence &Sequence, InitListExpr *InitList = nullptr); /// Attempt list initialization of a reference. static void TryReferenceListInitialization(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, InitListExpr *InitList, InitializationSequence &Sequence, bool TreatUnavailableAsInvalid) { // First, catch C++03 where this isn't possible. if (!S.getLangOpts().CPlusPlus11) { Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); return; } // Can't reference initialize a compound literal. if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); return; } QualType DestType = Entity.getType(); QualType cv1T1 = DestType->castAs()->getPointeeType(); Qualifiers T1Quals; QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); // Reference initialization via an initializer list works thus: // If the initializer list consists of a single element that is // reference-related to the referenced type, bind directly to that element // (possibly creating temporaries). // Otherwise, initialize a temporary with the initializer list and // bind to that. if (InitList->getNumInits() == 1) { Expr *Initializer = InitList->getInit(0); QualType cv2T2 = S.getCompletedType(Initializer); Qualifiers T2Quals; QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); // If this fails, creating a temporary wouldn't work either. if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, T1, Sequence)) return; SourceLocation DeclLoc = Initializer->getBeginLoc(); Sema::ReferenceCompareResult RefRelationship = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); if (RefRelationship >= Sema::Ref_Related) { // Try to bind the reference here. TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, T1Quals, cv2T2, T2, T2Quals, Sequence, /*TopLevelOfInitList=*/true); if (Sequence) Sequence.RewrapReferenceInitList(cv1T1, InitList); return; } // Update the initializer if we've resolved an overloaded function. if (Sequence.step_begin() != Sequence.step_end()) Sequence.RewrapReferenceInitList(cv1T1, InitList); } // Perform address space compatibility check. QualType cv1T1IgnoreAS = cv1T1; if (T1Quals.hasAddressSpace()) { Qualifiers T2Quals; (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals); if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) { Sequence.SetFailed( InitializationSequence::FK_ReferenceInitDropsQualifiers); return; } // Ignore address space of reference type at this point and perform address // space conversion after the reference binding step. cv1T1IgnoreAS = S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()); } // Not reference-related. Create a temporary and bind to that. InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); TryListInitialization(S, TempEntity, Kind, InitList, Sequence, TreatUnavailableAsInvalid); if (Sequence) { if (DestType->isRValueReferenceType() || (T1Quals.hasConst() && !T1Quals.hasVolatile())) { if (S.getLangOpts().CPlusPlus20 && isa(T1->getUnqualifiedDesugaredType()) && DestType->isRValueReferenceType()) { // C++20 [dcl.init.list]p3.10: // List-initialization of an object or reference of type T is defined as // follows: // ..., unless T is “reference to array of unknown bound of U”, in which // case the type of the prvalue is the type of x in the declaration U // x[] H, where H is the initializer list. Sequence.AddQualificationConversionStep(cv1T1, clang::VK_PRValue); } Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); if (T1Quals.hasAddressSpace()) Sequence.AddQualificationConversionStep( cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue); } else Sequence.SetFailed( InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); } } /// Attempt list initialization (C++0x [dcl.init.list]) static void TryListInitialization(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, InitListExpr *InitList, InitializationSequence &Sequence, bool TreatUnavailableAsInvalid) { QualType DestType = Entity.getType(); // C++ doesn't allow scalar initialization with more than one argument. // But C99 complex numbers are scalars and it makes sense there. if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); return; } if (DestType->isReferenceType()) { TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, TreatUnavailableAsInvalid); return; } if (DestType->isRecordType() && !S.isCompleteType(InitList->getBeginLoc(), DestType)) { Sequence.setIncompleteTypeFailure(DestType); return; } // C++20 [dcl.init.list]p3: // - If the braced-init-list contains a designated-initializer-list, T shall // be an aggregate class. [...] Aggregate initialization is performed. // // We allow arrays here too in order to support array designators. // // FIXME: This check should precede the handling of reference initialization. // We follow other compilers in allowing things like 'Aggr &&a = {.x = 1};' // as a tentative DR resolution. bool IsDesignatedInit = InitList->hasDesignatedInit(); if (!DestType->isAggregateType() && IsDesignatedInit) { Sequence.SetFailed( InitializationSequence::FK_DesignatedInitForNonAggregate); return; } - // C++11 [dcl.init.list]p3, per DR1467 and DR2137: - // - If T is an aggregate class and the initializer list has a single element - // of type cv U, where U is T or a class derived from T, the object is + // C++11 [dcl.init.list]p3, per DR1467: + // - If T is a class type and the initializer list has a single element of + // type cv U, where U is T or a class derived from T, the object is // initialized from that element (by copy-initialization for // copy-list-initialization, or by direct-initialization for // direct-list-initialization). // - Otherwise, if T is a character array and the initializer list has a // single element that is an appropriately-typed string literal // (8.5.2 [dcl.init.string]), initialization is performed as described // in that section. // - Otherwise, if T is an aggregate, [...] (continue below). if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1 && !IsDesignatedInit) { - if (DestType->isRecordType() && DestType->isAggregateType()) { + if (DestType->isRecordType()) { QualType InitType = InitList->getInit(0)->getType(); if (S.Context.hasSameUnqualifiedType(InitType, DestType) || S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { Expr *InitListAsExpr = InitList; TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, DestType, Sequence, /*InitListSyntax*/false, /*IsInitListCopy*/true); return; } } if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { Expr *SubInit[1] = {InitList->getInit(0)}; if (!isa(DestAT) && IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { InitializationKind SubKind = Kind.getKind() == InitializationKind::IK_DirectList ? InitializationKind::CreateDirect(Kind.getLocation(), InitList->getLBraceLoc(), InitList->getRBraceLoc()) : Kind; Sequence.InitializeFrom(S, Entity, SubKind, SubInit, /*TopLevelOfInitList*/ true, TreatUnavailableAsInvalid); // TryStringLiteralInitialization() (in InitializeFrom()) will fail if // the element is not an appropriately-typed string literal, in which // case we should proceed as in C++11 (below). if (Sequence) { Sequence.RewrapReferenceInitList(Entity.getType(), InitList); return; } } } } // C++11 [dcl.init.list]p3: // - If T is an aggregate, aggregate initialization is performed. if ((DestType->isRecordType() && !DestType->isAggregateType()) || (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, nullptr) && !IsDesignatedInit)) { if (S.getLangOpts().CPlusPlus11) { // - Otherwise, if the initializer list has no elements and T is a // class type with a default constructor, the object is // value-initialized. if (InitList->getNumInits() == 0) { CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); if (S.LookupDefaultConstructor(RD)) { TryValueInitialization(S, Entity, Kind, Sequence, InitList); return; } } // - Otherwise, if T is a specialization of std::initializer_list, // an initializer_list object constructed [...] if (TryInitializerListConstruction(S, InitList, DestType, Sequence, TreatUnavailableAsInvalid)) return; // - Otherwise, if T is a class type, constructors are considered. Expr *InitListAsExpr = InitList; TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, DestType, Sequence, /*InitListSyntax*/true); } else Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); return; } if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && InitList->getNumInits() == 1) { Expr *E = InitList->getInit(0); // - Otherwise, if T is an enumeration with a fixed underlying type, // the initializer-list has a single element v, and the initialization // is direct-list-initialization, the object is initialized with the // value T(v); if a narrowing conversion is required to convert v to // the underlying type of T, the program is ill-formed. auto *ET = DestType->getAs(); if (S.getLangOpts().CPlusPlus17 && Kind.getKind() == InitializationKind::IK_DirectList && ET && ET->getDecl()->isFixed() && !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && (E->getType()->isIntegralOrUnscopedEnumerationType() || E->getType()->isFloatingType())) { // There are two ways that T(v) can work when T is an enumeration type. // If there is either an implicit conversion sequence from v to T or // a conversion function that can convert from v to T, then we use that. // Otherwise, if v is of integral, unscoped enumeration, or floating-point // type, it is converted to the enumeration type via its underlying type. // There is no overlap possible between these two cases (except when the // source value is already of the destination type), and the first // case is handled by the general case for single-element lists below. ImplicitConversionSequence ICS; ICS.setStandard(); ICS.Standard.setAsIdentityConversion(); if (!E->isPRValue()) ICS.Standard.First = ICK_Lvalue_To_Rvalue; // If E is of a floating-point type, then the conversion is ill-formed // due to narrowing, but go through the motions in order to produce the // right diagnostic. ICS.Standard.Second = E->getType()->isFloatingType() ? ICK_Floating_Integral : ICK_Integral_Conversion; ICS.Standard.setFromType(E->getType()); ICS.Standard.setToType(0, E->getType()); ICS.Standard.setToType(1, DestType); ICS.Standard.setToType(2, DestType); Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), /*TopLevelOfInitList*/true); Sequence.RewrapReferenceInitList(Entity.getType(), InitList); return; } // - Otherwise, if the initializer list has a single element of type E // [...references are handled above...], the object or reference is // initialized from that element (by copy-initialization for // copy-list-initialization, or by direct-initialization for // direct-list-initialization); if a narrowing conversion is required // to convert the element to T, the program is ill-formed. // // Per core-24034, this is direct-initialization if we were performing // direct-list-initialization and copy-initialization otherwise. // We can't use InitListChecker for this, because it always performs // copy-initialization. This only matters if we might use an 'explicit' // conversion operator, or for the special case conversion of nullptr_t to // bool, so we only need to handle those cases. // // FIXME: Why not do this in all cases? Expr *Init = InitList->getInit(0); if (Init->getType()->isRecordType() || (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { InitializationKind SubKind = Kind.getKind() == InitializationKind::IK_DirectList ? InitializationKind::CreateDirect(Kind.getLocation(), InitList->getLBraceLoc(), InitList->getRBraceLoc()) : Kind; Expr *SubInit[1] = { Init }; Sequence.InitializeFrom(S, Entity, SubKind, SubInit, /*TopLevelOfInitList*/true, TreatUnavailableAsInvalid); if (Sequence) Sequence.RewrapReferenceInitList(Entity.getType(), InitList); return; } } InitListChecker CheckInitList(S, Entity, InitList, DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); if (CheckInitList.HadError()) { Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); return; } // Add the list initialization step with the built init list. Sequence.AddListInitializationStep(DestType); } /// Try a reference initialization that involves calling a conversion /// function. static OverloadingResult TryRefInitWithConversionFunction( Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, Expr *Initializer, bool AllowRValues, bool IsLValueRef, InitializationSequence &Sequence) { QualType DestType = Entity.getType(); QualType cv1T1 = DestType->castAs()->getPointeeType(); QualType T1 = cv1T1.getUnqualifiedType(); QualType cv2T2 = Initializer->getType(); QualType T2 = cv2T2.getUnqualifiedType(); assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && "Must have incompatible references when binding via conversion"); // Build the candidate set directly in the initialization sequence // structure, so that it will persist if we fail. OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); // Determine whether we are allowed to call explicit conversion operators. // Note that none of [over.match.copy], [over.match.conv], nor // [over.match.ref] permit an explicit constructor to be chosen when // initializing a reference, not even for direct-initialization. bool AllowExplicitCtors = false; bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); const RecordType *T1RecordType = nullptr; if (AllowRValues && (T1RecordType = T1->getAs()) && S.isCompleteType(Kind.getLocation(), T1)) { // The type we're converting to is a class type. Enumerate its constructors // to see if there is a suitable conversion. CXXRecordDecl *T1RecordDecl = cast(T1RecordType->getDecl()); for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { auto Info = getConstructorInfo(D); if (!Info.Constructor) continue; if (!Info.Constructor->isInvalidDecl() && Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { if (Info.ConstructorTmpl) S.AddTemplateOverloadCandidate( Info.ConstructorTmpl, Info.FoundDecl, /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, /*SuppressUserConversions=*/true, /*PartialOverloading*/ false, AllowExplicitCtors); else S.AddOverloadCandidate( Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, /*SuppressUserConversions=*/true, /*PartialOverloading*/ false, AllowExplicitCtors); } } } if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) return OR_No_Viable_Function; const RecordType *T2RecordType = nullptr; if ((T2RecordType = T2->getAs()) && S.isCompleteType(Kind.getLocation(), T2)) { // The type we're converting from is a class type, enumerate its conversion // functions. CXXRecordDecl *T2RecordDecl = cast(T2RecordType->getDecl()); const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { NamedDecl *D = *I; CXXRecordDecl *ActingDC = cast(D->getDeclContext()); if (isa(D)) D = cast(D)->getTargetDecl(); FunctionTemplateDecl *ConvTemplate = dyn_cast(D); CXXConversionDecl *Conv; if (ConvTemplate) Conv = cast(ConvTemplate->getTemplatedDecl()); else Conv = cast(D); // If the conversion function doesn't return a reference type, // it can't be considered for this conversion unless we're allowed to // consider rvalues. // FIXME: Do we need to make sure that we only consider conversion // candidates with reference-compatible results? That might be needed to // break recursion. if ((AllowRValues || Conv->getConversionType()->isLValueReferenceType())) { if (ConvTemplate) S.AddTemplateConversionCandidate( ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); else S.AddConversionCandidate( Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); } } } if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) return OR_No_Viable_Function; SourceLocation DeclLoc = Initializer->getBeginLoc(); // Perform overload resolution. If it fails, return the failed result. OverloadCandidateSet::iterator Best; if (OverloadingResult Result = CandidateSet.BestViableFunction(S, DeclLoc, Best)) return Result; FunctionDecl *Function = Best->Function; // This is the overload that will be used for this initialization step if we // use this initialization. Mark it as referenced. Function->setReferenced(); // Compute the returned type and value kind of the conversion. QualType cv3T3; if (isa(Function)) cv3T3 = Function->getReturnType(); else cv3T3 = T1; ExprValueKind VK = VK_PRValue; if (cv3T3->isLValueReferenceType()) VK = VK_LValue; else if (const auto *RRef = cv3T3->getAs()) VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; cv3T3 = cv3T3.getNonLValueExprType(S.Context); // Add the user-defined conversion step. bool HadMultipleCandidates = (CandidateSet.size() > 1); Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, HadMultipleCandidates); // Determine whether we'll need to perform derived-to-base adjustments or // other conversions. Sema::ReferenceConversions RefConv; Sema::ReferenceCompareResult NewRefRelationship = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); // Add the final conversion sequence, if necessary. if (NewRefRelationship == Sema::Ref_Incompatible) { assert(!isa(Function) && "should not have conversion after constructor"); ImplicitConversionSequence ICS; ICS.setStandard(); ICS.Standard = Best->FinalConversion; Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); // Every implicit conversion results in a prvalue, except for a glvalue // derived-to-base conversion, which we handle below. cv3T3 = ICS.Standard.getToType(2); VK = VK_PRValue; } // If the converted initializer is a prvalue, its type T4 is adjusted to // type "cv1 T4" and the temporary materialization conversion is applied. // // We adjust the cv-qualifications to match the reference regardless of // whether we have a prvalue so that the AST records the change. In this // case, T4 is "cv3 T3". QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) Sequence.AddQualificationConversionStep(cv1T4, VK); Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue); VK = IsLValueRef ? VK_LValue : VK_XValue; if (RefConv & Sema::ReferenceConversions::DerivedToBase) Sequence.AddDerivedToBaseCastStep(cv1T1, VK); else if (RefConv & Sema::ReferenceConversions::ObjC) Sequence.AddObjCObjectConversionStep(cv1T1); else if (RefConv & Sema::ReferenceConversions::Function) Sequence.AddFunctionReferenceConversionStep(cv1T1); else if (RefConv & Sema::ReferenceConversions::Qualification) { if (!S.Context.hasSameType(cv1T4, cv1T1)) Sequence.AddQualificationConversionStep(cv1T1, VK); } return OR_Success; } static void CheckCXX98CompatAccessibleCopy(Sema &S, const InitializedEntity &Entity, Expr *CurInitExpr); /// Attempt reference initialization (C++0x [dcl.init.ref]) static void TryReferenceInitialization(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, Expr *Initializer, InitializationSequence &Sequence, bool TopLevelOfInitList) { QualType DestType = Entity.getType(); QualType cv1T1 = DestType->castAs()->getPointeeType(); Qualifiers T1Quals; QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); QualType cv2T2 = S.getCompletedType(Initializer); Qualifiers T2Quals; QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); // If the initializer is the address of an overloaded function, try // to resolve the overloaded function. If all goes well, T2 is the // type of the resulting function. if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, T1, Sequence)) return; // Delegate everything else to a subfunction. TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, T1Quals, cv2T2, T2, T2Quals, Sequence, TopLevelOfInitList); } /// Determine whether an expression is a non-referenceable glvalue (one to /// which a reference can never bind). Attempting to bind a reference to /// such a glvalue will always create a temporary. static bool isNonReferenceableGLValue(Expr *E) { return E->refersToBitField() || E->refersToVectorElement() || E->refersToMatrixElement(); } /// Reference initialization without resolving overloaded functions. /// /// We also can get here in C if we call a builtin which is declared as /// a function with a parameter of reference type (such as __builtin_va_end()). static void TryReferenceInitializationCore(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, Expr *Initializer, QualType cv1T1, QualType T1, Qualifiers T1Quals, QualType cv2T2, QualType T2, Qualifiers T2Quals, InitializationSequence &Sequence, bool TopLevelOfInitList) { QualType DestType = Entity.getType(); SourceLocation DeclLoc = Initializer->getBeginLoc(); // Compute some basic properties of the types and the initializer. bool isLValueRef = DestType->isLValueReferenceType(); bool isRValueRef = !isLValueRef; Expr::Classification InitCategory = Initializer->Classify(S.Context); Sema::ReferenceConversions RefConv; Sema::ReferenceCompareResult RefRelationship = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); // C++0x [dcl.init.ref]p5: // A reference to type "cv1 T1" is initialized by an expression of type // "cv2 T2" as follows: // // - If the reference is an lvalue reference and the initializer // expression // Note the analogous bullet points for rvalue refs to functions. Because // there are no function rvalues in C++, rvalue refs to functions are treated // like lvalue refs. OverloadingResult ConvOvlResult = OR_Success; bool T1Function = T1->isFunctionType(); if (isLValueRef || T1Function) { if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && (RefRelationship == Sema::Ref_Compatible || (Kind.isCStyleOrFunctionalCast() && RefRelationship == Sema::Ref_Related))) { // - is an lvalue (but is not a bit-field), and "cv1 T1" is // reference-compatible with "cv2 T2," or if (RefConv & (Sema::ReferenceConversions::DerivedToBase | Sema::ReferenceConversions::ObjC)) { // If we're converting the pointee, add any qualifiers first; // these qualifiers must all be top-level, so just convert to "cv1 T2". if (RefConv & (Sema::ReferenceConversions::Qualification)) Sequence.AddQualificationConversionStep( S.Context.getQualifiedType(T2, T1Quals), Initializer->getValueKind()); if (RefConv & Sema::ReferenceConversions::DerivedToBase) Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); else Sequence.AddObjCObjectConversionStep(cv1T1); } else if (RefConv & Sema::ReferenceConversions::Qualification) { // Perform a (possibly multi-level) qualification conversion. Sequence.AddQualificationConversionStep(cv1T1, Initializer->getValueKind()); } else if (RefConv & Sema::ReferenceConversions::Function) { Sequence.AddFunctionReferenceConversionStep(cv1T1); } // We only create a temporary here when binding a reference to a // bit-field or vector element. Those cases are't supposed to be // handled by this bullet, but the outcome is the same either way. Sequence.AddReferenceBindingStep(cv1T1, false); return; } // - has a class type (i.e., T2 is a class type), where T1 is not // reference-related to T2, and can be implicitly converted to an // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible // with "cv3 T3" (this conversion is selected by enumerating the // applicable conversion functions (13.3.1.6) and choosing the best // one through overload resolution (13.3)), // If we have an rvalue ref to function type here, the rhs must be // an rvalue. DR1287 removed the "implicitly" here. if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && (isLValueRef || InitCategory.isRValue())) { if (S.getLangOpts().CPlusPlus) { // Try conversion functions only for C++. ConvOvlResult = TryRefInitWithConversionFunction( S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, /*IsLValueRef*/ isLValueRef, Sequence); if (ConvOvlResult == OR_Success) return; if (ConvOvlResult != OR_No_Viable_Function) Sequence.SetOverloadFailure( InitializationSequence::FK_ReferenceInitOverloadFailed, ConvOvlResult); } else { ConvOvlResult = OR_No_Viable_Function; } } } // - Otherwise, the reference shall be an lvalue reference to a // non-volatile const type (i.e., cv1 shall be const), or the reference // shall be an rvalue reference. // For address spaces, we interpret this to mean that an addr space // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && T1Quals.isAddressSpaceSupersetOf(T2Quals))) { if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) Sequence.SetOverloadFailure( InitializationSequence::FK_ReferenceInitOverloadFailed, ConvOvlResult); else if (!InitCategory.isLValue()) Sequence.SetFailed( T1Quals.isAddressSpaceSupersetOf(T2Quals) ? InitializationSequence:: FK_NonConstLValueReferenceBindingToTemporary : InitializationSequence::FK_ReferenceInitDropsQualifiers); else { InitializationSequence::FailureKind FK; switch (RefRelationship) { case Sema::Ref_Compatible: if (Initializer->refersToBitField()) FK = InitializationSequence:: FK_NonConstLValueReferenceBindingToBitfield; else if (Initializer->refersToVectorElement()) FK = InitializationSequence:: FK_NonConstLValueReferenceBindingToVectorElement; else if (Initializer->refersToMatrixElement()) FK = InitializationSequence:: FK_NonConstLValueReferenceBindingToMatrixElement; else llvm_unreachable("unexpected kind of compatible initializer"); break; case Sema::Ref_Related: FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; break; case Sema::Ref_Incompatible: FK = InitializationSequence:: FK_NonConstLValueReferenceBindingToUnrelated; break; } Sequence.SetFailed(FK); } return; } // - If the initializer expression // - is an // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or // [1z] rvalue (but not a bit-field) or // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" // // Note: functions are handled above and below rather than here... if (!T1Function && (RefRelationship == Sema::Ref_Compatible || (Kind.isCStyleOrFunctionalCast() && RefRelationship == Sema::Ref_Related)) && ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || (InitCategory.isPRValue() && (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || T2->isArrayType())))) { ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue; if (InitCategory.isPRValue() && T2->isRecordType()) { // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the // compiler the freedom to perform a copy here or bind to the // object, while C++0x requires that we bind directly to the // object. Hence, we always bind to the object without making an // extra copy. However, in C++03 requires that we check for the // presence of a suitable copy constructor: // // The constructor that would be used to make the copy shall // be callable whether or not the copy is actually done. if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) Sequence.AddExtraneousCopyToTemporary(cv2T2); else if (S.getLangOpts().CPlusPlus11) CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); } // C++1z [dcl.init.ref]/5.2.1.2: // If the converted initializer is a prvalue, its type T4 is adjusted // to type "cv1 T4" and the temporary materialization conversion is // applied. // Postpone address space conversions to after the temporary materialization // conversion to allow creating temporaries in the alloca address space. auto T1QualsIgnoreAS = T1Quals; auto T2QualsIgnoreAS = T2Quals; if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { T1QualsIgnoreAS.removeAddressSpace(); T2QualsIgnoreAS.removeAddressSpace(); } QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); if (T1QualsIgnoreAS != T2QualsIgnoreAS) Sequence.AddQualificationConversionStep(cv1T4, ValueKind); Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue); ValueKind = isLValueRef ? VK_LValue : VK_XValue; // Add addr space conversion if required. if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { auto T4Quals = cv1T4.getQualifiers(); T4Quals.addAddressSpace(T1Quals.getAddressSpace()); QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); cv1T4 = cv1T4WithAS; } // In any case, the reference is bound to the resulting glvalue (or to // an appropriate base class subobject). if (RefConv & Sema::ReferenceConversions::DerivedToBase) Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); else if (RefConv & Sema::ReferenceConversions::ObjC) Sequence.AddObjCObjectConversionStep(cv1T1); else if (RefConv & Sema::ReferenceConversions::Qualification) { if (!S.Context.hasSameType(cv1T4, cv1T1)) Sequence.AddQualificationConversionStep(cv1T1, ValueKind); } return; } // - has a class type (i.e., T2 is a class type), where T1 is not // reference-related to T2, and can be implicitly converted to an // xvalue, class prvalue, or function lvalue of type "cv3 T3", // where "cv1 T1" is reference-compatible with "cv3 T3", // // DR1287 removes the "implicitly" here. if (T2->isRecordType()) { if (RefRelationship == Sema::Ref_Incompatible) { ConvOvlResult = TryRefInitWithConversionFunction( S, Entity, Kind, Initializer, /*AllowRValues*/ true, /*IsLValueRef*/ isLValueRef, Sequence); if (ConvOvlResult) Sequence.SetOverloadFailure( InitializationSequence::FK_ReferenceInitOverloadFailed, ConvOvlResult); return; } if (RefRelationship == Sema::Ref_Compatible && isRValueRef && InitCategory.isLValue()) { Sequence.SetFailed( InitializationSequence::FK_RValueReferenceBindingToLValue); return; } Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); return; } // - Otherwise, a temporary of type "cv1 T1" is created and initialized // from the initializer expression using the rules for a non-reference // copy-initialization (8.5). The reference is then bound to the // temporary. [...] // Ignore address space of reference type at this point and perform address // space conversion after the reference binding step. QualType cv1T1IgnoreAS = T1Quals.hasAddressSpace() ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) : cv1T1; InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); // FIXME: Why do we use an implicit conversion here rather than trying // copy-initialization? ImplicitConversionSequence ICS = S.TryImplicitConversion(Initializer, TempEntity.getType(), /*SuppressUserConversions=*/false, Sema::AllowedExplicit::None, /*FIXME:InOverloadResolution=*/false, /*CStyle=*/Kind.isCStyleOrFunctionalCast(), /*AllowObjCWritebackConversion=*/false); if (ICS.isBad()) { // FIXME: Use the conversion function set stored in ICS to turn // this into an overloading ambiguity diagnostic. However, we need // to keep that set as an OverloadCandidateSet rather than as some // other kind of set. if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) Sequence.SetOverloadFailure( InitializationSequence::FK_ReferenceInitOverloadFailed, ConvOvlResult); else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); else Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); return; } else { Sequence.AddConversionSequenceStep(ICS, TempEntity.getType(), TopLevelOfInitList); } // [...] If T1 is reference-related to T2, cv1 must be the // same cv-qualification as, or greater cv-qualification // than, cv2; otherwise, the program is ill-formed. unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); if (RefRelationship == Sema::Ref_Related && ((T1CVRQuals | T2CVRQuals) != T1CVRQuals || !T1Quals.isAddressSpaceSupersetOf(T2Quals))) { Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); return; } // [...] If T1 is reference-related to T2 and the reference is an rvalue // reference, the initializer expression shall not be an lvalue. if (RefRelationship >= Sema::Ref_Related && !isLValueRef && InitCategory.isLValue()) { Sequence.SetFailed( InitializationSequence::FK_RValueReferenceBindingToLValue); return; } Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); if (T1Quals.hasAddressSpace()) { if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), LangAS::Default)) { Sequence.SetFailed( InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); return; } Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue : VK_XValue); } } /// Attempt character array initialization from a string literal /// (C++ [dcl.init.string], C99 6.7.8). static void TryStringLiteralInitialization(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, Expr *Initializer, InitializationSequence &Sequence) { Sequence.AddStringInitStep(Entity.getType()); } /// Attempt value initialization (C++ [dcl.init]p7). static void TryValueInitialization(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, InitializationSequence &Sequence, InitListExpr *InitList) { assert((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"); // C++98 [dcl.init]p5, C++11 [dcl.init]p7: // // To value-initialize an object of type T means: QualType T = Entity.getType(); // -- if T is an array type, then each element is value-initialized; T = S.Context.getBaseElementType(T); if (const RecordType *RT = T->getAs()) { if (CXXRecordDecl *ClassDecl = dyn_cast(RT->getDecl())) { bool NeedZeroInitialization = true; // C++98: // -- if T is a class type (clause 9) with a user-declared constructor // (12.1), then the default constructor for T is called (and the // initialization is ill-formed if T has no accessible default // constructor); // C++11: // -- if T is a class type (clause 9) with either no default constructor // (12.1 [class.ctor]) or a default constructor that is user-provided // or deleted, then the object is default-initialized; // // Note that the C++11 rule is the same as the C++98 rule if there are no // defaulted or deleted constructors, so we just use it unconditionally. CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) NeedZeroInitialization = false; // -- if T is a (possibly cv-qualified) non-union class type without a // user-provided or deleted default constructor, then the object is // zero-initialized and, if T has a non-trivial default constructor, // default-initialized; // The 'non-union' here was removed by DR1502. The 'non-trivial default // constructor' part was removed by DR1507. if (NeedZeroInitialization) Sequence.AddZeroInitializationStep(Entity.getType()); // C++03: // -- if T is a non-union class type without a user-declared constructor, // then every non-static data member and base class component of T is // value-initialized; // [...] A program that calls for [...] value-initialization of an // entity of reference type is ill-formed. // // C++11 doesn't need this handling, because value-initialization does not // occur recursively there, and the implicit default constructor is // defined as deleted in the problematic cases. if (!S.getLangOpts().CPlusPlus11 && ClassDecl->hasUninitializedReferenceMember()) { Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); return; } // If this is list-value-initialization, pass the empty init list on when // building the constructor call. This affects the semantics of a few // things (such as whether an explicit default constructor can be called). Expr *InitListAsExpr = InitList; MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); bool InitListSyntax = InitList; // FIXME: Instead of creating a CXXConstructExpr of array type here, // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. return TryConstructorInitialization( S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); } } Sequence.AddZeroInitializationStep(Entity.getType()); } /// Attempt default initialization (C++ [dcl.init]p6). static void TryDefaultInitialization(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, InitializationSequence &Sequence) { assert(Kind.getKind() == InitializationKind::IK_Default); // C++ [dcl.init]p6: // To default-initialize an object of type T means: // - if T is an array type, each element is default-initialized; QualType DestType = S.Context.getBaseElementType(Entity.getType()); // - if T is a (possibly cv-qualified) class type (Clause 9), the default // constructor for T is called (and the initialization is ill-formed if // T has no accessible default constructor); if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { TryConstructorInitialization(S, Entity, Kind, std::nullopt, DestType, Entity.getType(), Sequence); return; } // - otherwise, no initialization is performed. // If a program calls for the default initialization of an object of // a const-qualified type T, T shall be a class type with a user-provided // default constructor. if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); return; } // If the destination type has a lifetime property, zero-initialize it. if (DestType.getQualifiers().hasObjCLifetime()) { Sequence.AddZeroInitializationStep(Entity.getType()); return; } } static void TryOrBuildParenListInitialization( Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, ArrayRef Args, InitializationSequence &Sequence, bool VerifyOnly, ExprResult *Result = nullptr) { unsigned EntityIndexToProcess = 0; SmallVector InitExprs; QualType ResultType; Expr *ArrayFiller = nullptr; FieldDecl *InitializedFieldInUnion = nullptr; auto HandleInitializedEntity = [&](const InitializedEntity &SubEntity, const InitializationKind &SubKind, Expr *Arg, Expr **InitExpr = nullptr) { InitializationSequence IS = InitializationSequence( S, SubEntity, SubKind, Arg ? MultiExprArg(Arg) : std::nullopt); if (IS.Failed()) { if (!VerifyOnly) { IS.Diagnose(S, SubEntity, SubKind, Arg ? ArrayRef(Arg) : std::nullopt); } else { Sequence.SetFailed( InitializationSequence::FK_ParenthesizedListInitFailed); } return false; } if (!VerifyOnly) { ExprResult ER; ER = IS.Perform(S, SubEntity, SubKind, Arg ? MultiExprArg(Arg) : std::nullopt); if (InitExpr) *InitExpr = ER.get(); else InitExprs.push_back(ER.get()); } return true; }; if (const ArrayType *AT = S.getASTContext().getAsArrayType(Entity.getType())) { SmallVector ElementEntities; uint64_t ArrayLength; // C++ [dcl.init]p16.5 // if the destination type is an array, the object is initialized as // follows. Let x1, . . . , xk be the elements of the expression-list. If // the destination type is an array of unknown bound, it is defined as // having k elements. if (const ConstantArrayType *CAT = S.getASTContext().getAsConstantArrayType(Entity.getType())) { ArrayLength = CAT->getSize().getZExtValue(); ResultType = Entity.getType(); } else if (const VariableArrayType *VAT = S.getASTContext().getAsVariableArrayType(Entity.getType())) { // Braced-initialization of variable array types is not allowed, even if // the size is greater than or equal to the number of args, so we don't // allow them to be initialized via parenthesized aggregate initialization // either. const Expr *SE = VAT->getSizeExpr(); S.Diag(SE->getBeginLoc(), diag::err_variable_object_no_init) << SE->getSourceRange(); return; } else { assert(isa(Entity.getType())); ArrayLength = Args.size(); } EntityIndexToProcess = ArrayLength; // ...the ith array element is copy-initialized with xi for each // 1 <= i <= k for (Expr *E : Args) { InitializedEntity SubEntity = InitializedEntity::InitializeElement( S.getASTContext(), EntityIndexToProcess, Entity); InitializationKind SubKind = InitializationKind::CreateForInit( E->getExprLoc(), /*isDirectInit=*/false, E); if (!HandleInitializedEntity(SubEntity, SubKind, E)) return; } // ...and value-initialized for each k < i <= n; if (ArrayLength > Args.size() || Entity.isVariableLengthArrayNew()) { InitializedEntity SubEntity = InitializedEntity::InitializeElement( S.getASTContext(), Args.size(), Entity); InitializationKind SubKind = InitializationKind::CreateValue( Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true); if (!HandleInitializedEntity(SubEntity, SubKind, nullptr, &ArrayFiller)) return; } if (ResultType.isNull()) { ResultType = S.Context.getConstantArrayType( AT->getElementType(), llvm::APInt(/*numBits=*/32, ArrayLength), /*SizeExpr=*/nullptr, ArraySizeModifier::Normal, 0); } } else if (auto *RT = Entity.getType()->getAs()) { bool IsUnion = RT->isUnionType(); const CXXRecordDecl *RD = cast(RT->getDecl()); if (RD->isInvalidDecl()) { // Exit early to avoid confusion when processing members. // We do the same for braced list initialization in // `CheckStructUnionTypes`. Sequence.SetFailed( clang::InitializationSequence::FK_ParenthesizedListInitFailed); return; } if (!IsUnion) { for (const CXXBaseSpecifier &Base : RD->bases()) { InitializedEntity SubEntity = InitializedEntity::InitializeBase( S.getASTContext(), &Base, false, &Entity); if (EntityIndexToProcess < Args.size()) { // C++ [dcl.init]p16.6.2.2. // ...the object is initialized is follows. Let e1, ..., en be the // elements of the aggregate([dcl.init.aggr]). Let x1, ..., xk be // the elements of the expression-list...The element ei is // copy-initialized with xi for 1 <= i <= k. Expr *E = Args[EntityIndexToProcess]; InitializationKind SubKind = InitializationKind::CreateForInit( E->getExprLoc(), /*isDirectInit=*/false, E); if (!HandleInitializedEntity(SubEntity, SubKind, E)) return; } else { // We've processed all of the args, but there are still base classes // that have to be initialized. // C++ [dcl.init]p17.6.2.2 // The remaining elements...otherwise are value initialzed InitializationKind SubKind = InitializationKind::CreateValue( Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), /*IsImplicit=*/true); if (!HandleInitializedEntity(SubEntity, SubKind, nullptr)) return; } EntityIndexToProcess++; } } for (FieldDecl *FD : RD->fields()) { // Unnamed bitfields should not be initialized at all, either with an arg // or by default. if (FD->isUnnamedBitfield()) continue; InitializedEntity SubEntity = InitializedEntity::InitializeMemberFromParenAggInit(FD); if (EntityIndexToProcess < Args.size()) { // ...The element ei is copy-initialized with xi for 1 <= i <= k. Expr *E = Args[EntityIndexToProcess]; // Incomplete array types indicate flexible array members. Do not allow // paren list initializations of structs with these members, as GCC // doesn't either. if (FD->getType()->isIncompleteArrayType()) { if (!VerifyOnly) { S.Diag(E->getBeginLoc(), diag::err_flexible_array_init) << SourceRange(E->getBeginLoc(), E->getEndLoc()); S.Diag(FD->getLocation(), diag::note_flexible_array_member) << FD; } Sequence.SetFailed( InitializationSequence::FK_ParenthesizedListInitFailed); return; } InitializationKind SubKind = InitializationKind::CreateForInit( E->getExprLoc(), /*isDirectInit=*/false, E); if (!HandleInitializedEntity(SubEntity, SubKind, E)) return; // Unions should have only one initializer expression, so we bail out // after processing the first field. If there are more initializers then // it will be caught when we later check whether EntityIndexToProcess is // less than Args.size(); if (IsUnion) { InitializedFieldInUnion = FD; EntityIndexToProcess = 1; break; } } else { // We've processed all of the args, but there are still members that // have to be initialized. if (FD->hasInClassInitializer()) { if (!VerifyOnly) { // C++ [dcl.init]p16.6.2.2 // The remaining elements are initialized with their default // member initializers, if any ExprResult DIE = S.BuildCXXDefaultInitExpr( Kind.getParenOrBraceRange().getEnd(), FD); if (DIE.isInvalid()) return; S.checkInitializerLifetime(SubEntity, DIE.get()); InitExprs.push_back(DIE.get()); } } else { // C++ [dcl.init]p17.6.2.2 // The remaining elements...otherwise are value initialzed if (FD->getType()->isReferenceType()) { Sequence.SetFailed( InitializationSequence::FK_ParenthesizedListInitFailed); if (!VerifyOnly) { SourceRange SR = Kind.getParenOrBraceRange(); S.Diag(SR.getEnd(), diag::err_init_reference_member_uninitialized) << FD->getType() << SR; S.Diag(FD->getLocation(), diag::note_uninit_reference_member); } return; } InitializationKind SubKind = InitializationKind::CreateValue( Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true); if (!HandleInitializedEntity(SubEntity, SubKind, nullptr)) return; } } EntityIndexToProcess++; } ResultType = Entity.getType(); } // Not all of the args have been processed, so there must've been more args // than were required to initialize the element. if (EntityIndexToProcess < Args.size()) { Sequence.SetFailed(InitializationSequence::FK_ParenthesizedListInitFailed); if (!VerifyOnly) { QualType T = Entity.getType(); int InitKind = T->isArrayType() ? 0 : T->isUnionType() ? 3 : 4; SourceRange ExcessInitSR(Args[EntityIndexToProcess]->getBeginLoc(), Args.back()->getEndLoc()); S.Diag(Kind.getLocation(), diag::err_excess_initializers) << InitKind << ExcessInitSR; } return; } if (VerifyOnly) { Sequence.setSequenceKind(InitializationSequence::NormalSequence); Sequence.AddParenthesizedListInitStep(Entity.getType()); } else if (Result) { SourceRange SR = Kind.getParenOrBraceRange(); auto *CPLIE = CXXParenListInitExpr::Create( S.getASTContext(), InitExprs, ResultType, Args.size(), Kind.getLocation(), SR.getBegin(), SR.getEnd()); if (ArrayFiller) CPLIE->setArrayFiller(ArrayFiller); if (InitializedFieldInUnion) CPLIE->setInitializedFieldInUnion(InitializedFieldInUnion); *Result = CPLIE; S.Diag(Kind.getLocation(), diag::warn_cxx17_compat_aggregate_init_paren_list) << Kind.getLocation() << SR << ResultType; } } /// Attempt a user-defined conversion between two types (C++ [dcl.init]), /// which enumerates all conversion functions and performs overload resolution /// to select the best. static void TryUserDefinedConversion(Sema &S, QualType DestType, const InitializationKind &Kind, Expr *Initializer, InitializationSequence &Sequence, bool TopLevelOfInitList) { assert(!DestType->isReferenceType() && "References are handled elsewhere"); QualType SourceType = Initializer->getType(); assert((DestType->isRecordType() || SourceType->isRecordType()) && "Must have a class type to perform a user-defined conversion"); // Build the candidate set directly in the initialization sequence // structure, so that it will persist if we fail. OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); // Determine whether we are allowed to call explicit constructors or // explicit conversion operators. bool AllowExplicit = Kind.AllowExplicit(); if (const RecordType *DestRecordType = DestType->getAs()) { // The type we're converting to is a class type. Enumerate its constructors // to see if there is a suitable conversion. CXXRecordDecl *DestRecordDecl = cast(DestRecordType->getDecl()); // Try to complete the type we're converting to. if (S.isCompleteType(Kind.getLocation(), DestType)) { for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { auto Info = getConstructorInfo(D); if (!Info.Constructor) continue; if (!Info.Constructor->isInvalidDecl() && Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { if (Info.ConstructorTmpl) S.AddTemplateOverloadCandidate( Info.ConstructorTmpl, Info.FoundDecl, /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, /*SuppressUserConversions=*/true, /*PartialOverloading*/ false, AllowExplicit); else S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, /*SuppressUserConversions=*/true, /*PartialOverloading*/ false, AllowExplicit); } } } } SourceLocation DeclLoc = Initializer->getBeginLoc(); if (const RecordType *SourceRecordType = SourceType->getAs()) { // The type we're converting from is a class type, enumerate its conversion // functions. // We can only enumerate the conversion functions for a complete type; if // the type isn't complete, simply skip this step. if (S.isCompleteType(DeclLoc, SourceType)) { CXXRecordDecl *SourceRecordDecl = cast(SourceRecordType->getDecl()); const auto &Conversions = SourceRecordDecl->getVisibleConversionFunctions(); for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { NamedDecl *D = *I; CXXRecordDecl *ActingDC = cast(D->getDeclContext()); if (isa(D)) D = cast(D)->getTargetDecl(); FunctionTemplateDecl *ConvTemplate = dyn_cast(D); CXXConversionDecl *Conv; if (ConvTemplate) Conv = cast(ConvTemplate->getTemplatedDecl()); else Conv = cast(D); if (ConvTemplate) S.AddTemplateConversionCandidate( ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, AllowExplicit, AllowExplicit); else S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, AllowExplicit, AllowExplicit); } } } // Perform overload resolution. If it fails, return the failed result. OverloadCandidateSet::iterator Best; if (OverloadingResult Result = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { Sequence.SetOverloadFailure( InitializationSequence::FK_UserConversionOverloadFailed, Result); // [class.copy.elision]p3: // In some copy-initialization contexts, a two-stage overload resolution // is performed. // If the first overload resolution selects a deleted function, we also // need the initialization sequence to decide whether to perform the second // overload resolution. if (!(Result == OR_Deleted && Kind.getKind() == InitializationKind::IK_Copy)) return; } FunctionDecl *Function = Best->Function; Function->setReferenced(); bool HadMultipleCandidates = (CandidateSet.size() > 1); if (isa(Function)) { // Add the user-defined conversion step. Any cv-qualification conversion is // subsumed by the initialization. Per DR5, the created temporary is of the // cv-unqualified type of the destination. Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType.getUnqualifiedType(), HadMultipleCandidates); // C++14 and before: // - if the function is a constructor, the call initializes a temporary // of the cv-unqualified version of the destination type. The [...] // temporary [...] is then used to direct-initialize, according to the // rules above, the object that is the destination of the // copy-initialization. // Note that this just performs a simple object copy from the temporary. // // C++17: // - if the function is a constructor, the call is a prvalue of the // cv-unqualified version of the destination type whose return object // is initialized by the constructor. The call is used to // direct-initialize, according to the rules above, the object that // is the destination of the copy-initialization. // Therefore we need to do nothing further. // // FIXME: Mark this copy as extraneous. if (!S.getLangOpts().CPlusPlus17) Sequence.AddFinalCopy(DestType); else if (DestType.hasQualifiers()) Sequence.AddQualificationConversionStep(DestType, VK_PRValue); return; } // Add the user-defined conversion step that calls the conversion function. QualType ConvType = Function->getCallResultType(); Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, HadMultipleCandidates); if (ConvType->getAs()) { // The call is used to direct-initialize [...] the object that is the // destination of the copy-initialization. // // In C++17, this does not call a constructor if we enter /17.6.1: // - If the initializer expression is a prvalue and the cv-unqualified // version of the source type is the same as the class of the // destination [... do not make an extra copy] // // FIXME: Mark this copy as extraneous. if (!S.getLangOpts().CPlusPlus17 || Function->getReturnType()->isReferenceType() || !S.Context.hasSameUnqualifiedType(ConvType, DestType)) Sequence.AddFinalCopy(DestType); else if (!S.Context.hasSameType(ConvType, DestType)) Sequence.AddQualificationConversionStep(DestType, VK_PRValue); return; } // If the conversion following the call to the conversion function // is interesting, add it as a separate step. if (Best->FinalConversion.First || Best->FinalConversion.Second || Best->FinalConversion.Third) { ImplicitConversionSequence ICS; ICS.setStandard(); ICS.Standard = Best->FinalConversion; Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); } } /// An egregious hack for compatibility with libstdc++-4.2: in , /// a function with a pointer return type contains a 'return false;' statement. /// In C++11, 'false' is not a null pointer, so this breaks the build of any /// code using that header. /// /// Work around this by treating 'return false;' as zero-initializing the result /// if it's used in a pointer-returning function in a system header. static bool isLibstdcxxPointerReturnFalseHack(Sema &S, const InitializedEntity &Entity, const Expr *Init) { return S.getLangOpts().CPlusPlus11 && Entity.getKind() == InitializedEntity::EK_Result && Entity.getType()->isPointerType() && isa(Init) && !cast(Init)->getValue() && S.getSourceManager().isInSystemHeader(Init->getExprLoc()); } /// The non-zero enum values here are indexes into diagnostic alternatives. enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; /// Determines whether this expression is an acceptable ICR source. static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, bool isAddressOf, bool &isWeakAccess) { // Skip parens. e = e->IgnoreParens(); // Skip address-of nodes. if (UnaryOperator *op = dyn_cast(e)) { if (op->getOpcode() == UO_AddrOf) return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, isWeakAccess); // Skip certain casts. } else if (CastExpr *ce = dyn_cast(e)) { switch (ce->getCastKind()) { case CK_Dependent: case CK_BitCast: case CK_LValueBitCast: case CK_NoOp: return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); case CK_ArrayToPointerDecay: return IIK_nonscalar; case CK_NullToPointer: return IIK_okay; default: break; } // If we have a declaration reference, it had better be a local variable. } else if (isa(e)) { // set isWeakAccess to true, to mean that there will be an implicit // load which requires a cleanup. if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) isWeakAccess = true; if (!isAddressOf) return IIK_nonlocal; VarDecl *var = dyn_cast(cast(e)->getDecl()); if (!var) return IIK_nonlocal; return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); // If we have a conditional operator, check both sides. } else if (ConditionalOperator *cond = dyn_cast(e)) { if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, isWeakAccess)) return iik; return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); // These are never scalar. } else if (isa(e)) { return IIK_nonscalar; // Otherwise, it needs to be a null pointer constant. } else { return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) ? IIK_okay : IIK_nonlocal); } return IIK_nonlocal; } /// Check whether the given expression is a valid operand for an /// indirect copy/restore. static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { assert(src->isPRValue()); bool isWeakAccess = false; InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); // If isWeakAccess to true, there will be an implicit // load which requires a cleanup. if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) S.Cleanup.setExprNeedsCleanups(true); if (iik == IIK_okay) return; S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) << ((unsigned) iik - 1) // shift index into diagnostic explanations << src->getSourceRange(); } /// Determine whether we have compatible array types for the /// purposes of GNU by-copy array initialization. static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, const ArrayType *Source) { // If the source and destination array types are equivalent, we're // done. if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) return true; // Make sure that the element types are the same. if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) return false; // The only mismatch we allow is when the destination is an // incomplete array type and the source is a constant array type. return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); } static bool tryObjCWritebackConversion(Sema &S, InitializationSequence &Sequence, const InitializedEntity &Entity, Expr *Initializer) { bool ArrayDecay = false; QualType ArgType = Initializer->getType(); QualType ArgPointee; if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { ArrayDecay = true; ArgPointee = ArgArrayType->getElementType(); ArgType = S.Context.getPointerType(ArgPointee); } // Handle write-back conversion. QualType ConvertedArgType; if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), ConvertedArgType)) return false; // We should copy unless we're passing to an argument explicitly // marked 'out'. bool ShouldCopy = true; if (ParmVarDecl *param = cast_or_null(Entity.getDecl())) ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); // Do we need an lvalue conversion? if (ArrayDecay || Initializer->isGLValue()) { ImplicitConversionSequence ICS; ICS.setStandard(); ICS.Standard.setAsIdentityConversion(); QualType ResultType; if (ArrayDecay) { ICS.Standard.First = ICK_Array_To_Pointer; ResultType = S.Context.getPointerType(ArgPointee); } else { ICS.Standard.First = ICK_Lvalue_To_Rvalue; ResultType = Initializer->getType().getNonLValueExprType(S.Context); } Sequence.AddConversionSequenceStep(ICS, ResultType); } Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); return true; } static bool TryOCLSamplerInitialization(Sema &S, InitializationSequence &Sequence, QualType DestType, Expr *Initializer) { if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || (!Initializer->isIntegerConstantExpr(S.Context) && !Initializer->getType()->isSamplerT())) return false; Sequence.AddOCLSamplerInitStep(DestType); return true; } static bool IsZeroInitializer(Expr *Initializer, Sema &S) { return Initializer->isIntegerConstantExpr(S.getASTContext()) && (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); } static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, InitializationSequence &Sequence, QualType DestType, Expr *Initializer) { if (!S.getLangOpts().OpenCL) return false; // // OpenCL 1.2 spec, s6.12.10 // // The event argument can also be used to associate the // async_work_group_copy with a previous async copy allowing // an event to be shared by multiple async copies; otherwise // event should be zero. // if (DestType->isEventT() || DestType->isQueueT()) { if (!IsZeroInitializer(Initializer, S)) return false; Sequence.AddOCLZeroOpaqueTypeStep(DestType); return true; } // We should allow zero initialization for all types defined in the // cl_intel_device_side_avc_motion_estimation extension, except // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. if (S.getOpenCLOptions().isAvailableOption( "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) && DestType->isOCLIntelSubgroupAVCType()) { if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || DestType->isOCLIntelSubgroupAVCMceResultType()) return false; if (!IsZeroInitializer(Initializer, S)) return false; Sequence.AddOCLZeroOpaqueTypeStep(DestType); return true; } return false; } InitializationSequence::InitializationSequence( Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid) : FailedOverloadResult(OR_Success), FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, TreatUnavailableAsInvalid); } /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the /// address of that function, this returns true. Otherwise, it returns false. static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { auto *DRE = dyn_cast(E); if (!DRE || !isa(DRE->getDecl())) return false; return !S.checkAddressOfFunctionIsAvailable( cast(DRE->getDecl())); } /// Determine whether we can perform an elementwise array copy for this kind /// of entity. static bool canPerformArrayCopy(const InitializedEntity &Entity) { switch (Entity.getKind()) { case InitializedEntity::EK_LambdaCapture: // C++ [expr.prim.lambda]p24: // For array members, the array elements are direct-initialized in // increasing subscript order. return true; case InitializedEntity::EK_Variable: // C++ [dcl.decomp]p1: // [...] each element is copy-initialized or direct-initialized from the // corresponding element of the assignment-expression [...] return isa(Entity.getDecl()); case InitializedEntity::EK_Member: // C++ [class.copy.ctor]p14: // - if the member is an array, each element is direct-initialized with // the corresponding subobject of x return Entity.isImplicitMemberInitializer(); case InitializedEntity::EK_ArrayElement: // All the above cases are intended to apply recursively, even though none // of them actually say that. if (auto *E = Entity.getParent()) return canPerformArrayCopy(*E); break; default: break; } return false; } void InitializationSequence::InitializeFrom(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid) { ASTContext &Context = S.Context; // Eliminate non-overload placeholder types in the arguments. We // need to do this before checking whether types are dependent // because lowering a pseudo-object expression might well give us // something of dependent type. for (unsigned I = 0, E = Args.size(); I != E; ++I) if (Args[I]->getType()->isNonOverloadPlaceholderType()) { // FIXME: should we be doing this here? ExprResult result = S.CheckPlaceholderExpr(Args[I]); if (result.isInvalid()) { SetFailed(FK_PlaceholderType); return; } Args[I] = result.get(); } // C++0x [dcl.init]p16: // The semantics of initializers are as follows. The destination type is // the type of the object or reference being initialized and the source // type is the type of the initializer expression. The source type is not // defined when the initializer is a braced-init-list or when it is a // parenthesized list of expressions. QualType DestType = Entity.getType(); if (DestType->isDependentType() || Expr::hasAnyTypeDependentArguments(Args)) { SequenceKind = DependentSequence; return; } // Almost everything is a normal sequence. setSequenceKind(NormalSequence); QualType SourceType; Expr *Initializer = nullptr; if (Args.size() == 1) { Initializer = Args[0]; if (S.getLangOpts().ObjC) { if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), DestType, Initializer->getType(), Initializer) || S.CheckConversionToObjCLiteral(DestType, Initializer)) Args[0] = Initializer; } if (!isa(Initializer)) SourceType = Initializer->getType(); } // - If the initializer is a (non-parenthesized) braced-init-list, the // object is list-initialized (8.5.4). if (Kind.getKind() != InitializationKind::IK_Direct) { if (InitListExpr *InitList = dyn_cast_or_null(Initializer)) { TryListInitialization(S, Entity, Kind, InitList, *this, TreatUnavailableAsInvalid); return; } } // - If the destination type is a reference type, see 8.5.3. if (DestType->isReferenceType()) { // C++0x [dcl.init.ref]p1: // A variable declared to be a T& or T&&, that is, "reference to type T" // (8.3.2), shall be initialized by an object, or function, of type T or // by an object that can be converted into a T. // (Therefore, multiple arguments are not permitted.) if (Args.size() != 1) SetFailed(FK_TooManyInitsForReference); // C++17 [dcl.init.ref]p5: // A reference [...] is initialized by an expression [...] as follows: // If the initializer is not an expression, presumably we should reject, // but the standard fails to actually say so. else if (isa(Args[0])) SetFailed(FK_ParenthesizedListInitForReference); else TryReferenceInitialization(S, Entity, Kind, Args[0], *this, TopLevelOfInitList); return; } // - If the initializer is (), the object is value-initialized. if (Kind.getKind() == InitializationKind::IK_Value || (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { TryValueInitialization(S, Entity, Kind, *this); return; } // Handle default initialization. if (Kind.getKind() == InitializationKind::IK_Default) { TryDefaultInitialization(S, Entity, Kind, *this); return; } // - If the destination type is an array of characters, an array of // char16_t, an array of char32_t, or an array of wchar_t, and the // initializer is a string literal, see 8.5.2. // - Otherwise, if the destination type is an array, the program is // ill-formed. if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { if (Initializer && isa(DestAT)) { SetFailed(FK_VariableLengthArrayHasInitializer); return; } if (Initializer) { switch (IsStringInit(Initializer, DestAT, Context)) { case SIF_None: TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); return; case SIF_NarrowStringIntoWideChar: SetFailed(FK_NarrowStringIntoWideCharArray); return; case SIF_WideStringIntoChar: SetFailed(FK_WideStringIntoCharArray); return; case SIF_IncompatWideStringIntoWideChar: SetFailed(FK_IncompatWideStringIntoWideChar); return; case SIF_PlainStringIntoUTF8Char: SetFailed(FK_PlainStringIntoUTF8Char); return; case SIF_UTF8StringIntoPlainChar: SetFailed(FK_UTF8StringIntoPlainChar); return; case SIF_Other: break; } } // Some kinds of initialization permit an array to be initialized from // another array of the same type, and perform elementwise initialization. if (Initializer && isa(DestAT) && S.Context.hasSameUnqualifiedType(Initializer->getType(), Entity.getType()) && canPerformArrayCopy(Entity)) { // If source is a prvalue, use it directly. if (Initializer->isPRValue()) { AddArrayInitStep(DestType, /*IsGNUExtension*/false); return; } // Emit element-at-a-time copy loop. InitializedEntity Element = InitializedEntity::InitializeElement(S.Context, 0, Entity); QualType InitEltT = Context.getAsArrayType(Initializer->getType())->getElementType(); OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, Initializer->getValueKind(), Initializer->getObjectKind()); Expr *OVEAsExpr = &OVE; InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, TreatUnavailableAsInvalid); if (!Failed()) AddArrayInitLoopStep(Entity.getType(), InitEltT); return; } // Note: as an GNU C extension, we allow initialization of an // array from a compound literal that creates an array of the same // type, so long as the initializer has no side effects. if (!S.getLangOpts().CPlusPlus && Initializer && isa(Initializer->IgnoreParens()) && Initializer->getType()->isArrayType()) { const ArrayType *SourceAT = Context.getAsArrayType(Initializer->getType()); if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) SetFailed(FK_ArrayTypeMismatch); else if (Initializer->HasSideEffects(S.Context)) SetFailed(FK_NonConstantArrayInit); else { AddArrayInitStep(DestType, /*IsGNUExtension*/true); } } // Note: as a GNU C++ extension, we allow list-initialization of a // class member of array type from a parenthesized initializer list. else if (S.getLangOpts().CPlusPlus && Entity.getKind() == InitializedEntity::EK_Member && Initializer && isa(Initializer)) { TryListInitialization(S, Entity, Kind, cast(Initializer), *this, TreatUnavailableAsInvalid); AddParenthesizedArrayInitStep(DestType); } else if (S.getLangOpts().CPlusPlus20 && !TopLevelOfInitList && Kind.getKind() == InitializationKind::IK_Direct) TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this, /*VerifyOnly=*/true); else if (DestAT->getElementType()->isCharType()) SetFailed(FK_ArrayNeedsInitListOrStringLiteral); else if (IsWideCharCompatible(DestAT->getElementType(), Context)) SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); else SetFailed(FK_ArrayNeedsInitList); return; } // Determine whether we should consider writeback conversions for // Objective-C ARC. bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && Entity.isParameterKind(); if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) return; // We're at the end of the line for C: it's either a write-back conversion // or it's a C assignment. There's no need to check anything else. if (!S.getLangOpts().CPlusPlus) { assert(Initializer && "Initializer must be non-null"); // If allowed, check whether this is an Objective-C writeback conversion. if (allowObjCWritebackConversion && tryObjCWritebackConversion(S, *this, Entity, Initializer)) { return; } if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) return; // Handle initialization in C AddCAssignmentStep(DestType); MaybeProduceObjCObject(S, *this, Entity); return; } assert(S.getLangOpts().CPlusPlus); // - If the destination type is a (possibly cv-qualified) class type: if (DestType->isRecordType()) { // - If the initialization is direct-initialization, or if it is // copy-initialization where the cv-unqualified version of the // source type is the same class as, or a derived class of, the // class of the destination, constructors are considered. [...] if (Kind.getKind() == InitializationKind::IK_Direct || (Kind.getKind() == InitializationKind::IK_Copy && (Context.hasSameUnqualifiedType(SourceType, DestType) || (Initializer && S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))) { TryConstructorInitialization(S, Entity, Kind, Args, DestType, DestType, *this); // We fall back to the "no matching constructor" path if the // failed candidate set has functions other than the three default // constructors. For example, conversion function. if (const auto *RD = dyn_cast(DestType->getAs()->getDecl()); // In general, we should call isCompleteType for RD to check its // completeness, we don't call it here as it was already called in the // above TryConstructorInitialization. S.getLangOpts().CPlusPlus20 && RD && RD->hasDefinition() && RD->isAggregate() && Failed() && getFailureKind() == FK_ConstructorOverloadFailed) { // Do not attempt paren list initialization if overload resolution // resolves to a deleted function . // // We may reach this condition if we have a union wrapping a class with // a non-trivial copy or move constructor and we call one of those two // constructors. The union is an aggregate, but the matched constructor // is implicitly deleted, so we need to prevent aggregate initialization // (otherwise, it'll attempt aggregate initialization by initializing // the first element with a reference to the union). OverloadCandidateSet::iterator Best; OverloadingResult OR = getFailedCandidateSet().BestViableFunction( S, Kind.getLocation(), Best); if (OR != OverloadingResult::OR_Deleted) { // C++20 [dcl.init] 17.6.2.2: // - Otherwise, if no constructor is viable, the destination type is // an // aggregate class, and the initializer is a parenthesized // expression-list. TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this, /*VerifyOnly=*/true); } } } else { // - Otherwise (i.e., for the remaining copy-initialization cases), // user-defined conversion sequences that can convert from the // source type to the destination type or (when a conversion // function is used) to a derived class thereof are enumerated as // described in 13.3.1.4, and the best one is chosen through // overload resolution (13.3). assert(Initializer && "Initializer must be non-null"); TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, TopLevelOfInitList); } return; } assert(Args.size() >= 1 && "Zero-argument case handled above"); // For HLSL ext vector types we allow list initialization behavior for C++ // constructor syntax. This is accomplished by converting initialization // arguments an InitListExpr late. if (S.getLangOpts().HLSL && DestType->isExtVectorType() && (SourceType.isNull() || !Context.hasSameUnqualifiedType(SourceType, DestType))) { llvm::SmallVector InitArgs; for (auto *Arg : Args) { if (Arg->getType()->isExtVectorType()) { const auto *VTy = Arg->getType()->castAs(); unsigned Elm = VTy->getNumElements(); for (unsigned Idx = 0; Idx < Elm; ++Idx) { InitArgs.emplace_back(new (Context) ArraySubscriptExpr( Arg, IntegerLiteral::Create( Context, llvm::APInt(Context.getIntWidth(Context.IntTy), Idx), Context.IntTy, SourceLocation()), VTy->getElementType(), Arg->getValueKind(), Arg->getObjectKind(), SourceLocation())); } } else InitArgs.emplace_back(Arg); } InitListExpr *ILE = new (Context) InitListExpr( S.getASTContext(), SourceLocation(), InitArgs, SourceLocation()); Args[0] = ILE; AddListInitializationStep(DestType); return; } // The remaining cases all need a source type. if (Args.size() > 1) { SetFailed(FK_TooManyInitsForScalar); return; } else if (isa(Args[0])) { SetFailed(FK_ParenthesizedListInitForScalar); return; } // - Otherwise, if the source type is a (possibly cv-qualified) class // type, conversion functions are considered. if (!SourceType.isNull() && SourceType->isRecordType()) { assert(Initializer && "Initializer must be non-null"); // For a conversion to _Atomic(T) from either T or a class type derived // from T, initialize the T object then convert to _Atomic type. bool NeedAtomicConversion = false; if (const AtomicType *Atomic = DestType->getAs()) { if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, Atomic->getValueType())) { DestType = Atomic->getValueType(); NeedAtomicConversion = true; } } TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, TopLevelOfInitList); MaybeProduceObjCObject(S, *this, Entity); if (!Failed() && NeedAtomicConversion) AddAtomicConversionStep(Entity.getType()); return; } // - Otherwise, if the initialization is direct-initialization, the source // type is std::nullptr_t, and the destination type is bool, the initial // value of the object being initialized is false. if (!SourceType.isNull() && SourceType->isNullPtrType() && DestType->isBooleanType() && Kind.getKind() == InitializationKind::IK_Direct) { AddConversionSequenceStep( ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, Initializer->isGLValue()), DestType); return; } // - Otherwise, the initial value of the object being initialized is the // (possibly converted) value of the initializer expression. Standard // conversions (Clause 4) will be used, if necessary, to convert the // initializer expression to the cv-unqualified version of the // destination type; no user-defined conversions are considered. ImplicitConversionSequence ICS = S.TryImplicitConversion(Initializer, DestType, /*SuppressUserConversions*/true, Sema::AllowedExplicit::None, /*InOverloadResolution*/ false, /*CStyle=*/Kind.isCStyleOrFunctionalCast(), allowObjCWritebackConversion); if (ICS.isStandard() && ICS.Standard.Second == ICK_Writeback_Conversion) { // Objective-C ARC writeback conversion. // We should copy unless we're passing to an argument explicitly // marked 'out'. bool ShouldCopy = true; if (ParmVarDecl *Param = cast_or_null(Entity.getDecl())) ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); // If there was an lvalue adjustment, add it as a separate conversion. if (ICS.Standard.First == ICK_Array_To_Pointer || ICS.Standard.First == ICK_Lvalue_To_Rvalue) { ImplicitConversionSequence LvalueICS; LvalueICS.setStandard(); LvalueICS.Standard.setAsIdentityConversion(); LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); LvalueICS.Standard.First = ICS.Standard.First; AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); } AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); } else if (ICS.isBad()) { DeclAccessPair dap; if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { AddZeroInitializationStep(Entity.getType()); } else if (Initializer->getType() == Context.OverloadTy && !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, false, dap)) SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); else if (Initializer->getType()->isFunctionType() && isExprAnUnaddressableFunction(S, Initializer)) SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); else SetFailed(InitializationSequence::FK_ConversionFailed); } else { AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); MaybeProduceObjCObject(S, *this, Entity); } } InitializationSequence::~InitializationSequence() { for (auto &S : Steps) S.Destroy(); } //===----------------------------------------------------------------------===// // Perform initialization //===----------------------------------------------------------------------===// static Sema::AssignmentAction getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { switch(Entity.getKind()) { case InitializedEntity::EK_Variable: case InitializedEntity::EK_New: case InitializedEntity::EK_Exception: case InitializedEntity::EK_Base: case InitializedEntity::EK_Delegating: return Sema::AA_Initializing; case InitializedEntity::EK_Parameter: if (Entity.getDecl() && isa(Entity.getDecl()->getDeclContext())) return Sema::AA_Sending; return Sema::AA_Passing; case InitializedEntity::EK_Parameter_CF_Audited: if (Entity.getDecl() && isa(Entity.getDecl()->getDeclContext())) return Sema::AA_Sending; return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; case InitializedEntity::EK_Result: case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. return Sema::AA_Returning; case InitializedEntity::EK_Temporary: case InitializedEntity::EK_RelatedResult: // FIXME: Can we tell apart casting vs. converting? return Sema::AA_Casting; case InitializedEntity::EK_TemplateParameter: // This is really initialization, but refer to it as conversion for // consistency with CheckConvertedConstantExpression. return Sema::AA_Converting; case InitializedEntity::EK_Member: case InitializedEntity::EK_ParenAggInitMember: case InitializedEntity::EK_Binding: case InitializedEntity::EK_ArrayElement: case InitializedEntity::EK_VectorElement: case InitializedEntity::EK_ComplexElement: case InitializedEntity::EK_BlockElement: case InitializedEntity::EK_LambdaToBlockConversionBlockElement: case InitializedEntity::EK_LambdaCapture: case InitializedEntity::EK_CompoundLiteralInit: return Sema::AA_Initializing; } llvm_unreachable("Invalid EntityKind!"); } /// Whether we should bind a created object as a temporary when /// initializing the given entity. static bool shouldBindAsTemporary(const InitializedEntity &Entity) { switch (Entity.getKind()) { case InitializedEntity::EK_ArrayElement: case InitializedEntity::EK_Member: case InitializedEntity::EK_ParenAggInitMember: case InitializedEntity::EK_Result: case InitializedEntity::EK_StmtExprResult: case InitializedEntity::EK_New: case InitializedEntity::EK_Variable: case InitializedEntity::EK_Base: case InitializedEntity::EK_Delegating: case InitializedEntity::EK_VectorElement: case InitializedEntity::EK_ComplexElement: case InitializedEntity::EK_Exception: case InitializedEntity::EK_BlockElement: case InitializedEntity::EK_LambdaToBlockConversionBlockElement: case InitializedEntity::EK_LambdaCapture: case InitializedEntity::EK_CompoundLiteralInit: case InitializedEntity::EK_TemplateParameter: return false; case InitializedEntity::EK_Parameter: case InitializedEntity::EK_Parameter_CF_Audited: case InitializedEntity::EK_Temporary: case InitializedEntity::EK_RelatedResult: case InitializedEntity::EK_Binding: return true; } llvm_unreachable("missed an InitializedEntity kind?"); } /// Whether the given entity, when initialized with an object /// created for that initialization, requires destruction. static bool shouldDestroyEntity(const InitializedEntity &Entity) { switch (Entity.getKind()) { case InitializedEntity::EK_Result: case InitializedEntity::EK_StmtExprResult: case InitializedEntity::EK_New: case InitializedEntity::EK_Base: case InitializedEntity::EK_Delegating: case InitializedEntity::EK_VectorElement: case InitializedEntity::EK_ComplexElement: case InitializedEntity::EK_BlockElement: case InitializedEntity::EK_LambdaToBlockConversionBlockElement: case InitializedEntity::EK_LambdaCapture: return false; case InitializedEntity::EK_Member: case InitializedEntity::EK_ParenAggInitMember: case InitializedEntity::EK_Binding: case InitializedEntity::EK_Variable: case InitializedEntity::EK_Parameter: case InitializedEntity::EK_Parameter_CF_Audited: case InitializedEntity::EK_TemplateParameter: case InitializedEntity::EK_Temporary: case InitializedEntity::EK_ArrayElement: case InitializedEntity::EK_Exception: case InitializedEntity::EK_CompoundLiteralInit: case InitializedEntity::EK_RelatedResult: return true; } llvm_unreachable("missed an InitializedEntity kind?"); } /// Get the location at which initialization diagnostics should appear. static SourceLocation getInitializationLoc(const InitializedEntity &Entity, Expr *Initializer) { switch (Entity.getKind()) { case InitializedEntity::EK_Result: case InitializedEntity::EK_StmtExprResult: return Entity.getReturnLoc(); case InitializedEntity::EK_Exception: return Entity.getThrowLoc(); case InitializedEntity::EK_Variable: case InitializedEntity::EK_Binding: return Entity.getDecl()->getLocation(); case InitializedEntity::EK_LambdaCapture: return Entity.getCaptureLoc(); case InitializedEntity::EK_ArrayElement: case InitializedEntity::EK_Member: case InitializedEntity::EK_ParenAggInitMember: case InitializedEntity::EK_Parameter: case InitializedEntity::EK_Parameter_CF_Audited: case InitializedEntity::EK_TemplateParameter: case InitializedEntity::EK_Temporary: case InitializedEntity::EK_New: case InitializedEntity::EK_Base: case InitializedEntity::EK_Delegating: case InitializedEntity::EK_VectorElement: case InitializedEntity::EK_ComplexElement: case InitializedEntity::EK_BlockElement: case InitializedEntity::EK_LambdaToBlockConversionBlockElement: case InitializedEntity::EK_CompoundLiteralInit: case InitializedEntity::EK_RelatedResult: return Initializer->getBeginLoc(); } llvm_unreachable("missed an InitializedEntity kind?"); } /// Make a (potentially elidable) temporary copy of the object /// provided by the given initializer by calling the appropriate copy /// constructor. /// /// \param S The Sema object used for type-checking. /// /// \param T The type of the temporary object, which must either be /// the type of the initializer expression or a superclass thereof. /// /// \param Entity The entity being initialized. /// /// \param CurInit The initializer expression. /// /// \param IsExtraneousCopy Whether this is an "extraneous" copy that /// is permitted in C++03 (but not C++0x) when binding a reference to /// an rvalue. /// /// \returns An expression that copies the initializer expression into /// a temporary object, or an error expression if a copy could not be /// created. static ExprResult CopyObject(Sema &S, QualType T, const InitializedEntity &Entity, ExprResult CurInit, bool IsExtraneousCopy) { if (CurInit.isInvalid()) return CurInit; // Determine which class type we're copying to. Expr *CurInitExpr = (Expr *)CurInit.get(); CXXRecordDecl *Class = nullptr; if (const RecordType *Record = T->getAs()) Class = cast(Record->getDecl()); if (!Class) return CurInit; SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); // Make sure that the type we are copying is complete. if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) return CurInit; // Perform overload resolution using the class's constructors. Per // C++11 [dcl.init]p16, second bullet for class types, this initialization // is direct-initialization. OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); DeclContext::lookup_result Ctors = S.LookupConstructors(Class); OverloadCandidateSet::iterator Best; switch (ResolveConstructorOverload( S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, /*CopyInitializing=*/false, /*AllowExplicit=*/true, /*OnlyListConstructors=*/false, /*IsListInit=*/false, /*RequireActualConstructor=*/false, /*SecondStepOfCopyInit=*/true)) { case OR_Success: break; case OR_No_Viable_Function: CandidateSet.NoteCandidates( PartialDiagnosticAt( Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() ? diag::ext_rvalue_to_reference_temp_copy_no_viable : diag::err_temp_copy_no_viable) << (int)Entity.getKind() << CurInitExpr->getType() << CurInitExpr->getSourceRange()), S, OCD_AllCandidates, CurInitExpr); if (!IsExtraneousCopy || S.isSFINAEContext()) return ExprError(); return CurInit; case OR_Ambiguous: CandidateSet.NoteCandidates( PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) << (int)Entity.getKind() << CurInitExpr->getType() << CurInitExpr->getSourceRange()), S, OCD_AmbiguousCandidates, CurInitExpr); return ExprError(); case OR_Deleted: S.Diag(Loc, diag::err_temp_copy_deleted) << (int)Entity.getKind() << CurInitExpr->getType() << CurInitExpr->getSourceRange(); S.NoteDeletedFunction(Best->Function); return ExprError(); } bool HadMultipleCandidates = CandidateSet.size() > 1; CXXConstructorDecl *Constructor = cast(Best->Function); SmallVector ConstructorArgs; CurInit.get(); // Ownership transferred into MultiExprArg, below. S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, IsExtraneousCopy); if (IsExtraneousCopy) { // If this is a totally extraneous copy for C++03 reference // binding purposes, just return the original initialization // expression. We don't generate an (elided) copy operation here // because doing so would require us to pass down a flag to avoid // infinite recursion, where each step adds another extraneous, // elidable copy. // Instantiate the default arguments of any extra parameters in // the selected copy constructor, as if we were going to create a // proper call to the copy constructor. for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { ParmVarDecl *Parm = Constructor->getParamDecl(I); if (S.RequireCompleteType(Loc, Parm->getType(), diag::err_call_incomplete_argument)) break; // Build the default argument expression; we don't actually care // if this succeeds or not, because this routine will complain // if there was a problem. S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); } return CurInitExpr; } // Determine the arguments required to actually perform the // constructor call (we might have derived-to-base conversions, or // the copy constructor may have default arguments). if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc, ConstructorArgs)) return ExprError(); // C++0x [class.copy]p32: // When certain criteria are met, an implementation is allowed to // omit the copy/move construction of a class object, even if the // copy/move constructor and/or destructor for the object have // side effects. [...] // - when a temporary class object that has not been bound to a // reference (12.2) would be copied/moved to a class object // with the same cv-unqualified type, the copy/move operation // can be omitted by constructing the temporary object // directly into the target of the omitted copy/move // // Note that the other three bullets are handled elsewhere. Copy // elision for return statements and throw expressions are handled as part // of constructor initialization, while copy elision for exception handlers // is handled by the run-time. // // FIXME: If the function parameter is not the same type as the temporary, we // should still be able to elide the copy, but we don't have a way to // represent in the AST how much should be elided in this case. bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class) && S.Context.hasSameUnqualifiedType( Best->Function->getParamDecl(0)->getType().getNonReferenceType(), CurInitExpr->getType()); // Actually perform the constructor call. CurInit = S.BuildCXXConstructExpr( Loc, T, Best->FoundDecl, Constructor, Elidable, ConstructorArgs, HadMultipleCandidates, /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, CXXConstructionKind::Complete, SourceRange()); // If we're supposed to bind temporaries, do so. if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) CurInit = S.MaybeBindToTemporary(CurInit.getAs()); return CurInit; } /// Check whether elidable copy construction for binding a reference to /// a temporary would have succeeded if we were building in C++98 mode, for /// -Wc++98-compat. static void CheckCXX98CompatAccessibleCopy(Sema &S, const InitializedEntity &Entity, Expr *CurInitExpr) { assert(S.getLangOpts().CPlusPlus11); const RecordType *Record = CurInitExpr->getType()->getAs(); if (!Record) return; SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) return; // Find constructors which would have been considered. OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); DeclContext::lookup_result Ctors = S.LookupConstructors(cast(Record->getDecl())); // Perform overload resolution. OverloadCandidateSet::iterator Best; OverloadingResult OR = ResolveConstructorOverload( S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, /*CopyInitializing=*/false, /*AllowExplicit=*/true, /*OnlyListConstructors=*/false, /*IsListInit=*/false, /*RequireActualConstructor=*/false, /*SecondStepOfCopyInit=*/true); PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) << OR << (int)Entity.getKind() << CurInitExpr->getType() << CurInitExpr->getSourceRange(); switch (OR) { case OR_Success: S.CheckConstructorAccess(Loc, cast(Best->Function), Best->FoundDecl, Entity, Diag); // FIXME: Check default arguments as far as that's possible. break; case OR_No_Viable_Function: CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, OCD_AllCandidates, CurInitExpr); break; case OR_Ambiguous: CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, OCD_AmbiguousCandidates, CurInitExpr); break; case OR_Deleted: S.Diag(Loc, Diag); S.NoteDeletedFunction(Best->Function); break; } } void InitializationSequence::PrintInitLocationNote(Sema &S, const InitializedEntity &Entity) { if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) { if (Entity.getDecl()->getLocation().isInvalid()) return; if (Entity.getDecl()->getDeclName()) S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) << Entity.getDecl()->getDeclName(); else S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); } else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && Entity.getMethodDecl()) S.Diag(Entity.getMethodDecl()->getLocation(), diag::note_method_return_type_change) << Entity.getMethodDecl()->getDeclName(); } /// Returns true if the parameters describe a constructor initialization of /// an explicit temporary object, e.g. "Point(x, y)". static bool isExplicitTemporary(const InitializedEntity &Entity, const InitializationKind &Kind, unsigned NumArgs) { switch (Entity.getKind()) { case InitializedEntity::EK_Temporary: case InitializedEntity::EK_CompoundLiteralInit: case InitializedEntity::EK_RelatedResult: break; default: return false; } switch (Kind.getKind()) { case InitializationKind::IK_DirectList: return true; // FIXME: Hack to work around cast weirdness. case InitializationKind::IK_Direct: case InitializationKind::IK_Value: return NumArgs != 1; default: return false; } } static ExprResult PerformConstructorInitialization(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, const InitializationSequence::Step& Step, bool &ConstructorInitRequiresZeroInit, bool IsListInitialization, bool IsStdInitListInitialization, SourceLocation LBraceLoc, SourceLocation RBraceLoc) { unsigned NumArgs = Args.size(); CXXConstructorDecl *Constructor = cast(Step.Function.Function); bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; // Build a call to the selected constructor. SmallVector ConstructorArgs; SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) ? Kind.getEqualLoc() : Kind.getLocation(); if (Kind.getKind() == InitializationKind::IK_Default) { // Force even a trivial, implicit default constructor to be // semantically checked. We do this explicitly because we don't build // the definition for completely trivial constructors. assert(Constructor->getParent() && "No parent class for constructor."); if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && Constructor->isTrivial() && !Constructor->isUsed(false)) { S.runWithSufficientStackSpace(Loc, [&] { S.DefineImplicitDefaultConstructor(Loc, Constructor); }); } } ExprResult CurInit((Expr *)nullptr); // C++ [over.match.copy]p1: // - When initializing a temporary to be bound to the first parameter // of a constructor that takes a reference to possibly cv-qualified // T as its first argument, called with a single argument in the // context of direct-initialization, explicit conversion functions // are also considered. bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && hasCopyOrMoveCtorParam(S.Context, getConstructorInfo(Step.Function.FoundDecl)); // Determine the arguments required to actually perform the constructor // call. if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc, ConstructorArgs, AllowExplicitConv, IsListInitialization)) return ExprError(); if (isExplicitTemporary(Entity, Kind, NumArgs)) { // An explicitly-constructed temporary, e.g., X(1, 2). if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) return ExprError(); TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); if (!TSInfo) TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); SourceRange ParenOrBraceRange = (Kind.getKind() == InitializationKind::IK_DirectList) ? SourceRange(LBraceLoc, RBraceLoc) : Kind.getParenOrBraceRange(); CXXConstructorDecl *CalleeDecl = Constructor; if (auto *Shadow = dyn_cast( Step.Function.FoundDecl.getDecl())) { CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow); } S.MarkFunctionReferenced(Loc, CalleeDecl); CurInit = S.CheckForImmediateInvocation( CXXTemporaryObjectExpr::Create( S.Context, CalleeDecl, Entity.getType().getNonLValueExprType(S.Context), TSInfo, ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, ConstructorInitRequiresZeroInit), CalleeDecl); } else { CXXConstructionKind ConstructKind = CXXConstructionKind::Complete; if (Entity.getKind() == InitializedEntity::EK_Base) { ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? CXXConstructionKind::VirtualBase : CXXConstructionKind::NonVirtualBase; } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { ConstructKind = CXXConstructionKind::Delegating; } // Only get the parenthesis or brace range if it is a list initialization or // direct construction. SourceRange ParenOrBraceRange; if (IsListInitialization) ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); else if (Kind.getKind() == InitializationKind::IK_Direct) ParenOrBraceRange = Kind.getParenOrBraceRange(); // If the entity allows NRVO, mark the construction as elidable // unconditionally. if (Entity.allowsNRVO()) CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, Step.Function.FoundDecl, Constructor, /*Elidable=*/true, ConstructorArgs, HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, ConstructorInitRequiresZeroInit, ConstructKind, ParenOrBraceRange); else CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, Step.Function.FoundDecl, Constructor, ConstructorArgs, HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, ConstructorInitRequiresZeroInit, ConstructKind, ParenOrBraceRange); } if (CurInit.isInvalid()) return ExprError(); // Only check access if all of that succeeded. S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) return ExprError(); if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) return ExprError(); if (shouldBindAsTemporary(Entity)) CurInit = S.MaybeBindToTemporary(CurInit.get()); return CurInit; } namespace { enum LifetimeKind { /// The lifetime of a temporary bound to this entity ends at the end of the /// full-expression, and that's (probably) fine. LK_FullExpression, /// The lifetime of a temporary bound to this entity is extended to the /// lifeitme of the entity itself. LK_Extended, /// The lifetime of a temporary bound to this entity probably ends too soon, /// because the entity is allocated in a new-expression. LK_New, /// The lifetime of a temporary bound to this entity ends too soon, because /// the entity is a return object. LK_Return, /// The lifetime of a temporary bound to this entity ends too soon, because /// the entity is the result of a statement expression. LK_StmtExprResult, /// This is a mem-initializer: if it would extend a temporary (other than via /// a default member initializer), the program is ill-formed. LK_MemInitializer, }; using LifetimeResult = llvm::PointerIntPair; } /// Determine the declaration which an initialized entity ultimately refers to, /// for the purpose of lifetime-extending a temporary bound to a reference in /// the initialization of \p Entity. static LifetimeResult getEntityLifetime( const InitializedEntity *Entity, const InitializedEntity *InitField = nullptr) { // C++11 [class.temporary]p5: switch (Entity->getKind()) { case InitializedEntity::EK_Variable: // The temporary [...] persists for the lifetime of the reference return {Entity, LK_Extended}; case InitializedEntity::EK_Member: // For subobjects, we look at the complete object. if (Entity->getParent()) return getEntityLifetime(Entity->getParent(), Entity); // except: // C++17 [class.base.init]p8: // A temporary expression bound to a reference member in a // mem-initializer is ill-formed. // C++17 [class.base.init]p11: // A temporary expression bound to a reference member from a // default member initializer is ill-formed. // // The context of p11 and its example suggest that it's only the use of a // default member initializer from a constructor that makes the program // ill-formed, not its mere existence, and that it can even be used by // aggregate initialization. return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended : LK_MemInitializer}; case InitializedEntity::EK_Binding: // Per [dcl.decomp]p3, the binding is treated as a variable of reference // type. return {Entity, LK_Extended}; case InitializedEntity::EK_Parameter: case InitializedEntity::EK_Parameter_CF_Audited: // -- A temporary bound to a reference parameter in a function call // persists until the completion of the full-expression containing // the call. return {nullptr, LK_FullExpression}; case InitializedEntity::EK_TemplateParameter: // FIXME: This will always be ill-formed; should we eagerly diagnose it here? return {nullptr, LK_FullExpression}; case InitializedEntity::EK_Result: // -- The lifetime of a temporary bound to the returned value in a // function return statement is not extended; the temporary is // destroyed at the end of the full-expression in the return statement. return {nullptr, LK_Return}; case InitializedEntity::EK_StmtExprResult: // FIXME: Should we lifetime-extend through the result of a statement // expression? return {nullptr, LK_StmtExprResult}; case InitializedEntity::EK_New: // -- A temporary bound to a reference in a new-initializer persists // until the completion of the full-expression containing the // new-initializer. return {nullptr, LK_New}; case InitializedEntity::EK_Temporary: case InitializedEntity::EK_CompoundLiteralInit: case InitializedEntity::EK_RelatedResult: // We don't yet know the storage duration of the surrounding temporary. // Assume it's got full-expression duration for now, it will patch up our // storage duration if that's not correct. return {nullptr, LK_FullExpression}; case InitializedEntity::EK_ArrayElement: // For subobjects, we look at the complete object. return getEntityLifetime(Entity->getParent(), InitField); case InitializedEntity::EK_Base: // For subobjects, we look at the complete object. if (Entity->getParent()) return getEntityLifetime(Entity->getParent(), InitField); return {InitField, LK_MemInitializer}; case InitializedEntity::EK_Delegating: // We can reach this case for aggregate initialization in a constructor: // struct A { int &&r; }; // struct B : A { B() : A{0} {} }; // In this case, use the outermost field decl as the context. return {InitField, LK_MemInitializer}; case InitializedEntity::EK_BlockElement: case InitializedEntity::EK_LambdaToBlockConversionBlockElement: case InitializedEntity::EK_LambdaCapture: case InitializedEntity::EK_VectorElement: case InitializedEntity::EK_ComplexElement: return {nullptr, LK_FullExpression}; case InitializedEntity::EK_Exception: // FIXME: Can we diagnose lifetime problems with exceptions? return {nullptr, LK_FullExpression}; case InitializedEntity::EK_ParenAggInitMember: // -- A temporary object bound to a reference element of an aggregate of // class type initialized from a parenthesized expression-list // [dcl.init, 9.3] persists until the completion of the full-expression // containing the expression-list. return {nullptr, LK_FullExpression}; } llvm_unreachable("unknown entity kind"); } namespace { enum ReferenceKind { /// Lifetime would be extended by a reference binding to a temporary. RK_ReferenceBinding, /// Lifetime would be extended by a std::initializer_list object binding to /// its backing array. RK_StdInitializerList, }; /// A temporary or local variable. This will be one of: /// * A MaterializeTemporaryExpr. /// * A DeclRefExpr whose declaration is a local. /// * An AddrLabelExpr. /// * A BlockExpr for a block with captures. using Local = Expr*; /// Expressions we stepped over when looking for the local state. Any steps /// that would inhibit lifetime extension or take us out of subexpressions of /// the initializer are included. struct IndirectLocalPathEntry { enum EntryKind { DefaultInit, AddressOf, VarInit, LValToRVal, LifetimeBoundCall, TemporaryCopy, LambdaCaptureInit, GslReferenceInit, GslPointerInit } Kind; Expr *E; union { const Decl *D = nullptr; const LambdaCapture *Capture; }; IndirectLocalPathEntry() {} IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) : Kind(K), E(E), D(D) {} IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture) : Kind(K), E(E), Capture(Capture) {} }; using IndirectLocalPath = llvm::SmallVectorImpl; struct RevertToOldSizeRAII { IndirectLocalPath &Path; unsigned OldSize = Path.size(); RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} ~RevertToOldSizeRAII() { Path.resize(OldSize); } }; using LocalVisitor = llvm::function_ref; } static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { for (auto E : Path) if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) return true; return false; } static bool pathContainsInit(IndirectLocalPath &Path) { return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { return E.Kind == IndirectLocalPathEntry::DefaultInit || E.Kind == IndirectLocalPathEntry::VarInit; }); } static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, Expr *Init, LocalVisitor Visit, bool RevisitSubinits, bool EnableLifetimeWarnings); static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, Expr *Init, ReferenceKind RK, LocalVisitor Visit, bool EnableLifetimeWarnings); template static bool isRecordWithAttr(QualType Type) { if (auto *RD = Type->getAsCXXRecordDecl()) return RD->hasAttr(); return false; } // Decl::isInStdNamespace will return false for iterators in some STL // implementations due to them being defined in a namespace outside of the std // namespace. static bool isInStlNamespace(const Decl *D) { const DeclContext *DC = D->getDeclContext(); if (!DC) return false; if (const auto *ND = dyn_cast(DC)) if (const IdentifierInfo *II = ND->getIdentifier()) { StringRef Name = II->getName(); if (Name.size() >= 2 && Name.front() == '_' && (Name[1] == '_' || isUppercase(Name[1]))) return true; } return DC->isStdNamespace(); } static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { if (auto *Conv = dyn_cast_or_null(Callee)) if (isRecordWithAttr(Conv->getConversionType())) return true; if (!isInStlNamespace(Callee->getParent())) return false; if (!isRecordWithAttr( Callee->getFunctionObjectParameterType()) && !isRecordWithAttr(Callee->getFunctionObjectParameterType())) return false; if (Callee->getReturnType()->isPointerType() || isRecordWithAttr(Callee->getReturnType())) { if (!Callee->getIdentifier()) return false; return llvm::StringSwitch(Callee->getName()) .Cases("begin", "rbegin", "cbegin", "crbegin", true) .Cases("end", "rend", "cend", "crend", true) .Cases("c_str", "data", "get", true) // Map and set types. .Cases("find", "equal_range", "lower_bound", "upper_bound", true) .Default(false); } else if (Callee->getReturnType()->isReferenceType()) { if (!Callee->getIdentifier()) { auto OO = Callee->getOverloadedOperator(); return OO == OverloadedOperatorKind::OO_Subscript || OO == OverloadedOperatorKind::OO_Star; } return llvm::StringSwitch(Callee->getName()) .Cases("front", "back", "at", "top", "value", true) .Default(false); } return false; } static bool shouldTrackFirstArgument(const FunctionDecl *FD) { if (!FD->getIdentifier() || FD->getNumParams() != 1) return false; const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) return false; if (!isRecordWithAttr(QualType(RD->getTypeForDecl(), 0)) && !isRecordWithAttr(QualType(RD->getTypeForDecl(), 0))) return false; if (FD->getReturnType()->isPointerType() || isRecordWithAttr(FD->getReturnType())) { return llvm::StringSwitch(FD->getName()) .Cases("begin", "rbegin", "cbegin", "crbegin", true) .Cases("end", "rend", "cend", "crend", true) .Case("data", true) .Default(false); } else if (FD->getReturnType()->isReferenceType()) { return llvm::StringSwitch(FD->getName()) .Cases("get", "any_cast", true) .Default(false); } return false; } static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, LocalVisitor Visit) { auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { // We are not interested in the temporary base objects of gsl Pointers: // Temp().ptr; // Here ptr might not dangle. if (isa(Arg->IgnoreImpCasts())) return; // Once we initialized a value with a reference, it can no longer dangle. if (!Value) { for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) { if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit) continue; if (PE.Kind == IndirectLocalPathEntry::GslPointerInit) return; break; } } Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit : IndirectLocalPathEntry::GslReferenceInit, Arg, D}); if (Arg->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, Visit, /*EnableLifetimeWarnings=*/true); else visitLocalsRetainedByInitializer(Path, Arg, Visit, true, /*EnableLifetimeWarnings=*/true); Path.pop_back(); }; if (auto *MCE = dyn_cast(Call)) { const auto *MD = cast_or_null(MCE->getDirectCallee()); if (MD && shouldTrackImplicitObjectArg(MD)) VisitPointerArg(MD, MCE->getImplicitObjectArgument(), !MD->getReturnType()->isReferenceType()); return; } else if (auto *OCE = dyn_cast(Call)) { FunctionDecl *Callee = OCE->getDirectCallee(); if (Callee && Callee->isCXXInstanceMember() && shouldTrackImplicitObjectArg(cast(Callee))) VisitPointerArg(Callee, OCE->getArg(0), !Callee->getReturnType()->isReferenceType()); return; } else if (auto *CE = dyn_cast(Call)) { FunctionDecl *Callee = CE->getDirectCallee(); if (Callee && shouldTrackFirstArgument(Callee)) VisitPointerArg(Callee, CE->getArg(0), !Callee->getReturnType()->isReferenceType()); return; } if (auto *CCE = dyn_cast(Call)) { const auto *Ctor = CCE->getConstructor(); const CXXRecordDecl *RD = Ctor->getParent(); if (CCE->getNumArgs() > 0 && RD->hasAttr()) VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); } } static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); if (!TSI) return false; // Don't declare this variable in the second operand of the for-statement; // GCC miscompiles that by ending its lifetime before evaluating the // third operand. See gcc.gnu.org/PR86769. AttributedTypeLoc ATL; for (TypeLoc TL = TSI->getTypeLoc(); (ATL = TL.getAsAdjusted()); TL = ATL.getModifiedLoc()) { if (ATL.getAttrAs()) return true; } // Assume that all assignment operators with a "normal" return type return // *this, that is, an lvalue reference that is the same type as the implicit // object parameter (or the LHS for a non-member operator$=). OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator(); if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) { QualType RetT = FD->getReturnType(); if (RetT->isLValueReferenceType()) { ASTContext &Ctx = FD->getASTContext(); QualType LHST; auto *MD = dyn_cast(FD); if (MD && MD->isCXXInstanceMember()) LHST = Ctx.getLValueReferenceType(MD->getFunctionObjectParameterType()); else LHST = MD->getParamDecl(0)->getType(); if (Ctx.hasSameType(RetT, LHST)) return true; } } return false; } static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, LocalVisitor Visit) { const FunctionDecl *Callee; ArrayRef Args; if (auto *CE = dyn_cast(Call)) { Callee = CE->getDirectCallee(); Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs()); } else { auto *CCE = cast(Call); Callee = CCE->getConstructor(); Args = llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs()); } if (!Callee) return; Expr *ObjectArg = nullptr; if (isa(Call) && Callee->isCXXInstanceMember()) { ObjectArg = Args[0]; Args = Args.slice(1); } else if (auto *MCE = dyn_cast(Call)) { ObjectArg = MCE->getImplicitObjectArgument(); } auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); if (Arg->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, Visit, /*EnableLifetimeWarnings=*/false); else visitLocalsRetainedByInitializer(Path, Arg, Visit, true, /*EnableLifetimeWarnings=*/false); Path.pop_back(); }; bool CheckCoroCall = false; if (const auto *RD = Callee->getReturnType()->getAsRecordDecl()) { CheckCoroCall = RD->hasAttr() && RD->hasAttr() && !Callee->hasAttr(); } if (ObjectArg) { bool CheckCoroObjArg = CheckCoroCall; // Coroutine lambda objects with empty capture list are not lifetimebound. if (auto *LE = dyn_cast(ObjectArg->IgnoreImplicit()); LE && LE->captures().empty()) CheckCoroObjArg = false; // Allow `get_return_object()` as the object param (__promise) is not // lifetimebound. if (Sema::CanBeGetReturnObject(Callee)) CheckCoroObjArg = false; if (implicitObjectParamIsLifetimeBound(Callee) || CheckCoroObjArg) VisitLifetimeBoundArg(Callee, ObjectArg); } for (unsigned I = 0, N = std::min(Callee->getNumParams(), Args.size()); I != N; ++I) { if (CheckCoroCall || Callee->getParamDecl(I)->hasAttr()) VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); } } /// Visit the locals that would be reachable through a reference bound to the /// glvalue expression \c Init. static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, Expr *Init, ReferenceKind RK, LocalVisitor Visit, bool EnableLifetimeWarnings) { RevertToOldSizeRAII RAII(Path); // Walk past any constructs which we can lifetime-extend across. Expr *Old; do { Old = Init; if (auto *FE = dyn_cast(Init)) Init = FE->getSubExpr(); if (InitListExpr *ILE = dyn_cast(Init)) { // If this is just redundant braces around an initializer, step over it. if (ILE->isTransparent()) Init = ILE->getInit(0); } // Step over any subobject adjustments; we may have a materialized // temporary inside them. Init = const_cast(Init->skipRValueSubobjectAdjustments()); // Per current approach for DR1376, look through casts to reference type // when performing lifetime extension. if (CastExpr *CE = dyn_cast(Init)) if (CE->getSubExpr()->isGLValue()) Init = CE->getSubExpr(); // Per the current approach for DR1299, look through array element access // on array glvalues when performing lifetime extension. if (auto *ASE = dyn_cast(Init)) { Init = ASE->getBase(); auto *ICE = dyn_cast(Init); if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) Init = ICE->getSubExpr(); else // We can't lifetime extend through this but we might still find some // retained temporaries. return visitLocalsRetainedByInitializer(Path, Init, Visit, true, EnableLifetimeWarnings); } // Step into CXXDefaultInitExprs so we can diagnose cases where a // constructor inherits one as an implicit mem-initializer. if (auto *DIE = dyn_cast(Init)) { Path.push_back( {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); Init = DIE->getExpr(); } } while (Init != Old); if (auto *MTE = dyn_cast(Init)) { if (Visit(Path, Local(MTE), RK)) visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, EnableLifetimeWarnings); } if (isa(Init)) { if (EnableLifetimeWarnings) handleGslAnnotatedTypes(Path, Init, Visit); return visitLifetimeBoundArguments(Path, Init, Visit); } switch (Init->getStmtClass()) { case Stmt::DeclRefExprClass: { // If we find the name of a local non-reference parameter, we could have a // lifetime problem. auto *DRE = cast(Init); auto *VD = dyn_cast(DRE->getDecl()); if (VD && VD->hasLocalStorage() && !DRE->refersToEnclosingVariableOrCapture()) { if (!VD->getType()->isReferenceType()) { Visit(Path, Local(DRE), RK); } else if (isa(DRE->getDecl())) { // The lifetime of a reference parameter is unknown; assume it's OK // for now. break; } else if (VD->getInit() && !isVarOnPath(Path, VD)) { Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), RK_ReferenceBinding, Visit, EnableLifetimeWarnings); } } break; } case Stmt::UnaryOperatorClass: { // The only unary operator that make sense to handle here // is Deref. All others don't resolve to a "name." This includes // handling all sorts of rvalues passed to a unary operator. const UnaryOperator *U = cast(Init); if (U->getOpcode() == UO_Deref) visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, EnableLifetimeWarnings); break; } case Stmt::OMPArraySectionExprClass: { visitLocalsRetainedByInitializer(Path, cast(Init)->getBase(), Visit, true, EnableLifetimeWarnings); break; } case Stmt::ConditionalOperatorClass: case Stmt::BinaryConditionalOperatorClass: { auto *C = cast(Init); if (!C->getTrueExpr()->getType()->isVoidType()) visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, EnableLifetimeWarnings); if (!C->getFalseExpr()->getType()->isVoidType()) visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, EnableLifetimeWarnings); break; } // FIXME: Visit the left-hand side of an -> or ->*. default: break; } } /// Visit the locals that would be reachable through an object initialized by /// the prvalue expression \c Init. static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, Expr *Init, LocalVisitor Visit, bool RevisitSubinits, bool EnableLifetimeWarnings) { RevertToOldSizeRAII RAII(Path); Expr *Old; do { Old = Init; // Step into CXXDefaultInitExprs so we can diagnose cases where a // constructor inherits one as an implicit mem-initializer. if (auto *DIE = dyn_cast(Init)) { Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); Init = DIE->getExpr(); } if (auto *FE = dyn_cast(Init)) Init = FE->getSubExpr(); // Dig out the expression which constructs the extended temporary. Init = const_cast(Init->skipRValueSubobjectAdjustments()); if (CXXBindTemporaryExpr *BTE = dyn_cast(Init)) Init = BTE->getSubExpr(); Init = Init->IgnoreParens(); // Step over value-preserving rvalue casts. if (auto *CE = dyn_cast(Init)) { switch (CE->getCastKind()) { case CK_LValueToRValue: // If we can match the lvalue to a const object, we can look at its // initializer. Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); return visitLocalsRetainedByReferenceBinding( Path, Init, RK_ReferenceBinding, [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { if (auto *DRE = dyn_cast(L)) { auto *VD = dyn_cast(DRE->getDecl()); if (VD && VD->getType().isConstQualified() && VD->getInit() && !isVarOnPath(Path, VD)) { Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, EnableLifetimeWarnings); } } else if (auto *MTE = dyn_cast(L)) { if (MTE->getType().isConstQualified()) visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, EnableLifetimeWarnings); } return false; }, EnableLifetimeWarnings); // We assume that objects can be retained by pointers cast to integers, // but not if the integer is cast to floating-point type or to _Complex. // We assume that casts to 'bool' do not preserve enough information to // retain a local object. case CK_NoOp: case CK_BitCast: case CK_BaseToDerived: case CK_DerivedToBase: case CK_UncheckedDerivedToBase: case CK_Dynamic: case CK_ToUnion: case CK_UserDefinedConversion: case CK_ConstructorConversion: case CK_IntegralToPointer: case CK_PointerToIntegral: case CK_VectorSplat: case CK_IntegralCast: case CK_CPointerToObjCPointerCast: case CK_BlockPointerToObjCPointerCast: case CK_AnyPointerToBlockPointerCast: case CK_AddressSpaceConversion: break; case CK_ArrayToPointerDecay: // Model array-to-pointer decay as taking the address of the array // lvalue. Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), RK_ReferenceBinding, Visit, EnableLifetimeWarnings); default: return; } Init = CE->getSubExpr(); } } while (Old != Init); // C++17 [dcl.init.list]p6: // initializing an initializer_list object from the array extends the // lifetime of the array exactly like binding a reference to a temporary. if (auto *ILE = dyn_cast(Init)) return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), RK_StdInitializerList, Visit, EnableLifetimeWarnings); if (InitListExpr *ILE = dyn_cast(Init)) { // We already visited the elements of this initializer list while // performing the initialization. Don't visit them again unless we've // changed the lifetime of the initialized entity. if (!RevisitSubinits) return; if (ILE->isTransparent()) return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, RevisitSubinits, EnableLifetimeWarnings); if (ILE->getType()->isArrayType()) { for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, RevisitSubinits, EnableLifetimeWarnings); return; } if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { assert(RD->isAggregate() && "aggregate init on non-aggregate"); // If we lifetime-extend a braced initializer which is initializing an // aggregate, and that aggregate contains reference members which are // bound to temporaries, those temporaries are also lifetime-extended. if (RD->isUnion() && ILE->getInitializedFieldInUnion() && ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), RK_ReferenceBinding, Visit, EnableLifetimeWarnings); else { unsigned Index = 0; for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, RevisitSubinits, EnableLifetimeWarnings); for (const auto *I : RD->fields()) { if (Index >= ILE->getNumInits()) break; if (I->isUnnamedBitfield()) continue; Expr *SubInit = ILE->getInit(Index); if (I->getType()->isReferenceType()) visitLocalsRetainedByReferenceBinding(Path, SubInit, RK_ReferenceBinding, Visit, EnableLifetimeWarnings); else // This might be either aggregate-initialization of a member or // initialization of a std::initializer_list object. Regardless, // we should recursively lifetime-extend that initializer. visitLocalsRetainedByInitializer(Path, SubInit, Visit, RevisitSubinits, EnableLifetimeWarnings); ++Index; } } } return; } // The lifetime of an init-capture is that of the closure object constructed // by a lambda-expression. if (auto *LE = dyn_cast(Init)) { LambdaExpr::capture_iterator CapI = LE->capture_begin(); for (Expr *E : LE->capture_inits()) { assert(CapI != LE->capture_end()); const LambdaCapture &Cap = *CapI++; if (!E) continue; if (Cap.capturesVariable()) Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap}); if (E->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, Visit, EnableLifetimeWarnings); else visitLocalsRetainedByInitializer(Path, E, Visit, true, EnableLifetimeWarnings); if (Cap.capturesVariable()) Path.pop_back(); } } // Assume that a copy or move from a temporary references the same objects // that the temporary does. if (auto *CCE = dyn_cast(Init)) { if (CCE->getConstructor()->isCopyOrMoveConstructor()) { if (auto *MTE = dyn_cast(CCE->getArg(0))) { Expr *Arg = MTE->getSubExpr(); Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg, CCE->getConstructor()}); visitLocalsRetainedByInitializer(Path, Arg, Visit, true, /*EnableLifetimeWarnings*/false); Path.pop_back(); } } } if (isa(Init) || isa(Init)) { if (EnableLifetimeWarnings) handleGslAnnotatedTypes(Path, Init, Visit); return visitLifetimeBoundArguments(Path, Init, Visit); } switch (Init->getStmtClass()) { case Stmt::UnaryOperatorClass: { auto *UO = cast(Init); // If the initializer is the address of a local, we could have a lifetime // problem. if (UO->getOpcode() == UO_AddrOf) { // If this is &rvalue, then it's ill-formed and we have already diagnosed // it. Don't produce a redundant warning about the lifetime of the // temporary. if (isa(UO->getSubExpr())) return; Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), RK_ReferenceBinding, Visit, EnableLifetimeWarnings); } break; } case Stmt::BinaryOperatorClass: { // Handle pointer arithmetic. auto *BO = cast(Init); BinaryOperatorKind BOK = BO->getOpcode(); if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) break; if (BO->getLHS()->getType()->isPointerType()) visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, EnableLifetimeWarnings); else if (BO->getRHS()->getType()->isPointerType()) visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, EnableLifetimeWarnings); break; } case Stmt::ConditionalOperatorClass: case Stmt::BinaryConditionalOperatorClass: { auto *C = cast(Init); // In C++, we can have a throw-expression operand, which has 'void' type // and isn't interesting from a lifetime perspective. if (!C->getTrueExpr()->getType()->isVoidType()) visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, EnableLifetimeWarnings); if (!C->getFalseExpr()->getType()->isVoidType()) visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, EnableLifetimeWarnings); break; } case Stmt::BlockExprClass: if (cast(Init)->getBlockDecl()->hasCaptures()) { // This is a local block, whose lifetime is that of the function. Visit(Path, Local(cast(Init)), RK_ReferenceBinding); } break; case Stmt::AddrLabelExprClass: // We want to warn if the address of a label would escape the function. Visit(Path, Local(cast(Init)), RK_ReferenceBinding); break; default: break; } } /// Whether a path to an object supports lifetime extension. enum PathLifetimeKind { /// Lifetime-extend along this path. Extend, /// We should lifetime-extend, but we don't because (due to technical /// limitations) we can't. This happens for default member initializers, /// which we don't clone for every use, so we don't have a unique /// MaterializeTemporaryExpr to update. ShouldExtend, /// Do not lifetime extend along this path. NoExtend }; /// Determine whether this is an indirect path to a temporary that we are /// supposed to lifetime-extend along. static PathLifetimeKind shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { PathLifetimeKind Kind = PathLifetimeKind::Extend; for (auto Elem : Path) { if (Elem.Kind == IndirectLocalPathEntry::DefaultInit) Kind = PathLifetimeKind::ShouldExtend; else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit) return PathLifetimeKind::NoExtend; } return Kind; } /// Find the range for the first interesting entry in the path at or after I. static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, Expr *E) { for (unsigned N = Path.size(); I != N; ++I) { switch (Path[I].Kind) { case IndirectLocalPathEntry::AddressOf: case IndirectLocalPathEntry::LValToRVal: case IndirectLocalPathEntry::LifetimeBoundCall: case IndirectLocalPathEntry::TemporaryCopy: case IndirectLocalPathEntry::GslReferenceInit: case IndirectLocalPathEntry::GslPointerInit: // These exist primarily to mark the path as not permitting or // supporting lifetime extension. break; case IndirectLocalPathEntry::VarInit: if (cast(Path[I].D)->isImplicit()) return SourceRange(); [[fallthrough]]; case IndirectLocalPathEntry::DefaultInit: return Path[I].E->getSourceRange(); case IndirectLocalPathEntry::LambdaCaptureInit: if (!Path[I].Capture->capturesVariable()) continue; return Path[I].E->getSourceRange(); } } return E->getSourceRange(); } static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { for (const auto &It : llvm::reverse(Path)) { if (It.Kind == IndirectLocalPathEntry::VarInit) continue; if (It.Kind == IndirectLocalPathEntry::AddressOf) continue; if (It.Kind == IndirectLocalPathEntry::LifetimeBoundCall) continue; return It.Kind == IndirectLocalPathEntry::GslPointerInit || It.Kind == IndirectLocalPathEntry::GslReferenceInit; } return false; } void Sema::checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init) { LifetimeResult LR = getEntityLifetime(&Entity); LifetimeKind LK = LR.getInt(); const InitializedEntity *ExtendingEntity = LR.getPointer(); // If this entity doesn't have an interesting lifetime, don't bother looking // for temporaries within its initializer. if (LK == LK_FullExpression) return; auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { SourceRange DiagRange = nextPathEntryRange(Path, 0, L); SourceLocation DiagLoc = DiagRange.getBegin(); auto *MTE = dyn_cast(L); bool IsGslPtrInitWithGslTempOwner = false; bool IsLocalGslOwner = false; if (pathOnlyInitializesGslPointer(Path)) { if (isa(L)) { // We do not want to follow the references when returning a pointer originating // from a local owner to avoid the following false positive: // int &p = *localUniquePtr; // someContainer.add(std::move(localUniquePtr)); // return p; IsLocalGslOwner = isRecordWithAttr(L->getType()); if (pathContainsInit(Path) || !IsLocalGslOwner) return false; } else { IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && isRecordWithAttr(MTE->getType()); // Skipping a chain of initializing gsl::Pointer annotated objects. // We are looking only for the final source to find out if it was // a local or temporary owner or the address of a local variable/param. if (!IsGslPtrInitWithGslTempOwner) return true; } } switch (LK) { case LK_FullExpression: llvm_unreachable("already handled this"); case LK_Extended: { if (!MTE) { // The initialized entity has lifetime beyond the full-expression, // and the local entity does too, so don't warn. // // FIXME: We should consider warning if a static / thread storage // duration variable retains an automatic storage duration local. return false; } if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; return false; } switch (shouldLifetimeExtendThroughPath(Path)) { case PathLifetimeKind::Extend: // Update the storage duration of the materialized temporary. // FIXME: Rebuild the expression instead of mutating it. MTE->setExtendingDecl(ExtendingEntity->getDecl(), ExtendingEntity->allocateManglingNumber()); // Also visit the temporaries lifetime-extended by this initializer. return true; case PathLifetimeKind::ShouldExtend: // We're supposed to lifetime-extend the temporary along this path (per // the resolution of DR1815), but we don't support that yet. // // FIXME: Properly handle this situation. Perhaps the easiest approach // would be to clone the initializer expression on each use that would // lifetime extend its temporaries. Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) << RK << DiagRange; break; case PathLifetimeKind::NoExtend: // If the path goes through the initialization of a variable or field, // it can't possibly reach a temporary created in this full-expression. // We will have already diagnosed any problems with the initializer. if (pathContainsInit(Path)) return false; Diag(DiagLoc, diag::warn_dangling_variable) << RK << !Entity.getParent() << ExtendingEntity->getDecl()->isImplicit() << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; break; } break; } case LK_MemInitializer: { if (isa(L)) { // Under C++ DR1696, if a mem-initializer (or a default member // initializer used by the absence of one) would lifetime-extend a // temporary, the program is ill-formed. if (auto *ExtendingDecl = ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { if (IsGslPtrInitWithGslTempOwner) { Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) << ExtendingDecl << DiagRange; Diag(ExtendingDecl->getLocation(), diag::note_ref_or_ptr_member_declared_here) << true; return false; } bool IsSubobjectMember = ExtendingEntity != &Entity; Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) != PathLifetimeKind::NoExtend ? diag::err_dangling_member : diag::warn_dangling_member) << ExtendingDecl << IsSubobjectMember << RK << DiagRange; // Don't bother adding a note pointing to the field if we're inside // its default member initializer; our primary diagnostic points to // the same place in that case. if (Path.empty() || Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { Diag(ExtendingDecl->getLocation(), diag::note_lifetime_extending_member_declared_here) << RK << IsSubobjectMember; } } else { // We have a mem-initializer but no particular field within it; this // is either a base class or a delegating initializer directly // initializing the base-class from something that doesn't live long // enough. // // FIXME: Warn on this. return false; } } else { // Paths via a default initializer can only occur during error recovery // (there's no other way that a default initializer can refer to a // local). Don't produce a bogus warning on those cases. if (pathContainsInit(Path)) return false; // Suppress false positives for code like the one below: // Ctor(unique_ptr up) : member(*up), member2(move(up)) {} if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) return false; auto *DRE = dyn_cast(L); auto *VD = DRE ? dyn_cast(DRE->getDecl()) : nullptr; if (!VD) { // A member was initialized to a local block. // FIXME: Warn on this. return false; } if (auto *Member = ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { bool IsPointer = !Member->getType()->isReferenceType(); Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr : diag::warn_bind_ref_member_to_parameter) << Member << VD << isa(VD) << DiagRange; Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here) << (unsigned)IsPointer; } } break; } case LK_New: if (isa(L)) { if (IsGslPtrInitWithGslTempOwner) Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; else Diag(DiagLoc, RK == RK_ReferenceBinding ? diag::warn_new_dangling_reference : diag::warn_new_dangling_initializer_list) << !Entity.getParent() << DiagRange; } else { // We can't determine if the allocation outlives the local declaration. return false; } break; case LK_Return: case LK_StmtExprResult: if (auto *DRE = dyn_cast(L)) { // We can't determine if the local variable outlives the statement // expression. if (LK == LK_StmtExprResult) return false; Diag(DiagLoc, diag::warn_ret_stack_addr_ref) << Entity.getType()->isReferenceType() << DRE->getDecl() << isa(DRE->getDecl()) << DiagRange; } else if (isa(L)) { Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; } else if (isa(L)) { // Don't warn when returning a label from a statement expression. // Leaving the scope doesn't end its lifetime. if (LK == LK_StmtExprResult) return false; Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; } else { Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) << Entity.getType()->isReferenceType() << DiagRange; } break; } for (unsigned I = 0; I != Path.size(); ++I) { auto Elem = Path[I]; switch (Elem.Kind) { case IndirectLocalPathEntry::AddressOf: case IndirectLocalPathEntry::LValToRVal: // These exist primarily to mark the path as not permitting or // supporting lifetime extension. break; case IndirectLocalPathEntry::LifetimeBoundCall: case IndirectLocalPathEntry::TemporaryCopy: case IndirectLocalPathEntry::GslPointerInit: case IndirectLocalPathEntry::GslReferenceInit: // FIXME: Consider adding a note for these. break; case IndirectLocalPathEntry::DefaultInit: { auto *FD = cast(Elem.D); Diag(FD->getLocation(), diag::note_init_with_default_member_initializer) << FD << nextPathEntryRange(Path, I + 1, L); break; } case IndirectLocalPathEntry::VarInit: { const VarDecl *VD = cast(Elem.D); Diag(VD->getLocation(), diag::note_local_var_initializer) << VD->getType()->isReferenceType() << VD->isImplicit() << VD->getDeclName() << nextPathEntryRange(Path, I + 1, L); break; } case IndirectLocalPathEntry::LambdaCaptureInit: if (!Elem.Capture->capturesVariable()) break; // FIXME: We can't easily tell apart an init-capture from a nested // capture of an init-capture. const ValueDecl *VD = Elem.Capture->getCapturedVar(); Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer) << VD << VD->isInitCapture() << Elem.Capture->isExplicit() << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD << nextPathEntryRange(Path, I + 1, L); break; } } // We didn't lifetime-extend, so don't go any further; we don't need more // warnings or errors on inner temporaries within this one's initializer. return false; }; bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( diag::warn_dangling_lifetime_pointer, SourceLocation()); llvm::SmallVector Path; if (Init->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, TemporaryVisitor, EnableLifetimeWarnings); else visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, EnableLifetimeWarnings); } static void DiagnoseNarrowingInInitList(Sema &S, const ImplicitConversionSequence &ICS, QualType PreNarrowingType, QualType EntityType, const Expr *PostInit); /// Provide warnings when std::move is used on construction. static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, bool IsReturnStmt) { if (!InitExpr) return; if (S.inTemplateInstantiation()) return; QualType DestType = InitExpr->getType(); if (!DestType->isRecordType()) return; unsigned DiagID = 0; if (IsReturnStmt) { const CXXConstructExpr *CCE = dyn_cast(InitExpr->IgnoreParens()); if (!CCE || CCE->getNumArgs() != 1) return; if (!CCE->getConstructor()->isCopyOrMoveConstructor()) return; InitExpr = CCE->getArg(0)->IgnoreImpCasts(); } // Find the std::move call and get the argument. const CallExpr *CE = dyn_cast(InitExpr->IgnoreParens()); if (!CE || !CE->isCallToStdMove()) return; const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); if (IsReturnStmt) { const DeclRefExpr *DRE = dyn_cast(Arg->IgnoreParenImpCasts()); if (!DRE || DRE->refersToEnclosingVariableOrCapture()) return; const VarDecl *VD = dyn_cast(DRE->getDecl()); if (!VD || !VD->hasLocalStorage()) return; // __block variables are not moved implicitly. if (VD->hasAttr()) return; QualType SourceType = VD->getType(); if (!SourceType->isRecordType()) return; if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { return; } // If we're returning a function parameter, copy elision // is not possible. if (isa(VD)) DiagID = diag::warn_redundant_move_on_return; else DiagID = diag::warn_pessimizing_move_on_return; } else { DiagID = diag::warn_pessimizing_move_on_initialization; const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType()) return; } S.Diag(CE->getBeginLoc(), DiagID); // Get all the locations for a fix-it. Don't emit the fix-it if any location // is within a macro. SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); if (CallBegin.isMacroID()) return; SourceLocation RParen = CE->getRParenLoc(); if (RParen.isMacroID()) return; SourceLocation LParen; SourceLocation ArgLoc = Arg->getBeginLoc(); // Special testing for the argument location. Since the fix-it needs the // location right before the argument, the argument location can be in a // macro only if it is at the beginning of the macro. while (ArgLoc.isMacroID() && S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); } if (LParen.isMacroID()) return; LParen = ArgLoc.getLocWithOffset(-1); S.Diag(CE->getBeginLoc(), diag::note_remove_move) << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); } static void CheckForNullPointerDereference(Sema &S, const Expr *E) { // Check to see if we are dereferencing a null pointer. If so, this is // undefined behavior, so warn about it. This only handles the pattern // "*null", which is a very syntactic check. if (const UnaryOperator *UO = dyn_cast(E->IgnoreParenCasts())) if (UO->getOpcode() == UO_Deref && UO->getSubExpr()->IgnoreParenCasts()-> isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, S.PDiag(diag::warn_binding_null_to_reference) << UO->getSubExpr()->getSourceRange()); } } MaterializeTemporaryExpr * Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, bool BoundToLvalueReference) { auto MTE = new (Context) MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); // Order an ExprWithCleanups for lifetime marks. // // TODO: It'll be good to have a single place to check the access of the // destructor and generate ExprWithCleanups for various uses. Currently these // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, // but there may be a chance to merge them. Cleanup.setExprNeedsCleanups(false); return MTE; } ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { // In C++98, we don't want to implicitly create an xvalue. // FIXME: This means that AST consumers need to deal with "prvalues" that // denote materialized temporaries. Maybe we should add another ValueKind // for "xvalue pretending to be a prvalue" for C++98 support. if (!E->isPRValue() || !getLangOpts().CPlusPlus11) return E; // C++1z [conv.rval]/1: T shall be a complete type. // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? // If so, we should check for a non-abstract class type here too. QualType T = E->getType(); if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) return ExprError(); return CreateMaterializeTemporaryExpr(E->getType(), E, false); } ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, ExprValueKind VK, CheckedConversionKind CCK) { CastKind CK = CK_NoOp; if (VK == VK_PRValue) { auto PointeeTy = Ty->getPointeeType(); auto ExprPointeeTy = E->getType()->getPointeeType(); if (!PointeeTy.isNull() && PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) CK = CK_AddressSpaceConversion; } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { CK = CK_AddressSpaceConversion; } return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); } ExprResult InitializationSequence::Perform(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Args, QualType *ResultType) { if (Failed()) { Diagnose(S, Entity, Kind, Args); return ExprError(); } if (!ZeroInitializationFixit.empty()) { const Decl *D = Entity.getDecl(); const auto *VD = dyn_cast_or_null(D); QualType DestType = Entity.getType(); // The initialization would have succeeded with this fixit. Since the fixit // is on the error, we need to build a valid AST in this case, so this isn't // handled in the Failed() branch above. if (!DestType->isRecordType() && VD && VD->isConstexpr()) { // Use a more useful diagnostic for constexpr variables. S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init) << VD << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, ZeroInitializationFixit); } else { unsigned DiagID = diag::err_default_init_const; if (S.getLangOpts().MSVCCompat && D && D->hasAttr()) DiagID = diag::ext_default_init_const; S.Diag(Kind.getLocation(), DiagID) << DestType << (bool)DestType->getAs() << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, ZeroInitializationFixit); } } if (getKind() == DependentSequence) { // If the declaration is a non-dependent, incomplete array type // that has an initializer, then its type will be completed once // the initializer is instantiated. if (ResultType && !Entity.getType()->isDependentType() && Args.size() == 1) { QualType DeclType = Entity.getType(); if (const IncompleteArrayType *ArrayT = S.Context.getAsIncompleteArrayType(DeclType)) { // FIXME: We don't currently have the ability to accurately // compute the length of an initializer list without // performing full type-checking of the initializer list // (since we have to determine where braces are implicitly // introduced and such). So, we fall back to making the array // type a dependently-sized array type with no specified // bound. if (isa((Expr *)Args[0])) { SourceRange Brackets; // Scavange the location of the brackets from the entity, if we can. if (auto *DD = dyn_cast_or_null(Entity.getDecl())) { if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { TypeLoc TL = TInfo->getTypeLoc(); if (IncompleteArrayTypeLoc ArrayLoc = TL.getAs()) Brackets = ArrayLoc.getBracketsRange(); } } *ResultType = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), /*NumElts=*/nullptr, ArrayT->getSizeModifier(), ArrayT->getIndexTypeCVRQualifiers(), Brackets); } } } if (Kind.getKind() == InitializationKind::IK_Direct && !Kind.isExplicitCast()) { // Rebuild the ParenListExpr. SourceRange ParenRange = Kind.getParenOrBraceRange(); return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), Args); } assert(Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList); return ExprResult(Args[0]); } // No steps means no initialization. if (Steps.empty()) return ExprResult((Expr *)nullptr); if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && Args.size() == 1 && isa(Args[0]) && !Entity.isParamOrTemplateParamKind()) { // Produce a C++98 compatibility warning if we are initializing a reference // from an initializer list. For parameters, we produce a better warning // elsewhere. Expr *Init = Args[0]; S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) << Init->getSourceRange(); } if (S.getLangOpts().MicrosoftExt && Args.size() == 1 && isa(Args[0]) && Entity.getType()->isArrayType()) { // Produce a Microsoft compatibility warning when initializing from a // predefined expression since MSVC treats predefined expressions as string // literals. Expr *Init = Args[0]; S.Diag(Init->getBeginLoc(), diag::ext_init_from_predefined) << Init; } // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope QualType ETy = Entity.getType(); bool HasGlobalAS = ETy.hasAddressSpace() && ETy.getAddressSpace() == LangAS::opencl_global; if (S.getLangOpts().OpenCLVersion >= 200 && ETy->isAtomicType() && !HasGlobalAS && Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) << 1 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); return ExprError(); } QualType DestType = Entity.getType().getNonReferenceType(); // FIXME: Ugly hack around the fact that Entity.getType() is not // the same as Entity.getDecl()->getType() in cases involving type merging, // and we want latter when it makes sense. if (ResultType) *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : Entity.getType(); ExprResult CurInit((Expr *)nullptr); SmallVector ArrayLoopCommonExprs; // HLSL allows vector initialization to function like list initialization, but // use the syntax of a C++-like constructor. bool IsHLSLVectorInit = S.getLangOpts().HLSL && DestType->isExtVectorType() && isa(Args[0]); (void)IsHLSLVectorInit; // For initialization steps that start with a single initializer, // grab the only argument out the Args and place it into the "current" // initializer. switch (Steps.front().Kind) { case SK_ResolveAddressOfOverloadedFunction: case SK_CastDerivedToBasePRValue: case SK_CastDerivedToBaseXValue: case SK_CastDerivedToBaseLValue: case SK_BindReference: case SK_BindReferenceToTemporary: case SK_FinalCopy: case SK_ExtraneousCopyToTemporary: case SK_UserConversion: case SK_QualificationConversionLValue: case SK_QualificationConversionXValue: case SK_QualificationConversionPRValue: case SK_FunctionReferenceConversion: case SK_AtomicConversion: case SK_ConversionSequence: case SK_ConversionSequenceNoNarrowing: case SK_ListInitialization: case SK_UnwrapInitList: case SK_RewrapInitList: case SK_CAssignment: case SK_StringInit: case SK_ObjCObjectConversion: case SK_ArrayLoopIndex: case SK_ArrayLoopInit: case SK_ArrayInit: case SK_GNUArrayInit: case SK_ParenthesizedArrayInit: case SK_PassByIndirectCopyRestore: case SK_PassByIndirectRestore: case SK_ProduceObjCObject: case SK_StdInitializerList: case SK_OCLSamplerInit: case SK_OCLZeroOpaqueType: { assert(Args.size() == 1 || IsHLSLVectorInit); CurInit = Args[0]; if (!CurInit.get()) return ExprError(); break; } case SK_ConstructorInitialization: case SK_ConstructorInitializationFromList: case SK_StdInitializerListConstructorCall: case SK_ZeroInitialization: case SK_ParenthesizedListInit: break; } // Promote from an unevaluated context to an unevaluated list context in // C++11 list-initialization; we need to instantiate entities usable in // constant expressions here in order to perform narrowing checks =( EnterExpressionEvaluationContext Evaluated( S, EnterExpressionEvaluationContext::InitList, CurInit.get() && isa(CurInit.get())); // C++ [class.abstract]p2: // no objects of an abstract class can be created except as subobjects // of a class derived from it auto checkAbstractType = [&](QualType T) -> bool { if (Entity.getKind() == InitializedEntity::EK_Base || Entity.getKind() == InitializedEntity::EK_Delegating) return false; return S.RequireNonAbstractType(Kind.getLocation(), T, diag::err_allocation_of_abstract_type); }; // Walk through the computed steps for the initialization sequence, // performing the specified conversions along the way. bool ConstructorInitRequiresZeroInit = false; for (step_iterator Step = step_begin(), StepEnd = step_end(); Step != StepEnd; ++Step) { if (CurInit.isInvalid()) return ExprError(); QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); switch (Step->Kind) { case SK_ResolveAddressOfOverloadedFunction: // Overload resolution determined which function invoke; update the // initializer to reflect that choice. S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) return ExprError(); CurInit = S.FixOverloadedFunctionReference(CurInit, Step->Function.FoundDecl, Step->Function.Function); // We might get back another placeholder expression if we resolved to a // builtin. if (!CurInit.isInvalid()) CurInit = S.CheckPlaceholderExpr(CurInit.get()); break; case SK_CastDerivedToBasePRValue: case SK_CastDerivedToBaseXValue: case SK_CastDerivedToBaseLValue: { // We have a derived-to-base cast that produces either an rvalue or an // lvalue. Perform that cast. CXXCastPath BasePath; // Casts to inaccessible base classes are allowed with C-style casts. bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); if (S.CheckDerivedToBaseConversion( SourceType, Step->Type, CurInit.get()->getBeginLoc(), CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) return ExprError(); ExprValueKind VK = Step->Kind == SK_CastDerivedToBaseLValue ? VK_LValue : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue : VK_PRValue); CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, CurInit.get(), &BasePath, VK, FPOptionsOverride()); break; } case SK_BindReference: // Reference binding does not have any corresponding ASTs. // Check exception specifications if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) return ExprError(); // We don't check for e.g. function pointers here, since address // availability checks should only occur when the function first decays // into a pointer or reference. if (CurInit.get()->getType()->isFunctionProtoType()) { if (auto *DRE = dyn_cast(CurInit.get()->IgnoreParens())) { if (auto *FD = dyn_cast(DRE->getDecl())) { if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, DRE->getBeginLoc())) return ExprError(); } } } CheckForNullPointerDereference(S, CurInit.get()); break; case SK_BindReferenceToTemporary: { // Make sure the "temporary" is actually an rvalue. assert(CurInit.get()->isPRValue() && "not a temporary"); // Check exception specifications if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) return ExprError(); QualType MTETy = Step->Type; // When this is an incomplete array type (such as when this is // initializing an array of unknown bounds from an init list), use THAT // type instead so that we propagate the array bounds. if (MTETy->isIncompleteArrayType() && !CurInit.get()->getType()->isIncompleteArrayType() && S.Context.hasSameType( MTETy->getPointeeOrArrayElementType(), CurInit.get()->getType()->getPointeeOrArrayElementType())) MTETy = CurInit.get()->getType(); // Materialize the temporary into memory. MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType()); CurInit = MTE; // If we're extending this temporary to automatic storage duration -- we // need to register its cleanup during the full-expression's cleanups. if (MTE->getStorageDuration() == SD_Automatic && MTE->getType().isDestructedType()) S.Cleanup.setExprNeedsCleanups(true); break; } case SK_FinalCopy: if (checkAbstractType(Step->Type)) return ExprError(); // If the overall initialization is initializing a temporary, we already // bound our argument if it was necessary to do so. If not (if we're // ultimately initializing a non-temporary), our argument needs to be // bound since it's initializing a function parameter. // FIXME: This is a mess. Rationalize temporary destruction. if (!shouldBindAsTemporary(Entity)) CurInit = S.MaybeBindToTemporary(CurInit.get()); CurInit = CopyObject(S, Step->Type, Entity, CurInit, /*IsExtraneousCopy=*/false); break; case SK_ExtraneousCopyToTemporary: CurInit = CopyObject(S, Step->Type, Entity, CurInit, /*IsExtraneousCopy=*/true); break; case SK_UserConversion: { // We have a user-defined conversion that invokes either a constructor // or a conversion function. CastKind CastKind; FunctionDecl *Fn = Step->Function.Function; DeclAccessPair FoundFn = Step->Function.FoundDecl; bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; bool CreatedObject = false; if (CXXConstructorDecl *Constructor = dyn_cast(Fn)) { // Build a call to the selected constructor. SmallVector ConstructorArgs; SourceLocation Loc = CurInit.get()->getBeginLoc(); // Determine the arguments required to actually perform the constructor // call. Expr *Arg = CurInit.get(); if (S.CompleteConstructorCall(Constructor, Step->Type, MultiExprArg(&Arg, 1), Loc, ConstructorArgs)) return ExprError(); // Build an expression that constructs a temporary. CurInit = S.BuildCXXConstructExpr( Loc, Step->Type, FoundFn, Constructor, ConstructorArgs, HadMultipleCandidates, /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, CXXConstructionKind::Complete, SourceRange()); if (CurInit.isInvalid()) return ExprError(); S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, Entity); if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) return ExprError(); CastKind = CK_ConstructorConversion; CreatedObject = true; } else { // Build a call to the conversion function. CXXConversionDecl *Conversion = cast(Fn); S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, FoundFn); if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) return ExprError(); CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, HadMultipleCandidates); if (CurInit.isInvalid()) return ExprError(); CastKind = CK_UserDefinedConversion; CreatedObject = Conversion->getReturnType()->isRecordType(); } if (CreatedObject && checkAbstractType(CurInit.get()->getType())) return ExprError(); CurInit = ImplicitCastExpr::Create( S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr, CurInit.get()->getValueKind(), S.CurFPFeatureOverrides()); if (shouldBindAsTemporary(Entity)) // The overall entity is temporary, so this expression should be // destroyed at the end of its full-expression. CurInit = S.MaybeBindToTemporary(CurInit.getAs()); else if (CreatedObject && shouldDestroyEntity(Entity)) { // The object outlasts the full-expression, but we need to prepare for // a destructor being run on it. // FIXME: It makes no sense to do this here. This should happen // regardless of how we initialized the entity. QualType T = CurInit.get()->getType(); if (const RecordType *Record = T->getAs()) { CXXDestructorDecl *Destructor = S.LookupDestructor(cast(Record->getDecl())); S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, S.PDiag(diag::err_access_dtor_temp) << T); S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) return ExprError(); } } break; } case SK_QualificationConversionLValue: case SK_QualificationConversionXValue: case SK_QualificationConversionPRValue: { // Perform a qualification conversion; these can never go wrong. ExprValueKind VK = Step->Kind == SK_QualificationConversionLValue ? VK_LValue : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue : VK_PRValue); CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); break; } case SK_FunctionReferenceConversion: assert(CurInit.get()->isLValue() && "function reference should be lvalue"); CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue); break; case SK_AtomicConversion: { assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic"); CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NonAtomicToAtomic, VK_PRValue); break; } case SK_ConversionSequence: case SK_ConversionSequenceNoNarrowing: { if (const auto *FromPtrType = CurInit.get()->getType()->getAs()) { if (const auto *ToPtrType = Step->Type->getAs()) { if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { // Do not check static casts here because they are checked earlier // in Sema::ActOnCXXNamedCast() if (!Kind.isStaticCast()) { S.Diag(CurInit.get()->getExprLoc(), diag::warn_noderef_to_dereferenceable_pointer) << CurInit.get()->getSourceRange(); } } } } Sema::CheckedConversionKind CCK = Kind.isCStyleCast()? Sema::CCK_CStyleCast : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast : Kind.isExplicitCast()? Sema::CCK_OtherCast : Sema::CCK_ImplicitConversion; ExprResult CurInitExprRes = S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, getAssignmentAction(Entity), CCK); if (CurInitExprRes.isInvalid()) return ExprError(); S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); CurInit = CurInitExprRes; if (Step->Kind == SK_ConversionSequenceNoNarrowing && S.getLangOpts().CPlusPlus) DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), CurInit.get()); break; } case SK_ListInitialization: { if (checkAbstractType(Step->Type)) return ExprError(); InitListExpr *InitList = cast(CurInit.get()); // If we're not initializing the top-level entity, we need to create an // InitializeTemporary entity for our target type. QualType Ty = Step->Type; bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; InitListChecker PerformInitList(S, InitEntity, InitList, Ty, /*VerifyOnly=*/false, /*TreatUnavailableAsInvalid=*/false); if (PerformInitList.HadError()) return ExprError(); // Hack: We must update *ResultType if available in order to set the // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. // Worst case: 'const int (&arref)[] = {1, 2, 3};'. if (ResultType && ResultType->getNonReferenceType()->isIncompleteArrayType()) { if ((*ResultType)->isRValueReferenceType()) Ty = S.Context.getRValueReferenceType(Ty); else if ((*ResultType)->isLValueReferenceType()) Ty = S.Context.getLValueReferenceType(Ty, (*ResultType)->castAs()->isSpelledAsLValue()); *ResultType = Ty; } InitListExpr *StructuredInitList = PerformInitList.getFullyStructuredList(); CurInit.get(); CurInit = shouldBindAsTemporary(InitEntity) ? S.MaybeBindToTemporary(StructuredInitList) : StructuredInitList; break; } case SK_ConstructorInitializationFromList: { if (checkAbstractType(Step->Type)) return ExprError(); // When an initializer list is passed for a parameter of type "reference // to object", we don't get an EK_Temporary entity, but instead an // EK_Parameter entity with reference type. // FIXME: This is a hack. What we really should do is create a user // conversion step for this case, but this makes it considerably more // complicated. For now, this will do. InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( Entity.getType().getNonReferenceType()); bool UseTemporary = Entity.getType()->isReferenceType(); assert(Args.size() == 1 && "expected a single argument for list init"); InitListExpr *InitList = cast(Args[0]); S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) << InitList->getSourceRange(); MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : Entity, Kind, Arg, *Step, ConstructorInitRequiresZeroInit, /*IsListInitialization*/true, /*IsStdInitListInit*/false, InitList->getLBraceLoc(), InitList->getRBraceLoc()); break; } case SK_UnwrapInitList: CurInit = cast(CurInit.get())->getInit(0); break; case SK_RewrapInitList: { Expr *E = CurInit.get(); InitListExpr *Syntactic = Step->WrappingSyntacticList; InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); ILE->setSyntacticForm(Syntactic); ILE->setType(E->getType()); ILE->setValueKind(E->getValueKind()); CurInit = ILE; break; } case SK_ConstructorInitialization: case SK_StdInitializerListConstructorCall: { if (checkAbstractType(Step->Type)) return ExprError(); // When an initializer list is passed for a parameter of type "reference // to object", we don't get an EK_Temporary entity, but instead an // EK_Parameter entity with reference type. // FIXME: This is a hack. What we really should do is create a user // conversion step for this case, but this makes it considerably more // complicated. For now, this will do. InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( Entity.getType().getNonReferenceType()); bool UseTemporary = Entity.getType()->isReferenceType(); bool IsStdInitListInit = Step->Kind == SK_StdInitializerListConstructorCall; Expr *Source = CurInit.get(); SourceRange Range = Kind.hasParenOrBraceRange() ? Kind.getParenOrBraceRange() : SourceRange(); CurInit = PerformConstructorInitialization( S, UseTemporary ? TempEntity : Entity, Kind, Source ? MultiExprArg(Source) : Args, *Step, ConstructorInitRequiresZeroInit, /*IsListInitialization*/ IsStdInitListInit, /*IsStdInitListInitialization*/ IsStdInitListInit, /*LBraceLoc*/ Range.getBegin(), /*RBraceLoc*/ Range.getEnd()); break; } case SK_ZeroInitialization: { step_iterator NextStep = Step; ++NextStep; if (NextStep != StepEnd && (NextStep->Kind == SK_ConstructorInitialization || NextStep->Kind == SK_ConstructorInitializationFromList)) { // The need for zero-initialization is recorded directly into // the call to the object's constructor within the next step. ConstructorInitRequiresZeroInit = true; } else if (Kind.getKind() == InitializationKind::IK_Value && S.getLangOpts().CPlusPlus && !Kind.isImplicitValueInit()) { TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); if (!TSInfo) TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, Kind.getRange().getBegin()); CurInit = new (S.Context) CXXScalarValueInitExpr( Entity.getType().getNonLValueExprType(S.Context), TSInfo, Kind.getRange().getEnd()); } else { CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); } break; } case SK_CAssignment: { QualType SourceType = CurInit.get()->getType(); // Save off the initial CurInit in case we need to emit a diagnostic ExprResult InitialCurInit = CurInit; ExprResult Result = CurInit; Sema::AssignConvertType ConvTy = S.CheckSingleAssignmentConstraints(Step->Type, Result, true, Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); if (Result.isInvalid()) return ExprError(); CurInit = Result; // If this is a call, allow conversion to a transparent union. ExprResult CurInitExprRes = CurInit; if (ConvTy != Sema::Compatible && Entity.isParameterKind() && S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) == Sema::Compatible) ConvTy = Sema::Compatible; if (CurInitExprRes.isInvalid()) return ExprError(); CurInit = CurInitExprRes; bool Complained; if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), Step->Type, SourceType, InitialCurInit.get(), getAssignmentAction(Entity, true), &Complained)) { PrintInitLocationNote(S, Entity); return ExprError(); } else if (Complained) PrintInitLocationNote(S, Entity); break; } case SK_StringInit: { QualType Ty = Step->Type; bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType(); CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty, S.Context.getAsArrayType(Ty), S); break; } case SK_ObjCObjectConversion: CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_ObjCObjectLValueCast, CurInit.get()->getValueKind()); break; case SK_ArrayLoopIndex: { Expr *Cur = CurInit.get(); Expr *BaseExpr = new (S.Context) OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), Cur->getValueKind(), Cur->getObjectKind(), Cur); Expr *IndexExpr = new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); CurInit = S.CreateBuiltinArraySubscriptExpr( BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); ArrayLoopCommonExprs.push_back(BaseExpr); break; } case SK_ArrayLoopInit: { assert(!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); Expr *Common = ArrayLoopCommonExprs.pop_back_val(); CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, CurInit.get()); break; } case SK_GNUArrayInit: // Okay: we checked everything before creating this step. Note that // this is a GNU extension. S.Diag(Kind.getLocation(), diag::ext_array_init_copy) << Step->Type << CurInit.get()->getType() << CurInit.get()->getSourceRange(); updateGNUCompoundLiteralRValue(CurInit.get()); [[fallthrough]]; case SK_ArrayInit: // If the destination type is an incomplete array type, update the // type accordingly. if (ResultType) { if (const IncompleteArrayType *IncompleteDest = S.Context.getAsIncompleteArrayType(Step->Type)) { if (const ConstantArrayType *ConstantSource = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { *ResultType = S.Context.getConstantArrayType( IncompleteDest->getElementType(), ConstantSource->getSize(), ConstantSource->getSizeExpr(), ArraySizeModifier::Normal, 0); } } } break; case SK_ParenthesizedArrayInit: // Okay: we checked everything before creating this step. Note that // this is a GNU extension. S.Diag(Kind.getLocation(), diag::ext_array_init_parens) << CurInit.get()->getSourceRange(); break; case SK_PassByIndirectCopyRestore: case SK_PassByIndirectRestore: checkIndirectCopyRestoreSource(S, CurInit.get()); CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( CurInit.get(), Step->Type, Step->Kind == SK_PassByIndirectCopyRestore); break; case SK_ProduceObjCObject: CurInit = ImplicitCastExpr::Create( S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr, VK_PRValue, FPOptionsOverride()); break; case SK_StdInitializerList: { S.Diag(CurInit.get()->getExprLoc(), diag::warn_cxx98_compat_initializer_list_init) << CurInit.get()->getSourceRange(); // Materialize the temporary into memory. MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( CurInit.get()->getType(), CurInit.get(), /*BoundToLvalueReference=*/false); // Wrap it in a construction of a std::initializer_list. CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); // Bind the result, in case the library has given initializer_list a // non-trivial destructor. if (shouldBindAsTemporary(Entity)) CurInit = S.MaybeBindToTemporary(CurInit.get()); break; } case SK_OCLSamplerInit: { // Sampler initialization have 5 cases: // 1. function argument passing // 1a. argument is a file-scope variable // 1b. argument is a function-scope variable // 1c. argument is one of caller function's parameters // 2. variable initialization // 2a. initializing a file-scope variable // 2b. initializing a function-scope variable // // For file-scope variables, since they cannot be initialized by function // call of __translate_sampler_initializer in LLVM IR, their references // need to be replaced by a cast from their literal initializers to // sampler type. Since sampler variables can only be used in function // calls as arguments, we only need to replace them when handling the // argument passing. assert(Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."); Expr *Init = CurInit.get()->IgnoreParens(); QualType SourceType = Init->getType(); // Case 1 if (Entity.isParameterKind()) { if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) << SourceType; break; } else if (const DeclRefExpr *DRE = dyn_cast(Init)) { auto Var = cast(DRE->getDecl()); // Case 1b and 1c // No cast from integer to sampler is needed. if (!Var->hasGlobalStorage()) { CurInit = ImplicitCastExpr::Create( S.Context, Step->Type, CK_LValueToRValue, Init, /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride()); break; } // Case 1a // For function call with a file-scope sampler variable as argument, // get the integer literal. // Do not diagnose if the file-scope variable does not have initializer // since this has already been diagnosed when parsing the variable // declaration. if (!Var->getInit() || !isa(Var->getInit())) break; Init = cast(const_cast( Var->getInit()))->getSubExpr(); SourceType = Init->getType(); } } else { // Case 2 // Check initializer is 32 bit integer constant. // If the initializer is taken from global variable, do not diagnose since // this has already been done when parsing the variable declaration. if (!Init->isConstantInitializer(S.Context, false)) break; if (!SourceType->isIntegerType() || 32 != S.Context.getIntWidth(SourceType)) { S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) << SourceType; break; } Expr::EvalResult EVResult; Init->EvaluateAsInt(EVResult, S.Context); llvm::APSInt Result = EVResult.Val.getInt(); const uint64_t SamplerValue = Result.getLimitedValue(); // 32-bit value of sampler's initializer is interpreted as // bit-field with the following structure: // |unspecified|Filter|Addressing Mode| Normalized Coords| // |31 6|5 4|3 1| 0| // This structure corresponds to enum values of sampler properties // defined in SPIR spec v1.2 and also opencl-c.h unsigned AddressingMode = (0x0E & SamplerValue) >> 1; unsigned FilterMode = (0x30 & SamplerValue) >> 4; if (FilterMode != 1 && FilterMode != 2 && !S.getOpenCLOptions().isAvailableOption( "cl_intel_device_side_avc_motion_estimation", S.getLangOpts())) S.Diag(Kind.getLocation(), diag::warn_sampler_initializer_invalid_bits) << "Filter Mode"; if (AddressingMode > 4) S.Diag(Kind.getLocation(), diag::warn_sampler_initializer_invalid_bits) << "Addressing Mode"; } // Cases 1a, 2a and 2b // Insert cast from integer to sampler. CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, CK_IntToOCLSampler); break; } case SK_OCLZeroOpaqueType: { assert((Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && "Wrong type for initialization of OpenCL opaque type."); CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_ZeroToOCLOpaqueType, CurInit.get()->getValueKind()); break; } case SK_ParenthesizedListInit: { CurInit = nullptr; TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this, /*VerifyOnly=*/false, &CurInit); if (CurInit.get() && ResultType) *ResultType = CurInit.get()->getType(); if (shouldBindAsTemporary(Entity)) CurInit = S.MaybeBindToTemporary(CurInit.get()); break; } } } Expr *Init = CurInit.get(); if (!Init) return ExprError(); // Check whether the initializer has a shorter lifetime than the initialized // entity, and if not, either lifetime-extend or warn as appropriate. S.checkInitializerLifetime(Entity, Init); // Diagnose non-fatal problems with the completed initialization. if (InitializedEntity::EntityKind EK = Entity.getKind(); (EK == InitializedEntity::EK_Member || EK == InitializedEntity::EK_ParenAggInitMember) && cast(Entity.getDecl())->isBitField()) S.CheckBitFieldInitialization(Kind.getLocation(), cast(Entity.getDecl()), Init); // Check for std::move on construction. CheckMoveOnConstruction(S, Init, Entity.getKind() == InitializedEntity::EK_Result); return Init; } /// Somewhere within T there is an uninitialized reference subobject. /// Dig it out and diagnose it. static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, QualType T) { if (T->isReferenceType()) { S.Diag(Loc, diag::err_reference_without_init) << T.getNonReferenceType(); return true; } CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); if (!RD || !RD->hasUninitializedReferenceMember()) return false; for (const auto *FI : RD->fields()) { if (FI->isUnnamedBitfield()) continue; if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { S.Diag(Loc, diag::note_value_initialization_here) << RD; return true; } } for (const auto &BI : RD->bases()) { if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { S.Diag(Loc, diag::note_value_initialization_here) << RD; return true; } } return false; } //===----------------------------------------------------------------------===// // Diagnose initialization failures //===----------------------------------------------------------------------===// /// Emit notes associated with an initialization that failed due to a /// "simple" conversion failure. static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, Expr *op) { QualType destType = entity.getType(); if (destType.getNonReferenceType()->isObjCObjectPointerType() && op->getType()->isObjCObjectPointerType()) { // Emit a possible note about the conversion failing because the // operand is a message send with a related result type. S.EmitRelatedResultTypeNote(op); // Emit a possible note about a return failing because we're // expecting a related result type. if (entity.getKind() == InitializedEntity::EK_Result) S.EmitRelatedResultTypeNoteForReturn(destType); } QualType fromType = op->getType(); QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType(); QualType destPointeeType = destType.getCanonicalType()->getPointeeType(); auto *fromDecl = fromType->getPointeeCXXRecordDecl(); auto *destDecl = destType->getPointeeCXXRecordDecl(); if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord && destDecl->getDeclKind() == Decl::CXXRecord && !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() && !fromDecl->hasDefinition() && destPointeeType.getQualifiers().compatiblyIncludes( fromPointeeType.getQualifiers())) S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion) << S.getASTContext().getTagDeclType(fromDecl) << S.getASTContext().getTagDeclType(destDecl); } static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, InitListExpr *InitList) { QualType DestType = Entity.getType(); QualType E; if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { QualType ArrayType = S.Context.getConstantArrayType( E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), InitList->getNumInits()), nullptr, clang::ArraySizeModifier::Normal, 0); InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(ArrayType); return diagnoseListInit(S, HiddenArray, InitList); } if (DestType->isReferenceType()) { // A list-initialization failure for a reference means that we tried to // create a temporary of the inner type (per [dcl.init.list]p3.6) and the // inner initialization failed. QualType T = DestType->castAs()->getPointeeType(); diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); SourceLocation Loc = InitList->getBeginLoc(); if (auto *D = Entity.getDecl()) Loc = D->getLocation(); S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; return; } InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, /*VerifyOnly=*/false, /*TreatUnavailableAsInvalid=*/false); assert(DiagnoseInitList.HadError() && "Inconsistent init list check result."); } bool InitializationSequence::Diagnose(Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, ArrayRef Args) { if (!Failed()) return false; // When we want to diagnose only one element of a braced-init-list, // we need to factor it out. Expr *OnlyArg; if (Args.size() == 1) { auto *List = dyn_cast(Args[0]); if (List && List->getNumInits() == 1) OnlyArg = List->getInit(0); else OnlyArg = Args[0]; } else OnlyArg = nullptr; QualType DestType = Entity.getType(); switch (Failure) { case FK_TooManyInitsForReference: // FIXME: Customize for the initialized entity? if (Args.empty()) { // Dig out the reference subobject which is uninitialized and diagnose it. // If this is value-initialization, this could be nested some way within // the target type. assert(Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()); bool Diagnosed = DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); (void)Diagnosed; } else // FIXME: diagnostic below could be better! S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); break; case FK_ParenthesizedListInitForReference: S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) << 1 << Entity.getType() << Args[0]->getSourceRange(); break; case FK_ArrayNeedsInitList: S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; break; case FK_ArrayNeedsInitListOrStringLiteral: S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; break; case FK_ArrayNeedsInitListOrWideStringLiteral: S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; break; case FK_NarrowStringIntoWideCharArray: S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); break; case FK_WideStringIntoCharArray: S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); break; case FK_IncompatWideStringIntoWideChar: S.Diag(Kind.getLocation(), diag::err_array_init_incompat_wide_string_into_wchar); break; case FK_PlainStringIntoUTF8Char: S.Diag(Kind.getLocation(), diag::err_array_init_plain_string_into_char8_t); S.Diag(Args.front()->getBeginLoc(), diag::note_array_init_plain_string_into_char8_t) << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); break; case FK_UTF8StringIntoPlainChar: S.Diag(Kind.getLocation(), diag::err_array_init_utf8_string_into_char) << DestType->isSignedIntegerType() << S.getLangOpts().CPlusPlus20; break; case FK_ArrayTypeMismatch: case FK_NonConstantArrayInit: S.Diag(Kind.getLocation(), (Failure == FK_ArrayTypeMismatch ? diag::err_array_init_different_type : diag::err_array_init_non_constant_array)) << DestType.getNonReferenceType() << OnlyArg->getType() << Args[0]->getSourceRange(); break; case FK_VariableLengthArrayHasInitializer: S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) << Args[0]->getSourceRange(); break; case FK_AddressOfOverloadFailed: { DeclAccessPair Found; S.ResolveAddressOfOverloadedFunction(OnlyArg, DestType.getNonReferenceType(), true, Found); break; } case FK_AddressOfUnaddressableFunction: { auto *FD = cast(cast(OnlyArg)->getDecl()); S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, OnlyArg->getBeginLoc()); break; } case FK_ReferenceInitOverloadFailed: case FK_UserConversionOverloadFailed: switch (FailedOverloadResult) { case OR_Ambiguous: FailedCandidateSet.NoteCandidates( PartialDiagnosticAt( Kind.getLocation(), Failure == FK_UserConversionOverloadFailed ? (S.PDiag(diag::err_typecheck_ambiguous_condition) << OnlyArg->getType() << DestType << Args[0]->getSourceRange()) : (S.PDiag(diag::err_ref_init_ambiguous) << DestType << OnlyArg->getType() << Args[0]->getSourceRange())), S, OCD_AmbiguousCandidates, Args); break; case OR_No_Viable_Function: { auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); if (!S.RequireCompleteType(Kind.getLocation(), DestType.getNonReferenceType(), diag::err_typecheck_nonviable_condition_incomplete, OnlyArg->getType(), Args[0]->getSourceRange())) S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) << (Entity.getKind() == InitializedEntity::EK_Result) << OnlyArg->getType() << Args[0]->getSourceRange() << DestType.getNonReferenceType(); FailedCandidateSet.NoteCandidates(S, Args, Cands); break; } case OR_Deleted: { S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) << OnlyArg->getType() << DestType.getNonReferenceType() << Args[0]->getSourceRange(); OverloadCandidateSet::iterator Best; OverloadingResult Ovl = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); if (Ovl == OR_Deleted) { S.NoteDeletedFunction(Best->Function); } else { llvm_unreachable("Inconsistent overload resolution?"); } break; } case OR_Success: llvm_unreachable("Conversion did not fail!"); } break; case FK_NonConstLValueReferenceBindingToTemporary: if (isa(Args[0])) { S.Diag(Kind.getLocation(), diag::err_lvalue_reference_bind_to_initlist) << DestType.getNonReferenceType().isVolatileQualified() << DestType.getNonReferenceType() << Args[0]->getSourceRange(); break; } [[fallthrough]]; case FK_NonConstLValueReferenceBindingToUnrelated: S.Diag(Kind.getLocation(), Failure == FK_NonConstLValueReferenceBindingToTemporary ? diag::err_lvalue_reference_bind_to_temporary : diag::err_lvalue_reference_bind_to_unrelated) << DestType.getNonReferenceType().isVolatileQualified() << DestType.getNonReferenceType() << OnlyArg->getType() << Args[0]->getSourceRange(); break; case FK_NonConstLValueReferenceBindingToBitfield: { // We don't necessarily have an unambiguous source bit-field. FieldDecl *BitField = Args[0]->getSourceBitField(); S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) << DestType.isVolatileQualified() << (BitField ? BitField->getDeclName() : DeclarationName()) << (BitField != nullptr) << Args[0]->getSourceRange(); if (BitField) S.Diag(BitField->getLocation(), diag::note_bitfield_decl); break; } case FK_NonConstLValueReferenceBindingToVectorElement: S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) << DestType.isVolatileQualified() << Args[0]->getSourceRange(); break; case FK_NonConstLValueReferenceBindingToMatrixElement: S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element) << DestType.isVolatileQualified() << Args[0]->getSourceRange(); break; case FK_RValueReferenceBindingToLValue: S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) << DestType.getNonReferenceType() << OnlyArg->getType() << Args[0]->getSourceRange(); break; case FK_ReferenceAddrspaceMismatchTemporary: S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) << DestType << Args[0]->getSourceRange(); break; case FK_ReferenceInitDropsQualifiers: { QualType SourceType = OnlyArg->getType(); QualType NonRefType = DestType.getNonReferenceType(); Qualifiers DroppedQualifiers = SourceType.getQualifiers() - NonRefType.getQualifiers(); if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( SourceType.getQualifiers())) S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) << NonRefType << SourceType << 1 /*addr space*/ << Args[0]->getSourceRange(); else if (DroppedQualifiers.hasQualifiers()) S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) << NonRefType << SourceType << 0 /*cv quals*/ << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); else // FIXME: Consider decomposing the type and explaining which qualifiers // were dropped where, or on which level a 'const' is missing, etc. S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) << NonRefType << SourceType << 2 /*incompatible quals*/ << Args[0]->getSourceRange(); break; } case FK_ReferenceInitFailed: S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) << DestType.getNonReferenceType() << DestType.getNonReferenceType()->isIncompleteType() << OnlyArg->isLValue() << OnlyArg->getType() << Args[0]->getSourceRange(); emitBadConversionNotes(S, Entity, Args[0]); break; case FK_ConversionFailed: { QualType FromType = OnlyArg->getType(); PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) << (int)Entity.getKind() << DestType << OnlyArg->isLValue() << FromType << Args[0]->getSourceRange(); S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); S.Diag(Kind.getLocation(), PDiag); emitBadConversionNotes(S, Entity, Args[0]); break; } case FK_ConversionFromPropertyFailed: // No-op. This error has already been reported. break; case FK_TooManyInitsForScalar: { SourceRange R; auto *InitList = dyn_cast(Args[0]); if (InitList && InitList->getNumInits() >= 1) { R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); } else { assert(Args.size() > 1 && "Expected multiple initializers!"); R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); } R.setBegin(S.getLocForEndOfToken(R.getBegin())); if (Kind.isCStyleOrFunctionalCast()) S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) << R; else S.Diag(Kind.getLocation(), diag::err_excess_initializers) << /*scalar=*/2 << R; break; } case FK_ParenthesizedListInitForScalar: S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) << 0 << Entity.getType() << Args[0]->getSourceRange(); break; case FK_ReferenceBindingToInitList: S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) << DestType.getNonReferenceType() << Args[0]->getSourceRange(); break; case FK_InitListBadDestinationType: S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); break; case FK_ListConstructorOverloadFailed: case FK_ConstructorOverloadFailed: { SourceRange ArgsRange; if (Args.size()) ArgsRange = SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); if (Failure == FK_ListConstructorOverloadFailed) { assert(Args.size() == 1 && "List construction from other than 1 argument."); InitListExpr *InitList = cast(Args[0]); Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); } // FIXME: Using "DestType" for the entity we're printing is probably // bad. switch (FailedOverloadResult) { case OR_Ambiguous: FailedCandidateSet.NoteCandidates( PartialDiagnosticAt(Kind.getLocation(), S.PDiag(diag::err_ovl_ambiguous_init) << DestType << ArgsRange), S, OCD_AmbiguousCandidates, Args); break; case OR_No_Viable_Function: if (Kind.getKind() == InitializationKind::IK_Default && (Entity.getKind() == InitializedEntity::EK_Base || Entity.getKind() == InitializedEntity::EK_Member || Entity.getKind() == InitializedEntity::EK_ParenAggInitMember) && isa(S.CurContext)) { // This is implicit default initialization of a member or // base within a constructor. If no viable function was // found, notify the user that they need to explicitly // initialize this base/member. CXXConstructorDecl *Constructor = cast(S.CurContext); const CXXRecordDecl *InheritedFrom = nullptr; if (auto Inherited = Constructor->getInheritedConstructor()) InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); if (Entity.getKind() == InitializedEntity::EK_Base) { S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) << S.Context.getTypeDeclType(Constructor->getParent()) << /*base=*/0 << Entity.getType() << InheritedFrom; RecordDecl *BaseDecl = Entity.getBaseSpecifier()->getType()->castAs() ->getDecl(); S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) << S.Context.getTagDeclType(BaseDecl); } else { S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) << S.Context.getTypeDeclType(Constructor->getParent()) << /*member=*/1 << Entity.getName() << InheritedFrom; S.Diag(Entity.getDecl()->getLocation(), diag::note_member_declared_at); if (const RecordType *Record = Entity.getType()->getAs()) S.Diag(Record->getDecl()->getLocation(), diag::note_previous_decl) << S.Context.getTagDeclType(Record->getDecl()); } break; } FailedCandidateSet.NoteCandidates( PartialDiagnosticAt( Kind.getLocation(), S.PDiag(diag::err_ovl_no_viable_function_in_init) << DestType << ArgsRange), S, OCD_AllCandidates, Args); break; case OR_Deleted: { OverloadCandidateSet::iterator Best; OverloadingResult Ovl = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); if (Ovl != OR_Deleted) { S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) << DestType << ArgsRange; llvm_unreachable("Inconsistent overload resolution?"); break; } // If this is a defaulted or implicitly-declared function, then // it was implicitly deleted. Make it clear that the deletion was // implicit. if (S.isImplicitlyDeleted(Best->Function)) S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) << S.getSpecialMember(cast(Best->Function)) << DestType << ArgsRange; else S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) << DestType << ArgsRange; S.NoteDeletedFunction(Best->Function); break; } case OR_Success: llvm_unreachable("Conversion did not fail!"); } } break; case FK_DefaultInitOfConst: if (Entity.getKind() == InitializedEntity::EK_Member && isa(S.CurContext)) { // This is implicit default-initialization of a const member in // a constructor. Complain that it needs to be explicitly // initialized. CXXConstructorDecl *Constructor = cast(S.CurContext); S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) << (Constructor->getInheritedConstructor() ? 2 : Constructor->isImplicit() ? 1 : 0) << S.Context.getTypeDeclType(Constructor->getParent()) << /*const=*/1 << Entity.getName(); S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) << Entity.getName(); } else if (const auto *VD = dyn_cast_if_present(Entity.getDecl()); VD && VD->isConstexpr()) { S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init) << VD; } else { S.Diag(Kind.getLocation(), diag::err_default_init_const) << DestType << (bool)DestType->getAs(); } break; case FK_Incomplete: S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, diag::err_init_incomplete_type); break; case FK_ListInitializationFailed: { // Run the init list checker again to emit diagnostics. InitListExpr *InitList = cast(Args[0]); diagnoseListInit(S, Entity, InitList); break; } case FK_PlaceholderType: { // FIXME: Already diagnosed! break; } case FK_ExplicitConstructor: { S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) << Args[0]->getSourceRange(); OverloadCandidateSet::iterator Best; OverloadingResult Ovl = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); (void)Ovl; assert(Ovl == OR_Success && "Inconsistent overload resolution"); CXXConstructorDecl *CtorDecl = cast(Best->Function); S.Diag(CtorDecl->getLocation(), diag::note_explicit_ctor_deduction_guide_here) << false; break; } case FK_ParenthesizedListInitFailed: TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this, /*VerifyOnly=*/false); break; case FK_DesignatedInitForNonAggregate: InitListExpr *InitList = cast(Args[0]); S.Diag(Kind.getLocation(), diag::err_designated_init_for_non_aggregate) << Entity.getType() << InitList->getSourceRange(); break; } PrintInitLocationNote(S, Entity); return true; } void InitializationSequence::dump(raw_ostream &OS) const { switch (SequenceKind) { case FailedSequence: { OS << "Failed sequence: "; switch (Failure) { case FK_TooManyInitsForReference: OS << "too many initializers for reference"; break; case FK_ParenthesizedListInitForReference: OS << "parenthesized list init for reference"; break; case FK_ArrayNeedsInitList: OS << "array requires initializer list"; break; case FK_AddressOfUnaddressableFunction: OS << "address of unaddressable function was taken"; break; case FK_ArrayNeedsInitListOrStringLiteral: OS << "array requires initializer list or string literal"; break; case FK_ArrayNeedsInitListOrWideStringLiteral: OS << "array requires initializer list or wide string literal"; break; case FK_NarrowStringIntoWideCharArray: OS << "narrow string into wide char array"; break; case FK_WideStringIntoCharArray: OS << "wide string into char array"; break; case FK_IncompatWideStringIntoWideChar: OS << "incompatible wide string into wide char array"; break; case FK_PlainStringIntoUTF8Char: OS << "plain string literal into char8_t array"; break; case FK_UTF8StringIntoPlainChar: OS << "u8 string literal into char array"; break; case FK_ArrayTypeMismatch: OS << "array type mismatch"; break; case FK_NonConstantArrayInit: OS << "non-constant array initializer"; break; case FK_AddressOfOverloadFailed: OS << "address of overloaded function failed"; break; case FK_ReferenceInitOverloadFailed: OS << "overload resolution for reference initialization failed"; break; case FK_NonConstLValueReferenceBindingToTemporary: OS << "non-const lvalue reference bound to temporary"; break; case FK_NonConstLValueReferenceBindingToBitfield: OS << "non-const lvalue reference bound to bit-field"; break; case FK_NonConstLValueReferenceBindingToVectorElement: OS << "non-const lvalue reference bound to vector element"; break; case FK_NonConstLValueReferenceBindingToMatrixElement: OS << "non-const lvalue reference bound to matrix element"; break; case FK_NonConstLValueReferenceBindingToUnrelated: OS << "non-const lvalue reference bound to unrelated type"; break; case FK_RValueReferenceBindingToLValue: OS << "rvalue reference bound to an lvalue"; break; case FK_ReferenceInitDropsQualifiers: OS << "reference initialization drops qualifiers"; break; case FK_ReferenceAddrspaceMismatchTemporary: OS << "reference with mismatching address space bound to temporary"; break; case FK_ReferenceInitFailed: OS << "reference initialization failed"; break; case FK_ConversionFailed: OS << "conversion failed"; break; case FK_ConversionFromPropertyFailed: OS << "conversion from property failed"; break; case FK_TooManyInitsForScalar: OS << "too many initializers for scalar"; break; case FK_ParenthesizedListInitForScalar: OS << "parenthesized list init for reference"; break; case FK_ReferenceBindingToInitList: OS << "referencing binding to initializer list"; break; case FK_InitListBadDestinationType: OS << "initializer list for non-aggregate, non-scalar type"; break; case FK_UserConversionOverloadFailed: OS << "overloading failed for user-defined conversion"; break; case FK_ConstructorOverloadFailed: OS << "constructor overloading failed"; break; case FK_DefaultInitOfConst: OS << "default initialization of a const variable"; break; case FK_Incomplete: OS << "initialization of incomplete type"; break; case FK_ListInitializationFailed: OS << "list initialization checker failure"; break; case FK_VariableLengthArrayHasInitializer: OS << "variable length array has an initializer"; break; case FK_PlaceholderType: OS << "initializer expression isn't contextually valid"; break; case FK_ListConstructorOverloadFailed: OS << "list constructor overloading failed"; break; case FK_ExplicitConstructor: OS << "list copy initialization chose explicit constructor"; break; case FK_ParenthesizedListInitFailed: OS << "parenthesized list initialization failed"; break; case FK_DesignatedInitForNonAggregate: OS << "designated initializer for non-aggregate type"; break; } OS << '\n'; return; } case DependentSequence: OS << "Dependent sequence\n"; return; case NormalSequence: OS << "Normal sequence: "; break; } for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { if (S != step_begin()) { OS << " -> "; } switch (S->Kind) { case SK_ResolveAddressOfOverloadedFunction: OS << "resolve address of overloaded function"; break; case SK_CastDerivedToBasePRValue: OS << "derived-to-base (prvalue)"; break; case SK_CastDerivedToBaseXValue: OS << "derived-to-base (xvalue)"; break; case SK_CastDerivedToBaseLValue: OS << "derived-to-base (lvalue)"; break; case SK_BindReference: OS << "bind reference to lvalue"; break; case SK_BindReferenceToTemporary: OS << "bind reference to a temporary"; break; case SK_FinalCopy: OS << "final copy in class direct-initialization"; break; case SK_ExtraneousCopyToTemporary: OS << "extraneous C++03 copy to temporary"; break; case SK_UserConversion: OS << "user-defined conversion via " << *S->Function.Function; break; case SK_QualificationConversionPRValue: OS << "qualification conversion (prvalue)"; break; case SK_QualificationConversionXValue: OS << "qualification conversion (xvalue)"; break; case SK_QualificationConversionLValue: OS << "qualification conversion (lvalue)"; break; case SK_FunctionReferenceConversion: OS << "function reference conversion"; break; case SK_AtomicConversion: OS << "non-atomic-to-atomic conversion"; break; case SK_ConversionSequence: OS << "implicit conversion sequence ("; S->ICS->dump(); // FIXME: use OS OS << ")"; break; case SK_ConversionSequenceNoNarrowing: OS << "implicit conversion sequence with narrowing prohibited ("; S->ICS->dump(); // FIXME: use OS OS << ")"; break; case SK_ListInitialization: OS << "list aggregate initialization"; break; case SK_UnwrapInitList: OS << "unwrap reference initializer list"; break; case SK_RewrapInitList: OS << "rewrap reference initializer list"; break; case SK_ConstructorInitialization: OS << "constructor initialization"; break; case SK_ConstructorInitializationFromList: OS << "list initialization via constructor"; break; case SK_ZeroInitialization: OS << "zero initialization"; break; case SK_CAssignment: OS << "C assignment"; break; case SK_StringInit: OS << "string initialization"; break; case SK_ObjCObjectConversion: OS << "Objective-C object conversion"; break; case SK_ArrayLoopIndex: OS << "indexing for array initialization loop"; break; case SK_ArrayLoopInit: OS << "array initialization loop"; break; case SK_ArrayInit: OS << "array initialization"; break; case SK_GNUArrayInit: OS << "array initialization (GNU extension)"; break; case SK_ParenthesizedArrayInit: OS << "parenthesized array initialization"; break; case SK_PassByIndirectCopyRestore: OS << "pass by indirect copy and restore"; break; case SK_PassByIndirectRestore: OS << "pass by indirect restore"; break; case SK_ProduceObjCObject: OS << "Objective-C object retension"; break; case SK_StdInitializerList: OS << "std::initializer_list from initializer list"; break; case SK_StdInitializerListConstructorCall: OS << "list initialization from std::initializer_list"; break; case SK_OCLSamplerInit: OS << "OpenCL sampler_t from integer constant"; break; case SK_OCLZeroOpaqueType: OS << "OpenCL opaque type from zero"; break; case SK_ParenthesizedListInit: OS << "initialization from a parenthesized list of values"; break; } OS << " [" << S->Type << ']'; } OS << '\n'; } void InitializationSequence::dump() const { dump(llvm::errs()); } static void DiagnoseNarrowingInInitList(Sema &S, const ImplicitConversionSequence &ICS, QualType PreNarrowingType, QualType EntityType, const Expr *PostInit) { const StandardConversionSequence *SCS = nullptr; switch (ICS.getKind()) { case ImplicitConversionSequence::StandardConversion: SCS = &ICS.Standard; break; case ImplicitConversionSequence::UserDefinedConversion: SCS = &ICS.UserDefined.After; break; case ImplicitConversionSequence::AmbiguousConversion: case ImplicitConversionSequence::StaticObjectArgumentConversion: case ImplicitConversionSequence::EllipsisConversion: case ImplicitConversionSequence::BadConversion: return; } auto MakeDiag = [&](bool IsConstRef, unsigned DefaultDiagID, unsigned ConstRefDiagID, unsigned WarnDiagID) { unsigned DiagID; auto &L = S.getLangOpts(); if (L.CPlusPlus11 && (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015))) DiagID = IsConstRef ? ConstRefDiagID : DefaultDiagID; else DiagID = WarnDiagID; return S.Diag(PostInit->getBeginLoc(), DiagID) << PostInit->getSourceRange(); }; // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. APValue ConstantValue; QualType ConstantType; switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, ConstantType)) { case NK_Not_Narrowing: case NK_Dependent_Narrowing: // No narrowing occurred. return; case NK_Type_Narrowing: { // This was a floating-to-integer conversion, which is always considered a // narrowing conversion even if the value is a constant and can be // represented exactly as an integer. QualType T = EntityType.getNonReferenceType(); MakeDiag(T != EntityType, diag::ext_init_list_type_narrowing, diag::ext_init_list_type_narrowing_const_reference, diag::warn_init_list_type_narrowing) << PreNarrowingType.getLocalUnqualifiedType() << T.getLocalUnqualifiedType(); break; } case NK_Constant_Narrowing: { // A constant value was narrowed. MakeDiag(EntityType.getNonReferenceType() != EntityType, diag::ext_init_list_constant_narrowing, diag::ext_init_list_constant_narrowing_const_reference, diag::warn_init_list_constant_narrowing) << ConstantValue.getAsString(S.getASTContext(), ConstantType) << EntityType.getNonReferenceType().getLocalUnqualifiedType(); break; } case NK_Variable_Narrowing: { // A variable's value may have been narrowed. MakeDiag(EntityType.getNonReferenceType() != EntityType, diag::ext_init_list_variable_narrowing, diag::ext_init_list_variable_narrowing_const_reference, diag::warn_init_list_variable_narrowing) << PreNarrowingType.getLocalUnqualifiedType() << EntityType.getNonReferenceType().getLocalUnqualifiedType(); break; } } SmallString<128> StaticCast; llvm::raw_svector_ostream OS(StaticCast); OS << "static_cast<"; if (const TypedefType *TT = EntityType->getAs()) { // It's important to use the typedef's name if there is one so that the // fixit doesn't break code using types like int64_t. // // FIXME: This will break if the typedef requires qualification. But // getQualifiedNameAsString() includes non-machine-parsable components. OS << *TT->getDecl(); } else if (const BuiltinType *BT = EntityType->getAs()) OS << BT->getName(S.getLangOpts()); else { // Oops, we didn't find the actual type of the variable. Don't emit a fixit // with a broken cast. return; } OS << ">("; S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) << PostInit->getSourceRange() << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) << FixItHint::CreateInsertion( S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); } //===----------------------------------------------------------------------===// // Initialization helper functions //===----------------------------------------------------------------------===// bool Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, ExprResult Init) { if (Init.isInvalid()) return false; Expr *InitE = Init.get(); assert(InitE && "No initialization expression"); InitializationKind Kind = InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); InitializationSequence Seq(*this, Entity, Kind, InitE); return !Seq.Failed(); } ExprResult Sema::PerformCopyInitialization(const InitializedEntity &Entity, SourceLocation EqualLoc, ExprResult Init, bool TopLevelOfInitList, bool AllowExplicit) { if (Init.isInvalid()) return ExprError(); Expr *InitE = Init.get(); assert(InitE && "No initialization expression?"); if (EqualLoc.isInvalid()) EqualLoc = InitE->getBeginLoc(); InitializationKind Kind = InitializationKind::CreateCopy( InitE->getBeginLoc(), EqualLoc, AllowExplicit); InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); // Prevent infinite recursion when performing parameter copy-initialization. const bool ShouldTrackCopy = Entity.isParameterKind() && Seq.isConstructorInitialization(); if (ShouldTrackCopy) { if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) { Seq.SetOverloadFailure( InitializationSequence::FK_ConstructorOverloadFailed, OR_No_Viable_Function); // Try to give a meaningful diagnostic note for the problematic // constructor. const auto LastStep = Seq.step_end() - 1; assert(LastStep->Kind == InitializationSequence::SK_ConstructorInitialization); const FunctionDecl *Function = LastStep->Function.Function; auto Candidate = llvm::find_if(Seq.getFailedCandidateSet(), [Function](const OverloadCandidate &Candidate) -> bool { return Candidate.Viable && Candidate.Function == Function && Candidate.Conversions.size() > 0; }); if (Candidate != Seq.getFailedCandidateSet().end() && Function->getNumParams() > 0) { Candidate->Viable = false; Candidate->FailureKind = ovl_fail_bad_conversion; Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, InitE, Function->getParamDecl(0)->getType()); } } CurrentParameterCopyTypes.push_back(Entity.getType()); } ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); if (ShouldTrackCopy) CurrentParameterCopyTypes.pop_back(); return Result; } /// Determine whether RD is, or is derived from, a specialization of CTD. static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, ClassTemplateDecl *CTD) { auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { auto *CTSD = dyn_cast(Candidate); return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); }; return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); } QualType Sema::DeduceTemplateSpecializationFromInitializer( TypeSourceInfo *TSInfo, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Inits) { auto *DeducedTST = dyn_cast( TSInfo->getType()->getContainedDeducedType()); assert(DeducedTST && "not a deduced template specialization type"); auto TemplateName = DeducedTST->getTemplateName(); if (TemplateName.isDependent()) return SubstAutoTypeDependent(TSInfo->getType()); // We can only perform deduction for class templates. auto *Template = dyn_cast_or_null(TemplateName.getAsTemplateDecl()); if (!Template) { Diag(Kind.getLocation(), diag::err_deduced_non_class_template_specialization_type) << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; if (auto *TD = TemplateName.getAsTemplateDecl()) NoteTemplateLocation(*TD); return QualType(); } // Can't deduce from dependent arguments. if (Expr::hasAnyTypeDependentArguments(Inits)) { Diag(TSInfo->getTypeLoc().getBeginLoc(), diag::warn_cxx14_compat_class_template_argument_deduction) << TSInfo->getTypeLoc().getSourceRange() << 0; return SubstAutoTypeDependent(TSInfo->getType()); } // FIXME: Perform "exact type" matching first, per CWG discussion? // Or implement this via an implied 'T(T) -> T' deduction guide? // FIXME: Do we need/want a std::initializer_list special case? // Look up deduction guides, including those synthesized from constructors. // // C++1z [over.match.class.deduct]p1: // A set of functions and function templates is formed comprising: // - For each constructor of the class template designated by the // template-name, a function template [...] // - For each deduction-guide, a function or function template [...] DeclarationNameInfo NameInfo( Context.DeclarationNames.getCXXDeductionGuideName(Template), TSInfo->getTypeLoc().getEndLoc()); LookupResult Guides(*this, NameInfo, LookupOrdinaryName); LookupQualifiedName(Guides, Template->getDeclContext()); // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't // clear on this, but they're not found by name so access does not apply. Guides.suppressDiagnostics(); // Figure out if this is list-initialization. InitListExpr *ListInit = (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) ? dyn_cast(Inits[0]) : nullptr; // C++1z [over.match.class.deduct]p1: // Initialization and overload resolution are performed as described in // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] // (as appropriate for the type of initialization performed) for an object // of a hypothetical class type, where the selected functions and function // templates are considered to be the constructors of that class type // // Since we know we're initializing a class type of a type unrelated to that // of the initializer, this reduces to something fairly reasonable. OverloadCandidateSet Candidates(Kind.getLocation(), OverloadCandidateSet::CSK_Normal); OverloadCandidateSet::iterator Best; bool AllowExplicit = !Kind.isCopyInit() || ListInit; // Return true if the candidate is added successfully, false otherwise. auto addDeductionCandidate = [&](FunctionTemplateDecl *TD, CXXDeductionGuideDecl *GD, DeclAccessPair FoundDecl, bool OnlyListConstructors, bool AllowAggregateDeductionCandidate) { // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) // For copy-initialization, the candidate functions are all the // converting constructors (12.3.1) of that class. // C++ [over.match.copy]p1: (non-list copy-initialization from class) // The converting constructors of T are candidate functions. if (!AllowExplicit) { // Overload resolution checks whether the deduction guide is declared // explicit for us. // When looking for a converting constructor, deduction guides that // could never be called with one argument are not interesting to // check or note. if (GD->getMinRequiredArguments() > 1 || (GD->getNumParams() == 0 && !GD->isVariadic())) return; } // C++ [over.match.list]p1.1: (first phase list initialization) // Initially, the candidate functions are the initializer-list // constructors of the class T if (OnlyListConstructors && !isInitListConstructor(GD)) return; if (!AllowAggregateDeductionCandidate && GD->getDeductionCandidateKind() == DeductionCandidate::Aggregate) return; // C++ [over.match.list]p1.2: (second phase list initialization) // the candidate functions are all the constructors of the class T // C++ [over.match.ctor]p1: (all other cases) // the candidate functions are all the constructors of the class of // the object being initialized // C++ [over.best.ics]p4: // When [...] the constructor [...] is a candidate by // - [over.match.copy] (in all cases) // FIXME: The "second phase of [over.match.list] case can also // theoretically happen here, but it's not clear whether we can // ever have a parameter of the right type. bool SuppressUserConversions = Kind.isCopyInit(); if (TD) { SmallVector TmpInits; for (Expr *E : Inits) if (auto *DI = dyn_cast(E)) TmpInits.push_back(DI->getInit()); else TmpInits.push_back(E); AddTemplateOverloadCandidate( TD, FoundDecl, /*ExplicitArgs=*/nullptr, TmpInits, Candidates, SuppressUserConversions, /*PartialOverloading=*/false, AllowExplicit, ADLCallKind::NotADL, /*PO=*/{}, AllowAggregateDeductionCandidate); } else { AddOverloadCandidate(GD, FoundDecl, Inits, Candidates, SuppressUserConversions, /*PartialOverloading=*/false, AllowExplicit); } }; bool FoundDeductionGuide = false; auto TryToResolveOverload = [&](bool OnlyListConstructors) -> OverloadingResult { Candidates.clear(OverloadCandidateSet::CSK_Normal); bool HasAnyDeductionGuide = false; auto SynthesizeAggrGuide = [&](InitListExpr *ListInit) { auto *Pattern = Template; while (Pattern->getInstantiatedFromMemberTemplate()) { if (Pattern->isMemberSpecialization()) break; Pattern = Pattern->getInstantiatedFromMemberTemplate(); } auto *RD = cast(Pattern->getTemplatedDecl()); if (!(RD->getDefinition() && RD->isAggregate())) return; QualType Ty = Context.getRecordType(RD); SmallVector ElementTypes; InitListChecker CheckInitList(*this, Entity, ListInit, Ty, ElementTypes); if (!CheckInitList.HadError()) { // C++ [over.match.class.deduct]p1.8: // if e_i is of array type and x_i is a braced-init-list, T_i is an // rvalue reference to the declared type of e_i and // C++ [over.match.class.deduct]p1.9: // if e_i is of array type and x_i is a bstring-literal, T_i is an // lvalue reference to the const-qualified declared type of e_i and // C++ [over.match.class.deduct]p1.10: // otherwise, T_i is the declared type of e_i for (int I = 0, E = ListInit->getNumInits(); I < E && !isa(ElementTypes[I]); ++I) if (ElementTypes[I]->isArrayType()) { if (isa(ListInit->getInit(I))) ElementTypes[I] = Context.getRValueReferenceType(ElementTypes[I]); else if (isa( ListInit->getInit(I)->IgnoreParenImpCasts())) ElementTypes[I] = Context.getLValueReferenceType(ElementTypes[I].withConst()); } llvm::FoldingSetNodeID ID; ID.AddPointer(Template); for (auto &T : ElementTypes) T.getCanonicalType().Profile(ID); unsigned Hash = ID.ComputeHash(); if (AggregateDeductionCandidates.count(Hash) == 0) { if (FunctionTemplateDecl *TD = DeclareImplicitDeductionGuideFromInitList( Template, ElementTypes, TSInfo->getTypeLoc().getEndLoc())) { auto *GD = cast(TD->getTemplatedDecl()); GD->setDeductionCandidateKind(DeductionCandidate::Aggregate); AggregateDeductionCandidates[Hash] = GD; addDeductionCandidate(TD, GD, DeclAccessPair::make(TD, AS_public), OnlyListConstructors, /*AllowAggregateDeductionCandidate=*/true); } } else { CXXDeductionGuideDecl *GD = AggregateDeductionCandidates[Hash]; FunctionTemplateDecl *TD = GD->getDescribedFunctionTemplate(); assert(TD && "aggregate deduction candidate is function template"); addDeductionCandidate(TD, GD, DeclAccessPair::make(TD, AS_public), OnlyListConstructors, /*AllowAggregateDeductionCandidate=*/true); } HasAnyDeductionGuide = true; } }; for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { NamedDecl *D = (*I)->getUnderlyingDecl(); if (D->isInvalidDecl()) continue; auto *TD = dyn_cast(D); auto *GD = dyn_cast_if_present( TD ? TD->getTemplatedDecl() : dyn_cast(D)); if (!GD) continue; if (!GD->isImplicit()) HasAnyDeductionGuide = true; addDeductionCandidate(TD, GD, I.getPair(), OnlyListConstructors, /*AllowAggregateDeductionCandidate=*/false); } // C++ [over.match.class.deduct]p1.4: // if C is defined and its definition satisfies the conditions for an // aggregate class ([dcl.init.aggr]) with the assumption that any // dependent base class has no virtual functions and no virtual base // classes, and the initializer is a non-empty braced-init-list or // parenthesized expression-list, and there are no deduction-guides for // C, the set contains an additional function template, called the // aggregate deduction candidate, defined as follows. if (getLangOpts().CPlusPlus20 && !HasAnyDeductionGuide) { if (ListInit && ListInit->getNumInits()) { SynthesizeAggrGuide(ListInit); } else if (Inits.size()) { // parenthesized expression-list // Inits are expressions inside the parentheses. We don't have // the parentheses source locations, use the begin/end of Inits as the // best heuristic. InitListExpr TempListInit(getASTContext(), Inits.front()->getBeginLoc(), Inits, Inits.back()->getEndLoc()); SynthesizeAggrGuide(&TempListInit); } } FoundDeductionGuide = FoundDeductionGuide || HasAnyDeductionGuide; return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); }; OverloadingResult Result = OR_No_Viable_Function; // C++11 [over.match.list]p1, per DR1467: for list-initialization, first // try initializer-list constructors. if (ListInit) { bool TryListConstructors = true; // Try list constructors unless the list is empty and the class has one or // more default constructors, in which case those constructors win. if (!ListInit->getNumInits()) { for (NamedDecl *D : Guides) { auto *FD = dyn_cast(D->getUnderlyingDecl()); if (FD && FD->getMinRequiredArguments() == 0) { TryListConstructors = false; break; } } } else if (ListInit->getNumInits() == 1) { // C++ [over.match.class.deduct]: // As an exception, the first phase in [over.match.list] (considering // initializer-list constructors) is omitted if the initializer list // consists of a single expression of type cv U, where U is a // specialization of C or a class derived from a specialization of C. Expr *E = ListInit->getInit(0); auto *RD = E->getType()->getAsCXXRecordDecl(); if (!isa(E) && RD && isCompleteType(Kind.getLocation(), E->getType()) && isOrIsDerivedFromSpecializationOf(RD, Template)) TryListConstructors = false; } if (TryListConstructors) Result = TryToResolveOverload(/*OnlyListConstructor*/true); // Then unwrap the initializer list and try again considering all // constructors. Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); } // If list-initialization fails, or if we're doing any other kind of // initialization, we (eventually) consider constructors. if (Result == OR_No_Viable_Function) Result = TryToResolveOverload(/*OnlyListConstructor*/false); switch (Result) { case OR_Ambiguous: // FIXME: For list-initialization candidates, it'd usually be better to // list why they were not viable when given the initializer list itself as // an argument. Candidates.NoteCandidates( PartialDiagnosticAt( Kind.getLocation(), PDiag(diag::err_deduced_class_template_ctor_ambiguous) << TemplateName), *this, OCD_AmbiguousCandidates, Inits); return QualType(); case OR_No_Viable_Function: { CXXRecordDecl *Primary = cast(Template)->getTemplatedDecl(); bool Complete = isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); Candidates.NoteCandidates( PartialDiagnosticAt( Kind.getLocation(), PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable : diag::err_deduced_class_template_incomplete) << TemplateName << !Guides.empty()), *this, OCD_AllCandidates, Inits); return QualType(); } case OR_Deleted: { Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) << TemplateName; NoteDeletedFunction(Best->Function); return QualType(); } case OR_Success: // C++ [over.match.list]p1: // In copy-list-initialization, if an explicit constructor is chosen, the // initialization is ill-formed. if (Kind.isCopyInit() && ListInit && cast(Best->Function)->isExplicit()) { bool IsDeductionGuide = !Best->Function->isImplicit(); Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) << TemplateName << IsDeductionGuide; Diag(Best->Function->getLocation(), diag::note_explicit_ctor_deduction_guide_here) << IsDeductionGuide; return QualType(); } // Make sure we didn't select an unusable deduction guide, and mark it // as referenced. DiagnoseUseOfDecl(Best->FoundDecl, Kind.getLocation()); MarkFunctionReferenced(Kind.getLocation(), Best->Function); break; } // C++ [dcl.type.class.deduct]p1: // The placeholder is replaced by the return type of the function selected // by overload resolution for class template deduction. QualType DeducedType = SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); Diag(TSInfo->getTypeLoc().getBeginLoc(), diag::warn_cxx14_compat_class_template_argument_deduction) << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; // Warn if CTAD was used on a type that does not have any user-defined // deduction guides. if (!FoundDeductionGuide) { Diag(TSInfo->getTypeLoc().getBeginLoc(), diag::warn_ctad_maybe_unsupported) << TemplateName; Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); } return DeducedType; } diff --git a/contrib/llvm-project/clang/lib/Sema/SemaOverload.cpp b/contrib/llvm-project/clang/lib/Sema/SemaOverload.cpp index 030878899b81..c9eb67898356 100644 --- a/contrib/llvm-project/clang/lib/Sema/SemaOverload.cpp +++ b/contrib/llvm-project/clang/lib/Sema/SemaOverload.cpp @@ -1,16312 +1,16294 @@ //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file provides Sema routines for C++ overloading. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DependenceFlags.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/Type.h" #include "clang/AST/TypeOrdering.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/DiagnosticOptions.h" #include "clang/Basic/OperatorKinds.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Sema/EnterExpressionEvaluationContext.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Overload.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Template.h" #include "clang/Sema/TemplateDeduction.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include #include #include #include using namespace clang; using namespace sema; using AllowedExplicit = Sema::AllowedExplicit; static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { return P->hasAttr(); }); } /// A convenience routine for creating a decayed reference to a function. static ExprResult CreateFunctionRefExpr( Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, const Expr *Base, bool HadMultipleCandidates, SourceLocation Loc = SourceLocation(), const DeclarationNameLoc &LocInfo = DeclarationNameLoc()) { if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) return ExprError(); // If FoundDecl is different from Fn (such as if one is a template // and the other a specialization), make sure DiagnoseUseOfDecl is // called on both. // FIXME: This would be more comprehensively addressed by modifying // DiagnoseUseOfDecl to accept both the FoundDecl and the decl // being used. if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) return ExprError(); DeclRefExpr *DRE = new (S.Context) DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); if (HadMultipleCandidates) DRE->setHadMultipleCandidates(true); S.MarkDeclRefReferenced(DRE, Base); if (auto *FPT = DRE->getType()->getAs()) { if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { S.ResolveExceptionSpec(Loc, FPT); DRE->setType(Fn->getType()); } } return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), CK_FunctionToPointerDecay); } static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, bool InOverloadResolution, StandardConversionSequence &SCS, bool CStyle, bool AllowObjCWritebackConversion); static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, QualType &ToType, bool InOverloadResolution, StandardConversionSequence &SCS, bool CStyle); static OverloadingResult IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, UserDefinedConversionSequence& User, OverloadCandidateSet& Conversions, AllowedExplicit AllowExplicit, bool AllowObjCConversionOnExplicit); static ImplicitConversionSequence::CompareKind CompareStandardConversionSequences(Sema &S, SourceLocation Loc, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); static ImplicitConversionSequence::CompareKind CompareQualificationConversions(Sema &S, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); static ImplicitConversionSequence::CompareKind CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2); /// GetConversionRank - Retrieve the implicit conversion rank /// corresponding to the given implicit conversion kind. ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { static const ImplicitConversionRank Rank[] = { ICR_Exact_Match, ICR_Exact_Match, ICR_Exact_Match, ICR_Exact_Match, ICR_Exact_Match, ICR_Exact_Match, ICR_Promotion, ICR_Promotion, ICR_Promotion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_Conversion, ICR_OCL_Scalar_Widening, ICR_Complex_Real_Conversion, ICR_Conversion, ICR_Conversion, ICR_Writeback_Conversion, ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- // it was omitted by the patch that added // ICK_Zero_Event_Conversion ICR_Exact_Match, // NOTE(ctopper): This may not be completely right -- // it was omitted by the patch that added // ICK_Zero_Queue_Conversion ICR_C_Conversion, ICR_C_Conversion_Extension, ICR_Conversion, }; static_assert(std::size(Rank) == (int)ICK_Num_Conversion_Kinds); return Rank[(int)Kind]; } /// GetImplicitConversionName - Return the name of this kind of /// implicit conversion. static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { static const char* const Name[] = { "No conversion", "Lvalue-to-rvalue", "Array-to-pointer", "Function-to-pointer", "Function pointer conversion", "Qualification", "Integral promotion", "Floating point promotion", "Complex promotion", "Integral conversion", "Floating conversion", "Complex conversion", "Floating-integral conversion", "Pointer conversion", "Pointer-to-member conversion", "Boolean conversion", "Compatible-types conversion", "Derived-to-base conversion", "Vector conversion", "SVE Vector conversion", "RVV Vector conversion", "Vector splat", "Complex-real conversion", "Block Pointer conversion", "Transparent Union Conversion", "Writeback conversion", "OpenCL Zero Event Conversion", "OpenCL Zero Queue Conversion", "C specific type conversion", "Incompatible pointer conversion", "Fixed point conversion", }; static_assert(std::size(Name) == (int)ICK_Num_Conversion_Kinds); return Name[Kind]; } /// StandardConversionSequence - Set the standard conversion /// sequence to the identity conversion. void StandardConversionSequence::setAsIdentityConversion() { First = ICK_Identity; Second = ICK_Identity; Third = ICK_Identity; DeprecatedStringLiteralToCharPtr = false; QualificationIncludesObjCLifetime = false; ReferenceBinding = false; DirectBinding = false; IsLvalueReference = true; BindsToFunctionLvalue = false; BindsToRvalue = false; BindsImplicitObjectArgumentWithoutRefQualifier = false; ObjCLifetimeConversionBinding = false; CopyConstructor = nullptr; } /// getRank - Retrieve the rank of this standard conversion sequence /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the /// implicit conversions. ImplicitConversionRank StandardConversionSequence::getRank() const { ImplicitConversionRank Rank = ICR_Exact_Match; if (GetConversionRank(First) > Rank) Rank = GetConversionRank(First); if (GetConversionRank(Second) > Rank) Rank = GetConversionRank(Second); if (GetConversionRank(Third) > Rank) Rank = GetConversionRank(Third); return Rank; } /// isPointerConversionToBool - Determines whether this conversion is /// a conversion of a pointer or pointer-to-member to bool. This is /// used as part of the ranking of standard conversion sequences /// (C++ 13.3.3.2p4). bool StandardConversionSequence::isPointerConversionToBool() const { // Note that FromType has not necessarily been transformed by the // array-to-pointer or function-to-pointer implicit conversions, so // check for their presence as well as checking whether FromType is // a pointer. if (getToType(1)->isBooleanType() && (getFromType()->isPointerType() || getFromType()->isMemberPointerType() || getFromType()->isObjCObjectPointerType() || getFromType()->isBlockPointerType() || First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) return true; return false; } /// isPointerConversionToVoidPointer - Determines whether this /// conversion is a conversion of a pointer to a void pointer. This is /// used as part of the ranking of standard conversion sequences (C++ /// 13.3.3.2p4). bool StandardConversionSequence:: isPointerConversionToVoidPointer(ASTContext& Context) const { QualType FromType = getFromType(); QualType ToType = getToType(1); // Note that FromType has not necessarily been transformed by the // array-to-pointer implicit conversion, so check for its presence // and redo the conversion to get a pointer. if (First == ICK_Array_To_Pointer) FromType = Context.getArrayDecayedType(FromType); if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) if (const PointerType* ToPtrType = ToType->getAs()) return ToPtrType->getPointeeType()->isVoidType(); return false; } /// Skip any implicit casts which could be either part of a narrowing conversion /// or after one in an implicit conversion. static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, const Expr *Converted) { // We can have cleanups wrapping the converted expression; these need to be // preserved so that destructors run if necessary. if (auto *EWC = dyn_cast(Converted)) { Expr *Inner = const_cast(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), EWC->getObjects()); } while (auto *ICE = dyn_cast(Converted)) { switch (ICE->getCastKind()) { case CK_NoOp: case CK_IntegralCast: case CK_IntegralToBoolean: case CK_IntegralToFloating: case CK_BooleanToSignedIntegral: case CK_FloatingToIntegral: case CK_FloatingToBoolean: case CK_FloatingCast: Converted = ICE->getSubExpr(); continue; default: return Converted; } } return Converted; } /// Check if this standard conversion sequence represents a narrowing /// conversion, according to C++11 [dcl.init.list]p7. /// /// \param Ctx The AST context. /// \param Converted The result of applying this standard conversion sequence. /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the /// value of the expression prior to the narrowing conversion. /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the /// type of the expression prior to the narrowing conversion. /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions /// from floating point types to integral types should be ignored. NarrowingKind StandardConversionSequence::getNarrowingKind( ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"); // C++11 [dcl.init.list]p7: // A narrowing conversion is an implicit conversion ... QualType FromType = getToType(0); QualType ToType = getToType(1); // A conversion to an enumeration type is narrowing if the conversion to // the underlying type is narrowing. This only arises for expressions of // the form 'Enum{init}'. if (auto *ET = ToType->getAs()) ToType = ET->getDecl()->getIntegerType(); switch (Second) { // 'bool' is an integral type; dispatch to the right place to handle it. case ICK_Boolean_Conversion: if (FromType->isRealFloatingType()) goto FloatingIntegralConversion; if (FromType->isIntegralOrUnscopedEnumerationType()) goto IntegralConversion; // -- from a pointer type or pointer-to-member type to bool, or return NK_Type_Narrowing; // -- from a floating-point type to an integer type, or // // -- from an integer type or unscoped enumeration type to a floating-point // type, except where the source is a constant expression and the actual // value after conversion will fit into the target type and will produce // the original value when converted back to the original type, or case ICK_Floating_Integral: FloatingIntegralConversion: if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { return NK_Type_Narrowing; } else if (FromType->isIntegralOrUnscopedEnumerationType() && ToType->isRealFloatingType()) { if (IgnoreFloatToIntegralConversion) return NK_Not_Narrowing; const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); assert(Initializer && "Unknown conversion expression"); // If it's value-dependent, we can't tell whether it's narrowing. if (Initializer->isValueDependent()) return NK_Dependent_Narrowing; if (std::optional IntConstantValue = Initializer->getIntegerConstantExpr(Ctx)) { // Convert the integer to the floating type. llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(), llvm::APFloat::rmNearestTiesToEven); // And back. llvm::APSInt ConvertedValue = *IntConstantValue; bool ignored; Result.convertToInteger(ConvertedValue, llvm::APFloat::rmTowardZero, &ignored); // If the resulting value is different, this was a narrowing conversion. if (*IntConstantValue != ConvertedValue) { ConstantValue = APValue(*IntConstantValue); ConstantType = Initializer->getType(); return NK_Constant_Narrowing; } } else { // Variables are always narrowings. return NK_Variable_Narrowing; } } return NK_Not_Narrowing; // -- from long double to double or float, or from double to float, except // where the source is a constant expression and the actual value after // conversion is within the range of values that can be represented (even // if it cannot be represented exactly), or case ICK_Floating_Conversion: if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { // FromType is larger than ToType. const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); // If it's value-dependent, we can't tell whether it's narrowing. if (Initializer->isValueDependent()) return NK_Dependent_Narrowing; if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { // Constant! assert(ConstantValue.isFloat()); llvm::APFloat FloatVal = ConstantValue.getFloat(); // Convert the source value into the target type. bool ignored; llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( Ctx.getFloatTypeSemantics(ToType), llvm::APFloat::rmNearestTiesToEven, &ignored); // If there was no overflow, the source value is within the range of // values that can be represented. if (ConvertStatus & llvm::APFloat::opOverflow) { ConstantType = Initializer->getType(); return NK_Constant_Narrowing; } } else { return NK_Variable_Narrowing; } } return NK_Not_Narrowing; // -- from an integer type or unscoped enumeration type to an integer type // that cannot represent all the values of the original type, except where // the source is a constant expression and the actual value after // conversion will fit into the target type and will produce the original // value when converted back to the original type. case ICK_Integral_Conversion: IntegralConversion: { assert(FromType->isIntegralOrUnscopedEnumerationType()); assert(ToType->isIntegralOrUnscopedEnumerationType()); const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); const unsigned FromWidth = Ctx.getIntWidth(FromType); const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); const unsigned ToWidth = Ctx.getIntWidth(ToType); if (FromWidth > ToWidth || (FromWidth == ToWidth && FromSigned != ToSigned) || (FromSigned && !ToSigned)) { // Not all values of FromType can be represented in ToType. const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); // If it's value-dependent, we can't tell whether it's narrowing. if (Initializer->isValueDependent()) return NK_Dependent_Narrowing; std::optional OptInitializerValue; if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) { // Such conversions on variables are always narrowing. return NK_Variable_Narrowing; } llvm::APSInt &InitializerValue = *OptInitializerValue; bool Narrowing = false; if (FromWidth < ToWidth) { // Negative -> unsigned is narrowing. Otherwise, more bits is never // narrowing. if (InitializerValue.isSigned() && InitializerValue.isNegative()) Narrowing = true; } else { // Add a bit to the InitializerValue so we don't have to worry about // signed vs. unsigned comparisons. InitializerValue = InitializerValue.extend( InitializerValue.getBitWidth() + 1); // Convert the initializer to and from the target width and signed-ness. llvm::APSInt ConvertedValue = InitializerValue; ConvertedValue = ConvertedValue.trunc(ToWidth); ConvertedValue.setIsSigned(ToSigned); ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); ConvertedValue.setIsSigned(InitializerValue.isSigned()); // If the result is different, this was a narrowing conversion. if (ConvertedValue != InitializerValue) Narrowing = true; } if (Narrowing) { ConstantType = Initializer->getType(); ConstantValue = APValue(InitializerValue); return NK_Constant_Narrowing; } } return NK_Not_Narrowing; } default: // Other kinds of conversions are not narrowings. return NK_Not_Narrowing; } } /// dump - Print this standard conversion sequence to standard /// error. Useful for debugging overloading issues. LLVM_DUMP_METHOD void StandardConversionSequence::dump() const { raw_ostream &OS = llvm::errs(); bool PrintedSomething = false; if (First != ICK_Identity) { OS << GetImplicitConversionName(First); PrintedSomething = true; } if (Second != ICK_Identity) { if (PrintedSomething) { OS << " -> "; } OS << GetImplicitConversionName(Second); if (CopyConstructor) { OS << " (by copy constructor)"; } else if (DirectBinding) { OS << " (direct reference binding)"; } else if (ReferenceBinding) { OS << " (reference binding)"; } PrintedSomething = true; } if (Third != ICK_Identity) { if (PrintedSomething) { OS << " -> "; } OS << GetImplicitConversionName(Third); PrintedSomething = true; } if (!PrintedSomething) { OS << "No conversions required"; } } /// dump - Print this user-defined conversion sequence to standard /// error. Useful for debugging overloading issues. void UserDefinedConversionSequence::dump() const { raw_ostream &OS = llvm::errs(); if (Before.First || Before.Second || Before.Third) { Before.dump(); OS << " -> "; } if (ConversionFunction) OS << '\'' << *ConversionFunction << '\''; else OS << "aggregate initialization"; if (After.First || After.Second || After.Third) { OS << " -> "; After.dump(); } } /// dump - Print this implicit conversion sequence to standard /// error. Useful for debugging overloading issues. void ImplicitConversionSequence::dump() const { raw_ostream &OS = llvm::errs(); if (hasInitializerListContainerType()) OS << "Worst list element conversion: "; switch (ConversionKind) { case StandardConversion: OS << "Standard conversion: "; Standard.dump(); break; case UserDefinedConversion: OS << "User-defined conversion: "; UserDefined.dump(); break; case EllipsisConversion: OS << "Ellipsis conversion"; break; case AmbiguousConversion: OS << "Ambiguous conversion"; break; case BadConversion: OS << "Bad conversion"; break; } OS << "\n"; } void AmbiguousConversionSequence::construct() { new (&conversions()) ConversionSet(); } void AmbiguousConversionSequence::destruct() { conversions().~ConversionSet(); } void AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { FromTypePtr = O.FromTypePtr; ToTypePtr = O.ToTypePtr; new (&conversions()) ConversionSet(O.conversions()); } namespace { // Structure used by DeductionFailureInfo to store // template argument information. struct DFIArguments { TemplateArgument FirstArg; TemplateArgument SecondArg; }; // Structure used by DeductionFailureInfo to store // template parameter and template argument information. struct DFIParamWithArguments : DFIArguments { TemplateParameter Param; }; // Structure used by DeductionFailureInfo to store template argument // information and the index of the problematic call argument. struct DFIDeducedMismatchArgs : DFIArguments { TemplateArgumentList *TemplateArgs; unsigned CallArgIndex; }; // Structure used by DeductionFailureInfo to store information about // unsatisfied constraints. struct CNSInfo { TemplateArgumentList *TemplateArgs; ConstraintSatisfaction Satisfaction; }; } /// Convert from Sema's representation of template deduction information /// to the form used in overload-candidate information. DeductionFailureInfo clang::MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK, TemplateDeductionInfo &Info) { DeductionFailureInfo Result; Result.Result = static_cast(TDK); Result.HasDiagnostic = false; switch (TDK) { case Sema::TDK_Invalid: case Sema::TDK_InstantiationDepth: case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: case Sema::TDK_MiscellaneousDeductionFailure: case Sema::TDK_CUDATargetMismatch: Result.Data = nullptr; break; case Sema::TDK_Incomplete: case Sema::TDK_InvalidExplicitArguments: Result.Data = Info.Param.getOpaqueValue(); break; case Sema::TDK_DeducedMismatch: case Sema::TDK_DeducedMismatchNested: { // FIXME: Should allocate from normal heap so that we can free this later. auto *Saved = new (Context) DFIDeducedMismatchArgs; Saved->FirstArg = Info.FirstArg; Saved->SecondArg = Info.SecondArg; Saved->TemplateArgs = Info.takeSugared(); Saved->CallArgIndex = Info.CallArgIndex; Result.Data = Saved; break; } case Sema::TDK_NonDeducedMismatch: { // FIXME: Should allocate from normal heap so that we can free this later. DFIArguments *Saved = new (Context) DFIArguments; Saved->FirstArg = Info.FirstArg; Saved->SecondArg = Info.SecondArg; Result.Data = Saved; break; } case Sema::TDK_IncompletePack: // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. case Sema::TDK_Inconsistent: case Sema::TDK_Underqualified: { // FIXME: Should allocate from normal heap so that we can free this later. DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; Saved->Param = Info.Param; Saved->FirstArg = Info.FirstArg; Saved->SecondArg = Info.SecondArg; Result.Data = Saved; break; } case Sema::TDK_SubstitutionFailure: Result.Data = Info.takeSugared(); if (Info.hasSFINAEDiagnostic()) { PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( SourceLocation(), PartialDiagnostic::NullDiagnostic()); Info.takeSFINAEDiagnostic(*Diag); Result.HasDiagnostic = true; } break; case Sema::TDK_ConstraintsNotSatisfied: { CNSInfo *Saved = new (Context) CNSInfo; Saved->TemplateArgs = Info.takeSugared(); Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction; Result.Data = Saved; break; } case Sema::TDK_Success: case Sema::TDK_NonDependentConversionFailure: case Sema::TDK_AlreadyDiagnosed: llvm_unreachable("not a deduction failure"); } return Result; } void DeductionFailureInfo::Destroy() { switch (static_cast(Result)) { case Sema::TDK_Success: case Sema::TDK_Invalid: case Sema::TDK_InstantiationDepth: case Sema::TDK_Incomplete: case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: case Sema::TDK_InvalidExplicitArguments: case Sema::TDK_CUDATargetMismatch: case Sema::TDK_NonDependentConversionFailure: break; case Sema::TDK_IncompletePack: case Sema::TDK_Inconsistent: case Sema::TDK_Underqualified: case Sema::TDK_DeducedMismatch: case Sema::TDK_DeducedMismatchNested: case Sema::TDK_NonDeducedMismatch: // FIXME: Destroy the data? Data = nullptr; break; case Sema::TDK_SubstitutionFailure: // FIXME: Destroy the template argument list? Data = nullptr; if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { Diag->~PartialDiagnosticAt(); HasDiagnostic = false; } break; case Sema::TDK_ConstraintsNotSatisfied: // FIXME: Destroy the template argument list? Data = nullptr; if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { Diag->~PartialDiagnosticAt(); HasDiagnostic = false; } break; // Unhandled case Sema::TDK_MiscellaneousDeductionFailure: case Sema::TDK_AlreadyDiagnosed: break; } } PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { if (HasDiagnostic) return static_cast(static_cast(Diagnostic)); return nullptr; } TemplateParameter DeductionFailureInfo::getTemplateParameter() { switch (static_cast(Result)) { case Sema::TDK_Success: case Sema::TDK_Invalid: case Sema::TDK_InstantiationDepth: case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: case Sema::TDK_SubstitutionFailure: case Sema::TDK_DeducedMismatch: case Sema::TDK_DeducedMismatchNested: case Sema::TDK_NonDeducedMismatch: case Sema::TDK_CUDATargetMismatch: case Sema::TDK_NonDependentConversionFailure: case Sema::TDK_ConstraintsNotSatisfied: return TemplateParameter(); case Sema::TDK_Incomplete: case Sema::TDK_InvalidExplicitArguments: return TemplateParameter::getFromOpaqueValue(Data); case Sema::TDK_IncompletePack: case Sema::TDK_Inconsistent: case Sema::TDK_Underqualified: return static_cast(Data)->Param; // Unhandled case Sema::TDK_MiscellaneousDeductionFailure: case Sema::TDK_AlreadyDiagnosed: break; } return TemplateParameter(); } TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { switch (static_cast(Result)) { case Sema::TDK_Success: case Sema::TDK_Invalid: case Sema::TDK_InstantiationDepth: case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: case Sema::TDK_Incomplete: case Sema::TDK_IncompletePack: case Sema::TDK_InvalidExplicitArguments: case Sema::TDK_Inconsistent: case Sema::TDK_Underqualified: case Sema::TDK_NonDeducedMismatch: case Sema::TDK_CUDATargetMismatch: case Sema::TDK_NonDependentConversionFailure: return nullptr; case Sema::TDK_DeducedMismatch: case Sema::TDK_DeducedMismatchNested: return static_cast(Data)->TemplateArgs; case Sema::TDK_SubstitutionFailure: return static_cast(Data); case Sema::TDK_ConstraintsNotSatisfied: return static_cast(Data)->TemplateArgs; // Unhandled case Sema::TDK_MiscellaneousDeductionFailure: case Sema::TDK_AlreadyDiagnosed: break; } return nullptr; } const TemplateArgument *DeductionFailureInfo::getFirstArg() { switch (static_cast(Result)) { case Sema::TDK_Success: case Sema::TDK_Invalid: case Sema::TDK_InstantiationDepth: case Sema::TDK_Incomplete: case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: case Sema::TDK_InvalidExplicitArguments: case Sema::TDK_SubstitutionFailure: case Sema::TDK_CUDATargetMismatch: case Sema::TDK_NonDependentConversionFailure: case Sema::TDK_ConstraintsNotSatisfied: return nullptr; case Sema::TDK_IncompletePack: case Sema::TDK_Inconsistent: case Sema::TDK_Underqualified: case Sema::TDK_DeducedMismatch: case Sema::TDK_DeducedMismatchNested: case Sema::TDK_NonDeducedMismatch: return &static_cast(Data)->FirstArg; // Unhandled case Sema::TDK_MiscellaneousDeductionFailure: case Sema::TDK_AlreadyDiagnosed: break; } return nullptr; } const TemplateArgument *DeductionFailureInfo::getSecondArg() { switch (static_cast(Result)) { case Sema::TDK_Success: case Sema::TDK_Invalid: case Sema::TDK_InstantiationDepth: case Sema::TDK_Incomplete: case Sema::TDK_IncompletePack: case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: case Sema::TDK_InvalidExplicitArguments: case Sema::TDK_SubstitutionFailure: case Sema::TDK_CUDATargetMismatch: case Sema::TDK_NonDependentConversionFailure: case Sema::TDK_ConstraintsNotSatisfied: return nullptr; case Sema::TDK_Inconsistent: case Sema::TDK_Underqualified: case Sema::TDK_DeducedMismatch: case Sema::TDK_DeducedMismatchNested: case Sema::TDK_NonDeducedMismatch: return &static_cast(Data)->SecondArg; // Unhandled case Sema::TDK_MiscellaneousDeductionFailure: case Sema::TDK_AlreadyDiagnosed: break; } return nullptr; } std::optional DeductionFailureInfo::getCallArgIndex() { switch (static_cast(Result)) { case Sema::TDK_DeducedMismatch: case Sema::TDK_DeducedMismatchNested: return static_cast(Data)->CallArgIndex; default: return std::nullopt; } } static bool FunctionsCorrespond(ASTContext &Ctx, const FunctionDecl *X, const FunctionDecl *Y) { if (!X || !Y) return false; if (X->getNumParams() != Y->getNumParams()) return false; // FIXME: when do rewritten comparison operators // with explicit object parameters correspond? // https://cplusplus.github.io/CWG/issues/2797.html for (unsigned I = 0; I < X->getNumParams(); ++I) if (!Ctx.hasSameUnqualifiedType(X->getParamDecl(I)->getType(), Y->getParamDecl(I)->getType())) return false; if (auto *FTX = X->getDescribedFunctionTemplate()) { auto *FTY = Y->getDescribedFunctionTemplate(); if (!FTY) return false; if (!Ctx.isSameTemplateParameterList(FTX->getTemplateParameters(), FTY->getTemplateParameters())) return false; } return true; } static bool shouldAddReversedEqEq(Sema &S, SourceLocation OpLoc, Expr *FirstOperand, FunctionDecl *EqFD) { assert(EqFD->getOverloadedOperator() == OverloadedOperatorKind::OO_EqualEqual); // C++2a [over.match.oper]p4: // A non-template function or function template F named operator== is a // rewrite target with first operand o unless a search for the name operator!= // in the scope S from the instantiation context of the operator expression // finds a function or function template that would correspond // ([basic.scope.scope]) to F if its name were operator==, where S is the // scope of the class type of o if F is a class member, and the namespace // scope of which F is a member otherwise. A function template specialization // named operator== is a rewrite target if its function template is a rewrite // target. DeclarationName NotEqOp = S.Context.DeclarationNames.getCXXOperatorName( OverloadedOperatorKind::OO_ExclaimEqual); if (isa(EqFD)) { // If F is a class member, search scope is class type of first operand. QualType RHS = FirstOperand->getType(); auto *RHSRec = RHS->getAs(); if (!RHSRec) return true; LookupResult Members(S, NotEqOp, OpLoc, Sema::LookupNameKind::LookupMemberName); S.LookupQualifiedName(Members, RHSRec->getDecl()); Members.suppressAccessDiagnostics(); for (NamedDecl *Op : Members) if (FunctionsCorrespond(S.Context, EqFD, Op->getAsFunction())) return false; return true; } // Otherwise the search scope is the namespace scope of which F is a member. for (NamedDecl *Op : EqFD->getEnclosingNamespaceContext()->lookup(NotEqOp)) { auto *NotEqFD = Op->getAsFunction(); if (auto *UD = dyn_cast(Op)) NotEqFD = UD->getUnderlyingDecl()->getAsFunction(); if (FunctionsCorrespond(S.Context, EqFD, NotEqFD) && S.isVisible(NotEqFD) && declaresSameEntity(cast(EqFD->getEnclosingNamespaceContext()), cast(Op->getLexicalDeclContext()))) return false; } return true; } bool OverloadCandidateSet::OperatorRewriteInfo::allowsReversed( OverloadedOperatorKind Op) { if (!AllowRewrittenCandidates) return false; return Op == OO_EqualEqual || Op == OO_Spaceship; } bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( Sema &S, ArrayRef OriginalArgs, FunctionDecl *FD) { auto Op = FD->getOverloadedOperator(); if (!allowsReversed(Op)) return false; if (Op == OverloadedOperatorKind::OO_EqualEqual) { assert(OriginalArgs.size() == 2); if (!shouldAddReversedEqEq( S, OpLoc, /*FirstOperand in reversed args*/ OriginalArgs[1], FD)) return false; } // Don't bother adding a reversed candidate that can never be a better // match than the non-reversed version. return FD->getNumNonObjectParams() != 2 || !S.Context.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), FD->getParamDecl(1)->getType()) || FD->hasAttr(); } void OverloadCandidateSet::destroyCandidates() { for (iterator i = begin(), e = end(); i != e; ++i) { for (auto &C : i->Conversions) C.~ImplicitConversionSequence(); if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) i->DeductionFailure.Destroy(); } } void OverloadCandidateSet::clear(CandidateSetKind CSK) { destroyCandidates(); SlabAllocator.Reset(); NumInlineBytesUsed = 0; Candidates.clear(); Functions.clear(); Kind = CSK; } namespace { class UnbridgedCastsSet { struct Entry { Expr **Addr; Expr *Saved; }; SmallVector Entries; public: void save(Sema &S, Expr *&E) { assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); Entry entry = { &E, E }; Entries.push_back(entry); E = S.stripARCUnbridgedCast(E); } void restore() { for (SmallVectorImpl::iterator i = Entries.begin(), e = Entries.end(); i != e; ++i) *i->Addr = i->Saved; } }; } /// checkPlaceholderForOverload - Do any interesting placeholder-like /// preprocessing on the given expression. /// /// \param unbridgedCasts a collection to which to add unbridged casts; /// without this, they will be immediately diagnosed as errors /// /// Return true on unrecoverable error. static bool checkPlaceholderForOverload(Sema &S, Expr *&E, UnbridgedCastsSet *unbridgedCasts = nullptr) { if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { // We can't handle overloaded expressions here because overload // resolution might reasonably tweak them. if (placeholder->getKind() == BuiltinType::Overload) return false; // If the context potentially accepts unbridged ARC casts, strip // the unbridged cast and add it to the collection for later restoration. if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && unbridgedCasts) { unbridgedCasts->save(S, E); return false; } // Go ahead and check everything else. ExprResult result = S.CheckPlaceholderExpr(E); if (result.isInvalid()) return true; E = result.get(); return false; } // Nothing to do. return false; } /// checkArgPlaceholdersForOverload - Check a set of call operands for /// placeholders. static bool checkArgPlaceholdersForOverload(Sema &S, MultiExprArg Args, UnbridgedCastsSet &unbridged) { for (unsigned i = 0, e = Args.size(); i != e; ++i) if (checkPlaceholderForOverload(S, Args[i], &unbridged)) return true; return false; } /// Determine whether the given New declaration is an overload of the /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if /// New and Old cannot be overloaded, e.g., if New has the same signature as /// some function in Old (C++ 1.3.10) or if the Old declarations aren't /// functions (or function templates) at all. When it does return Ovl_Match or /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying /// declaration. /// /// Example: Given the following input: /// /// void f(int, float); // #1 /// void f(int, int); // #2 /// int f(int, int); // #3 /// /// When we process #1, there is no previous declaration of "f", so IsOverload /// will not be used. /// /// When we process #2, Old contains only the FunctionDecl for #1. By comparing /// the parameter types, we see that #1 and #2 are overloaded (since they have /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is /// unchanged. /// /// When we process #3, Old is an overload set containing #1 and #2. We compare /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of /// functions are not part of the signature), IsOverload returns Ovl_Match and /// MatchedDecl will be set to point to the FunctionDecl for #2. /// /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class /// by a using declaration. The rules for whether to hide shadow declarations /// ignore some properties which otherwise figure into a function template's /// signature. Sema::OverloadKind Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, NamedDecl *&Match, bool NewIsUsingDecl) { for (LookupResult::iterator I = Old.begin(), E = Old.end(); I != E; ++I) { NamedDecl *OldD = *I; bool OldIsUsingDecl = false; if (isa(OldD)) { OldIsUsingDecl = true; // We can always introduce two using declarations into the same // context, even if they have identical signatures. if (NewIsUsingDecl) continue; OldD = cast(OldD)->getTargetDecl(); } // A using-declaration does not conflict with another declaration // if one of them is hidden. if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) continue; // If either declaration was introduced by a using declaration, // we'll need to use slightly different rules for matching. // Essentially, these rules are the normal rules, except that // function templates hide function templates with different // return types or template parameter lists. bool UseMemberUsingDeclRules = (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && !New->getFriendObjectKind(); if (FunctionDecl *OldF = OldD->getAsFunction()) { if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { if (UseMemberUsingDeclRules && OldIsUsingDecl) { HideUsingShadowDecl(S, cast(*I)); continue; } if (!isa(OldD) && !shouldLinkPossiblyHiddenDecl(*I, New)) continue; Match = *I; return Ovl_Match; } // Builtins that have custom typechecking or have a reference should // not be overloadable or redeclarable. if (!getASTContext().canBuiltinBeRedeclared(OldF)) { Match = *I; return Ovl_NonFunction; } } else if (isa(OldD) || isa(OldD)) { // We can overload with these, which can show up when doing // redeclaration checks for UsingDecls. assert(Old.getLookupKind() == LookupUsingDeclName); } else if (isa(OldD)) { // We can always overload with tags by hiding them. } else if (auto *UUD = dyn_cast(OldD)) { // Optimistically assume that an unresolved using decl will // overload; if it doesn't, we'll have to diagnose during // template instantiation. // // Exception: if the scope is dependent and this is not a class // member, the using declaration can only introduce an enumerator. if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { Match = *I; return Ovl_NonFunction; } } else { // (C++ 13p1): // Only function declarations can be overloaded; object and type // declarations cannot be overloaded. Match = *I; return Ovl_NonFunction; } } // C++ [temp.friend]p1: // For a friend function declaration that is not a template declaration: // -- if the name of the friend is a qualified or unqualified template-id, // [...], otherwise // -- if the name of the friend is a qualified-id and a matching // non-template function is found in the specified class or namespace, // the friend declaration refers to that function, otherwise, // -- if the name of the friend is a qualified-id and a matching function // template is found in the specified class or namespace, the friend // declaration refers to the deduced specialization of that function // template, otherwise // -- the name shall be an unqualified-id [...] // If we get here for a qualified friend declaration, we've just reached the // third bullet. If the type of the friend is dependent, skip this lookup // until instantiation. if (New->getFriendObjectKind() && New->getQualifier() && !New->getDescribedFunctionTemplate() && !New->getDependentSpecializationInfo() && !New->getType()->isDependentType()) { LookupResult TemplateSpecResult(LookupResult::Temporary, Old); TemplateSpecResult.addAllDecls(Old); if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, /*QualifiedFriend*/true)) { New->setInvalidDecl(); return Ovl_Overload; } Match = TemplateSpecResult.getAsSingle(); return Ovl_Match; } return Ovl_Overload; } static bool IsOverloadOrOverrideImpl(Sema &SemaRef, FunctionDecl *New, FunctionDecl *Old, bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs, bool UseOverrideRules = false) { // C++ [basic.start.main]p2: This function shall not be overloaded. if (New->isMain()) return false; // MSVCRT user defined entry points cannot be overloaded. if (New->isMSVCRTEntryPoint()) return false; FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); // C++ [temp.fct]p2: // A function template can be overloaded with other function templates // and with normal (non-template) functions. if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) return true; // Is the function New an overload of the function Old? QualType OldQType = SemaRef.Context.getCanonicalType(Old->getType()); QualType NewQType = SemaRef.Context.getCanonicalType(New->getType()); // Compare the signatures (C++ 1.3.10) of the two functions to // determine whether they are overloads. If we find any mismatch // in the signature, they are overloads. // If either of these functions is a K&R-style function (no // prototype), then we consider them to have matching signatures. if (isa(OldQType.getTypePtr()) || isa(NewQType.getTypePtr())) return false; const auto *OldType = cast(OldQType); const auto *NewType = cast(NewQType); // The signature of a function includes the types of its // parameters (C++ 1.3.10), which includes the presence or absence // of the ellipsis; see C++ DR 357). if (OldQType != NewQType && OldType->isVariadic() != NewType->isVariadic()) return true; // For member-like friends, the enclosing class is part of the signature. if ((New->isMemberLikeConstrainedFriend() || Old->isMemberLikeConstrainedFriend()) && !New->getLexicalDeclContext()->Equals(Old->getLexicalDeclContext())) return true; // Compare the parameter lists. // This can only be done once we have establish that friend functions // inhabit the same context, otherwise we might tried to instantiate // references to non-instantiated entities during constraint substitution. // GH78101. if (NewTemplate) { // C++ [temp.over.link]p4: // The signature of a function template consists of its function // signature, its return type and its template parameter list. The names // of the template parameters are significant only for establishing the // relationship between the template parameters and the rest of the // signature. // // We check the return type and template parameter lists for function // templates first; the remaining checks follow. bool SameTemplateParameterList = SemaRef.TemplateParameterListsAreEqual( NewTemplate, NewTemplate->getTemplateParameters(), OldTemplate, OldTemplate->getTemplateParameters(), false, Sema::TPL_TemplateMatch); bool SameReturnType = SemaRef.Context.hasSameType( Old->getDeclaredReturnType(), New->getDeclaredReturnType()); // FIXME(GH58571): Match template parameter list even for non-constrained // template heads. This currently ensures that the code prior to C++20 is // not newly broken. bool ConstraintsInTemplateHead = NewTemplate->getTemplateParameters()->hasAssociatedConstraints() || OldTemplate->getTemplateParameters()->hasAssociatedConstraints(); // C++ [namespace.udecl]p11: // The set of declarations named by a using-declarator that inhabits a // class C does not include member functions and member function // templates of a base class that "correspond" to (and thus would // conflict with) a declaration of a function or function template in // C. // Comparing return types is not required for the "correspond" check to // decide whether a member introduced by a shadow declaration is hidden. if (UseMemberUsingDeclRules && ConstraintsInTemplateHead && !SameTemplateParameterList) return true; if (!UseMemberUsingDeclRules && (!SameTemplateParameterList || !SameReturnType)) return true; } const auto *OldMethod = dyn_cast(Old); const auto *NewMethod = dyn_cast(New); int OldParamsOffset = 0; int NewParamsOffset = 0; // When determining if a method is an overload from a base class, act as if // the implicit object parameter are of the same type. auto NormalizeQualifiers = [&](const CXXMethodDecl *M, Qualifiers Q) { if (M->isExplicitObjectMemberFunction()) return Q; // We do not allow overloading based off of '__restrict'. Q.removeRestrict(); // We may not have applied the implicit const for a constexpr member // function yet (because we haven't yet resolved whether this is a static // or non-static member function). Add it now, on the assumption that this // is a redeclaration of OldMethod. if (!SemaRef.getLangOpts().CPlusPlus14 && (M->isConstexpr() || M->isConsteval()) && !isa(NewMethod)) Q.addConst(); return Q; }; auto CompareType = [&](QualType Base, QualType D) { auto BS = Base.getNonReferenceType().getCanonicalType().split(); BS.Quals = NormalizeQualifiers(OldMethod, BS.Quals); auto DS = D.getNonReferenceType().getCanonicalType().split(); DS.Quals = NormalizeQualifiers(NewMethod, DS.Quals); if (BS.Quals != DS.Quals) return false; if (OldMethod->isImplicitObjectMemberFunction() && OldMethod->getParent() != NewMethod->getParent()) { QualType ParentType = SemaRef.Context.getTypeDeclType(OldMethod->getParent()) .getCanonicalType(); if (ParentType.getTypePtr() != BS.Ty) return false; BS.Ty = DS.Ty; } // FIXME: should we ignore some type attributes here? if (BS.Ty != DS.Ty) return false; if (Base->isLValueReferenceType()) return D->isLValueReferenceType(); return Base->isRValueReferenceType() == D->isRValueReferenceType(); }; // If the function is a class member, its signature includes the // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. auto DiagnoseInconsistentRefQualifiers = [&]() { if (SemaRef.LangOpts.CPlusPlus23) return false; if (OldMethod->getRefQualifier() == NewMethod->getRefQualifier()) return false; if (OldMethod->isExplicitObjectMemberFunction() || NewMethod->isExplicitObjectMemberFunction()) return false; if (!UseMemberUsingDeclRules && (OldMethod->getRefQualifier() == RQ_None || NewMethod->getRefQualifier() == RQ_None)) { SemaRef.Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); SemaRef.Diag(OldMethod->getLocation(), diag::note_previous_declaration); return true; } return false; }; if (OldMethod && OldMethod->isExplicitObjectMemberFunction()) OldParamsOffset++; if (NewMethod && NewMethod->isExplicitObjectMemberFunction()) NewParamsOffset++; if (OldType->getNumParams() - OldParamsOffset != NewType->getNumParams() - NewParamsOffset || !SemaRef.FunctionParamTypesAreEqual( {OldType->param_type_begin() + OldParamsOffset, OldType->param_type_end()}, {NewType->param_type_begin() + NewParamsOffset, NewType->param_type_end()}, nullptr)) { return true; } if (OldMethod && NewMethod && !OldMethod->isStatic() && !OldMethod->isStatic()) { bool HaveCorrespondingObjectParameters = [&](const CXXMethodDecl *Old, const CXXMethodDecl *New) { auto NewObjectType = New->getFunctionObjectParameterReferenceType(); auto OldObjectType = Old->getFunctionObjectParameterReferenceType(); auto IsImplicitWithNoRefQual = [](const CXXMethodDecl *F) { return F->getRefQualifier() == RQ_None && !F->isExplicitObjectMemberFunction(); }; if (IsImplicitWithNoRefQual(Old) != IsImplicitWithNoRefQual(New) && CompareType(OldObjectType.getNonReferenceType(), NewObjectType.getNonReferenceType())) return true; return CompareType(OldObjectType, NewObjectType); }(OldMethod, NewMethod); if (!HaveCorrespondingObjectParameters) { if (DiagnoseInconsistentRefQualifiers()) return true; // CWG2554 // and, if at least one is an explicit object member function, ignoring // object parameters if (!UseOverrideRules || (!NewMethod->isExplicitObjectMemberFunction() && !OldMethod->isExplicitObjectMemberFunction())) return true; } } if (!UseOverrideRules) { Expr *NewRC = New->getTrailingRequiresClause(), *OldRC = Old->getTrailingRequiresClause(); if ((NewRC != nullptr) != (OldRC != nullptr)) return true; if (NewRC && !SemaRef.AreConstraintExpressionsEqual(Old, OldRC, New, NewRC)) return true; } if (NewMethod && OldMethod && OldMethod->isImplicitObjectMemberFunction() && NewMethod->isImplicitObjectMemberFunction()) { if (DiagnoseInconsistentRefQualifiers()) return true; } // Though pass_object_size is placed on parameters and takes an argument, we // consider it to be a function-level modifier for the sake of function // identity. Either the function has one or more parameters with // pass_object_size or it doesn't. if (functionHasPassObjectSizeParams(New) != functionHasPassObjectSizeParams(Old)) return true; // enable_if attributes are an order-sensitive part of the signature. for (specific_attr_iterator NewI = New->specific_attr_begin(), NewE = New->specific_attr_end(), OldI = Old->specific_attr_begin(), OldE = Old->specific_attr_end(); NewI != NewE || OldI != OldE; ++NewI, ++OldI) { if (NewI == NewE || OldI == OldE) return true; llvm::FoldingSetNodeID NewID, OldID; NewI->getCond()->Profile(NewID, SemaRef.Context, true); OldI->getCond()->Profile(OldID, SemaRef.Context, true); if (NewID != OldID) return true; } if (SemaRef.getLangOpts().CUDA && ConsiderCudaAttrs) { // Don't allow overloading of destructors. (In theory we could, but it // would be a giant change to clang.) if (!isa(New)) { Sema::CUDAFunctionTarget NewTarget = SemaRef.IdentifyCUDATarget(New), OldTarget = SemaRef.IdentifyCUDATarget(Old); if (NewTarget != Sema::CFT_InvalidTarget) { assert((OldTarget != Sema::CFT_InvalidTarget) && "Unexpected invalid target."); // Allow overloading of functions with same signature and different CUDA // target attributes. if (NewTarget != OldTarget) return true; } } } // The signatures match; this is not an overload. return false; } bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) { return IsOverloadOrOverrideImpl(*this, New, Old, UseMemberUsingDeclRules, ConsiderCudaAttrs); } bool Sema::IsOverride(FunctionDecl *MD, FunctionDecl *BaseMD, bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) { return IsOverloadOrOverrideImpl(*this, MD, BaseMD, /*UseMemberUsingDeclRules=*/false, /*ConsiderCudaAttrs=*/true, /*UseOverrideRules=*/true); } /// Tries a user-defined conversion from From to ToType. /// /// Produces an implicit conversion sequence for when a standard conversion /// is not an option. See TryImplicitConversion for more information. static ImplicitConversionSequence TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, bool SuppressUserConversions, AllowedExplicit AllowExplicit, bool InOverloadResolution, bool CStyle, bool AllowObjCWritebackConversion, bool AllowObjCConversionOnExplicit) { ImplicitConversionSequence ICS; if (SuppressUserConversions) { // We're not in the case above, so there is no conversion that // we can perform. ICS.setBad(BadConversionSequence::no_conversion, From, ToType); return ICS; } // Attempt user-defined conversion. OverloadCandidateSet Conversions(From->getExprLoc(), OverloadCandidateSet::CSK_Normal); switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, AllowExplicit, AllowObjCConversionOnExplicit)) { case OR_Success: case OR_Deleted: ICS.setUserDefined(); // C++ [over.ics.user]p4: // A conversion of an expression of class type to the same class // type is given Exact Match rank, and a conversion of an // expression of class type to a base class of that type is // given Conversion rank, in spite of the fact that a copy // constructor (i.e., a user-defined conversion function) is // called for those cases. if (CXXConstructorDecl *Constructor = dyn_cast(ICS.UserDefined.ConversionFunction)) { - QualType FromType; - SourceLocation FromLoc; - // C++11 [over.ics.list]p6, per DR2137: - // C++17 [over.ics.list]p6: - // If C is not an initializer-list constructor and the initializer list - // has a single element of type cv U, where U is X or a class derived - // from X, the implicit conversion sequence has Exact Match rank if U is - // X, or Conversion rank if U is derived from X. - if (const auto *InitList = dyn_cast(From); - InitList && InitList->getNumInits() == 1 && - !S.isInitListConstructor(Constructor)) { - const Expr *SingleInit = InitList->getInit(0); - FromType = SingleInit->getType(); - FromLoc = SingleInit->getBeginLoc(); - } else { - FromType = From->getType(); - FromLoc = From->getBeginLoc(); - } - QualType FromCanon = - S.Context.getCanonicalType(FromType.getUnqualifiedType()); + QualType FromCanon + = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); QualType ToCanon = S.Context.getCanonicalType(ToType).getUnqualifiedType(); if (Constructor->isCopyConstructor() && (FromCanon == ToCanon || - S.IsDerivedFrom(FromLoc, FromCanon, ToCanon))) { + S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { // Turn this into a "standard" conversion sequence, so that it // gets ranked with standard conversion sequences. DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; ICS.setStandard(); ICS.Standard.setAsIdentityConversion(); - ICS.Standard.setFromType(FromType); + ICS.Standard.setFromType(From->getType()); ICS.Standard.setAllToTypes(ToType); ICS.Standard.CopyConstructor = Constructor; ICS.Standard.FoundCopyConstructor = Found; if (ToCanon != FromCanon) ICS.Standard.Second = ICK_Derived_To_Base; } } break; case OR_Ambiguous: ICS.setAmbiguous(); ICS.Ambiguous.setFromType(From->getType()); ICS.Ambiguous.setToType(ToType); for (OverloadCandidateSet::iterator Cand = Conversions.begin(); Cand != Conversions.end(); ++Cand) if (Cand->Best) ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); break; // Fall through. case OR_No_Viable_Function: ICS.setBad(BadConversionSequence::no_conversion, From, ToType); break; } return ICS; } /// TryImplicitConversion - Attempt to perform an implicit conversion /// from the given expression (Expr) to the given type (ToType). This /// function returns an implicit conversion sequence that can be used /// to perform the initialization. Given /// /// void f(float f); /// void g(int i) { f(i); } /// /// this routine would produce an implicit conversion sequence to /// describe the initialization of f from i, which will be a standard /// conversion sequence containing an lvalue-to-rvalue conversion (C++ /// 4.1) followed by a floating-integral conversion (C++ 4.9). // /// Note that this routine only determines how the conversion can be /// performed; it does not actually perform the conversion. As such, /// it will not produce any diagnostics if no conversion is available, /// but will instead return an implicit conversion sequence of kind /// "BadConversion". /// /// If @p SuppressUserConversions, then user-defined conversions are /// not permitted. /// If @p AllowExplicit, then explicit user-defined conversions are /// permitted. /// /// \param AllowObjCWritebackConversion Whether we allow the Objective-C /// writeback conversion, which allows __autoreleasing id* parameters to /// be initialized with __strong id* or __weak id* arguments. static ImplicitConversionSequence TryImplicitConversion(Sema &S, Expr *From, QualType ToType, bool SuppressUserConversions, AllowedExplicit AllowExplicit, bool InOverloadResolution, bool CStyle, bool AllowObjCWritebackConversion, bool AllowObjCConversionOnExplicit) { ImplicitConversionSequence ICS; if (IsStandardConversion(S, From, ToType, InOverloadResolution, ICS.Standard, CStyle, AllowObjCWritebackConversion)){ ICS.setStandard(); return ICS; } if (!S.getLangOpts().CPlusPlus) { ICS.setBad(BadConversionSequence::no_conversion, From, ToType); return ICS; } // C++ [over.ics.user]p4: // A conversion of an expression of class type to the same class // type is given Exact Match rank, and a conversion of an // expression of class type to a base class of that type is // given Conversion rank, in spite of the fact that a copy/move // constructor (i.e., a user-defined conversion function) is // called for those cases. QualType FromType = From->getType(); if (ToType->getAs() && FromType->getAs() && (S.Context.hasSameUnqualifiedType(FromType, ToType) || S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { ICS.setStandard(); ICS.Standard.setAsIdentityConversion(); ICS.Standard.setFromType(FromType); ICS.Standard.setAllToTypes(ToType); // We don't actually check at this point whether there is a valid // copy/move constructor, since overloading just assumes that it // exists. When we actually perform initialization, we'll find the // appropriate constructor to copy the returned object, if needed. ICS.Standard.CopyConstructor = nullptr; // Determine whether this is considered a derived-to-base conversion. if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) ICS.Standard.Second = ICK_Derived_To_Base; return ICS; } return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, AllowExplicit, InOverloadResolution, CStyle, AllowObjCWritebackConversion, AllowObjCConversionOnExplicit); } ImplicitConversionSequence Sema::TryImplicitConversion(Expr *From, QualType ToType, bool SuppressUserConversions, AllowedExplicit AllowExplicit, bool InOverloadResolution, bool CStyle, bool AllowObjCWritebackConversion) { return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions, AllowExplicit, InOverloadResolution, CStyle, AllowObjCWritebackConversion, /*AllowObjCConversionOnExplicit=*/false); } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType. Returns the /// converted expression. Flavor is the kind of conversion we're /// performing, used in the error message. If @p AllowExplicit, /// explicit user-defined conversions are permitted. ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, AssignmentAction Action, bool AllowExplicit) { if (checkPlaceholderForOverload(*this, From)) return ExprError(); // Objective-C ARC: Determine whether we will allow the writeback conversion. bool AllowObjCWritebackConversion = getLangOpts().ObjCAutoRefCount && (Action == AA_Passing || Action == AA_Sending); if (getLangOpts().ObjC) CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, From->getType(), From); ImplicitConversionSequence ICS = ::TryImplicitConversion( *this, From, ToType, /*SuppressUserConversions=*/false, AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None, /*InOverloadResolution=*/false, /*CStyle=*/false, AllowObjCWritebackConversion, /*AllowObjCConversionOnExplicit=*/false); return PerformImplicitConversion(From, ToType, ICS, Action); } /// Determine whether the conversion from FromType to ToType is a valid /// conversion that strips "noexcept" or "noreturn" off the nested function /// type. bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, QualType &ResultTy) { if (Context.hasSameUnqualifiedType(FromType, ToType)) return false; // Permit the conversion F(t __attribute__((noreturn))) -> F(t) // or F(t noexcept) -> F(t) // where F adds one of the following at most once: // - a pointer // - a member pointer // - a block pointer // Changes here need matching changes in FindCompositePointerType. CanQualType CanTo = Context.getCanonicalType(ToType); CanQualType CanFrom = Context.getCanonicalType(FromType); Type::TypeClass TyClass = CanTo->getTypeClass(); if (TyClass != CanFrom->getTypeClass()) return false; if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { if (TyClass == Type::Pointer) { CanTo = CanTo.castAs()->getPointeeType(); CanFrom = CanFrom.castAs()->getPointeeType(); } else if (TyClass == Type::BlockPointer) { CanTo = CanTo.castAs()->getPointeeType(); CanFrom = CanFrom.castAs()->getPointeeType(); } else if (TyClass == Type::MemberPointer) { auto ToMPT = CanTo.castAs(); auto FromMPT = CanFrom.castAs(); // A function pointer conversion cannot change the class of the function. if (ToMPT->getClass() != FromMPT->getClass()) return false; CanTo = ToMPT->getPointeeType(); CanFrom = FromMPT->getPointeeType(); } else { return false; } TyClass = CanTo->getTypeClass(); if (TyClass != CanFrom->getTypeClass()) return false; if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) return false; } const auto *FromFn = cast(CanFrom); FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); const auto *ToFn = cast(CanTo); FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); bool Changed = false; // Drop 'noreturn' if not present in target type. if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); Changed = true; } // Drop 'noexcept' if not present in target type. if (const auto *FromFPT = dyn_cast(FromFn)) { const auto *ToFPT = cast(ToFn); if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { FromFn = cast( Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), EST_None) .getTypePtr()); Changed = true; } // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid // only if the ExtParameterInfo lists of the two function prototypes can be // merged and the merged list is identical to ToFPT's ExtParameterInfo list. SmallVector NewParamInfos; bool CanUseToFPT, CanUseFromFPT; if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, CanUseFromFPT, NewParamInfos) && CanUseToFPT && !CanUseFromFPT) { FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); ExtInfo.ExtParameterInfos = NewParamInfos.empty() ? nullptr : NewParamInfos.data(); QualType QT = Context.getFunctionType(FromFPT->getReturnType(), FromFPT->getParamTypes(), ExtInfo); FromFn = QT->getAs(); Changed = true; } } if (!Changed) return false; assert(QualType(FromFn, 0).isCanonical()); if (QualType(FromFn, 0) != CanTo) return false; ResultTy = ToType; return true; } /// Determine whether the conversion from FromType to ToType is a valid /// vector conversion. /// /// \param ICK Will be set to the vector conversion kind, if this is a vector /// conversion. static bool IsVectorConversion(Sema &S, QualType FromType, QualType ToType, ImplicitConversionKind &ICK, Expr *From, bool InOverloadResolution, bool CStyle) { // We need at least one of these types to be a vector type to have a vector // conversion. if (!ToType->isVectorType() && !FromType->isVectorType()) return false; // Identical types require no conversions. if (S.Context.hasSameUnqualifiedType(FromType, ToType)) return false; // There are no conversions between extended vector types, only identity. if (ToType->isExtVectorType()) { // There are no conversions between extended vector types other than the // identity conversion. if (FromType->isExtVectorType()) return false; // Vector splat from any arithmetic type to a vector. if (FromType->isArithmeticType()) { ICK = ICK_Vector_Splat; return true; } } if (ToType->isSVESizelessBuiltinType() || FromType->isSVESizelessBuiltinType()) if (S.Context.areCompatibleSveTypes(FromType, ToType) || S.Context.areLaxCompatibleSveTypes(FromType, ToType)) { ICK = ICK_SVE_Vector_Conversion; return true; } if (ToType->isRVVSizelessBuiltinType() || FromType->isRVVSizelessBuiltinType()) if (S.Context.areCompatibleRVVTypes(FromType, ToType) || S.Context.areLaxCompatibleRVVTypes(FromType, ToType)) { ICK = ICK_RVV_Vector_Conversion; return true; } // We can perform the conversion between vector types in the following cases: // 1)vector types are equivalent AltiVec and GCC vector types // 2)lax vector conversions are permitted and the vector types are of the // same size // 3)the destination type does not have the ARM MVE strict-polymorphism // attribute, which inhibits lax vector conversion for overload resolution // only if (ToType->isVectorType() && FromType->isVectorType()) { if (S.Context.areCompatibleVectorTypes(FromType, ToType) || (S.isLaxVectorConversion(FromType, ToType) && !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) { if (S.getASTContext().getTargetInfo().getTriple().isPPC() && S.isLaxVectorConversion(FromType, ToType) && S.anyAltivecTypes(FromType, ToType) && !S.Context.areCompatibleVectorTypes(FromType, ToType) && !InOverloadResolution && !CStyle) { S.Diag(From->getBeginLoc(), diag::warn_deprecated_lax_vec_conv_all) << FromType << ToType; } ICK = ICK_Vector_Conversion; return true; } } return false; } static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, bool InOverloadResolution, StandardConversionSequence &SCS, bool CStyle); /// IsStandardConversion - Determines whether there is a standard /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the /// expression From to the type ToType. Standard conversion sequences /// only consider non-class types; for conversions that involve class /// types, use TryImplicitConversion. If a conversion exists, SCS will /// contain the standard conversion sequence required to perform this /// conversion and this routine will return true. Otherwise, this /// routine will return false and the value of SCS is unspecified. static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, bool InOverloadResolution, StandardConversionSequence &SCS, bool CStyle, bool AllowObjCWritebackConversion) { QualType FromType = From->getType(); // Standard conversions (C++ [conv]) SCS.setAsIdentityConversion(); SCS.IncompatibleObjC = false; SCS.setFromType(FromType); SCS.CopyConstructor = nullptr; // There are no standard conversions for class types in C++, so // abort early. When overloading in C, however, we do permit them. if (S.getLangOpts().CPlusPlus && (FromType->isRecordType() || ToType->isRecordType())) return false; // The first conversion can be an lvalue-to-rvalue conversion, // array-to-pointer conversion, or function-to-pointer conversion // (C++ 4p1). if (FromType == S.Context.OverloadTy) { DeclAccessPair AccessPair; if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(From, ToType, false, AccessPair)) { // We were able to resolve the address of the overloaded function, // so we can convert to the type of that function. FromType = Fn->getType(); SCS.setFromType(FromType); // we can sometimes resolve &foo regardless of ToType, so check // if the type matches (identity) or we are converting to bool if (!S.Context.hasSameUnqualifiedType( S.ExtractUnqualifiedFunctionType(ToType), FromType)) { QualType resultTy; // if the function type matches except for [[noreturn]], it's ok if (!S.IsFunctionConversion(FromType, S.ExtractUnqualifiedFunctionType(ToType), resultTy)) // otherwise, only a boolean conversion is standard if (!ToType->isBooleanType()) return false; } // Check if the "from" expression is taking the address of an overloaded // function and recompute the FromType accordingly. Take advantage of the // fact that non-static member functions *must* have such an address-of // expression. CXXMethodDecl *Method = dyn_cast(Fn); if (Method && !Method->isStatic() && !Method->isExplicitObjectMemberFunction()) { assert(isa(From->IgnoreParens()) && "Non-unary operator on non-static member address"); assert(cast(From->IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address"); const Type *ClassType = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); FromType = S.Context.getMemberPointerType(FromType, ClassType); } else if (isa(From->IgnoreParens())) { assert(cast(From->IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression"); FromType = S.Context.getPointerType(FromType); } } else { return false; } } // Lvalue-to-rvalue conversion (C++11 4.1): // A glvalue (3.10) of a non-function, non-array type T can // be converted to a prvalue. bool argIsLValue = From->isGLValue(); if (argIsLValue && !FromType->isFunctionType() && !FromType->isArrayType() && S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { SCS.First = ICK_Lvalue_To_Rvalue; // C11 6.3.2.1p2: // ... if the lvalue has atomic type, the value has the non-atomic version // of the type of the lvalue ... if (const AtomicType *Atomic = FromType->getAs()) FromType = Atomic->getValueType(); // If T is a non-class type, the type of the rvalue is the // cv-unqualified version of T. Otherwise, the type of the rvalue // is T (C++ 4.1p1). C++ can't get here with class types; in C, we // just strip the qualifiers because they don't matter. FromType = FromType.getUnqualifiedType(); } else if (FromType->isArrayType()) { // Array-to-pointer conversion (C++ 4.2) SCS.First = ICK_Array_To_Pointer; // An lvalue or rvalue of type "array of N T" or "array of unknown // bound of T" can be converted to an rvalue of type "pointer to // T" (C++ 4.2p1). FromType = S.Context.getArrayDecayedType(FromType); if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { // This conversion is deprecated in C++03 (D.4) SCS.DeprecatedStringLiteralToCharPtr = true; // For the purpose of ranking in overload resolution // (13.3.3.1.1), this conversion is considered an // array-to-pointer conversion followed by a qualification // conversion (4.4). (C++ 4.2p2) SCS.Second = ICK_Identity; SCS.Third = ICK_Qualification; SCS.QualificationIncludesObjCLifetime = false; SCS.setAllToTypes(FromType); return true; } } else if (FromType->isFunctionType() && argIsLValue) { // Function-to-pointer conversion (C++ 4.3). SCS.First = ICK_Function_To_Pointer; if (auto *DRE = dyn_cast(From->IgnoreParenCasts())) if (auto *FD = dyn_cast(DRE->getDecl())) if (!S.checkAddressOfFunctionIsAvailable(FD)) return false; // An lvalue of function type T can be converted to an rvalue of // type "pointer to T." The result is a pointer to the // function. (C++ 4.3p1). FromType = S.Context.getPointerType(FromType); } else { // We don't require any conversions for the first step. SCS.First = ICK_Identity; } SCS.setToType(0, FromType); // The second conversion can be an integral promotion, floating // point promotion, integral conversion, floating point conversion, // floating-integral conversion, pointer conversion, // pointer-to-member conversion, or boolean conversion (C++ 4p1). // For overloading in C, this can also be a "compatible-type" // conversion. bool IncompatibleObjC = false; ImplicitConversionKind SecondICK = ICK_Identity; if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { // The unqualified versions of the types are the same: there's no // conversion to do. SCS.Second = ICK_Identity; } else if (S.IsIntegralPromotion(From, FromType, ToType)) { // Integral promotion (C++ 4.5). SCS.Second = ICK_Integral_Promotion; FromType = ToType.getUnqualifiedType(); } else if (S.IsFloatingPointPromotion(FromType, ToType)) { // Floating point promotion (C++ 4.6). SCS.Second = ICK_Floating_Promotion; FromType = ToType.getUnqualifiedType(); } else if (S.IsComplexPromotion(FromType, ToType)) { // Complex promotion (Clang extension) SCS.Second = ICK_Complex_Promotion; FromType = ToType.getUnqualifiedType(); } else if (ToType->isBooleanType() && (FromType->isArithmeticType() || FromType->isAnyPointerType() || FromType->isBlockPointerType() || FromType->isMemberPointerType())) { // Boolean conversions (C++ 4.12). SCS.Second = ICK_Boolean_Conversion; FromType = S.Context.BoolTy; } else if (FromType->isIntegralOrUnscopedEnumerationType() && ToType->isIntegralType(S.Context)) { // Integral conversions (C++ 4.7). SCS.Second = ICK_Integral_Conversion; FromType = ToType.getUnqualifiedType(); } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { // Complex conversions (C99 6.3.1.6) SCS.Second = ICK_Complex_Conversion; FromType = ToType.getUnqualifiedType(); } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || (ToType->isAnyComplexType() && FromType->isArithmeticType())) { // Complex-real conversions (C99 6.3.1.7) SCS.Second = ICK_Complex_Real; FromType = ToType.getUnqualifiedType(); } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { // FIXME: disable conversions between long double, __ibm128 and __float128 // if their representation is different until there is back end support // We of course allow this conversion if long double is really double. // Conversions between bfloat16 and float16 are currently not supported. if ((FromType->isBFloat16Type() && (ToType->isFloat16Type() || ToType->isHalfType())) || (ToType->isBFloat16Type() && (FromType->isFloat16Type() || FromType->isHalfType()))) return false; // Conversions between IEEE-quad and IBM-extended semantics are not // permitted. const llvm::fltSemantics &FromSem = S.Context.getFloatTypeSemantics(FromType); const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType); if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() && &ToSem == &llvm::APFloat::IEEEquad()) || (&FromSem == &llvm::APFloat::IEEEquad() && &ToSem == &llvm::APFloat::PPCDoubleDouble())) return false; // Floating point conversions (C++ 4.8). SCS.Second = ICK_Floating_Conversion; FromType = ToType.getUnqualifiedType(); } else if ((FromType->isRealFloatingType() && ToType->isIntegralType(S.Context)) || (FromType->isIntegralOrUnscopedEnumerationType() && ToType->isRealFloatingType())) { // Floating-integral conversions (C++ 4.9). SCS.Second = ICK_Floating_Integral; FromType = ToType.getUnqualifiedType(); } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { SCS.Second = ICK_Block_Pointer_Conversion; } else if (AllowObjCWritebackConversion && S.isObjCWritebackConversion(FromType, ToType, FromType)) { SCS.Second = ICK_Writeback_Conversion; } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, FromType, IncompatibleObjC)) { // Pointer conversions (C++ 4.10). SCS.Second = ICK_Pointer_Conversion; SCS.IncompatibleObjC = IncompatibleObjC; FromType = FromType.getUnqualifiedType(); } else if (S.IsMemberPointerConversion(From, FromType, ToType, InOverloadResolution, FromType)) { // Pointer to member conversions (4.11). SCS.Second = ICK_Pointer_Member; } else if (IsVectorConversion(S, FromType, ToType, SecondICK, From, InOverloadResolution, CStyle)) { SCS.Second = SecondICK; FromType = ToType.getUnqualifiedType(); } else if (!S.getLangOpts().CPlusPlus && S.Context.typesAreCompatible(ToType, FromType)) { // Compatible conversions (Clang extension for C function overloading) SCS.Second = ICK_Compatible_Conversion; FromType = ToType.getUnqualifiedType(); } else if (IsTransparentUnionStandardConversion(S, From, ToType, InOverloadResolution, SCS, CStyle)) { SCS.Second = ICK_TransparentUnionConversion; FromType = ToType; } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, CStyle)) { // tryAtomicConversion has updated the standard conversion sequence // appropriately. return true; } else if (ToType->isEventT() && From->isIntegerConstantExpr(S.getASTContext()) && From->EvaluateKnownConstInt(S.getASTContext()) == 0) { SCS.Second = ICK_Zero_Event_Conversion; FromType = ToType; } else if (ToType->isQueueT() && From->isIntegerConstantExpr(S.getASTContext()) && (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { SCS.Second = ICK_Zero_Queue_Conversion; FromType = ToType; } else if (ToType->isSamplerT() && From->isIntegerConstantExpr(S.getASTContext())) { SCS.Second = ICK_Compatible_Conversion; FromType = ToType; } else if (ToType->isFixedPointType() || FromType->isFixedPointType()) { SCS.Second = ICK_Fixed_Point_Conversion; FromType = ToType; } else { // No second conversion required. SCS.Second = ICK_Identity; } SCS.setToType(1, FromType); // The third conversion can be a function pointer conversion or a // qualification conversion (C++ [conv.fctptr], [conv.qual]). bool ObjCLifetimeConversion; if (S.IsFunctionConversion(FromType, ToType, FromType)) { // Function pointer conversions (removing 'noexcept') including removal of // 'noreturn' (Clang extension). SCS.Third = ICK_Function_Conversion; } else if (S.IsQualificationConversion(FromType, ToType, CStyle, ObjCLifetimeConversion)) { SCS.Third = ICK_Qualification; SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; FromType = ToType; } else { // No conversion required SCS.Third = ICK_Identity; } // C++ [over.best.ics]p6: // [...] Any difference in top-level cv-qualification is // subsumed by the initialization itself and does not constitute // a conversion. [...] QualType CanonFrom = S.Context.getCanonicalType(FromType); QualType CanonTo = S.Context.getCanonicalType(ToType); if (CanonFrom.getLocalUnqualifiedType() == CanonTo.getLocalUnqualifiedType() && CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { FromType = ToType; CanonFrom = CanonTo; } SCS.setToType(2, FromType); if (CanonFrom == CanonTo) return true; // If we have not converted the argument type to the parameter type, // this is a bad conversion sequence, unless we're resolving an overload in C. if (S.getLangOpts().CPlusPlus || !InOverloadResolution) return false; ExprResult ER = ExprResult{From}; Sema::AssignConvertType Conv = S.CheckSingleAssignmentConstraints(ToType, ER, /*Diagnose=*/false, /*DiagnoseCFAudited=*/false, /*ConvertRHS=*/false); ImplicitConversionKind SecondConv; switch (Conv) { case Sema::Compatible: SecondConv = ICK_C_Only_Conversion; break; // For our purposes, discarding qualifiers is just as bad as using an // incompatible pointer. Note that an IncompatiblePointer conversion can drop // qualifiers, as well. case Sema::CompatiblePointerDiscardsQualifiers: case Sema::IncompatiblePointer: case Sema::IncompatiblePointerSign: SecondConv = ICK_Incompatible_Pointer_Conversion; break; default: return false; } // First can only be an lvalue conversion, so we pretend that this was the // second conversion. First should already be valid from earlier in the // function. SCS.Second = SecondConv; SCS.setToType(1, ToType); // Third is Identity, because Second should rank us worse than any other // conversion. This could also be ICK_Qualification, but it's simpler to just // lump everything in with the second conversion, and we don't gain anything // from making this ICK_Qualification. SCS.Third = ICK_Identity; SCS.setToType(2, ToType); return true; } static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, QualType &ToType, bool InOverloadResolution, StandardConversionSequence &SCS, bool CStyle) { const RecordType *UT = ToType->getAsUnionType(); if (!UT || !UT->getDecl()->hasAttr()) return false; // The field to initialize within the transparent union. RecordDecl *UD = UT->getDecl(); // It's compatible if the expression matches any of the fields. for (const auto *it : UD->fields()) { if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, CStyle, /*AllowObjCWritebackConversion=*/false)) { ToType = it->getType(); return true; } } return false; } /// IsIntegralPromotion - Determines whether the conversion from the /// expression From (whose potentially-adjusted type is FromType) to /// ToType is an integral promotion (C++ 4.5). If so, returns true and /// sets PromotedType to the promoted type. bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { const BuiltinType *To = ToType->getAs(); // All integers are built-in. if (!To) { return false; } // An rvalue of type char, signed char, unsigned char, short int, or // unsigned short int can be converted to an rvalue of type int if // int can represent all the values of the source type; otherwise, // the source rvalue can be converted to an rvalue of type unsigned // int (C++ 4.5p1). if (Context.isPromotableIntegerType(FromType) && !FromType->isBooleanType() && !FromType->isEnumeralType()) { if ( // We can promote any signed, promotable integer type to an int (FromType->isSignedIntegerType() || // We can promote any unsigned integer type whose size is // less than int to an int. Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { return To->getKind() == BuiltinType::Int; } return To->getKind() == BuiltinType::UInt; } // C++11 [conv.prom]p3: // A prvalue of an unscoped enumeration type whose underlying type is not // fixed (7.2) can be converted to an rvalue a prvalue of the first of the // following types that can represent all the values of the enumeration // (i.e., the values in the range bmin to bmax as described in 7.2): int, // unsigned int, long int, unsigned long int, long long int, or unsigned // long long int. If none of the types in that list can represent all the // values of the enumeration, an rvalue a prvalue of an unscoped enumeration // type can be converted to an rvalue a prvalue of the extended integer type // with lowest integer conversion rank (4.13) greater than the rank of long // long in which all the values of the enumeration can be represented. If // there are two such extended types, the signed one is chosen. // C++11 [conv.prom]p4: // A prvalue of an unscoped enumeration type whose underlying type is fixed // can be converted to a prvalue of its underlying type. Moreover, if // integral promotion can be applied to its underlying type, a prvalue of an // unscoped enumeration type whose underlying type is fixed can also be // converted to a prvalue of the promoted underlying type. if (const EnumType *FromEnumType = FromType->getAs()) { // C++0x 7.2p9: Note that this implicit enum to int conversion is not // provided for a scoped enumeration. if (FromEnumType->getDecl()->isScoped()) return false; // We can perform an integral promotion to the underlying type of the enum, // even if that's not the promoted type. Note that the check for promoting // the underlying type is based on the type alone, and does not consider // the bitfield-ness of the actual source expression. if (FromEnumType->getDecl()->isFixed()) { QualType Underlying = FromEnumType->getDecl()->getIntegerType(); return Context.hasSameUnqualifiedType(Underlying, ToType) || IsIntegralPromotion(nullptr, Underlying, ToType); } // We have already pre-calculated the promotion type, so this is trivial. if (ToType->isIntegerType() && isCompleteType(From->getBeginLoc(), FromType)) return Context.hasSameUnqualifiedType( ToType, FromEnumType->getDecl()->getPromotionType()); // C++ [conv.prom]p5: // If the bit-field has an enumerated type, it is treated as any other // value of that type for promotion purposes. // // ... so do not fall through into the bit-field checks below in C++. if (getLangOpts().CPlusPlus) return false; } // C++0x [conv.prom]p2: // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted // to an rvalue a prvalue of the first of the following types that can // represent all the values of its underlying type: int, unsigned int, // long int, unsigned long int, long long int, or unsigned long long int. // If none of the types in that list can represent all the values of its // underlying type, an rvalue a prvalue of type char16_t, char32_t, // or wchar_t can be converted to an rvalue a prvalue of its underlying // type. if (FromType->isAnyCharacterType() && !FromType->isCharType() && ToType->isIntegerType()) { // Determine whether the type we're converting from is signed or // unsigned. bool FromIsSigned = FromType->isSignedIntegerType(); uint64_t FromSize = Context.getTypeSize(FromType); // The types we'll try to promote to, in the appropriate // order. Try each of these types. QualType PromoteTypes[6] = { Context.IntTy, Context.UnsignedIntTy, Context.LongTy, Context.UnsignedLongTy , Context.LongLongTy, Context.UnsignedLongLongTy }; for (int Idx = 0; Idx < 6; ++Idx) { uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); if (FromSize < ToSize || (FromSize == ToSize && FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { // We found the type that we can promote to. If this is the // type we wanted, we have a promotion. Otherwise, no // promotion. return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); } } } // An rvalue for an integral bit-field (9.6) can be converted to an // rvalue of type int if int can represent all the values of the // bit-field; otherwise, it can be converted to unsigned int if // unsigned int can represent all the values of the bit-field. If // the bit-field is larger yet, no integral promotion applies to // it. If the bit-field has an enumerated type, it is treated as any // other value of that type for promotion purposes (C++ 4.5p3). // FIXME: We should delay checking of bit-fields until we actually perform the // conversion. // // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum // bit-fields and those whose underlying type is larger than int) for GCC // compatibility. if (From) { if (FieldDecl *MemberDecl = From->getSourceBitField()) { std::optional BitWidth; if (FromType->isIntegralType(Context) && (BitWidth = MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) { llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned()); ToSize = Context.getTypeSize(ToType); // Are we promoting to an int from a bitfield that fits in an int? if (*BitWidth < ToSize || (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) { return To->getKind() == BuiltinType::Int; } // Are we promoting to an unsigned int from an unsigned bitfield // that fits into an unsigned int? if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) { return To->getKind() == BuiltinType::UInt; } return false; } } } // An rvalue of type bool can be converted to an rvalue of type int, // with false becoming zero and true becoming one (C++ 4.5p4). if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { return true; } return false; } /// IsFloatingPointPromotion - Determines whether the conversion from /// FromType to ToType is a floating point promotion (C++ 4.6). If so, /// returns true and sets PromotedType to the promoted type. bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { if (const BuiltinType *FromBuiltin = FromType->getAs()) if (const BuiltinType *ToBuiltin = ToType->getAs()) { /// An rvalue of type float can be converted to an rvalue of type /// double. (C++ 4.6p1). if (FromBuiltin->getKind() == BuiltinType::Float && ToBuiltin->getKind() == BuiltinType::Double) return true; // C99 6.3.1.5p1: // When a float is promoted to double or long double, or a // double is promoted to long double [...]. if (!getLangOpts().CPlusPlus && (FromBuiltin->getKind() == BuiltinType::Float || FromBuiltin->getKind() == BuiltinType::Double) && (ToBuiltin->getKind() == BuiltinType::LongDouble || ToBuiltin->getKind() == BuiltinType::Float128 || ToBuiltin->getKind() == BuiltinType::Ibm128)) return true; // Half can be promoted to float. if (!getLangOpts().NativeHalfType && FromBuiltin->getKind() == BuiltinType::Half && ToBuiltin->getKind() == BuiltinType::Float) return true; } return false; } /// Determine if a conversion is a complex promotion. /// /// A complex promotion is defined as a complex -> complex conversion /// where the conversion between the underlying real types is a /// floating-point or integral promotion. bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { const ComplexType *FromComplex = FromType->getAs(); if (!FromComplex) return false; const ComplexType *ToComplex = ToType->getAs(); if (!ToComplex) return false; return IsFloatingPointPromotion(FromComplex->getElementType(), ToComplex->getElementType()) || IsIntegralPromotion(nullptr, FromComplex->getElementType(), ToComplex->getElementType()); } /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from /// the pointer type FromPtr to a pointer to type ToPointee, with the /// same type qualifiers as FromPtr has on its pointee type. ToType, /// if non-empty, will be a pointer to ToType that may or may not have /// the right set of qualifiers on its pointee. /// static QualType BuildSimilarlyQualifiedPointerType(const Type *FromPtr, QualType ToPointee, QualType ToType, ASTContext &Context, bool StripObjCLifetime = false) { assert((FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"); /// Conversions to 'id' subsume cv-qualifier conversions. if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) return ToType.getUnqualifiedType(); QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); QualType CanonToPointee = Context.getCanonicalType(ToPointee); Qualifiers Quals = CanonFromPointee.getQualifiers(); if (StripObjCLifetime) Quals.removeObjCLifetime(); // Exact qualifier match -> return the pointer type we're converting to. if (CanonToPointee.getLocalQualifiers() == Quals) { // ToType is exactly what we need. Return it. if (!ToType.isNull()) return ToType.getUnqualifiedType(); // Build a pointer to ToPointee. It has the right qualifiers // already. if (isa(ToType)) return Context.getObjCObjectPointerType(ToPointee); return Context.getPointerType(ToPointee); } // Just build a canonical type that has the right qualifiers. QualType QualifiedCanonToPointee = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); if (isa(ToType)) return Context.getObjCObjectPointerType(QualifiedCanonToPointee); return Context.getPointerType(QualifiedCanonToPointee); } static bool isNullPointerConstantForConversion(Expr *Expr, bool InOverloadResolution, ASTContext &Context) { // Handle value-dependent integral null pointer constants correctly. // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 if (Expr->isValueDependent() && !Expr->isTypeDependent() && Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) return !InOverloadResolution; return Expr->isNullPointerConstant(Context, InOverloadResolution? Expr::NPC_ValueDependentIsNotNull : Expr::NPC_ValueDependentIsNull); } /// IsPointerConversion - Determines whether the conversion of the /// expression From, which has the (possibly adjusted) type FromType, /// can be converted to the type ToType via a pointer conversion (C++ /// 4.10). If so, returns true and places the converted type (that /// might differ from ToType in its cv-qualifiers at some level) into /// ConvertedType. /// /// This routine also supports conversions to and from block pointers /// and conversions with Objective-C's 'id', 'id', and /// pointers to interfaces. FIXME: Once we've determined the /// appropriate overloading rules for Objective-C, we may want to /// split the Objective-C checks into a different routine; however, /// GCC seems to consider all of these conversions to be pointer /// conversions, so for now they live here. IncompatibleObjC will be /// set if the conversion is an allowed Objective-C conversion that /// should result in a warning. bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType& ConvertedType, bool &IncompatibleObjC) { IncompatibleObjC = false; if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) return true; // Conversion from a null pointer constant to any Objective-C pointer type. if (ToType->isObjCObjectPointerType() && isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { ConvertedType = ToType; return true; } // Blocks: Block pointers can be converted to void*. if (FromType->isBlockPointerType() && ToType->isPointerType() && ToType->castAs()->getPointeeType()->isVoidType()) { ConvertedType = ToType; return true; } // Blocks: A null pointer constant can be converted to a block // pointer type. if (ToType->isBlockPointerType() && isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { ConvertedType = ToType; return true; } // If the left-hand-side is nullptr_t, the right side can be a null // pointer constant. if (ToType->isNullPtrType() && isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { ConvertedType = ToType; return true; } const PointerType* ToTypePtr = ToType->getAs(); if (!ToTypePtr) return false; // A null pointer constant can be converted to a pointer type (C++ 4.10p1). if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { ConvertedType = ToType; return true; } // Beyond this point, both types need to be pointers // , including objective-c pointers. QualType ToPointeeType = ToTypePtr->getPointeeType(); if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && !getLangOpts().ObjCAutoRefCount) { ConvertedType = BuildSimilarlyQualifiedPointerType( FromType->castAs(), ToPointeeType, ToType, Context); return true; } const PointerType *FromTypePtr = FromType->getAs(); if (!FromTypePtr) return false; QualType FromPointeeType = FromTypePtr->getPointeeType(); // If the unqualified pointee types are the same, this can't be a // pointer conversion, so don't do all of the work below. if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) return false; // An rvalue of type "pointer to cv T," where T is an object type, // can be converted to an rvalue of type "pointer to cv void" (C++ // 4.10p2). if (FromPointeeType->isIncompleteOrObjectType() && ToPointeeType->isVoidType()) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context, /*StripObjCLifetime=*/true); return true; } // MSVC allows implicit function to void* type conversion. if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } // When we're overloading in C, we allow a special kind of pointer // conversion for compatible-but-not-identical pointee types. if (!getLangOpts().CPlusPlus && Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } // C++ [conv.ptr]p3: // // An rvalue of type "pointer to cv D," where D is a class type, // can be converted to an rvalue of type "pointer to cv B," where // B is a base class (clause 10) of D. If B is an inaccessible // (clause 11) or ambiguous (10.2) base class of D, a program that // necessitates this conversion is ill-formed. The result of the // conversion is a pointer to the base class sub-object of the // derived class object. The null pointer value is converted to // the null pointer value of the destination type. // // Note that we do not check for ambiguity or inaccessibility // here. That is handled by CheckPointerConversion. if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType, ToType, Context); return true; } return false; } /// Adopt the given qualifiers for the given type. static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ Qualifiers TQs = T.getQualifiers(); // Check whether qualifiers already match. if (TQs == Qs) return T; if (Qs.compatiblyIncludes(TQs)) return Context.getQualifiedType(T, Qs); return Context.getQualifiedType(T.getUnqualifiedType(), Qs); } /// isObjCPointerConversion - Determines whether this is an /// Objective-C pointer conversion. Subroutine of IsPointerConversion, /// with the same arguments and return values. bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC) { if (!getLangOpts().ObjC) return false; // The set of qualifiers on the type we're converting from. Qualifiers FromQualifiers = FromType.getQualifiers(); // First, we handle all conversions on ObjC object pointer types. const ObjCObjectPointerType* ToObjCPtr = ToType->getAs(); const ObjCObjectPointerType *FromObjCPtr = FromType->getAs(); if (ToObjCPtr && FromObjCPtr) { // If the pointee types are the same (ignoring qualifications), // then this is not a pointer conversion. if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), FromObjCPtr->getPointeeType())) return false; // Conversion between Objective-C pointers. if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); if (getLangOpts().CPlusPlus && LHS && RHS && !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( FromObjCPtr->getPointeeType())) return false; ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, ToObjCPtr->getPointeeType(), ToType, Context); ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); return true; } if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { // Okay: this is some kind of implicit downcast of Objective-C // interfaces, which is permitted. However, we're going to // complain about it. IncompatibleObjC = true; ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, ToObjCPtr->getPointeeType(), ToType, Context); ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); return true; } } // Beyond this point, both types need to be C pointers or block pointers. QualType ToPointeeType; if (const PointerType *ToCPtr = ToType->getAs()) ToPointeeType = ToCPtr->getPointeeType(); else if (const BlockPointerType *ToBlockPtr = ToType->getAs()) { // Objective C++: We're able to convert from a pointer to any object // to a block pointer type. if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); return true; } ToPointeeType = ToBlockPtr->getPointeeType(); } else if (FromType->getAs() && ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { // Objective C++: We're able to convert from a block pointer type to a // pointer to any object. ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); return true; } else return false; QualType FromPointeeType; if (const PointerType *FromCPtr = FromType->getAs()) FromPointeeType = FromCPtr->getPointeeType(); else if (const BlockPointerType *FromBlockPtr = FromType->getAs()) FromPointeeType = FromBlockPtr->getPointeeType(); else return false; // If we have pointers to pointers, recursively check whether this // is an Objective-C conversion. if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, IncompatibleObjC)) { // We always complain about this conversion. IncompatibleObjC = true; ConvertedType = Context.getPointerType(ConvertedType); ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); return true; } // Allow conversion of pointee being objective-c pointer to another one; // as in I* to id. if (FromPointeeType->getAs() && ToPointeeType->getAs() && isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, IncompatibleObjC)) { ConvertedType = Context.getPointerType(ConvertedType); ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); return true; } // If we have pointers to functions or blocks, check whether the only // differences in the argument and result types are in Objective-C // pointer conversions. If so, we permit the conversion (but // complain about it). const FunctionProtoType *FromFunctionType = FromPointeeType->getAs(); const FunctionProtoType *ToFunctionType = ToPointeeType->getAs(); if (FromFunctionType && ToFunctionType) { // If the function types are exactly the same, this isn't an // Objective-C pointer conversion. if (Context.getCanonicalType(FromPointeeType) == Context.getCanonicalType(ToPointeeType)) return false; // Perform the quick checks that will tell us whether these // function types are obviously different. if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) return false; bool HasObjCConversion = false; if (Context.getCanonicalType(FromFunctionType->getReturnType()) == Context.getCanonicalType(ToFunctionType->getReturnType())) { // Okay, the types match exactly. Nothing to do. } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), ToFunctionType->getReturnType(), ConvertedType, IncompatibleObjC)) { // Okay, we have an Objective-C pointer conversion. HasObjCConversion = true; } else { // Function types are too different. Abort. return false; } // Check argument types. for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); ArgIdx != NumArgs; ++ArgIdx) { QualType FromArgType = FromFunctionType->getParamType(ArgIdx); QualType ToArgType = ToFunctionType->getParamType(ArgIdx); if (Context.getCanonicalType(FromArgType) == Context.getCanonicalType(ToArgType)) { // Okay, the types match exactly. Nothing to do. } else if (isObjCPointerConversion(FromArgType, ToArgType, ConvertedType, IncompatibleObjC)) { // Okay, we have an Objective-C pointer conversion. HasObjCConversion = true; } else { // Argument types are too different. Abort. return false; } } if (HasObjCConversion) { // We had an Objective-C conversion. Allow this pointer // conversion, but complain about it. ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); IncompatibleObjC = true; return true; } } return false; } /// Determine whether this is an Objective-C writeback conversion, /// used for parameter passing when performing automatic reference counting. /// /// \param FromType The type we're converting form. /// /// \param ToType The type we're converting to. /// /// \param ConvertedType The type that will be produced after applying /// this conversion. bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, QualType &ConvertedType) { if (!getLangOpts().ObjCAutoRefCount || Context.hasSameUnqualifiedType(FromType, ToType)) return false; // Parameter must be a pointer to __autoreleasing (with no other qualifiers). QualType ToPointee; if (const PointerType *ToPointer = ToType->getAs()) ToPointee = ToPointer->getPointeeType(); else return false; Qualifiers ToQuals = ToPointee.getQualifiers(); if (!ToPointee->isObjCLifetimeType() || ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || !ToQuals.withoutObjCLifetime().empty()) return false; // Argument must be a pointer to __strong to __weak. QualType FromPointee; if (const PointerType *FromPointer = FromType->getAs()) FromPointee = FromPointer->getPointeeType(); else return false; Qualifiers FromQuals = FromPointee.getQualifiers(); if (!FromPointee->isObjCLifetimeType() || (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) return false; // Make sure that we have compatible qualifiers. FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); if (!ToQuals.compatiblyIncludes(FromQuals)) return false; // Remove qualifiers from the pointee type we're converting from; they // aren't used in the compatibility check belong, and we'll be adding back // qualifiers (with __autoreleasing) if the compatibility check succeeds. FromPointee = FromPointee.getUnqualifiedType(); // The unqualified form of the pointee types must be compatible. ToPointee = ToPointee.getUnqualifiedType(); bool IncompatibleObjC; if (Context.typesAreCompatible(FromPointee, ToPointee)) FromPointee = ToPointee; else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, IncompatibleObjC)) return false; /// Construct the type we're converting to, which is a pointer to /// __autoreleasing pointee. FromPointee = Context.getQualifiedType(FromPointee, FromQuals); ConvertedType = Context.getPointerType(FromPointee); return true; } bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType) { QualType ToPointeeType; if (const BlockPointerType *ToBlockPtr = ToType->getAs()) ToPointeeType = ToBlockPtr->getPointeeType(); else return false; QualType FromPointeeType; if (const BlockPointerType *FromBlockPtr = FromType->getAs()) FromPointeeType = FromBlockPtr->getPointeeType(); else return false; // We have pointer to blocks, check whether the only // differences in the argument and result types are in Objective-C // pointer conversions. If so, we permit the conversion. const FunctionProtoType *FromFunctionType = FromPointeeType->getAs(); const FunctionProtoType *ToFunctionType = ToPointeeType->getAs(); if (!FromFunctionType || !ToFunctionType) return false; if (Context.hasSameType(FromPointeeType, ToPointeeType)) return true; // Perform the quick checks that will tell us whether these // function types are obviously different. if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) return false; FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); if (FromEInfo != ToEInfo) return false; bool IncompatibleObjC = false; if (Context.hasSameType(FromFunctionType->getReturnType(), ToFunctionType->getReturnType())) { // Okay, the types match exactly. Nothing to do. } else { QualType RHS = FromFunctionType->getReturnType(); QualType LHS = ToFunctionType->getReturnType(); if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && !RHS.hasQualifiers() && LHS.hasQualifiers()) LHS = LHS.getUnqualifiedType(); if (Context.hasSameType(RHS,LHS)) { // OK exact match. } else if (isObjCPointerConversion(RHS, LHS, ConvertedType, IncompatibleObjC)) { if (IncompatibleObjC) return false; // Okay, we have an Objective-C pointer conversion. } else return false; } // Check argument types. for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); ArgIdx != NumArgs; ++ArgIdx) { IncompatibleObjC = false; QualType FromArgType = FromFunctionType->getParamType(ArgIdx); QualType ToArgType = ToFunctionType->getParamType(ArgIdx); if (Context.hasSameType(FromArgType, ToArgType)) { // Okay, the types match exactly. Nothing to do. } else if (isObjCPointerConversion(ToArgType, FromArgType, ConvertedType, IncompatibleObjC)) { if (IncompatibleObjC) return false; // Okay, we have an Objective-C pointer conversion. } else // Argument types are too different. Abort. return false; } SmallVector NewParamInfos; bool CanUseToFPT, CanUseFromFPT; if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, CanUseToFPT, CanUseFromFPT, NewParamInfos)) return false; ConvertedType = ToType; return true; } enum { ft_default, ft_different_class, ft_parameter_arity, ft_parameter_mismatch, ft_return_type, ft_qualifer_mismatch, ft_noexcept }; /// Attempts to get the FunctionProtoType from a Type. Handles /// MemberFunctionPointers properly. static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { if (auto *FPT = FromType->getAs()) return FPT; if (auto *MPT = FromType->getAs()) return MPT->getPointeeType()->getAs(); return nullptr; } /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing /// function types. Catches different number of parameter, mismatch in /// parameter types, and different return types. void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, QualType FromType, QualType ToType) { // If either type is not valid, include no extra info. if (FromType.isNull() || ToType.isNull()) { PDiag << ft_default; return; } // Get the function type from the pointers. if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { const auto *FromMember = FromType->castAs(), *ToMember = ToType->castAs(); if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { PDiag << ft_different_class << QualType(ToMember->getClass(), 0) << QualType(FromMember->getClass(), 0); return; } FromType = FromMember->getPointeeType(); ToType = ToMember->getPointeeType(); } if (FromType->isPointerType()) FromType = FromType->getPointeeType(); if (ToType->isPointerType()) ToType = ToType->getPointeeType(); // Remove references. FromType = FromType.getNonReferenceType(); ToType = ToType.getNonReferenceType(); // Don't print extra info for non-specialized template functions. if (FromType->isInstantiationDependentType() && !FromType->getAs()) { PDiag << ft_default; return; } // No extra info for same types. if (Context.hasSameType(FromType, ToType)) { PDiag << ft_default; return; } const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), *ToFunction = tryGetFunctionProtoType(ToType); // Both types need to be function types. if (!FromFunction || !ToFunction) { PDiag << ft_default; return; } if (FromFunction->getNumParams() != ToFunction->getNumParams()) { PDiag << ft_parameter_arity << ToFunction->getNumParams() << FromFunction->getNumParams(); return; } // Handle different parameter types. unsigned ArgPos; if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { PDiag << ft_parameter_mismatch << ArgPos + 1 << ToFunction->getParamType(ArgPos) << FromFunction->getParamType(ArgPos); return; } // Handle different return type. if (!Context.hasSameType(FromFunction->getReturnType(), ToFunction->getReturnType())) { PDiag << ft_return_type << ToFunction->getReturnType() << FromFunction->getReturnType(); return; } if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() << FromFunction->getMethodQuals(); return; } // Handle exception specification differences on canonical type (in C++17 // onwards). if (cast(FromFunction->getCanonicalTypeUnqualified()) ->isNothrow() != cast(ToFunction->getCanonicalTypeUnqualified()) ->isNothrow()) { PDiag << ft_noexcept; return; } // Unable to find a difference, so add no extra info. PDiag << ft_default; } /// FunctionParamTypesAreEqual - This routine checks two function proto types /// for equality of their parameter types. Caller has already checked that /// they have same number of parameters. If the parameters are different, /// ArgPos will have the parameter index of the first different parameter. /// If `Reversed` is true, the parameters of `NewType` will be compared in /// reverse order. That's useful if one of the functions is being used as a C++20 /// synthesized operator overload with a reversed parameter order. bool Sema::FunctionParamTypesAreEqual(ArrayRef Old, ArrayRef New, unsigned *ArgPos, bool Reversed) { assert(llvm::size(Old) == llvm::size(New) && "Can't compare parameters of functions with different number of " "parameters!"); for (auto &&[Idx, Type] : llvm::enumerate(Old)) { // Reverse iterate over the parameters of `OldType` if `Reversed` is true. size_t J = Reversed ? (llvm::size(New) - Idx - 1) : Idx; // Ignore address spaces in pointee type. This is to disallow overloading // on __ptr32/__ptr64 address spaces. QualType OldType = Context.removePtrSizeAddrSpace(Type.getUnqualifiedType()); QualType NewType = Context.removePtrSizeAddrSpace((New.begin() + J)->getUnqualifiedType()); if (!Context.hasSameType(OldType, NewType)) { if (ArgPos) *ArgPos = Idx; return false; } } return true; } bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, const FunctionProtoType *NewType, unsigned *ArgPos, bool Reversed) { return FunctionParamTypesAreEqual(OldType->param_types(), NewType->param_types(), ArgPos, Reversed); } bool Sema::FunctionNonObjectParamTypesAreEqual(const FunctionDecl *OldFunction, const FunctionDecl *NewFunction, unsigned *ArgPos, bool Reversed) { if (OldFunction->getNumNonObjectParams() != NewFunction->getNumNonObjectParams()) return false; unsigned OldIgnore = unsigned(OldFunction->hasCXXExplicitFunctionObjectParameter()); unsigned NewIgnore = unsigned(NewFunction->hasCXXExplicitFunctionObjectParameter()); auto *OldPT = cast(OldFunction->getFunctionType()); auto *NewPT = cast(NewFunction->getFunctionType()); return FunctionParamTypesAreEqual(OldPT->param_types().slice(OldIgnore), NewPT->param_types().slice(NewIgnore), ArgPos, Reversed); } /// CheckPointerConversion - Check the pointer conversion from the /// expression From to the type ToType. This routine checks for /// ambiguous or inaccessible derived-to-base pointer /// conversions for which IsPointerConversion has already returned /// true. It returns true and produces a diagnostic if there was an /// error, or returns false otherwise. bool Sema::CheckPointerConversion(Expr *From, QualType ToType, CastKind &Kind, CXXCastPath& BasePath, bool IgnoreBaseAccess, bool Diagnose) { QualType FromType = From->getType(); bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; Kind = CK_BitCast; if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == Expr::NPCK_ZeroExpression) { if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) DiagRuntimeBehavior(From->getExprLoc(), From, PDiag(diag::warn_impcast_bool_to_null_pointer) << ToType << From->getSourceRange()); else if (!isUnevaluatedContext()) Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) << ToType << From->getSourceRange(); } if (const PointerType *ToPtrType = ToType->getAs()) { if (const PointerType *FromPtrType = FromType->getAs()) { QualType FromPointeeType = FromPtrType->getPointeeType(), ToPointeeType = ToPtrType->getPointeeType(); if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { // We must have a derived-to-base conversion. Check an // ambiguous or inaccessible conversion. unsigned InaccessibleID = 0; unsigned AmbiguousID = 0; if (Diagnose) { InaccessibleID = diag::err_upcast_to_inaccessible_base; AmbiguousID = diag::err_ambiguous_derived_to_base_conv; } if (CheckDerivedToBaseConversion( FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID, From->getExprLoc(), From->getSourceRange(), DeclarationName(), &BasePath, IgnoreBaseAccess)) return true; // The conversion was successful. Kind = CK_DerivedToBase; } if (Diagnose && !IsCStyleOrFunctionalCast && FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { assert(getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"); Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) << From->getSourceRange(); } } } else if (const ObjCObjectPointerType *ToPtrType = ToType->getAs()) { if (const ObjCObjectPointerType *FromPtrType = FromType->getAs()) { // Objective-C++ conversions are always okay. // FIXME: We should have a different class of conversions for the // Objective-C++ implicit conversions. if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) return false; } else if (FromType->isBlockPointerType()) { Kind = CK_BlockPointerToObjCPointerCast; } else { Kind = CK_CPointerToObjCPointerCast; } } else if (ToType->isBlockPointerType()) { if (!FromType->isBlockPointerType()) Kind = CK_AnyPointerToBlockPointerCast; } // We shouldn't fall into this case unless it's valid for other // reasons. if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) Kind = CK_NullToPointer; return false; } /// IsMemberPointerConversion - Determines whether the conversion of the /// expression From, which has the (possibly adjusted) type FromType, can be /// converted to the type ToType via a member pointer conversion (C++ 4.11). /// If so, returns true and places the converted type (that might differ from /// ToType in its cv-qualifiers at some level) into ConvertedType. bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType &ConvertedType) { const MemberPointerType *ToTypePtr = ToType->getAs(); if (!ToTypePtr) return false; // A null pointer constant can be converted to a member pointer (C++ 4.11p1) if (From->isNullPointerConstant(Context, InOverloadResolution? Expr::NPC_ValueDependentIsNotNull : Expr::NPC_ValueDependentIsNull)) { ConvertedType = ToType; return true; } // Otherwise, both types have to be member pointers. const MemberPointerType *FromTypePtr = FromType->getAs(); if (!FromTypePtr) return false; // A pointer to member of B can be converted to a pointer to member of D, // where D is derived from B (C++ 4.11p2). QualType FromClass(FromTypePtr->getClass(), 0); QualType ToClass(ToTypePtr->getClass(), 0); if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), ToClass.getTypePtr()); return true; } return false; } /// CheckMemberPointerConversion - Check the member pointer conversion from the /// expression From to the type ToType. This routine checks for ambiguous or /// virtual or inaccessible base-to-derived member pointer conversions /// for which IsMemberPointerConversion has already returned true. It returns /// true and produces a diagnostic if there was an error, or returns false /// otherwise. bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, CastKind &Kind, CXXCastPath &BasePath, bool IgnoreBaseAccess) { QualType FromType = From->getType(); const MemberPointerType *FromPtrType = FromType->getAs(); if (!FromPtrType) { // This must be a null pointer to member pointer conversion assert(From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!"); Kind = CK_NullToMemberPointer; return false; } const MemberPointerType *ToPtrType = ToType->getAs(); assert(ToPtrType && "No member pointer cast has a target type " "that is not a member pointer."); QualType FromClass = QualType(FromPtrType->getClass(), 0); QualType ToClass = QualType(ToPtrType->getClass(), 0); // FIXME: What about dependent types? assert(FromClass->isRecordType() && "Pointer into non-class."); assert(ToClass->isRecordType() && "Pointer into non-class."); CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/true); bool DerivationOkay = IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); assert(DerivationOkay && "Should not have been called if derivation isn't OK."); (void)DerivationOkay; if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). getUnqualifiedType())) { std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); return true; } if (const RecordType *VBase = Paths.getDetectedVirtual()) { Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) << FromClass << ToClass << QualType(VBase, 0) << From->getSourceRange(); return true; } if (!IgnoreBaseAccess) CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, Paths.front(), diag::err_downcast_from_inaccessible_base); // Must be a base to derived member conversion. BuildBasePathArray(Paths, BasePath); Kind = CK_BaseToDerivedMemberPointer; return false; } /// Determine whether the lifetime conversion between the two given /// qualifiers sets is nontrivial. static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, Qualifiers ToQuals) { // Converting anything to const __unsafe_unretained is trivial. if (ToQuals.hasConst() && ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) return false; return true; } /// Perform a single iteration of the loop for checking if a qualification /// conversion is valid. /// /// Specifically, check whether any change between the qualifiers of \p /// FromType and \p ToType is permissible, given knowledge about whether every /// outer layer is const-qualified. static bool isQualificationConversionStep(QualType FromType, QualType ToType, bool CStyle, bool IsTopLevel, bool &PreviousToQualsIncludeConst, bool &ObjCLifetimeConversion) { Qualifiers FromQuals = FromType.getQualifiers(); Qualifiers ToQuals = ToType.getQualifiers(); // Ignore __unaligned qualifier. FromQuals.removeUnaligned(); // Objective-C ARC: // Check Objective-C lifetime conversions. if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) { if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) ObjCLifetimeConversion = true; FromQuals.removeObjCLifetime(); ToQuals.removeObjCLifetime(); } else { // Qualification conversions cannot cast between different // Objective-C lifetime qualifiers. return false; } } // Allow addition/removal of GC attributes but not changing GC attributes. if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { FromQuals.removeObjCGCAttr(); ToQuals.removeObjCGCAttr(); } // -- for every j > 0, if const is in cv 1,j then const is in cv // 2,j, and similarly for volatile. if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) return false; // If address spaces mismatch: // - in top level it is only valid to convert to addr space that is a // superset in all cases apart from C-style casts where we allow // conversions between overlapping address spaces. // - in non-top levels it is not a valid conversion. if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() && (!IsTopLevel || !(ToQuals.isAddressSpaceSupersetOf(FromQuals) || (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals))))) return false; // -- if the cv 1,j and cv 2,j are different, then const is in // every cv for 0 < k < j. if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() && !PreviousToQualsIncludeConst) return false; // The following wording is from C++20, where the result of the conversion // is T3, not T2. // -- if [...] P1,i [...] is "array of unknown bound of", P3,i is // "array of unknown bound of" if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType()) return false; // -- if the resulting P3,i is different from P1,i [...], then const is // added to every cv 3_k for 0 < k < i. if (!CStyle && FromType->isConstantArrayType() && ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst) return false; // Keep track of whether all prior cv-qualifiers in the "to" type // include const. PreviousToQualsIncludeConst = PreviousToQualsIncludeConst && ToQuals.hasConst(); return true; } /// IsQualificationConversion - Determines whether the conversion from /// an rvalue of type FromType to ToType is a qualification conversion /// (C++ 4.4). /// /// \param ObjCLifetimeConversion Output parameter that will be set to indicate /// when the qualification conversion involves a change in the Objective-C /// object lifetime. bool Sema::IsQualificationConversion(QualType FromType, QualType ToType, bool CStyle, bool &ObjCLifetimeConversion) { FromType = Context.getCanonicalType(FromType); ToType = Context.getCanonicalType(ToType); ObjCLifetimeConversion = false; // If FromType and ToType are the same type, this is not a // qualification conversion. if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) return false; // (C++ 4.4p4): // A conversion can add cv-qualifiers at levels other than the first // in multi-level pointers, subject to the following rules: [...] bool PreviousToQualsIncludeConst = true; bool UnwrappedAnyPointer = false; while (Context.UnwrapSimilarTypes(FromType, ToType)) { if (!isQualificationConversionStep( FromType, ToType, CStyle, !UnwrappedAnyPointer, PreviousToQualsIncludeConst, ObjCLifetimeConversion)) return false; UnwrappedAnyPointer = true; } // We are left with FromType and ToType being the pointee types // after unwrapping the original FromType and ToType the same number // of times. If we unwrapped any pointers, and if FromType and // ToType have the same unqualified type (since we checked // qualifiers above), then this is a qualification conversion. return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); } /// - Determine whether this is a conversion from a scalar type to an /// atomic type. /// /// If successful, updates \c SCS's second and third steps in the conversion /// sequence to finish the conversion. static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, bool InOverloadResolution, StandardConversionSequence &SCS, bool CStyle) { const AtomicType *ToAtomic = ToType->getAs(); if (!ToAtomic) return false; StandardConversionSequence InnerSCS; if (!IsStandardConversion(S, From, ToAtomic->getValueType(), InOverloadResolution, InnerSCS, CStyle, /*AllowObjCWritebackConversion=*/false)) return false; SCS.Second = InnerSCS.Second; SCS.setToType(1, InnerSCS.getToType(1)); SCS.Third = InnerSCS.Third; SCS.QualificationIncludesObjCLifetime = InnerSCS.QualificationIncludesObjCLifetime; SCS.setToType(2, InnerSCS.getToType(2)); return true; } static bool isFirstArgumentCompatibleWithType(ASTContext &Context, CXXConstructorDecl *Constructor, QualType Type) { const auto *CtorType = Constructor->getType()->castAs(); if (CtorType->getNumParams() > 0) { QualType FirstArg = CtorType->getParamType(0); if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) return true; } return false; } static OverloadingResult IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, CXXRecordDecl *To, UserDefinedConversionSequence &User, OverloadCandidateSet &CandidateSet, bool AllowExplicit) { CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); for (auto *D : S.LookupConstructors(To)) { auto Info = getConstructorInfo(D); if (!Info) continue; bool Usable = !Info.Constructor->isInvalidDecl() && S.isInitListConstructor(Info.Constructor); if (Usable) { bool SuppressUserConversions = false; if (Info.ConstructorTmpl) S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, /*ExplicitArgs*/ nullptr, From, CandidateSet, SuppressUserConversions, /*PartialOverloading*/ false, AllowExplicit); else S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, CandidateSet, SuppressUserConversions, /*PartialOverloading*/ false, AllowExplicit); } } bool HadMultipleCandidates = (CandidateSet.size() > 1); OverloadCandidateSet::iterator Best; switch (auto Result = CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { case OR_Deleted: case OR_Success: { // Record the standard conversion we used and the conversion function. CXXConstructorDecl *Constructor = cast(Best->Function); QualType ThisType = Constructor->getFunctionObjectParameterType(); // Initializer lists don't have conversions as such. User.Before.setAsIdentityConversion(); User.HadMultipleCandidates = HadMultipleCandidates; User.ConversionFunction = Constructor; User.FoundConversionFunction = Best->FoundDecl; User.After.setAsIdentityConversion(); User.After.setFromType(ThisType); User.After.setAllToTypes(ToType); return Result; } case OR_No_Viable_Function: return OR_No_Viable_Function; case OR_Ambiguous: return OR_Ambiguous; } llvm_unreachable("Invalid OverloadResult!"); } /// Determines whether there is a user-defined conversion sequence /// (C++ [over.ics.user]) that converts expression From to the type /// ToType. If such a conversion exists, User will contain the /// user-defined conversion sequence that performs such a conversion /// and this routine will return true. Otherwise, this routine returns /// false and User is unspecified. /// /// \param AllowExplicit true if the conversion should consider C++0x /// "explicit" conversion functions as well as non-explicit conversion /// functions (C++0x [class.conv.fct]p2). /// /// \param AllowObjCConversionOnExplicit true if the conversion should /// allow an extra Objective-C pointer conversion on uses of explicit /// constructors. Requires \c AllowExplicit to also be set. static OverloadingResult IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, UserDefinedConversionSequence &User, OverloadCandidateSet &CandidateSet, AllowedExplicit AllowExplicit, bool AllowObjCConversionOnExplicit) { assert(AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit); CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); // Whether we will only visit constructors. bool ConstructorsOnly = false; // If the type we are conversion to is a class type, enumerate its // constructors. if (const RecordType *ToRecordType = ToType->getAs()) { // C++ [over.match.ctor]p1: // When objects of class type are direct-initialized (8.5), or // copy-initialized from an expression of the same or a // derived class type (8.5), overload resolution selects the // constructor. [...] For copy-initialization, the candidate // functions are all the converting constructors (12.3.1) of // that class. The argument list is the expression-list within // the parentheses of the initializer. if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || (From->getType()->getAs() && S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) ConstructorsOnly = true; if (!S.isCompleteType(From->getExprLoc(), ToType)) { // We're not going to find any constructors. } else if (CXXRecordDecl *ToRecordDecl = dyn_cast(ToRecordType->getDecl())) { Expr **Args = &From; unsigned NumArgs = 1; bool ListInitializing = false; if (InitListExpr *InitList = dyn_cast(From)) { // But first, see if there is an init-list-constructor that will work. OverloadingResult Result = IsInitializerListConstructorConversion( S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit == AllowedExplicit::All); if (Result != OR_No_Viable_Function) return Result; // Never mind. CandidateSet.clear( OverloadCandidateSet::CSK_InitByUserDefinedConversion); // If we're list-initializing, we pass the individual elements as // arguments, not the entire list. Args = InitList->getInits(); NumArgs = InitList->getNumInits(); ListInitializing = true; } for (auto *D : S.LookupConstructors(ToRecordDecl)) { auto Info = getConstructorInfo(D); if (!Info) continue; bool Usable = !Info.Constructor->isInvalidDecl(); if (!ListInitializing) Usable = Usable && Info.Constructor->isConvertingConstructor( /*AllowExplicit*/ true); if (Usable) { bool SuppressUserConversions = !ConstructorsOnly; // C++20 [over.best.ics.general]/4.5: // if the target is the first parameter of a constructor [of class // X] and the constructor [...] is a candidate by [...] the second // phase of [over.match.list] when the initializer list has exactly // one element that is itself an initializer list, [...] and the // conversion is to X or reference to cv X, user-defined conversion // sequences are not cnosidered. if (SuppressUserConversions && ListInitializing) { SuppressUserConversions = NumArgs == 1 && isa(Args[0]) && isFirstArgumentCompatibleWithType(S.Context, Info.Constructor, ToType); } if (Info.ConstructorTmpl) S.AddTemplateOverloadCandidate( Info.ConstructorTmpl, Info.FoundDecl, /*ExplicitArgs*/ nullptr, llvm::ArrayRef(Args, NumArgs), CandidateSet, SuppressUserConversions, /*PartialOverloading*/ false, AllowExplicit == AllowedExplicit::All); else // Allow one user-defined conversion when user specifies a // From->ToType conversion via an static cast (c-style, etc). S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, llvm::ArrayRef(Args, NumArgs), CandidateSet, SuppressUserConversions, /*PartialOverloading*/ false, AllowExplicit == AllowedExplicit::All); } } } } // Enumerate conversion functions, if we're allowed to. if (ConstructorsOnly || isa(From)) { } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { // No conversion functions from incomplete types. } else if (const RecordType *FromRecordType = From->getType()->getAs()) { if (CXXRecordDecl *FromRecordDecl = dyn_cast(FromRecordType->getDecl())) { // Add all of the conversion functions as candidates. const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { DeclAccessPair FoundDecl = I.getPair(); NamedDecl *D = FoundDecl.getDecl(); CXXRecordDecl *ActingContext = cast(D->getDeclContext()); if (isa(D)) D = cast(D)->getTargetDecl(); CXXConversionDecl *Conv; FunctionTemplateDecl *ConvTemplate; if ((ConvTemplate = dyn_cast(D))) Conv = cast(ConvTemplate->getTemplatedDecl()); else Conv = cast(D); if (ConvTemplate) S.AddTemplateConversionCandidate( ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit != AllowedExplicit::None); else S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit != AllowedExplicit::None); } } } bool HadMultipleCandidates = (CandidateSet.size() > 1); OverloadCandidateSet::iterator Best; switch (auto Result = CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { case OR_Success: case OR_Deleted: // Record the standard conversion we used and the conversion function. if (CXXConstructorDecl *Constructor = dyn_cast(Best->Function)) { // C++ [over.ics.user]p1: // If the user-defined conversion is specified by a // constructor (12.3.1), the initial standard conversion // sequence converts the source type to the type required by // the argument of the constructor. // if (isa(From)) { // Initializer lists don't have conversions as such. User.Before.setAsIdentityConversion(); } else { if (Best->Conversions[0].isEllipsis()) User.EllipsisConversion = true; else { User.Before = Best->Conversions[0].Standard; User.EllipsisConversion = false; } } User.HadMultipleCandidates = HadMultipleCandidates; User.ConversionFunction = Constructor; User.FoundConversionFunction = Best->FoundDecl; User.After.setAsIdentityConversion(); User.After.setFromType(Constructor->getFunctionObjectParameterType()); User.After.setAllToTypes(ToType); return Result; } if (CXXConversionDecl *Conversion = dyn_cast(Best->Function)) { // C++ [over.ics.user]p1: // // [...] If the user-defined conversion is specified by a // conversion function (12.3.2), the initial standard // conversion sequence converts the source type to the // implicit object parameter of the conversion function. User.Before = Best->Conversions[0].Standard; User.HadMultipleCandidates = HadMultipleCandidates; User.ConversionFunction = Conversion; User.FoundConversionFunction = Best->FoundDecl; User.EllipsisConversion = false; // C++ [over.ics.user]p2: // The second standard conversion sequence converts the // result of the user-defined conversion to the target type // for the sequence. Since an implicit conversion sequence // is an initialization, the special rules for // initialization by user-defined conversion apply when // selecting the best user-defined conversion for a // user-defined conversion sequence (see 13.3.3 and // 13.3.3.1). User.After = Best->FinalConversion; return Result; } llvm_unreachable("Not a constructor or conversion function?"); case OR_No_Viable_Function: return OR_No_Viable_Function; case OR_Ambiguous: return OR_Ambiguous; } llvm_unreachable("Invalid OverloadResult!"); } bool Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { ImplicitConversionSequence ICS; OverloadCandidateSet CandidateSet(From->getExprLoc(), OverloadCandidateSet::CSK_Normal); OverloadingResult OvResult = IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, CandidateSet, AllowedExplicit::None, false); if (!(OvResult == OR_Ambiguous || (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) return false; auto Cands = CandidateSet.CompleteCandidates( *this, OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, From); if (OvResult == OR_Ambiguous) Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) << From->getType() << ToType << From->getSourceRange(); else { // OR_No_Viable_Function && !CandidateSet.empty() if (!RequireCompleteType(From->getBeginLoc(), ToType, diag::err_typecheck_nonviable_condition_incomplete, From->getType(), From->getSourceRange())) Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) << false << From->getType() << From->getSourceRange() << ToType; } CandidateSet.NoteCandidates( *this, From, Cands); return true; } // Helper for compareConversionFunctions that gets the FunctionType that the // conversion-operator return value 'points' to, or nullptr. static const FunctionType * getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) { const FunctionType *ConvFuncTy = Conv->getType()->castAs(); const PointerType *RetPtrTy = ConvFuncTy->getReturnType()->getAs(); if (!RetPtrTy) return nullptr; return RetPtrTy->getPointeeType()->getAs(); } /// Compare the user-defined conversion functions or constructors /// of two user-defined conversion sequences to determine whether any ordering /// is possible. static ImplicitConversionSequence::CompareKind compareConversionFunctions(Sema &S, FunctionDecl *Function1, FunctionDecl *Function2) { CXXConversionDecl *Conv1 = dyn_cast_or_null(Function1); CXXConversionDecl *Conv2 = dyn_cast_or_null(Function2); if (!Conv1 || !Conv2) return ImplicitConversionSequence::Indistinguishable; if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda()) return ImplicitConversionSequence::Indistinguishable; // Objective-C++: // If both conversion functions are implicitly-declared conversions from // a lambda closure type to a function pointer and a block pointer, // respectively, always prefer the conversion to a function pointer, // because the function pointer is more lightweight and is more likely // to keep code working. if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) { bool Block1 = Conv1->getConversionType()->isBlockPointerType(); bool Block2 = Conv2->getConversionType()->isBlockPointerType(); if (Block1 != Block2) return Block1 ? ImplicitConversionSequence::Worse : ImplicitConversionSequence::Better; } // In order to support multiple calling conventions for the lambda conversion // operator (such as when the free and member function calling convention is // different), prefer the 'free' mechanism, followed by the calling-convention // of operator(). The latter is in place to support the MSVC-like solution of // defining ALL of the possible conversions in regards to calling-convention. const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1); const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2); if (Conv1FuncRet && Conv2FuncRet && Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) { CallingConv Conv1CC = Conv1FuncRet->getCallConv(); CallingConv Conv2CC = Conv2FuncRet->getCallConv(); CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator(); const auto *CallOpProto = CallOp->getType()->castAs(); CallingConv CallOpCC = CallOp->getType()->castAs()->getCallConv(); CallingConv DefaultFree = S.Context.getDefaultCallingConvention( CallOpProto->isVariadic(), /*IsCXXMethod=*/false); CallingConv DefaultMember = S.Context.getDefaultCallingConvention( CallOpProto->isVariadic(), /*IsCXXMethod=*/true); CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC}; for (CallingConv CC : PrefOrder) { if (Conv1CC == CC) return ImplicitConversionSequence::Better; if (Conv2CC == CC) return ImplicitConversionSequence::Worse; } } return ImplicitConversionSequence::Indistinguishable; } static bool hasDeprecatedStringLiteralToCharPtrConversion( const ImplicitConversionSequence &ICS) { return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || (ICS.isUserDefined() && ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); } /// CompareImplicitConversionSequences - Compare two implicit /// conversion sequences to determine whether one is better than the /// other or if they are indistinguishable (C++ 13.3.3.2). static ImplicitConversionSequence::CompareKind CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, const ImplicitConversionSequence& ICS1, const ImplicitConversionSequence& ICS2) { // (C++ 13.3.3.2p2): When comparing the basic forms of implicit // conversion sequences (as defined in 13.3.3.1) // -- a standard conversion sequence (13.3.3.1.1) is a better // conversion sequence than a user-defined conversion sequence or // an ellipsis conversion sequence, and // -- a user-defined conversion sequence (13.3.3.1.2) is a better // conversion sequence than an ellipsis conversion sequence // (13.3.3.1.3). // // C++0x [over.best.ics]p10: // For the purpose of ranking implicit conversion sequences as // described in 13.3.3.2, the ambiguous conversion sequence is // treated as a user-defined sequence that is indistinguishable // from any other user-defined conversion sequence. // String literal to 'char *' conversion has been deprecated in C++03. It has // been removed from C++11. We still accept this conversion, if it happens at // the best viable function. Otherwise, this conversion is considered worse // than ellipsis conversion. Consider this as an extension; this is not in the // standard. For example: // // int &f(...); // #1 // void f(char*); // #2 // void g() { int &r = f("foo"); } // // In C++03, we pick #2 as the best viable function. // In C++11, we pick #1 as the best viable function, because ellipsis // conversion is better than string-literal to char* conversion (since there // is no such conversion in C++11). If there was no #1 at all or #1 couldn't // convert arguments, #2 would be the best viable function in C++11. // If the best viable function has this conversion, a warning will be issued // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != hasDeprecatedStringLiteralToCharPtrConversion(ICS2) && // Ill-formedness must not differ ICS1.isBad() == ICS2.isBad()) return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) ? ImplicitConversionSequence::Worse : ImplicitConversionSequence::Better; if (ICS1.getKindRank() < ICS2.getKindRank()) return ImplicitConversionSequence::Better; if (ICS2.getKindRank() < ICS1.getKindRank()) return ImplicitConversionSequence::Worse; // The following checks require both conversion sequences to be of // the same kind. if (ICS1.getKind() != ICS2.getKind()) return ImplicitConversionSequence::Indistinguishable; ImplicitConversionSequence::CompareKind Result = ImplicitConversionSequence::Indistinguishable; // Two implicit conversion sequences of the same form are // indistinguishable conversion sequences unless one of the // following rules apply: (C++ 13.3.3.2p3): // List-initialization sequence L1 is a better conversion sequence than // list-initialization sequence L2 if: // - L1 converts to std::initializer_list for some X and L2 does not, or, // if not that, // — L1 and L2 convert to arrays of the same element type, and either the // number of elements n_1 initialized by L1 is less than the number of // elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to // an array of unknown bound and L1 does not, // even if one of the other rules in this paragraph would otherwise apply. if (!ICS1.isBad()) { bool StdInit1 = false, StdInit2 = false; if (ICS1.hasInitializerListContainerType()) StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(), nullptr); if (ICS2.hasInitializerListContainerType()) StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(), nullptr); if (StdInit1 != StdInit2) return StdInit1 ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; if (ICS1.hasInitializerListContainerType() && ICS2.hasInitializerListContainerType()) if (auto *CAT1 = S.Context.getAsConstantArrayType( ICS1.getInitializerListContainerType())) if (auto *CAT2 = S.Context.getAsConstantArrayType( ICS2.getInitializerListContainerType())) { if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(), CAT2->getElementType())) { // Both to arrays of the same element type if (CAT1->getSize() != CAT2->getSize()) // Different sized, the smaller wins return CAT1->getSize().ult(CAT2->getSize()) ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; if (ICS1.isInitializerListOfIncompleteArray() != ICS2.isInitializerListOfIncompleteArray()) // One is incomplete, it loses return ICS2.isInitializerListOfIncompleteArray() ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; } } } if (ICS1.isStandard()) // Standard conversion sequence S1 is a better conversion sequence than // standard conversion sequence S2 if [...] Result = CompareStandardConversionSequences(S, Loc, ICS1.Standard, ICS2.Standard); else if (ICS1.isUserDefined()) { // User-defined conversion sequence U1 is a better conversion // sequence than another user-defined conversion sequence U2 if // they contain the same user-defined conversion function or // constructor and if the second standard conversion sequence of // U1 is better than the second standard conversion sequence of // U2 (C++ 13.3.3.2p3). if (ICS1.UserDefined.ConversionFunction == ICS2.UserDefined.ConversionFunction) Result = CompareStandardConversionSequences(S, Loc, ICS1.UserDefined.After, ICS2.UserDefined.After); else Result = compareConversionFunctions(S, ICS1.UserDefined.ConversionFunction, ICS2.UserDefined.ConversionFunction); } return Result; } // Per 13.3.3.2p3, compare the given standard conversion sequences to // determine if one is a proper subset of the other. static ImplicitConversionSequence::CompareKind compareStandardConversionSubsets(ASTContext &Context, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2) { ImplicitConversionSequence::CompareKind Result = ImplicitConversionSequence::Indistinguishable; // the identity conversion sequence is considered to be a subsequence of // any non-identity conversion sequence if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) return ImplicitConversionSequence::Better; else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) return ImplicitConversionSequence::Worse; if (SCS1.Second != SCS2.Second) { if (SCS1.Second == ICK_Identity) Result = ImplicitConversionSequence::Better; else if (SCS2.Second == ICK_Identity) Result = ImplicitConversionSequence::Worse; else return ImplicitConversionSequence::Indistinguishable; } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) return ImplicitConversionSequence::Indistinguishable; if (SCS1.Third == SCS2.Third) { return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result : ImplicitConversionSequence::Indistinguishable; } if (SCS1.Third == ICK_Identity) return Result == ImplicitConversionSequence::Worse ? ImplicitConversionSequence::Indistinguishable : ImplicitConversionSequence::Better; if (SCS2.Third == ICK_Identity) return Result == ImplicitConversionSequence::Better ? ImplicitConversionSequence::Indistinguishable : ImplicitConversionSequence::Worse; return ImplicitConversionSequence::Indistinguishable; } /// Determine whether one of the given reference bindings is better /// than the other based on what kind of bindings they are. static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, const StandardConversionSequence &SCS2) { // C++0x [over.ics.rank]p3b4: // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an // implicit object parameter of a non-static member function declared // without a ref-qualifier, and *either* S1 binds an rvalue reference // to an rvalue and S2 binds an lvalue reference *or S1 binds an // lvalue reference to a function lvalue and S2 binds an rvalue // reference*. // // FIXME: Rvalue references. We're going rogue with the above edits, // because the semantics in the current C++0x working paper (N3225 at the // time of this writing) break the standard definition of std::forward // and std::reference_wrapper when dealing with references to functions. // Proposed wording changes submitted to CWG for consideration. if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) return false; return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && SCS2.IsLvalueReference) || (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); } enum class FixedEnumPromotion { None, ToUnderlyingType, ToPromotedUnderlyingType }; /// Returns kind of fixed enum promotion the \a SCS uses. static FixedEnumPromotion getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { if (SCS.Second != ICK_Integral_Promotion) return FixedEnumPromotion::None; QualType FromType = SCS.getFromType(); if (!FromType->isEnumeralType()) return FixedEnumPromotion::None; EnumDecl *Enum = FromType->castAs()->getDecl(); if (!Enum->isFixed()) return FixedEnumPromotion::None; QualType UnderlyingType = Enum->getIntegerType(); if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) return FixedEnumPromotion::ToUnderlyingType; return FixedEnumPromotion::ToPromotedUnderlyingType; } /// CompareStandardConversionSequences - Compare two standard /// conversion sequences to determine whether one is better than the /// other or if they are indistinguishable (C++ 13.3.3.2p3). static ImplicitConversionSequence::CompareKind CompareStandardConversionSequences(Sema &S, SourceLocation Loc, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2) { // Standard conversion sequence S1 is a better conversion sequence // than standard conversion sequence S2 if (C++ 13.3.3.2p3): // -- S1 is a proper subsequence of S2 (comparing the conversion // sequences in the canonical form defined by 13.3.3.1.1, // excluding any Lvalue Transformation; the identity conversion // sequence is considered to be a subsequence of any // non-identity conversion sequence) or, if not that, if (ImplicitConversionSequence::CompareKind CK = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) return CK; // -- the rank of S1 is better than the rank of S2 (by the rules // defined below), or, if not that, ImplicitConversionRank Rank1 = SCS1.getRank(); ImplicitConversionRank Rank2 = SCS2.getRank(); if (Rank1 < Rank2) return ImplicitConversionSequence::Better; else if (Rank2 < Rank1) return ImplicitConversionSequence::Worse; // (C++ 13.3.3.2p4): Two conversion sequences with the same rank // are indistinguishable unless one of the following rules // applies: // A conversion that is not a conversion of a pointer, or // pointer to member, to bool is better than another conversion // that is such a conversion. if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) return SCS2.isPointerConversionToBool() ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; // C++14 [over.ics.rank]p4b2: // This is retroactively applied to C++11 by CWG 1601. // // A conversion that promotes an enumeration whose underlying type is fixed // to its underlying type is better than one that promotes to the promoted // underlying type, if the two are different. FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && FEP1 != FEP2) return FEP1 == FixedEnumPromotion::ToUnderlyingType ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; // C++ [over.ics.rank]p4b2: // // If class B is derived directly or indirectly from class A, // conversion of B* to A* is better than conversion of B* to // void*, and conversion of A* to void* is better than conversion // of B* to void*. bool SCS1ConvertsToVoid = SCS1.isPointerConversionToVoidPointer(S.Context); bool SCS2ConvertsToVoid = SCS2.isPointerConversionToVoidPointer(S.Context); if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { // Exactly one of the conversion sequences is a conversion to // a void pointer; it's the worse conversion. return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { // Neither conversion sequence converts to a void pointer; compare // their derived-to-base conversions. if (ImplicitConversionSequence::CompareKind DerivedCK = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) return DerivedCK; } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { // Both conversion sequences are conversions to void // pointers. Compare the source types to determine if there's an // inheritance relationship in their sources. QualType FromType1 = SCS1.getFromType(); QualType FromType2 = SCS2.getFromType(); // Adjust the types we're converting from via the array-to-pointer // conversion, if we need to. if (SCS1.First == ICK_Array_To_Pointer) FromType1 = S.Context.getArrayDecayedType(FromType1); if (SCS2.First == ICK_Array_To_Pointer) FromType2 = S.Context.getArrayDecayedType(FromType2); QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) return ImplicitConversionSequence::Better; else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) return ImplicitConversionSequence::Worse; // Objective-C++: If one interface is more specific than the // other, it is the better one. const ObjCObjectPointerType* FromObjCPtr1 = FromType1->getAs(); const ObjCObjectPointerType* FromObjCPtr2 = FromType2->getAs(); if (FromObjCPtr1 && FromObjCPtr2) { bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, FromObjCPtr2); bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, FromObjCPtr1); if (AssignLeft != AssignRight) { return AssignLeft? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; } } } if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { // Check for a better reference binding based on the kind of bindings. if (isBetterReferenceBindingKind(SCS1, SCS2)) return ImplicitConversionSequence::Better; else if (isBetterReferenceBindingKind(SCS2, SCS1)) return ImplicitConversionSequence::Worse; } // Compare based on qualification conversions (C++ 13.3.3.2p3, // bullet 3). if (ImplicitConversionSequence::CompareKind QualCK = CompareQualificationConversions(S, SCS1, SCS2)) return QualCK; if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { // C++ [over.ics.rank]p3b4: // -- S1 and S2 are reference bindings (8.5.3), and the types to // which the references refer are the same type except for // top-level cv-qualifiers, and the type to which the reference // initialized by S2 refers is more cv-qualified than the type // to which the reference initialized by S1 refers. QualType T1 = SCS1.getToType(2); QualType T2 = SCS2.getToType(2); T1 = S.Context.getCanonicalType(T1); T2 = S.Context.getCanonicalType(T2); Qualifiers T1Quals, T2Quals; QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); if (UnqualT1 == UnqualT2) { // Objective-C++ ARC: If the references refer to objects with different // lifetimes, prefer bindings that don't change lifetime. if (SCS1.ObjCLifetimeConversionBinding != SCS2.ObjCLifetimeConversionBinding) { return SCS1.ObjCLifetimeConversionBinding ? ImplicitConversionSequence::Worse : ImplicitConversionSequence::Better; } // If the type is an array type, promote the element qualifiers to the // type for comparison. if (isa(T1) && T1Quals) T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); if (isa(T2) && T2Quals) T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); if (T2.isMoreQualifiedThan(T1)) return ImplicitConversionSequence::Better; if (T1.isMoreQualifiedThan(T2)) return ImplicitConversionSequence::Worse; } } // In Microsoft mode (below 19.28), prefer an integral conversion to a // floating-to-integral conversion if the integral conversion // is between types of the same size. // For example: // void f(float); // void f(int); // int main { // long a; // f(a); // } // Here, MSVC will call f(int) instead of generating a compile error // as clang will do in standard mode. if (S.getLangOpts().MSVCCompat && !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) && SCS1.Second == ICK_Integral_Conversion && SCS2.Second == ICK_Floating_Integral && S.Context.getTypeSize(SCS1.getFromType()) == S.Context.getTypeSize(SCS1.getToType(2))) return ImplicitConversionSequence::Better; // Prefer a compatible vector conversion over a lax vector conversion // For example: // // typedef float __v4sf __attribute__((__vector_size__(16))); // void f(vector float); // void f(vector signed int); // int main() { // __v4sf a; // f(a); // } // Here, we'd like to choose f(vector float) and not // report an ambiguous call error if (SCS1.Second == ICK_Vector_Conversion && SCS2.Second == ICK_Vector_Conversion) { bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( SCS1.getFromType(), SCS1.getToType(2)); bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( SCS2.getFromType(), SCS2.getToType(2)); if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) return SCS1IsCompatibleVectorConversion ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; } if (SCS1.Second == ICK_SVE_Vector_Conversion && SCS2.Second == ICK_SVE_Vector_Conversion) { bool SCS1IsCompatibleSVEVectorConversion = S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2)); bool SCS2IsCompatibleSVEVectorConversion = S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2)); if (SCS1IsCompatibleSVEVectorConversion != SCS2IsCompatibleSVEVectorConversion) return SCS1IsCompatibleSVEVectorConversion ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; } if (SCS1.Second == ICK_RVV_Vector_Conversion && SCS2.Second == ICK_RVV_Vector_Conversion) { bool SCS1IsCompatibleRVVVectorConversion = S.Context.areCompatibleRVVTypes(SCS1.getFromType(), SCS1.getToType(2)); bool SCS2IsCompatibleRVVVectorConversion = S.Context.areCompatibleRVVTypes(SCS2.getFromType(), SCS2.getToType(2)); if (SCS1IsCompatibleRVVVectorConversion != SCS2IsCompatibleRVVVectorConversion) return SCS1IsCompatibleRVVVectorConversion ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; } return ImplicitConversionSequence::Indistinguishable; } /// CompareQualificationConversions - Compares two standard conversion /// sequences to determine whether they can be ranked based on their /// qualification conversions (C++ 13.3.3.2p3 bullet 3). static ImplicitConversionSequence::CompareKind CompareQualificationConversions(Sema &S, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2) { // C++ [over.ics.rank]p3: // -- S1 and S2 differ only in their qualification conversion and // yield similar types T1 and T2 (C++ 4.4), respectively, [...] // [C++98] // [...] and the cv-qualification signature of type T1 is a proper subset // of the cv-qualification signature of type T2, and S1 is not the // deprecated string literal array-to-pointer conversion (4.2). // [C++2a] // [...] where T1 can be converted to T2 by a qualification conversion. if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) return ImplicitConversionSequence::Indistinguishable; // FIXME: the example in the standard doesn't use a qualification // conversion (!) QualType T1 = SCS1.getToType(2); QualType T2 = SCS2.getToType(2); T1 = S.Context.getCanonicalType(T1); T2 = S.Context.getCanonicalType(T2); assert(!T1->isReferenceType() && !T2->isReferenceType()); Qualifiers T1Quals, T2Quals; QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); // If the types are the same, we won't learn anything by unwrapping // them. if (UnqualT1 == UnqualT2) return ImplicitConversionSequence::Indistinguishable; // Don't ever prefer a standard conversion sequence that uses the deprecated // string literal array to pointer conversion. bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr; bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr; // Objective-C++ ARC: // Prefer qualification conversions not involving a change in lifetime // to qualification conversions that do change lifetime. if (SCS1.QualificationIncludesObjCLifetime && !SCS2.QualificationIncludesObjCLifetime) CanPick1 = false; if (SCS2.QualificationIncludesObjCLifetime && !SCS1.QualificationIncludesObjCLifetime) CanPick2 = false; bool ObjCLifetimeConversion; if (CanPick1 && !S.IsQualificationConversion(T1, T2, false, ObjCLifetimeConversion)) CanPick1 = false; // FIXME: In Objective-C ARC, we can have qualification conversions in both // directions, so we can't short-cut this second check in general. if (CanPick2 && !S.IsQualificationConversion(T2, T1, false, ObjCLifetimeConversion)) CanPick2 = false; if (CanPick1 != CanPick2) return CanPick1 ? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; return ImplicitConversionSequence::Indistinguishable; } /// CompareDerivedToBaseConversions - Compares two standard conversion /// sequences to determine whether they can be ranked based on their /// various kinds of derived-to-base conversions (C++ /// [over.ics.rank]p4b3). As part of these checks, we also look at /// conversions between Objective-C interface types. static ImplicitConversionSequence::CompareKind CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, const StandardConversionSequence& SCS1, const StandardConversionSequence& SCS2) { QualType FromType1 = SCS1.getFromType(); QualType ToType1 = SCS1.getToType(1); QualType FromType2 = SCS2.getFromType(); QualType ToType2 = SCS2.getToType(1); // Adjust the types we're converting from via the array-to-pointer // conversion, if we need to. if (SCS1.First == ICK_Array_To_Pointer) FromType1 = S.Context.getArrayDecayedType(FromType1); if (SCS2.First == ICK_Array_To_Pointer) FromType2 = S.Context.getArrayDecayedType(FromType2); // Canonicalize all of the types. FromType1 = S.Context.getCanonicalType(FromType1); ToType1 = S.Context.getCanonicalType(ToType1); FromType2 = S.Context.getCanonicalType(FromType2); ToType2 = S.Context.getCanonicalType(ToType2); // C++ [over.ics.rank]p4b3: // // If class B is derived directly or indirectly from class A and // class C is derived directly or indirectly from B, // // Compare based on pointer conversions. if (SCS1.Second == ICK_Pointer_Conversion && SCS2.Second == ICK_Pointer_Conversion && /*FIXME: Remove if Objective-C id conversions get their own rank*/ FromType1->isPointerType() && FromType2->isPointerType() && ToType1->isPointerType() && ToType2->isPointerType()) { QualType FromPointee1 = FromType1->castAs()->getPointeeType().getUnqualifiedType(); QualType ToPointee1 = ToType1->castAs()->getPointeeType().getUnqualifiedType(); QualType FromPointee2 = FromType2->castAs()->getPointeeType().getUnqualifiedType(); QualType ToPointee2 = ToType2->castAs()->getPointeeType().getUnqualifiedType(); // -- conversion of C* to B* is better than conversion of C* to A*, if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) return ImplicitConversionSequence::Better; else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) return ImplicitConversionSequence::Worse; } // -- conversion of B* to A* is better than conversion of C* to A*, if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) return ImplicitConversionSequence::Better; else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) return ImplicitConversionSequence::Worse; } } else if (SCS1.Second == ICK_Pointer_Conversion && SCS2.Second == ICK_Pointer_Conversion) { const ObjCObjectPointerType *FromPtr1 = FromType1->getAs(); const ObjCObjectPointerType *FromPtr2 = FromType2->getAs(); const ObjCObjectPointerType *ToPtr1 = ToType1->getAs(); const ObjCObjectPointerType *ToPtr2 = ToType2->getAs(); if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { // Apply the same conversion ranking rules for Objective-C pointer types // that we do for C++ pointers to class types. However, we employ the // Objective-C pseudo-subtyping relationship used for assignment of // Objective-C pointer types. bool FromAssignLeft = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); bool FromAssignRight = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); bool ToAssignLeft = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); bool ToAssignRight = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); // A conversion to an a non-id object pointer type or qualified 'id' // type is better than a conversion to 'id'. if (ToPtr1->isObjCIdType() && (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) return ImplicitConversionSequence::Worse; if (ToPtr2->isObjCIdType() && (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) return ImplicitConversionSequence::Better; // A conversion to a non-id object pointer type is better than a // conversion to a qualified 'id' type if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) return ImplicitConversionSequence::Worse; if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) return ImplicitConversionSequence::Better; // A conversion to an a non-Class object pointer type or qualified 'Class' // type is better than a conversion to 'Class'. if (ToPtr1->isObjCClassType() && (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) return ImplicitConversionSequence::Worse; if (ToPtr2->isObjCClassType() && (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) return ImplicitConversionSequence::Better; // A conversion to a non-Class object pointer type is better than a // conversion to a qualified 'Class' type. if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) return ImplicitConversionSequence::Worse; if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) return ImplicitConversionSequence::Better; // -- "conversion of C* to B* is better than conversion of C* to A*," if (S.Context.hasSameType(FromType1, FromType2) && !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && (ToAssignLeft != ToAssignRight)) { if (FromPtr1->isSpecialized()) { // "conversion of B * to B * is better than conversion of B * to // C *. bool IsFirstSame = FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); bool IsSecondSame = FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); if (IsFirstSame) { if (!IsSecondSame) return ImplicitConversionSequence::Better; } else if (IsSecondSame) return ImplicitConversionSequence::Worse; } return ToAssignLeft? ImplicitConversionSequence::Worse : ImplicitConversionSequence::Better; } // -- "conversion of B* to A* is better than conversion of C* to A*," if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && (FromAssignLeft != FromAssignRight)) return FromAssignLeft? ImplicitConversionSequence::Better : ImplicitConversionSequence::Worse; } } // Ranking of member-pointer types. if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { const auto *FromMemPointer1 = FromType1->castAs(); const auto *ToMemPointer1 = ToType1->castAs(); const auto *FromMemPointer2 = FromType2->castAs(); const auto *ToMemPointer2 = ToType2->castAs(); const Type *FromPointeeType1 = FromMemPointer1->getClass(); const Type *ToPointeeType1 = ToMemPointer1->getClass(); const Type *FromPointeeType2 = FromMemPointer2->getClass(); const Type *ToPointeeType2 = ToMemPointer2->getClass(); QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); // conversion of A::* to B::* is better than conversion of A::* to C::*, if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) return ImplicitConversionSequence::Worse; else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) return ImplicitConversionSequence::Better; } // conversion of B::* to C::* is better than conversion of A::* to C::* if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) return ImplicitConversionSequence::Better; else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) return ImplicitConversionSequence::Worse; } } if (SCS1.Second == ICK_Derived_To_Base) { // -- conversion of C to B is better than conversion of C to A, // -- binding of an expression of type C to a reference of type // B& is better than binding an expression of type C to a // reference of type A&, if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { if (S.IsDerivedFrom(Loc, ToType1, ToType2)) return ImplicitConversionSequence::Better; else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) return ImplicitConversionSequence::Worse; } // -- conversion of B to A is better than conversion of C to A. // -- binding of an expression of type B to a reference of type // A& is better than binding an expression of type C to a // reference of type A&, if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { if (S.IsDerivedFrom(Loc, FromType2, FromType1)) return ImplicitConversionSequence::Better; else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) return ImplicitConversionSequence::Worse; } } return ImplicitConversionSequence::Indistinguishable; } static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { if (!T.getQualifiers().hasUnaligned()) return T; Qualifiers Q; T = Ctx.getUnqualifiedArrayType(T, Q); Q.removeUnaligned(); return Ctx.getQualifiedType(T, Q); } /// CompareReferenceRelationship - Compare the two types T1 and T2 to /// determine whether they are reference-compatible, /// reference-related, or incompatible, for use in C++ initialization by /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference /// type, and the first type (T1) is the pointee type of the reference /// type being initialized. Sema::ReferenceCompareResult Sema::CompareReferenceRelationship(SourceLocation Loc, QualType OrigT1, QualType OrigT2, ReferenceConversions *ConvOut) { assert(!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"); assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); QualType T1 = Context.getCanonicalType(OrigT1); QualType T2 = Context.getCanonicalType(OrigT2); Qualifiers T1Quals, T2Quals; QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); ReferenceConversions ConvTmp; ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; Conv = ReferenceConversions(); // C++2a [dcl.init.ref]p4: // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is // reference-related to "cv2 T2" if T1 is similar to T2, or // T1 is a base class of T2. // "cv1 T1" is reference-compatible with "cv2 T2" if // a prvalue of type "pointer to cv2 T2" can be converted to the type // "pointer to cv1 T1" via a standard conversion sequence. // Check for standard conversions we can apply to pointers: derived-to-base // conversions, ObjC pointer conversions, and function pointer conversions. // (Qualification conversions are checked last.) QualType ConvertedT2; if (UnqualT1 == UnqualT2) { // Nothing to do. } else if (isCompleteType(Loc, OrigT2) && IsDerivedFrom(Loc, UnqualT2, UnqualT1)) Conv |= ReferenceConversions::DerivedToBase; else if (UnqualT1->isObjCObjectOrInterfaceType() && UnqualT2->isObjCObjectOrInterfaceType() && Context.canBindObjCObjectType(UnqualT1, UnqualT2)) Conv |= ReferenceConversions::ObjC; else if (UnqualT2->isFunctionType() && IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { Conv |= ReferenceConversions::Function; // No need to check qualifiers; function types don't have them. return Ref_Compatible; } bool ConvertedReferent = Conv != 0; // We can have a qualification conversion. Compute whether the types are // similar at the same time. bool PreviousToQualsIncludeConst = true; bool TopLevel = true; do { if (T1 == T2) break; // We will need a qualification conversion. Conv |= ReferenceConversions::Qualification; // Track whether we performed a qualification conversion anywhere other // than the top level. This matters for ranking reference bindings in // overload resolution. if (!TopLevel) Conv |= ReferenceConversions::NestedQualification; // MS compiler ignores __unaligned qualifier for references; do the same. T1 = withoutUnaligned(Context, T1); T2 = withoutUnaligned(Context, T2); // If we find a qualifier mismatch, the types are not reference-compatible, // but are still be reference-related if they're similar. bool ObjCLifetimeConversion = false; if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel, PreviousToQualsIncludeConst, ObjCLifetimeConversion)) return (ConvertedReferent || Context.hasSimilarType(T1, T2)) ? Ref_Related : Ref_Incompatible; // FIXME: Should we track this for any level other than the first? if (ObjCLifetimeConversion) Conv |= ReferenceConversions::ObjCLifetime; TopLevel = false; } while (Context.UnwrapSimilarTypes(T1, T2)); // At this point, if the types are reference-related, we must either have the // same inner type (ignoring qualifiers), or must have already worked out how // to convert the referent. return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) ? Ref_Compatible : Ref_Incompatible; } /// Look for a user-defined conversion to a value reference-compatible /// with DeclType. Return true if something definite is found. static bool FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, QualType DeclType, SourceLocation DeclLoc, Expr *Init, QualType T2, bool AllowRvalues, bool AllowExplicit) { assert(T2->isRecordType() && "Can only find conversions of record types."); auto *T2RecordDecl = cast(T2->castAs()->getDecl()); OverloadCandidateSet CandidateSet( DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { NamedDecl *D = *I; CXXRecordDecl *ActingDC = cast(D->getDeclContext()); if (isa(D)) D = cast(D)->getTargetDecl(); FunctionTemplateDecl *ConvTemplate = dyn_cast(D); CXXConversionDecl *Conv; if (ConvTemplate) Conv = cast(ConvTemplate->getTemplatedDecl()); else Conv = cast(D); if (AllowRvalues) { // If we are initializing an rvalue reference, don't permit conversion // functions that return lvalues. if (!ConvTemplate && DeclType->isRValueReferenceType()) { const ReferenceType *RefType = Conv->getConversionType()->getAs(); if (RefType && !RefType->getPointeeType()->isFunctionType()) continue; } if (!ConvTemplate && S.CompareReferenceRelationship( DeclLoc, Conv->getConversionType() .getNonReferenceType() .getUnqualifiedType(), DeclType.getNonReferenceType().getUnqualifiedType()) == Sema::Ref_Incompatible) continue; } else { // If the conversion function doesn't return a reference type, // it can't be considered for this conversion. An rvalue reference // is only acceptable if its referencee is a function type. const ReferenceType *RefType = Conv->getConversionType()->getAs(); if (!RefType || (!RefType->isLValueReferenceType() && !RefType->getPointeeType()->isFunctionType())) continue; } if (ConvTemplate) S.AddTemplateConversionCandidate( ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); else S.AddConversionCandidate( Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); } bool HadMultipleCandidates = (CandidateSet.size() > 1); OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { case OR_Success: // C++ [over.ics.ref]p1: // // [...] If the parameter binds directly to the result of // applying a conversion function to the argument // expression, the implicit conversion sequence is a // user-defined conversion sequence (13.3.3.1.2), with the // second standard conversion sequence either an identity // conversion or, if the conversion function returns an // entity of a type that is a derived class of the parameter // type, a derived-to-base Conversion. if (!Best->FinalConversion.DirectBinding) return false; ICS.setUserDefined(); ICS.UserDefined.Before = Best->Conversions[0].Standard; ICS.UserDefined.After = Best->FinalConversion; ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; ICS.UserDefined.ConversionFunction = Best->Function; ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; ICS.UserDefined.EllipsisConversion = false; assert(ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!"); return true; case OR_Ambiguous: ICS.setAmbiguous(); for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); Cand != CandidateSet.end(); ++Cand) if (Cand->Best) ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); return true; case OR_No_Viable_Function: case OR_Deleted: // There was no suitable conversion, or we found a deleted // conversion; continue with other checks. return false; } llvm_unreachable("Invalid OverloadResult!"); } /// Compute an implicit conversion sequence for reference /// initialization. static ImplicitConversionSequence TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, SourceLocation DeclLoc, bool SuppressUserConversions, bool AllowExplicit) { assert(DeclType->isReferenceType() && "Reference init needs a reference"); // Most paths end in a failed conversion. ImplicitConversionSequence ICS; ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); QualType T1 = DeclType->castAs()->getPointeeType(); QualType T2 = Init->getType(); // If the initializer is the address of an overloaded function, try // to resolve the overloaded function. If all goes well, T2 is the // type of the resulting function. if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { DeclAccessPair Found; if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, false, Found)) T2 = Fn->getType(); } // Compute some basic properties of the types and the initializer. bool isRValRef = DeclType->isRValueReferenceType(); Expr::Classification InitCategory = Init->Classify(S.Context); Sema::ReferenceConversions RefConv; Sema::ReferenceCompareResult RefRelationship = S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv); auto SetAsReferenceBinding = [&](bool BindsDirectly) { ICS.setStandard(); ICS.Standard.First = ICK_Identity; // FIXME: A reference binding can be a function conversion too. We should // consider that when ordering reference-to-function bindings. ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) ? ICK_Derived_To_Base : (RefConv & Sema::ReferenceConversions::ObjC) ? ICK_Compatible_Conversion : ICK_Identity; // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank // a reference binding that performs a non-top-level qualification // conversion as a qualification conversion, not as an identity conversion. ICS.Standard.Third = (RefConv & Sema::ReferenceConversions::NestedQualification) ? ICK_Qualification : ICK_Identity; ICS.Standard.setFromType(T2); ICS.Standard.setToType(0, T2); ICS.Standard.setToType(1, T1); ICS.Standard.setToType(2, T1); ICS.Standard.ReferenceBinding = true; ICS.Standard.DirectBinding = BindsDirectly; ICS.Standard.IsLvalueReference = !isRValRef; ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); ICS.Standard.BindsToRvalue = InitCategory.isRValue(); ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; ICS.Standard.ObjCLifetimeConversionBinding = (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; ICS.Standard.CopyConstructor = nullptr; ICS.Standard.DeprecatedStringLiteralToCharPtr = false; }; // C++0x [dcl.init.ref]p5: // A reference to type "cv1 T1" is initialized by an expression // of type "cv2 T2" as follows: // -- If reference is an lvalue reference and the initializer expression if (!isRValRef) { // -- is an lvalue (but is not a bit-field), and "cv1 T1" is // reference-compatible with "cv2 T2," or // // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { // C++ [over.ics.ref]p1: // When a parameter of reference type binds directly (8.5.3) // to an argument expression, the implicit conversion sequence // is the identity conversion, unless the argument expression // has a type that is a derived class of the parameter type, // in which case the implicit conversion sequence is a // derived-to-base Conversion (13.3.3.1). SetAsReferenceBinding(/*BindsDirectly=*/true); // Nothing more to do: the inaccessibility/ambiguity check for // derived-to-base conversions is suppressed when we're // computing the implicit conversion sequence (C++ // [over.best.ics]p2). return ICS; } // -- has a class type (i.e., T2 is a class type), where T1 is // not reference-related to T2, and can be implicitly // converted to an lvalue of type "cv3 T3," where "cv1 T1" // is reference-compatible with "cv3 T3" 92) (this // conversion is selected by enumerating the applicable // conversion functions (13.3.1.6) and choosing the best // one through overload resolution (13.3)), if (!SuppressUserConversions && T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && RefRelationship == Sema::Ref_Incompatible) { if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, Init, T2, /*AllowRvalues=*/false, AllowExplicit)) return ICS; } } // -- Otherwise, the reference shall be an lvalue reference to a // non-volatile const type (i.e., cv1 shall be const), or the reference // shall be an rvalue reference. if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) { if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible) ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); return ICS; } // -- If the initializer expression // // -- is an xvalue, class prvalue, array prvalue or function // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or if (RefRelationship == Sema::Ref_Compatible && (InitCategory.isXValue() || (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || (InitCategory.isLValue() && T2->isFunctionType()))) { // In C++11, this is always a direct binding. In C++98/03, it's a direct // binding unless we're binding to a class prvalue. // Note: Although xvalues wouldn't normally show up in C++98/03 code, we // allow the use of rvalue references in C++98/03 for the benefit of // standard library implementors; therefore, we need the xvalue check here. SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || !(InitCategory.isPRValue() || T2->isRecordType())); return ICS; } // -- has a class type (i.e., T2 is a class type), where T1 is not // reference-related to T2, and can be implicitly converted to // an xvalue, class prvalue, or function lvalue of type // "cv3 T3", where "cv1 T1" is reference-compatible with // "cv3 T3", // // then the reference is bound to the value of the initializer // expression in the first case and to the result of the conversion // in the second case (or, in either case, to an appropriate base // class subobject). if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && FindConversionForRefInit(S, ICS, DeclType, DeclLoc, Init, T2, /*AllowRvalues=*/true, AllowExplicit)) { // In the second case, if the reference is an rvalue reference // and the second standard conversion sequence of the // user-defined conversion sequence includes an lvalue-to-rvalue // conversion, the program is ill-formed. if (ICS.isUserDefined() && isRValRef && ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); return ICS; } // A temporary of function type cannot be created; don't even try. if (T1->isFunctionType()) return ICS; // -- Otherwise, a temporary of type "cv1 T1" is created and // initialized from the initializer expression using the // rules for a non-reference copy initialization (8.5). The // reference is then bound to the temporary. If T1 is // reference-related to T2, cv1 must be the same // cv-qualification as, or greater cv-qualification than, // cv2; otherwise, the program is ill-formed. if (RefRelationship == Sema::Ref_Related) { // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then // we would be reference-compatible or reference-compatible with // added qualification. But that wasn't the case, so the reference // initialization fails. // // Note that we only want to check address spaces and cvr-qualifiers here. // ObjC GC, lifetime and unaligned qualifiers aren't important. Qualifiers T1Quals = T1.getQualifiers(); Qualifiers T2Quals = T2.getQualifiers(); T1Quals.removeObjCGCAttr(); T1Quals.removeObjCLifetime(); T2Quals.removeObjCGCAttr(); T2Quals.removeObjCLifetime(); // MS compiler ignores __unaligned qualifier for references; do the same. T1Quals.removeUnaligned(); T2Quals.removeUnaligned(); if (!T1Quals.compatiblyIncludes(T2Quals)) return ICS; } // If at least one of the types is a class type, the types are not // related, and we aren't allowed any user conversions, the // reference binding fails. This case is important for breaking // recursion, since TryImplicitConversion below will attempt to // create a temporary through the use of a copy constructor. if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && (T1->isRecordType() || T2->isRecordType())) return ICS; // If T1 is reference-related to T2 and the reference is an rvalue // reference, the initializer expression shall not be an lvalue. if (RefRelationship >= Sema::Ref_Related && isRValRef && Init->Classify(S.Context).isLValue()) { ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType); return ICS; } // C++ [over.ics.ref]p2: // When a parameter of reference type is not bound directly to // an argument expression, the conversion sequence is the one // required to convert the argument expression to the // underlying type of the reference according to // 13.3.3.1. Conceptually, this conversion sequence corresponds // to copy-initializing a temporary of the underlying type with // the argument expression. Any difference in top-level // cv-qualification is subsumed by the initialization itself // and does not constitute a conversion. ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, AllowedExplicit::None, /*InOverloadResolution=*/false, /*CStyle=*/false, /*AllowObjCWritebackConversion=*/false, /*AllowObjCConversionOnExplicit=*/false); // Of course, that's still a reference binding. if (ICS.isStandard()) { ICS.Standard.ReferenceBinding = true; ICS.Standard.IsLvalueReference = !isRValRef; ICS.Standard.BindsToFunctionLvalue = false; ICS.Standard.BindsToRvalue = true; ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; ICS.Standard.ObjCLifetimeConversionBinding = false; } else if (ICS.isUserDefined()) { const ReferenceType *LValRefType = ICS.UserDefined.ConversionFunction->getReturnType() ->getAs(); // C++ [over.ics.ref]p3: // Except for an implicit object parameter, for which see 13.3.1, a // standard conversion sequence cannot be formed if it requires [...] // binding an rvalue reference to an lvalue other than a function // lvalue. // Note that the function case is not possible here. if (isRValRef && LValRefType) { ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); return ICS; } ICS.UserDefined.After.ReferenceBinding = true; ICS.UserDefined.After.IsLvalueReference = !isRValRef; ICS.UserDefined.After.BindsToFunctionLvalue = false; ICS.UserDefined.After.BindsToRvalue = !LValRefType; ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; } return ICS; } static ImplicitConversionSequence TryCopyInitialization(Sema &S, Expr *From, QualType ToType, bool SuppressUserConversions, bool InOverloadResolution, bool AllowObjCWritebackConversion, bool AllowExplicit = false); /// TryListConversion - Try to copy-initialize a value of type ToType from the /// initializer list From. static ImplicitConversionSequence TryListConversion(Sema &S, InitListExpr *From, QualType ToType, bool SuppressUserConversions, bool InOverloadResolution, bool AllowObjCWritebackConversion) { // C++11 [over.ics.list]p1: // When an argument is an initializer list, it is not an expression and // special rules apply for converting it to a parameter type. ImplicitConversionSequence Result; Result.setBad(BadConversionSequence::no_conversion, From, ToType); // We need a complete type for what follows. With one C++20 exception, // incomplete types can never be initialized from init lists. QualType InitTy = ToType; const ArrayType *AT = S.Context.getAsArrayType(ToType); if (AT && S.getLangOpts().CPlusPlus20) if (const auto *IAT = dyn_cast(AT)) // C++20 allows list initialization of an incomplete array type. InitTy = IAT->getElementType(); if (!S.isCompleteType(From->getBeginLoc(), InitTy)) return Result; // C++20 [over.ics.list]/2: // If the initializer list is a designated-initializer-list, a conversion // is only possible if the parameter has an aggregate type // // FIXME: The exception for reference initialization here is not part of the // language rules, but follow other compilers in adding it as a tentative DR // resolution. bool IsDesignatedInit = From->hasDesignatedInit(); if (!ToType->isAggregateType() && !ToType->isReferenceType() && IsDesignatedInit) return Result; - // Per DR1467 and DR2137: - // If the parameter type is an aggregate class X and the initializer list - // has a single element of type cv U, where U is X or a class derived from - // X, the implicit conversion sequence is the one required to convert the - // element to the parameter type. + // Per DR1467: + // If the parameter type is a class X and the initializer list has a single + // element of type cv U, where U is X or a class derived from X, the + // implicit conversion sequence is the one required to convert the element + // to the parameter type. // // Otherwise, if the parameter type is a character array [... ] // and the initializer list has a single element that is an // appropriately-typed string literal (8.5.2 [dcl.init.string]), the // implicit conversion sequence is the identity conversion. if (From->getNumInits() == 1 && !IsDesignatedInit) { - if (ToType->isRecordType() && ToType->isAggregateType()) { + if (ToType->isRecordType()) { QualType InitType = From->getInit(0)->getType(); if (S.Context.hasSameUnqualifiedType(InitType, ToType) || S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) return TryCopyInitialization(S, From->getInit(0), ToType, SuppressUserConversions, InOverloadResolution, AllowObjCWritebackConversion); } if (AT && S.IsStringInit(From->getInit(0), AT)) { InitializedEntity Entity = InitializedEntity::InitializeParameter(S.Context, ToType, /*Consumed=*/false); if (S.CanPerformCopyInitialization(Entity, From)) { Result.setStandard(); Result.Standard.setAsIdentityConversion(); Result.Standard.setFromType(ToType); Result.Standard.setAllToTypes(ToType); return Result; } } } // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). // C++11 [over.ics.list]p2: // If the parameter type is std::initializer_list or "array of X" and // all the elements can be implicitly converted to X, the implicit // conversion sequence is the worst conversion necessary to convert an // element of the list to X. // // C++14 [over.ics.list]p3: // Otherwise, if the parameter type is "array of N X", if the initializer // list has exactly N elements or if it has fewer than N elements and X is // default-constructible, and if all the elements of the initializer list // can be implicitly converted to X, the implicit conversion sequence is // the worst conversion necessary to convert an element of the list to X. if ((AT || S.isStdInitializerList(ToType, &InitTy)) && !IsDesignatedInit) { unsigned e = From->getNumInits(); ImplicitConversionSequence DfltElt; DfltElt.setBad(BadConversionSequence::no_conversion, QualType(), QualType()); QualType ContTy = ToType; bool IsUnbounded = false; if (AT) { InitTy = AT->getElementType(); if (ConstantArrayType const *CT = dyn_cast(AT)) { if (CT->getSize().ult(e)) { // Too many inits, fatally bad Result.setBad(BadConversionSequence::too_many_initializers, From, ToType); Result.setInitializerListContainerType(ContTy, IsUnbounded); return Result; } if (CT->getSize().ugt(e)) { // Need an init from empty {}, is there one? InitListExpr EmptyList(S.Context, From->getEndLoc(), std::nullopt, From->getEndLoc()); EmptyList.setType(S.Context.VoidTy); DfltElt = TryListConversion( S, &EmptyList, InitTy, SuppressUserConversions, InOverloadResolution, AllowObjCWritebackConversion); if (DfltElt.isBad()) { // No {} init, fatally bad Result.setBad(BadConversionSequence::too_few_initializers, From, ToType); Result.setInitializerListContainerType(ContTy, IsUnbounded); return Result; } } } else { assert(isa(AT) && "Expected incomplete array"); IsUnbounded = true; if (!e) { // Cannot convert to zero-sized. Result.setBad(BadConversionSequence::too_few_initializers, From, ToType); Result.setInitializerListContainerType(ContTy, IsUnbounded); return Result; } llvm::APInt Size(S.Context.getTypeSize(S.Context.getSizeType()), e); ContTy = S.Context.getConstantArrayType(InitTy, Size, nullptr, ArraySizeModifier::Normal, 0); } } Result.setStandard(); Result.Standard.setAsIdentityConversion(); Result.Standard.setFromType(InitTy); Result.Standard.setAllToTypes(InitTy); for (unsigned i = 0; i < e; ++i) { Expr *Init = From->getInit(i); ImplicitConversionSequence ICS = TryCopyInitialization( S, Init, InitTy, SuppressUserConversions, InOverloadResolution, AllowObjCWritebackConversion); // Keep the worse conversion seen so far. // FIXME: Sequences are not totally ordered, so 'worse' can be // ambiguous. CWG has been informed. if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS, Result) == ImplicitConversionSequence::Worse) { Result = ICS; // Bail as soon as we find something unconvertible. if (Result.isBad()) { Result.setInitializerListContainerType(ContTy, IsUnbounded); return Result; } } } // If we needed any implicit {} initialization, compare that now. // over.ics.list/6 indicates we should compare that conversion. Again CWG // has been informed that this might not be the best thing. if (!DfltElt.isBad() && CompareImplicitConversionSequences( S, From->getEndLoc(), DfltElt, Result) == ImplicitConversionSequence::Worse) Result = DfltElt; // Record the type being initialized so that we may compare sequences Result.setInitializerListContainerType(ContTy, IsUnbounded); return Result; } // C++14 [over.ics.list]p4: // C++11 [over.ics.list]p3: // Otherwise, if the parameter is a non-aggregate class X and overload // resolution chooses a single best constructor [...] the implicit // conversion sequence is a user-defined conversion sequence. If multiple // constructors are viable but none is better than the others, the // implicit conversion sequence is a user-defined conversion sequence. if (ToType->isRecordType() && !ToType->isAggregateType()) { // This function can deal with initializer lists. return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, AllowedExplicit::None, InOverloadResolution, /*CStyle=*/false, AllowObjCWritebackConversion, /*AllowObjCConversionOnExplicit=*/false); } // C++14 [over.ics.list]p5: // C++11 [over.ics.list]p4: // Otherwise, if the parameter has an aggregate type which can be // initialized from the initializer list [...] the implicit conversion // sequence is a user-defined conversion sequence. if (ToType->isAggregateType()) { // Type is an aggregate, argument is an init list. At this point it comes // down to checking whether the initialization works. // FIXME: Find out whether this parameter is consumed or not. InitializedEntity Entity = InitializedEntity::InitializeParameter(S.Context, ToType, /*Consumed=*/false); if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, From)) { Result.setUserDefined(); Result.UserDefined.Before.setAsIdentityConversion(); // Initializer lists don't have a type. Result.UserDefined.Before.setFromType(QualType()); Result.UserDefined.Before.setAllToTypes(QualType()); Result.UserDefined.After.setAsIdentityConversion(); Result.UserDefined.After.setFromType(ToType); Result.UserDefined.After.setAllToTypes(ToType); Result.UserDefined.ConversionFunction = nullptr; } return Result; } // C++14 [over.ics.list]p6: // C++11 [over.ics.list]p5: // Otherwise, if the parameter is a reference, see 13.3.3.1.4. if (ToType->isReferenceType()) { // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't // mention initializer lists in any way. So we go by what list- // initialization would do and try to extrapolate from that. QualType T1 = ToType->castAs()->getPointeeType(); // If the initializer list has a single element that is reference-related // to the parameter type, we initialize the reference from that. if (From->getNumInits() == 1 && !IsDesignatedInit) { Expr *Init = From->getInit(0); QualType T2 = Init->getType(); // If the initializer is the address of an overloaded function, try // to resolve the overloaded function. If all goes well, T2 is the // type of the resulting function. if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { DeclAccessPair Found; if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( Init, ToType, false, Found)) T2 = Fn->getType(); } // Compute some basic properties of the types and the initializer. Sema::ReferenceCompareResult RefRelationship = S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2); if (RefRelationship >= Sema::Ref_Related) { return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), SuppressUserConversions, /*AllowExplicit=*/false); } } // Otherwise, we bind the reference to a temporary created from the // initializer list. Result = TryListConversion(S, From, T1, SuppressUserConversions, InOverloadResolution, AllowObjCWritebackConversion); if (Result.isFailure()) return Result; assert(!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."); // Can we even bind to a temporary? if (ToType->isRValueReferenceType() || (T1.isConstQualified() && !T1.isVolatileQualified())) { StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : Result.UserDefined.After; SCS.ReferenceBinding = true; SCS.IsLvalueReference = ToType->isLValueReferenceType(); SCS.BindsToRvalue = true; SCS.BindsToFunctionLvalue = false; SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; SCS.ObjCLifetimeConversionBinding = false; } else Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, From, ToType); return Result; } // C++14 [over.ics.list]p7: // C++11 [over.ics.list]p6: // Otherwise, if the parameter type is not a class: if (!ToType->isRecordType()) { // - if the initializer list has one element that is not itself an // initializer list, the implicit conversion sequence is the one // required to convert the element to the parameter type. unsigned NumInits = From->getNumInits(); if (NumInits == 1 && !isa(From->getInit(0))) Result = TryCopyInitialization(S, From->getInit(0), ToType, SuppressUserConversions, InOverloadResolution, AllowObjCWritebackConversion); // - if the initializer list has no elements, the implicit conversion // sequence is the identity conversion. else if (NumInits == 0) { Result.setStandard(); Result.Standard.setAsIdentityConversion(); Result.Standard.setFromType(ToType); Result.Standard.setAllToTypes(ToType); } return Result; } // C++14 [over.ics.list]p8: // C++11 [over.ics.list]p7: // In all cases other than those enumerated above, no conversion is possible return Result; } /// TryCopyInitialization - Try to copy-initialize a value of type /// ToType from the expression From. Return the implicit conversion /// sequence required to pass this argument, which may be a bad /// conversion sequence (meaning that the argument cannot be passed to /// a parameter of this type). If @p SuppressUserConversions, then we /// do not permit any user-defined conversion sequences. static ImplicitConversionSequence TryCopyInitialization(Sema &S, Expr *From, QualType ToType, bool SuppressUserConversions, bool InOverloadResolution, bool AllowObjCWritebackConversion, bool AllowExplicit) { if (InitListExpr *FromInitList = dyn_cast(From)) return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, InOverloadResolution,AllowObjCWritebackConversion); if (ToType->isReferenceType()) return TryReferenceInit(S, From, ToType, /*FIXME:*/ From->getBeginLoc(), SuppressUserConversions, AllowExplicit); return TryImplicitConversion(S, From, ToType, SuppressUserConversions, AllowedExplicit::None, InOverloadResolution, /*CStyle=*/false, AllowObjCWritebackConversion, /*AllowObjCConversionOnExplicit=*/false); } static bool TryCopyInitialization(const CanQualType FromQTy, const CanQualType ToQTy, Sema &S, SourceLocation Loc, ExprValueKind FromVK) { OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); ImplicitConversionSequence ICS = TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); return !ICS.isBad(); } /// TryObjectArgumentInitialization - Try to initialize the object /// parameter of the given member function (@c Method) from the /// expression @p From. static ImplicitConversionSequence TryObjectArgumentInitialization( Sema &S, SourceLocation Loc, QualType FromType, Expr::Classification FromClassification, CXXMethodDecl *Method, const CXXRecordDecl *ActingContext, bool InOverloadResolution = false, QualType ExplicitParameterType = QualType(), bool SuppressUserConversion = false) { // We need to have an object of class type. if (const auto *PT = FromType->getAs()) { FromType = PT->getPointeeType(); // When we had a pointer, it's implicitly dereferenced, so we // better have an lvalue. assert(FromClassification.isLValue()); } auto ValueKindFromClassification = [](Expr::Classification C) { if (C.isPRValue()) return clang::VK_PRValue; if (C.isXValue()) return VK_XValue; return clang::VK_LValue; }; if (Method->isExplicitObjectMemberFunction()) { if (ExplicitParameterType.isNull()) ExplicitParameterType = Method->getFunctionObjectParameterReferenceType(); OpaqueValueExpr TmpExpr(Loc, FromType.getNonReferenceType(), ValueKindFromClassification(FromClassification)); ImplicitConversionSequence ICS = TryCopyInitialization( S, &TmpExpr, ExplicitParameterType, SuppressUserConversion, /*InOverloadResolution=*/true, false); if (ICS.isBad()) ICS.Bad.FromExpr = nullptr; return ICS; } assert(FromType->isRecordType()); QualType ClassType = S.Context.getTypeDeclType(ActingContext); // [class.dtor]p2: A destructor can be invoked for a const, volatile or // const volatile object. Qualifiers Quals = Method->getMethodQualifiers(); if (isa(Method)) { Quals.addConst(); Quals.addVolatile(); } QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); // Set up the conversion sequence as a "bad" conversion, to allow us // to exit early. ImplicitConversionSequence ICS; // C++0x [over.match.funcs]p4: // For non-static member functions, the type of the implicit object // parameter is // // - "lvalue reference to cv X" for functions declared without a // ref-qualifier or with the & ref-qualifier // - "rvalue reference to cv X" for functions declared with the && // ref-qualifier // // where X is the class of which the function is a member and cv is the // cv-qualification on the member function declaration. // // However, when finding an implicit conversion sequence for the argument, we // are not allowed to perform user-defined conversions // (C++ [over.match.funcs]p5). We perform a simplified version of // reference binding here, that allows class rvalues to bind to // non-constant references. // First check the qualifiers. QualType FromTypeCanon = S.Context.getCanonicalType(FromType); // MSVC ignores __unaligned qualifier for overload candidates; do the same. if (ImplicitParamType.getCVRQualifiers() != FromTypeCanon.getLocalCVRQualifiers() && !ImplicitParamType.isAtLeastAsQualifiedAs( withoutUnaligned(S.Context, FromTypeCanon))) { ICS.setBad(BadConversionSequence::bad_qualifiers, FromType, ImplicitParamType); return ICS; } if (FromTypeCanon.hasAddressSpace()) { Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { ICS.setBad(BadConversionSequence::bad_qualifiers, FromType, ImplicitParamType); return ICS; } } // Check that we have either the same type or a derived type. It // affects the conversion rank. QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); ImplicitConversionKind SecondKind; if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { SecondKind = ICK_Identity; } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) { SecondKind = ICK_Derived_To_Base; } else if (!Method->isExplicitObjectMemberFunction()) { ICS.setBad(BadConversionSequence::unrelated_class, FromType, ImplicitParamType); return ICS; } // Check the ref-qualifier. switch (Method->getRefQualifier()) { case RQ_None: // Do nothing; we don't care about lvalueness or rvalueness. break; case RQ_LValue: if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { // non-const lvalue reference cannot bind to an rvalue ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, ImplicitParamType); return ICS; } break; case RQ_RValue: if (!FromClassification.isRValue()) { // rvalue reference cannot bind to an lvalue ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, ImplicitParamType); return ICS; } break; } // Success. Mark this as a reference binding. ICS.setStandard(); ICS.Standard.setAsIdentityConversion(); ICS.Standard.Second = SecondKind; ICS.Standard.setFromType(FromType); ICS.Standard.setAllToTypes(ImplicitParamType); ICS.Standard.ReferenceBinding = true; ICS.Standard.DirectBinding = true; ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; ICS.Standard.BindsToFunctionLvalue = false; ICS.Standard.BindsToRvalue = FromClassification.isRValue(); ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = (Method->getRefQualifier() == RQ_None); return ICS; } /// PerformObjectArgumentInitialization - Perform initialization of /// the implicit object parameter for the given Method with the given /// expression. ExprResult Sema::PerformImplicitObjectArgumentInitialization( Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, CXXMethodDecl *Method) { QualType FromRecordType, DestType; QualType ImplicitParamRecordType = Method->getFunctionObjectParameterType(); Expr::Classification FromClassification; if (const PointerType *PT = From->getType()->getAs()) { FromRecordType = PT->getPointeeType(); DestType = Method->getThisType(); FromClassification = Expr::Classification::makeSimpleLValue(); } else { FromRecordType = From->getType(); DestType = ImplicitParamRecordType; FromClassification = From->Classify(Context); // When performing member access on a prvalue, materialize a temporary. if (From->isPRValue()) { From = CreateMaterializeTemporaryExpr(FromRecordType, From, Method->getRefQualifier() != RefQualifierKind::RQ_RValue); } } // Note that we always use the true parent context when performing // the actual argument initialization. ImplicitConversionSequence ICS = TryObjectArgumentInitialization( *this, From->getBeginLoc(), From->getType(), FromClassification, Method, Method->getParent()); if (ICS.isBad()) { switch (ICS.Bad.Kind) { case BadConversionSequence::bad_qualifiers: { Qualifiers FromQs = FromRecordType.getQualifiers(); Qualifiers ToQs = DestType.getQualifiers(); unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); if (CVR) { Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) << Method->getDeclName() << FromRecordType << (CVR - 1) << From->getSourceRange(); Diag(Method->getLocation(), diag::note_previous_decl) << Method->getDeclName(); return ExprError(); } break; } case BadConversionSequence::lvalue_ref_to_rvalue: case BadConversionSequence::rvalue_ref_to_lvalue: { bool IsRValueQualified = Method->getRefQualifier() == RefQualifierKind::RQ_RValue; Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) << Method->getDeclName() << FromClassification.isRValue() << IsRValueQualified; Diag(Method->getLocation(), diag::note_previous_decl) << Method->getDeclName(); return ExprError(); } case BadConversionSequence::no_conversion: case BadConversionSequence::unrelated_class: break; case BadConversionSequence::too_few_initializers: case BadConversionSequence::too_many_initializers: llvm_unreachable("Lists are not objects"); } return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); } if (ICS.Standard.Second == ICK_Derived_To_Base) { ExprResult FromRes = PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); if (FromRes.isInvalid()) return ExprError(); From = FromRes.get(); } if (!Context.hasSameType(From->getType(), DestType)) { CastKind CK; QualType PteeTy = DestType->getPointeeType(); LangAS DestAS = PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); if (FromRecordType.getAddressSpace() != DestAS) CK = CK_AddressSpaceConversion; else CK = CK_NoOp; From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); } return From; } /// TryContextuallyConvertToBool - Attempt to contextually convert the /// expression From to bool (C++0x [conv]p3). static ImplicitConversionSequence TryContextuallyConvertToBool(Sema &S, Expr *From) { // C++ [dcl.init]/17.8: // - Otherwise, if the initialization is direct-initialization, the source // type is std::nullptr_t, and the destination type is bool, the initial // value of the object being initialized is false. if (From->getType()->isNullPtrType()) return ImplicitConversionSequence::getNullptrToBool(From->getType(), S.Context.BoolTy, From->isGLValue()); // All other direct-initialization of bool is equivalent to an implicit // conversion to bool in which explicit conversions are permitted. return TryImplicitConversion(S, From, S.Context.BoolTy, /*SuppressUserConversions=*/false, AllowedExplicit::Conversions, /*InOverloadResolution=*/false, /*CStyle=*/false, /*AllowObjCWritebackConversion=*/false, /*AllowObjCConversionOnExplicit=*/false); } /// PerformContextuallyConvertToBool - Perform a contextual conversion /// of the expression From to bool (C++0x [conv]p3). ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { if (checkPlaceholderForOverload(*this, From)) return ExprError(); ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); if (!ICS.isBad()) return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) << From->getType() << From->getSourceRange(); return ExprError(); } /// Check that the specified conversion is permitted in a converted constant /// expression, according to C++11 [expr.const]p3. Return true if the conversion /// is acceptable. static bool CheckConvertedConstantConversions(Sema &S, StandardConversionSequence &SCS) { // Since we know that the target type is an integral or unscoped enumeration // type, most conversion kinds are impossible. All possible First and Third // conversions are fine. switch (SCS.Second) { case ICK_Identity: case ICK_Integral_Promotion: case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. case ICK_Zero_Queue_Conversion: return true; case ICK_Boolean_Conversion: // Conversion from an integral or unscoped enumeration type to bool is // classified as ICK_Boolean_Conversion, but it's also arguably an integral // conversion, so we allow it in a converted constant expression. // // FIXME: Per core issue 1407, we should not allow this, but that breaks // a lot of popular code. We should at least add a warning for this // (non-conforming) extension. return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && SCS.getToType(2)->isBooleanType(); case ICK_Pointer_Conversion: case ICK_Pointer_Member: // C++1z: null pointer conversions and null member pointer conversions are // only permitted if the source type is std::nullptr_t. return SCS.getFromType()->isNullPtrType(); case ICK_Floating_Promotion: case ICK_Complex_Promotion: case ICK_Floating_Conversion: case ICK_Complex_Conversion: case ICK_Floating_Integral: case ICK_Compatible_Conversion: case ICK_Derived_To_Base: case ICK_Vector_Conversion: case ICK_SVE_Vector_Conversion: case ICK_RVV_Vector_Conversion: case ICK_Vector_Splat: case ICK_Complex_Real: case ICK_Block_Pointer_Conversion: case ICK_TransparentUnionConversion: case ICK_Writeback_Conversion: case ICK_Zero_Event_Conversion: case ICK_C_Only_Conversion: case ICK_Incompatible_Pointer_Conversion: case ICK_Fixed_Point_Conversion: return false; case ICK_Lvalue_To_Rvalue: case ICK_Array_To_Pointer: case ICK_Function_To_Pointer: llvm_unreachable("found a first conversion kind in Second"); case ICK_Function_Conversion: case ICK_Qualification: llvm_unreachable("found a third conversion kind in Second"); case ICK_Num_Conversion_Kinds: break; } llvm_unreachable("unknown conversion kind"); } /// BuildConvertedConstantExpression - Check that the expression From is a /// converted constant expression of type T, perform the conversion but /// does not evaluate the expression static ExprResult BuildConvertedConstantExpression(Sema &S, Expr *From, QualType T, Sema::CCEKind CCE, NamedDecl *Dest, APValue &PreNarrowingValue) { assert(S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"); if (checkPlaceholderForOverload(S, From)) return ExprError(); // C++1z [expr.const]p3: // A converted constant expression of type T is an expression, // implicitly converted to type T, where the converted // expression is a constant expression and the implicit conversion // sequence contains only [... list of conversions ...]. ImplicitConversionSequence ICS = (CCE == Sema::CCEK_ExplicitBool || CCE == Sema::CCEK_Noexcept) ? TryContextuallyConvertToBool(S, From) : TryCopyInitialization(S, From, T, /*SuppressUserConversions=*/false, /*InOverloadResolution=*/false, /*AllowObjCWritebackConversion=*/false, /*AllowExplicit=*/false); StandardConversionSequence *SCS = nullptr; switch (ICS.getKind()) { case ImplicitConversionSequence::StandardConversion: SCS = &ICS.Standard; break; case ImplicitConversionSequence::UserDefinedConversion: if (T->isRecordType()) SCS = &ICS.UserDefined.Before; else SCS = &ICS.UserDefined.After; break; case ImplicitConversionSequence::AmbiguousConversion: case ImplicitConversionSequence::BadConversion: if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) return S.Diag(From->getBeginLoc(), diag::err_typecheck_converted_constant_expression) << From->getType() << From->getSourceRange() << T; return ExprError(); case ImplicitConversionSequence::EllipsisConversion: case ImplicitConversionSequence::StaticObjectArgumentConversion: llvm_unreachable("bad conversion in converted constant expression"); } // Check that we would only use permitted conversions. if (!CheckConvertedConstantConversions(S, *SCS)) { return S.Diag(From->getBeginLoc(), diag::err_typecheck_converted_constant_expression_disallowed) << From->getType() << From->getSourceRange() << T; } // [...] and where the reference binding (if any) binds directly. if (SCS->ReferenceBinding && !SCS->DirectBinding) { return S.Diag(From->getBeginLoc(), diag::err_typecheck_converted_constant_expression_indirect) << From->getType() << From->getSourceRange() << T; } // 'TryCopyInitialization' returns incorrect info for attempts to bind // a reference to a bit-field due to C++ [over.ics.ref]p4. Namely, // 'SCS->DirectBinding' occurs to be set to 'true' despite it is not // the direct binding according to C++ [dcl.init.ref]p5. Hence, check this // case explicitly. if (From->refersToBitField() && T.getTypePtr()->isReferenceType()) { return S.Diag(From->getBeginLoc(), diag::err_reference_bind_to_bitfield_in_cce) << From->getSourceRange(); } // Usually we can simply apply the ImplicitConversionSequence we formed // earlier, but that's not guaranteed to work when initializing an object of // class type. ExprResult Result; if (T->isRecordType()) { assert(CCE == Sema::CCEK_TemplateArg && "unexpected class type converted constant expr"); Result = S.PerformCopyInitialization( InitializedEntity::InitializeTemplateParameter( T, cast(Dest)), SourceLocation(), From); } else { Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); } if (Result.isInvalid()) return Result; // C++2a [intro.execution]p5: // A full-expression is [...] a constant-expression [...] Result = S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), /*DiscardedValue=*/false, /*IsConstexpr=*/true, CCE == Sema::CCEKind::CCEK_TemplateArg); if (Result.isInvalid()) return Result; // Check for a narrowing implicit conversion. bool ReturnPreNarrowingValue = false; QualType PreNarrowingType; switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, PreNarrowingType)) { case NK_Dependent_Narrowing: // Implicit conversion to a narrower type, but the expression is // value-dependent so we can't tell whether it's actually narrowing. case NK_Variable_Narrowing: // Implicit conversion to a narrower type, and the value is not a constant // expression. We'll diagnose this in a moment. case NK_Not_Narrowing: break; case NK_Constant_Narrowing: if (CCE == Sema::CCEK_ArrayBound && PreNarrowingType->isIntegralOrEnumerationType() && PreNarrowingValue.isInt()) { // Don't diagnose array bound narrowing here; we produce more precise // errors by allowing the un-narrowed value through. ReturnPreNarrowingValue = true; break; } S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) << CCE << /*Constant*/ 1 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; break; case NK_Type_Narrowing: // FIXME: It would be better to diagnose that the expression is not a // constant expression. S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) << CCE << /*Constant*/ 0 << From->getType() << T; break; } if (!ReturnPreNarrowingValue) PreNarrowingValue = {}; return Result; } /// CheckConvertedConstantExpression - Check that the expression From is a /// converted constant expression of type T, perform the conversion and produce /// the converted expression, per C++11 [expr.const]p3. static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, QualType T, APValue &Value, Sema::CCEKind CCE, bool RequireInt, NamedDecl *Dest) { APValue PreNarrowingValue; ExprResult Result = BuildConvertedConstantExpression(S, From, T, CCE, Dest, PreNarrowingValue); if (Result.isInvalid() || Result.get()->isValueDependent()) { Value = APValue(); return Result; } return S.EvaluateConvertedConstantExpression(Result.get(), T, Value, CCE, RequireInt, PreNarrowingValue); } ExprResult Sema::BuildConvertedConstantExpression(Expr *From, QualType T, CCEKind CCE, NamedDecl *Dest) { APValue PreNarrowingValue; return ::BuildConvertedConstantExpression(*this, From, T, CCE, Dest, PreNarrowingValue); } ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, APValue &Value, CCEKind CCE, NamedDecl *Dest) { return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false, Dest); } ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, llvm::APSInt &Value, CCEKind CCE) { assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); APValue V; auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true, /*Dest=*/nullptr); if (!R.isInvalid() && !R.get()->isValueDependent()) Value = V.getInt(); return R; } /// EvaluateConvertedConstantExpression - Evaluate an Expression /// That is a converted constant expression /// (which was built with BuildConvertedConstantExpression) ExprResult Sema::EvaluateConvertedConstantExpression(Expr *E, QualType T, APValue &Value, Sema::CCEKind CCE, bool RequireInt, const APValue &PreNarrowingValue) { ExprResult Result = E; // Check the expression is a constant expression. SmallVector Notes; Expr::EvalResult Eval; Eval.Diag = &Notes; ConstantExprKind Kind; if (CCE == Sema::CCEK_TemplateArg && T->isRecordType()) Kind = ConstantExprKind::ClassTemplateArgument; else if (CCE == Sema::CCEK_TemplateArg) Kind = ConstantExprKind::NonClassTemplateArgument; else Kind = ConstantExprKind::Normal; if (!E->EvaluateAsConstantExpr(Eval, Context, Kind) || (RequireInt && !Eval.Val.isInt())) { // The expression can't be folded, so we can't keep it at this position in // the AST. Result = ExprError(); } else { Value = Eval.Val; if (Notes.empty()) { // It's a constant expression. Expr *E = Result.get(); if (const auto *CE = dyn_cast(E)) { // We expect a ConstantExpr to have a value associated with it // by this point. assert(CE->getResultStorageKind() != ConstantResultStorageKind::None && "ConstantExpr has no value associated with it"); } else { E = ConstantExpr::Create(Context, Result.get(), Value); } if (!PreNarrowingValue.isAbsent()) Value = std::move(PreNarrowingValue); return E; } } // It's not a constant expression. Produce an appropriate diagnostic. if (Notes.size() == 1 && Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) { Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; } else if (!Notes.empty() && Notes[0].second.getDiagID() == diag::note_constexpr_invalid_template_arg) { Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg); for (unsigned I = 0; I < Notes.size(); ++I) Diag(Notes[I].first, Notes[I].second); } else { Diag(E->getBeginLoc(), diag::err_expr_not_cce) << CCE << E->getSourceRange(); for (unsigned I = 0; I < Notes.size(); ++I) Diag(Notes[I].first, Notes[I].second); } return ExprError(); } /// dropPointerConversions - If the given standard conversion sequence /// involves any pointer conversions, remove them. This may change /// the result type of the conversion sequence. static void dropPointerConversion(StandardConversionSequence &SCS) { if (SCS.Second == ICK_Pointer_Conversion) { SCS.Second = ICK_Identity; SCS.Third = ICK_Identity; SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; } } /// TryContextuallyConvertToObjCPointer - Attempt to contextually /// convert the expression From to an Objective-C pointer type. static ImplicitConversionSequence TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { // Do an implicit conversion to 'id'. QualType Ty = S.Context.getObjCIdType(); ImplicitConversionSequence ICS = TryImplicitConversion(S, From, Ty, // FIXME: Are these flags correct? /*SuppressUserConversions=*/false, AllowedExplicit::Conversions, /*InOverloadResolution=*/false, /*CStyle=*/false, /*AllowObjCWritebackConversion=*/false, /*AllowObjCConversionOnExplicit=*/true); // Strip off any final conversions to 'id'. switch (ICS.getKind()) { case ImplicitConversionSequence::BadConversion: case ImplicitConversionSequence::AmbiguousConversion: case ImplicitConversionSequence::EllipsisConversion: case ImplicitConversionSequence::StaticObjectArgumentConversion: break; case ImplicitConversionSequence::UserDefinedConversion: dropPointerConversion(ICS.UserDefined.After); break; case ImplicitConversionSequence::StandardConversion: dropPointerConversion(ICS.Standard); break; } return ICS; } /// PerformContextuallyConvertToObjCPointer - Perform a contextual /// conversion of the expression From to an Objective-C pointer type. /// Returns a valid but null ExprResult if no conversion sequence exists. ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { if (checkPlaceholderForOverload(*this, From)) return ExprError(); QualType Ty = Context.getObjCIdType(); ImplicitConversionSequence ICS = TryContextuallyConvertToObjCPointer(*this, From); if (!ICS.isBad()) return PerformImplicitConversion(From, Ty, ICS, AA_Converting); return ExprResult(); } static QualType GetExplicitObjectType(Sema &S, const Expr *MemExprE) { const Expr *Base = nullptr; assert((isa(MemExprE)) && "expected a member expression"); if (const auto M = dyn_cast(MemExprE); M && !M->isImplicitAccess()) Base = M->getBase(); else if (const auto M = dyn_cast(MemExprE); M && !M->isImplicitAccess()) Base = M->getBase(); QualType T = Base ? Base->getType() : S.getCurrentThisType(); if (T->isPointerType()) T = T->getPointeeType(); return T; } static Expr *GetExplicitObjectExpr(Sema &S, Expr *Obj, const FunctionDecl *Fun) { QualType ObjType = Obj->getType(); if (ObjType->isPointerType()) { ObjType = ObjType->getPointeeType(); Obj = UnaryOperator::Create(S.getASTContext(), Obj, UO_Deref, ObjType, VK_LValue, OK_Ordinary, SourceLocation(), /*CanOverflow=*/false, FPOptionsOverride()); } if (Obj->Classify(S.getASTContext()).isPRValue()) { Obj = S.CreateMaterializeTemporaryExpr( ObjType, Obj, !Fun->getParamDecl(0)->getType()->isRValueReferenceType()); } return Obj; } ExprResult Sema::InitializeExplicitObjectArgument(Sema &S, Expr *Obj, FunctionDecl *Fun) { Obj = GetExplicitObjectExpr(S, Obj, Fun); return S.PerformCopyInitialization( InitializedEntity::InitializeParameter(S.Context, Fun->getParamDecl(0)), Obj->getExprLoc(), Obj); } static void PrepareExplicitObjectArgument(Sema &S, CXXMethodDecl *Method, Expr *Object, MultiExprArg &Args, SmallVectorImpl &NewArgs) { assert(Method->isExplicitObjectMemberFunction() && "Method is not an explicit member function"); assert(NewArgs.empty() && "NewArgs should be empty"); NewArgs.reserve(Args.size() + 1); Expr *This = GetExplicitObjectExpr(S, Object, Method); NewArgs.push_back(This); NewArgs.append(Args.begin(), Args.end()); Args = NewArgs; } /// Determine whether the provided type is an integral type, or an enumeration /// type of a permitted flavor. bool Sema::ICEConvertDiagnoser::match(QualType T) { return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() : T->isIntegralOrUnscopedEnumerationType(); } static ExprResult diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, Sema::ContextualImplicitConverter &Converter, QualType T, UnresolvedSetImpl &ViableConversions) { if (Converter.Suppress) return ExprError(); Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { CXXConversionDecl *Conv = cast(ViableConversions[I]->getUnderlyingDecl()); QualType ConvTy = Conv->getConversionType().getNonReferenceType(); Converter.noteAmbiguous(SemaRef, Conv, ConvTy); } return From; } static bool diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, Sema::ContextualImplicitConverter &Converter, QualType T, bool HadMultipleCandidates, UnresolvedSetImpl &ExplicitConversions) { if (ExplicitConversions.size() == 1 && !Converter.Suppress) { DeclAccessPair Found = ExplicitConversions[0]; CXXConversionDecl *Conversion = cast(Found->getUnderlyingDecl()); // The user probably meant to invoke the given explicit // conversion; use it. QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); std::string TypeStr; ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) << FixItHint::CreateInsertion(From->getBeginLoc(), "static_cast<" + TypeStr + ">(") << FixItHint::CreateInsertion( SemaRef.getLocForEndOfToken(From->getEndLoc()), ")"); Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); // If we aren't in a SFINAE context, build a call to the // explicit conversion function. if (SemaRef.isSFINAEContext()) return true; SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, HadMultipleCandidates); if (Result.isInvalid()) return true; // Record usage of conversion in an implicit cast. From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), CK_UserDefinedConversion, Result.get(), nullptr, Result.get()->getValueKind(), SemaRef.CurFPFeatureOverrides()); } return false; } static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, Sema::ContextualImplicitConverter &Converter, QualType T, bool HadMultipleCandidates, DeclAccessPair &Found) { CXXConversionDecl *Conversion = cast(Found->getUnderlyingDecl()); SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); QualType ToType = Conversion->getConversionType().getNonReferenceType(); if (!Converter.SuppressConversion) { if (SemaRef.isSFINAEContext()) return true; Converter.diagnoseConversion(SemaRef, Loc, T, ToType) << From->getSourceRange(); } ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, HadMultipleCandidates); if (Result.isInvalid()) return true; // Record usage of conversion in an implicit cast. From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), CK_UserDefinedConversion, Result.get(), nullptr, Result.get()->getValueKind(), SemaRef.CurFPFeatureOverrides()); return false; } static ExprResult finishContextualImplicitConversion( Sema &SemaRef, SourceLocation Loc, Expr *From, Sema::ContextualImplicitConverter &Converter) { if (!Converter.match(From->getType()) && !Converter.Suppress) Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) << From->getSourceRange(); return SemaRef.DefaultLvalueConversion(From); } static void collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, UnresolvedSetImpl &ViableConversions, OverloadCandidateSet &CandidateSet) { for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { DeclAccessPair FoundDecl = ViableConversions[I]; NamedDecl *D = FoundDecl.getDecl(); CXXRecordDecl *ActingContext = cast(D->getDeclContext()); if (isa(D)) D = cast(D)->getTargetDecl(); CXXConversionDecl *Conv; FunctionTemplateDecl *ConvTemplate; if ((ConvTemplate = dyn_cast(D))) Conv = cast(ConvTemplate->getTemplatedDecl()); else Conv = cast(D); if (ConvTemplate) SemaRef.AddTemplateConversionCandidate( ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); else SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, CandidateSet, /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); } } /// Attempt to convert the given expression to a type which is accepted /// by the given converter. /// /// This routine will attempt to convert an expression of class type to a /// type accepted by the specified converter. In C++11 and before, the class /// must have a single non-explicit conversion function converting to a matching /// type. In C++1y, there can be multiple such conversion functions, but only /// one target type. /// /// \param Loc The source location of the construct that requires the /// conversion. /// /// \param From The expression we're converting from. /// /// \param Converter Used to control and diagnose the conversion process. /// /// \returns The expression, converted to an integral or enumeration type if /// successful. ExprResult Sema::PerformContextualImplicitConversion( SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { // We can't perform any more checking for type-dependent expressions. if (From->isTypeDependent()) return From; // Process placeholders immediately. if (From->hasPlaceholderType()) { ExprResult result = CheckPlaceholderExpr(From); if (result.isInvalid()) return result; From = result.get(); } // Try converting the expression to an Lvalue first, to get rid of qualifiers. ExprResult Converted = DefaultLvalueConversion(From); QualType T = Converted.isUsable() ? Converted.get()->getType() : QualType(); // If the expression already has a matching type, we're golden. if (Converter.match(T)) return Converted; // FIXME: Check for missing '()' if T is a function type? // We can only perform contextual implicit conversions on objects of class // type. const RecordType *RecordTy = T->getAs(); if (!RecordTy || !getLangOpts().CPlusPlus) { if (!Converter.Suppress) Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); return From; } // We must have a complete class type. struct TypeDiagnoserPartialDiag : TypeDiagnoser { ContextualImplicitConverter &Converter; Expr *From; TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) : Converter(Converter), From(From) {} void diagnose(Sema &S, SourceLocation Loc, QualType T) override { Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); } } IncompleteDiagnoser(Converter, From); if (Converter.Suppress ? !isCompleteType(Loc, T) : RequireCompleteType(Loc, T, IncompleteDiagnoser)) return From; // Look for a conversion to an integral or enumeration type. UnresolvedSet<4> ViableConversions; // These are *potentially* viable in C++1y. UnresolvedSet<4> ExplicitConversions; const auto &Conversions = cast(RecordTy->getDecl())->getVisibleConversionFunctions(); bool HadMultipleCandidates = (std::distance(Conversions.begin(), Conversions.end()) > 1); // To check that there is only one target type, in C++1y: QualType ToType; bool HasUniqueTargetType = true; // Collect explicit or viable (potentially in C++1y) conversions. for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { NamedDecl *D = (*I)->getUnderlyingDecl(); CXXConversionDecl *Conversion; FunctionTemplateDecl *ConvTemplate = dyn_cast(D); if (ConvTemplate) { if (getLangOpts().CPlusPlus14) Conversion = cast(ConvTemplate->getTemplatedDecl()); else continue; // C++11 does not consider conversion operator templates(?). } else Conversion = cast(D); assert((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially " "viable in C++1y"); QualType CurToType = Conversion->getConversionType().getNonReferenceType(); if (Converter.match(CurToType) || ConvTemplate) { if (Conversion->isExplicit()) { // FIXME: For C++1y, do we need this restriction? // cf. diagnoseNoViableConversion() if (!ConvTemplate) ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); } else { if (!ConvTemplate && getLangOpts().CPlusPlus14) { if (ToType.isNull()) ToType = CurToType.getUnqualifiedType(); else if (HasUniqueTargetType && (CurToType.getUnqualifiedType() != ToType)) HasUniqueTargetType = false; } ViableConversions.addDecl(I.getDecl(), I.getAccess()); } } } if (getLangOpts().CPlusPlus14) { // C++1y [conv]p6: // ... An expression e of class type E appearing in such a context // is said to be contextually implicitly converted to a specified // type T and is well-formed if and only if e can be implicitly // converted to a type T that is determined as follows: E is searched // for conversion functions whose return type is cv T or reference to // cv T such that T is allowed by the context. There shall be // exactly one such T. // If no unique T is found: if (ToType.isNull()) { if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, HadMultipleCandidates, ExplicitConversions)) return ExprError(); return finishContextualImplicitConversion(*this, Loc, From, Converter); } // If more than one unique Ts are found: if (!HasUniqueTargetType) return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, ViableConversions); // If one unique T is found: // First, build a candidate set from the previously recorded // potentially viable conversions. OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); collectViableConversionCandidates(*this, From, ToType, ViableConversions, CandidateSet); // Then, perform overload resolution over the candidate set. OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, Loc, Best)) { case OR_Success: { // Apply this conversion. DeclAccessPair Found = DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess()); if (recordConversion(*this, Loc, From, Converter, T, HadMultipleCandidates, Found)) return ExprError(); break; } case OR_Ambiguous: return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, ViableConversions); case OR_No_Viable_Function: if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, HadMultipleCandidates, ExplicitConversions)) return ExprError(); [[fallthrough]]; case OR_Deleted: // We'll complain below about a non-integral condition type. break; } } else { switch (ViableConversions.size()) { case 0: { if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, HadMultipleCandidates, ExplicitConversions)) return ExprError(); // We'll complain below about a non-integral condition type. break; } case 1: { // Apply this conversion. DeclAccessPair Found = ViableConversions[0]; if (recordConversion(*this, Loc, From, Converter, T, HadMultipleCandidates, Found)) return ExprError(); break; } default: return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, ViableConversions); } } return finishContextualImplicitConversion(*this, Loc, From, Converter); } /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is /// an acceptable non-member overloaded operator for a call whose /// arguments have types T1 (and, if non-empty, T2). This routine /// implements the check in C++ [over.match.oper]p3b2 concerning /// enumeration types. static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context, FunctionDecl *Fn, ArrayRef Args) { QualType T1 = Args[0]->getType(); QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType(); if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) return true; if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) return true; const auto *Proto = Fn->getType()->castAs(); if (Proto->getNumParams() < 1) return false; if (T1->isEnumeralType()) { QualType ArgType = Proto->getParamType(0).getNonReferenceType(); if (Context.hasSameUnqualifiedType(T1, ArgType)) return true; } if (Proto->getNumParams() < 2) return false; if (!T2.isNull() && T2->isEnumeralType()) { QualType ArgType = Proto->getParamType(1).getNonReferenceType(); if (Context.hasSameUnqualifiedType(T2, ArgType)) return true; } return false; } /// AddOverloadCandidate - Adds the given function to the set of /// candidate functions, using the given function call arguments. If /// @p SuppressUserConversions, then don't allow user-defined /// conversions via constructors or conversion operators. /// /// \param PartialOverloading true if we are performing "partial" overloading /// based on an incomplete set of function arguments. This feature is used by /// code completion. void Sema::AddOverloadCandidate( FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions, ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions, OverloadCandidateParamOrder PO, bool AggregateCandidateDeduction) { const FunctionProtoType *Proto = dyn_cast(Function->getType()->getAs()); assert(Proto && "Functions without a prototype cannot be overloaded"); assert(!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"); if (CXXMethodDecl *Method = dyn_cast(Function)) { if (!isa(Method)) { // If we get here, it's because we're calling a member function // that is named without a member access expression (e.g., // "this->f") that was either written explicitly or created // implicitly. This can happen with a qualified call to a member // function, e.g., X::f(). We use an empty type for the implied // object argument (C++ [over.call.func]p3), and the acting context // is irrelevant. AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(), Expr::Classification::makeSimpleLValue(), Args, CandidateSet, SuppressUserConversions, PartialOverloading, EarlyConversions, PO); return; } // We treat a constructor like a non-member function, since its object // argument doesn't participate in overload resolution. } if (!CandidateSet.isNewCandidate(Function, PO)) return; // C++11 [class.copy]p11: [DR1402] // A defaulted move constructor that is defined as deleted is ignored by // overload resolution. CXXConstructorDecl *Constructor = dyn_cast(Function); if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() && Constructor->isMoveConstructor()) return; // Overload resolution is always an unevaluated context. EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); // C++ [over.match.oper]p3: // if no operand has a class type, only those non-member functions in the // lookup set that have a first parameter of type T1 or "reference to // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there // is a right operand) a second parameter of type T2 or "reference to // (possibly cv-qualified) T2", when T2 is an enumeration type, are // candidate functions. if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator && !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args)) return; // Add this candidate OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size(), EarlyConversions); Candidate.FoundDecl = FoundDecl; Candidate.Function = Function; Candidate.Viable = true; Candidate.RewriteKind = CandidateSet.getRewriteInfo().getRewriteKind(Function, PO); Candidate.IsSurrogate = false; Candidate.IsADLCandidate = IsADLCandidate; Candidate.IgnoreObjectArgument = false; Candidate.ExplicitCallArguments = Args.size(); // Explicit functions are not actually candidates at all if we're not // allowing them in this context, but keep them around so we can point // to them in diagnostics. if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_explicit; return; } // Functions with internal linkage are only viable in the same module unit. if (getLangOpts().CPlusPlusModules && Function->isInAnotherModuleUnit()) { /// FIXME: Currently, the semantics of linkage in clang is slightly /// different from the semantics in C++ spec. In C++ spec, only names /// have linkage. So that all entities of the same should share one /// linkage. But in clang, different entities of the same could have /// different linkage. NamedDecl *ND = Function; if (auto *SpecInfo = Function->getTemplateSpecializationInfo()) ND = SpecInfo->getTemplate(); if (ND->getFormalLinkage() == Linkage::Internal) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_module_mismatched; return; } } if (Function->isMultiVersion() && ((Function->hasAttr() && !Function->getAttr()->isDefaultVersion()) || (Function->hasAttr() && !Function->getAttr()->isDefaultVersion()))) { Candidate.Viable = false; Candidate.FailureKind = ovl_non_default_multiversion_function; return; } if (Constructor) { // C++ [class.copy]p3: // A member function template is never instantiated to perform the copy // of a class object to an object of its class type. QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() && (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(), ClassType))) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_illegal_constructor; return; } // C++ [over.match.funcs]p8: (proposed DR resolution) // A constructor inherited from class type C that has a first parameter // of type "reference to P" (including such a constructor instantiated // from a template) is excluded from the set of candidate functions when // constructing an object of type cv D if the argument list has exactly // one argument and D is reference-related to P and P is reference-related // to C. auto *Shadow = dyn_cast(FoundDecl.getDecl()); if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 && Constructor->getParamDecl(0)->getType()->isReferenceType()) { QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType(); QualType C = Context.getRecordType(Constructor->getParent()); QualType D = Context.getRecordType(Shadow->getParent()); SourceLocation Loc = Args.front()->getExprLoc(); if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) && (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_inhctor_slice; return; } } // Check that the constructor is capable of constructing an object in the // destination address space. if (!Qualifiers::isAddressSpaceSupersetOf( Constructor->getMethodQualifiers().getAddressSpace(), CandidateSet.getDestAS())) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_object_addrspace_mismatch; } } unsigned NumParams = Proto->getNumParams(); // (C++ 13.3.2p2): A candidate function having fewer than m // parameters is viable only if it has an ellipsis in its parameter // list (8.3.5). if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && !Proto->isVariadic() && shouldEnforceArgLimit(PartialOverloading, Function)) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_too_many_arguments; return; } // (C++ 13.3.2p2): A candidate function having more than m parameters // is viable only if the (m+1)st parameter has a default argument // (8.3.6). For the purposes of overload resolution, the // parameter list is truncated on the right, so that there are // exactly m parameters. unsigned MinRequiredArgs = Function->getMinRequiredArguments(); if (!AggregateCandidateDeduction && Args.size() < MinRequiredArgs && !PartialOverloading) { // Not enough arguments. Candidate.Viable = false; Candidate.FailureKind = ovl_fail_too_few_arguments; return; } // (CUDA B.1): Check for invalid calls between targets. if (getLangOpts().CUDA) { const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); // Skip the check for callers that are implicit members, because in this // case we may not yet know what the member's target is; the target is // inferred for the member automatically, based on the bases and fields of // the class. if (!(Caller && Caller->isImplicit()) && !IsAllowedCUDACall(Caller, Function)) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_target; return; } } if (Function->getTrailingRequiresClause()) { ConstraintSatisfaction Satisfaction; if (CheckFunctionConstraints(Function, Satisfaction, /*Loc*/ {}, /*ForOverloadResolution*/ true) || !Satisfaction.IsSatisfied) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_constraints_not_satisfied; return; } } // Determine the implicit conversion sequences for each of the // arguments. for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx; if (Candidate.Conversions[ConvIdx].isInitialized()) { // We already formed a conversion sequence for this parameter during // template argument deduction. } else if (ArgIdx < NumParams) { // (C++ 13.3.2p3): for F to be a viable function, there shall // exist for each argument an implicit conversion sequence // (13.3.3.1) that converts that argument to the corresponding // parameter of F. QualType ParamType = Proto->getParamType(ArgIdx); Candidate.Conversions[ConvIdx] = TryCopyInitialization( *this, Args[ArgIdx], ParamType, SuppressUserConversions, /*InOverloadResolution=*/true, /*AllowObjCWritebackConversion=*/ getLangOpts().ObjCAutoRefCount, AllowExplicitConversions); if (Candidate.Conversions[ConvIdx].isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; return; } } else { // (C++ 13.3.2p2): For the purposes of overload resolution, any // argument for which there is no corresponding parameter is // considered to ""match the ellipsis" (C+ 13.3.3.1.3). Candidate.Conversions[ConvIdx].setEllipsis(); } } if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, CandidateSet.getLocation(), Args)) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_enable_if; Candidate.DeductionFailure.Data = FailedAttr; return; } } ObjCMethodDecl * Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, SmallVectorImpl &Methods) { if (Methods.size() <= 1) return nullptr; for (unsigned b = 0, e = Methods.size(); b < e; b++) { bool Match = true; ObjCMethodDecl *Method = Methods[b]; unsigned NumNamedArgs = Sel.getNumArgs(); // Method might have more arguments than selector indicates. This is due // to addition of c-style arguments in method. if (Method->param_size() > NumNamedArgs) NumNamedArgs = Method->param_size(); if (Args.size() < NumNamedArgs) continue; for (unsigned i = 0; i < NumNamedArgs; i++) { // We can't do any type-checking on a type-dependent argument. if (Args[i]->isTypeDependent()) { Match = false; break; } ParmVarDecl *param = Method->parameters()[i]; Expr *argExpr = Args[i]; assert(argExpr && "SelectBestMethod(): missing expression"); // Strip the unbridged-cast placeholder expression off unless it's // a consumed argument. if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && !param->hasAttr()) argExpr = stripARCUnbridgedCast(argExpr); // If the parameter is __unknown_anytype, move on to the next method. if (param->getType() == Context.UnknownAnyTy) { Match = false; break; } ImplicitConversionSequence ConversionState = TryCopyInitialization(*this, argExpr, param->getType(), /*SuppressUserConversions*/false, /*InOverloadResolution=*/true, /*AllowObjCWritebackConversion=*/ getLangOpts().ObjCAutoRefCount, /*AllowExplicit*/false); // This function looks for a reasonably-exact match, so we consider // incompatible pointer conversions to be a failure here. if (ConversionState.isBad() || (ConversionState.isStandard() && ConversionState.Standard.Second == ICK_Incompatible_Pointer_Conversion)) { Match = false; break; } } // Promote additional arguments to variadic methods. if (Match && Method->isVariadic()) { for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { if (Args[i]->isTypeDependent()) { Match = false; break; } ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, nullptr); if (Arg.isInvalid()) { Match = false; break; } } } else { // Check for extra arguments to non-variadic methods. if (Args.size() != NumNamedArgs) Match = false; else if (Match && NumNamedArgs == 0 && Methods.size() > 1) { // Special case when selectors have no argument. In this case, select // one with the most general result type of 'id'. for (unsigned b = 0, e = Methods.size(); b < e; b++) { QualType ReturnT = Methods[b]->getReturnType(); if (ReturnT->isObjCIdType()) return Methods[b]; } } } if (Match) return Method; } return nullptr; } static bool convertArgsForAvailabilityChecks( Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc, ArrayRef Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis, Expr *&ConvertedThis, SmallVectorImpl &ConvertedArgs) { if (ThisArg) { CXXMethodDecl *Method = cast(Function); assert(!isa(Method) && "Shouldn't have `this` for ctors!"); assert(!Method->isStatic() && "Shouldn't have `this` for static methods!"); ExprResult R = S.PerformImplicitObjectArgumentInitialization( ThisArg, /*Qualifier=*/nullptr, Method, Method); if (R.isInvalid()) return false; ConvertedThis = R.get(); } else { if (auto *MD = dyn_cast(Function)) { (void)MD; assert((MissingImplicitThis || MD->isStatic() || isa(MD)) && "Expected `this` for non-ctor instance methods"); } ConvertedThis = nullptr; } // Ignore any variadic arguments. Converting them is pointless, since the // user can't refer to them in the function condition. unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size()); // Convert the arguments. for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) { ExprResult R; R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter( S.Context, Function->getParamDecl(I)), SourceLocation(), Args[I]); if (R.isInvalid()) return false; ConvertedArgs.push_back(R.get()); } if (Trap.hasErrorOccurred()) return false; // Push default arguments if needed. if (!Function->isVariadic() && Args.size() < Function->getNumParams()) { for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) { ParmVarDecl *P = Function->getParamDecl(i); if (!P->hasDefaultArg()) return false; ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P); if (R.isInvalid()) return false; ConvertedArgs.push_back(R.get()); } if (Trap.hasErrorOccurred()) return false; } return true; } EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc, ArrayRef Args, bool MissingImplicitThis) { auto EnableIfAttrs = Function->specific_attrs(); if (EnableIfAttrs.begin() == EnableIfAttrs.end()) return nullptr; SFINAETrap Trap(*this); SmallVector ConvertedArgs; // FIXME: We should look into making enable_if late-parsed. Expr *DiscardedThis; if (!convertArgsForAvailabilityChecks( *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap, /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs)) return *EnableIfAttrs.begin(); for (auto *EIA : EnableIfAttrs) { APValue Result; // FIXME: This doesn't consider value-dependent cases, because doing so is // very difficult. Ideally, we should handle them more gracefully. if (EIA->getCond()->isValueDependent() || !EIA->getCond()->EvaluateWithSubstitution( Result, Context, Function, llvm::ArrayRef(ConvertedArgs))) return EIA; if (!Result.isInt() || !Result.getInt().getBoolValue()) return EIA; } return nullptr; } template static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND, bool ArgDependent, SourceLocation Loc, CheckFn &&IsSuccessful) { SmallVector Attrs; for (const auto *DIA : ND->specific_attrs()) { if (ArgDependent == DIA->getArgDependent()) Attrs.push_back(DIA); } // Common case: No diagnose_if attributes, so we can quit early. if (Attrs.empty()) return false; auto WarningBegin = std::stable_partition( Attrs.begin(), Attrs.end(), [](const DiagnoseIfAttr *DIA) { return DIA->isError(); }); // Note that diagnose_if attributes are late-parsed, so they appear in the // correct order (unlike enable_if attributes). auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin), IsSuccessful); if (ErrAttr != WarningBegin) { const DiagnoseIfAttr *DIA = *ErrAttr; S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage(); S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) << DIA->getParent() << DIA->getCond()->getSourceRange(); return true; } for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end())) if (IsSuccessful(DIA)) { S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage(); S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) << DIA->getParent() << DIA->getCond()->getSourceRange(); } return false; } bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, const Expr *ThisArg, ArrayRef Args, SourceLocation Loc) { return diagnoseDiagnoseIfAttrsWith( *this, Function, /*ArgDependent=*/true, Loc, [&](const DiagnoseIfAttr *DIA) { APValue Result; // It's sane to use the same Args for any redecl of this function, since // EvaluateWithSubstitution only cares about the position of each // argument in the arg list, not the ParmVarDecl* it maps to. if (!DIA->getCond()->EvaluateWithSubstitution( Result, Context, cast(DIA->getParent()), Args, ThisArg)) return false; return Result.isInt() && Result.getInt().getBoolValue(); }); } bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, SourceLocation Loc) { return diagnoseDiagnoseIfAttrsWith( *this, ND, /*ArgDependent=*/false, Loc, [&](const DiagnoseIfAttr *DIA) { bool Result; return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) && Result; }); } /// Add all of the function declarations in the given function set to /// the overload candidate set. void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, ArrayRef Args, OverloadCandidateSet &CandidateSet, TemplateArgumentListInfo *ExplicitTemplateArgs, bool SuppressUserConversions, bool PartialOverloading, bool FirstArgumentIsBase) { for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { NamedDecl *D = F.getDecl()->getUnderlyingDecl(); ArrayRef FunctionArgs = Args; FunctionTemplateDecl *FunTmpl = dyn_cast(D); FunctionDecl *FD = FunTmpl ? FunTmpl->getTemplatedDecl() : cast(D); if (isa(FD) && !cast(FD)->isStatic()) { QualType ObjectType; Expr::Classification ObjectClassification; if (Args.size() > 0) { if (Expr *E = Args[0]) { // Use the explicit base to restrict the lookup: ObjectType = E->getType(); // Pointers in the object arguments are implicitly dereferenced, so we // always classify them as l-values. if (!ObjectType.isNull() && ObjectType->isPointerType()) ObjectClassification = Expr::Classification::makeSimpleLValue(); else ObjectClassification = E->Classify(Context); } // .. else there is an implicit base. FunctionArgs = Args.slice(1); } if (FunTmpl) { AddMethodTemplateCandidate( FunTmpl, F.getPair(), cast(FunTmpl->getDeclContext()), ExplicitTemplateArgs, ObjectType, ObjectClassification, FunctionArgs, CandidateSet, SuppressUserConversions, PartialOverloading); } else { AddMethodCandidate(cast(FD), F.getPair(), cast(FD)->getParent(), ObjectType, ObjectClassification, FunctionArgs, CandidateSet, SuppressUserConversions, PartialOverloading); } } else { // This branch handles both standalone functions and static methods. // Slice the first argument (which is the base) when we access // static method as non-static. if (Args.size() > 0 && (!Args[0] || (FirstArgumentIsBase && isa(FD) && !isa(FD)))) { assert(cast(FD)->isStatic()); FunctionArgs = Args.slice(1); } if (FunTmpl) { AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs, FunctionArgs, CandidateSet, SuppressUserConversions, PartialOverloading); } else { AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet, SuppressUserConversions, PartialOverloading); } } } } /// AddMethodCandidate - Adds a named decl (which is some kind of /// method) as a method candidate to the given overload set. void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, OverloadCandidateParamOrder PO) { NamedDecl *Decl = FoundDecl.getDecl(); CXXRecordDecl *ActingContext = cast(Decl->getDeclContext()); if (isa(Decl)) Decl = cast(Decl)->getTargetDecl(); if (FunctionTemplateDecl *TD = dyn_cast(Decl)) { assert(isa(TD->getTemplatedDecl()) && "Expected a member function template"); AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, /*ExplicitArgs*/ nullptr, ObjectType, ObjectClassification, Args, CandidateSet, SuppressUserConversions, false, PO); } else { AddMethodCandidate(cast(Decl), FoundDecl, ActingContext, ObjectType, ObjectClassification, Args, CandidateSet, SuppressUserConversions, false, std::nullopt, PO); } } /// AddMethodCandidate - Adds the given C++ member function to the set /// of candidate functions, using the given function call arguments /// and the object argument (@c Object). For example, in a call /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't /// allow user-defined conversions via constructors or conversion /// operators. void Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, bool PartialOverloading, ConversionSequenceList EarlyConversions, OverloadCandidateParamOrder PO) { const FunctionProtoType *Proto = dyn_cast(Method->getType()->getAs()); assert(Proto && "Methods without a prototype cannot be overloaded"); assert(!isa(Method) && "Use AddOverloadCandidate for constructors"); if (!CandidateSet.isNewCandidate(Method, PO)) return; // C++11 [class.copy]p23: [DR1402] // A defaulted move assignment operator that is defined as deleted is // ignored by overload resolution. if (Method->isDefaulted() && Method->isDeleted() && Method->isMoveAssignmentOperator()) return; // Overload resolution is always an unevaluated context. EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); // Add this candidate OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1, EarlyConversions); Candidate.FoundDecl = FoundDecl; Candidate.Function = Method; Candidate.RewriteKind = CandidateSet.getRewriteInfo().getRewriteKind(Method, PO); Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; Candidate.ExplicitCallArguments = Args.size(); unsigned NumParams = Method->getNumExplicitParams(); unsigned ExplicitOffset = Method->isExplicitObjectMemberFunction() ? 1 : 0; // (C++ 13.3.2p2): A candidate function having fewer than m // parameters is viable only if it has an ellipsis in its parameter // list (8.3.5). if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && !Proto->isVariadic() && shouldEnforceArgLimit(PartialOverloading, Method)) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_too_many_arguments; return; } // (C++ 13.3.2p2): A candidate function having more than m parameters // is viable only if the (m+1)st parameter has a default argument // (8.3.6). For the purposes of overload resolution, the // parameter list is truncated on the right, so that there are // exactly m parameters. unsigned MinRequiredArgs = Method->getMinRequiredExplicitArguments(); if (Args.size() < MinRequiredArgs && !PartialOverloading) { // Not enough arguments. Candidate.Viable = false; Candidate.FailureKind = ovl_fail_too_few_arguments; return; } Candidate.Viable = true; unsigned FirstConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; if (ObjectType.isNull()) Candidate.IgnoreObjectArgument = true; else if (Method->isStatic()) { // [over.best.ics.general]p8 // When the parameter is the implicit object parameter of a static member // function, the implicit conversion sequence is a standard conversion // sequence that is neither better nor worse than any other standard // conversion sequence. // // This is a rule that was introduced in C++23 to support static lambdas. We // apply it retroactively because we want to support static lambdas as an // extension and it doesn't hurt previous code. Candidate.Conversions[FirstConvIdx].setStaticObjectArgument(); } else { // Determine the implicit conversion sequence for the object // parameter. Candidate.Conversions[FirstConvIdx] = TryObjectArgumentInitialization( *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, Method, ActingContext, /*InOverloadResolution=*/true); if (Candidate.Conversions[FirstConvIdx].isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; return; } } // (CUDA B.1): Check for invalid calls between targets. if (getLangOpts().CUDA) if (!IsAllowedCUDACall(getCurFunctionDecl(/*AllowLambda=*/true), Method)) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_target; return; } if (Method->getTrailingRequiresClause()) { ConstraintSatisfaction Satisfaction; if (CheckFunctionConstraints(Method, Satisfaction, /*Loc*/ {}, /*ForOverloadResolution*/ true) || !Satisfaction.IsSatisfied) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_constraints_not_satisfied; return; } } // Determine the implicit conversion sequences for each of the // arguments. for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1); if (Candidate.Conversions[ConvIdx].isInitialized()) { // We already formed a conversion sequence for this parameter during // template argument deduction. } else if (ArgIdx < NumParams) { // (C++ 13.3.2p3): for F to be a viable function, there shall // exist for each argument an implicit conversion sequence // (13.3.3.1) that converts that argument to the corresponding // parameter of F. QualType ParamType = Proto->getParamType(ArgIdx + ExplicitOffset); Candidate.Conversions[ConvIdx] = TryCopyInitialization(*this, Args[ArgIdx], ParamType, SuppressUserConversions, /*InOverloadResolution=*/true, /*AllowObjCWritebackConversion=*/ getLangOpts().ObjCAutoRefCount); if (Candidate.Conversions[ConvIdx].isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; return; } } else { // (C++ 13.3.2p2): For the purposes of overload resolution, any // argument for which there is no corresponding parameter is // considered to "match the ellipsis" (C+ 13.3.3.1.3). Candidate.Conversions[ConvIdx].setEllipsis(); } } if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_enable_if; Candidate.DeductionFailure.Data = FailedAttr; return; } if (Method->isMultiVersion() && ((Method->hasAttr() && !Method->getAttr()->isDefaultVersion()) || (Method->hasAttr() && !Method->getAttr()->isDefaultVersion()))) { Candidate.Viable = false; Candidate.FailureKind = ovl_non_default_multiversion_function; } } /// Add a C++ member function template as a candidate to the candidate /// set, using template argument deduction to produce an appropriate member /// function template specialization. void Sema::AddMethodTemplateCandidate( FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, bool PartialOverloading, OverloadCandidateParamOrder PO) { if (!CandidateSet.isNewCandidate(MethodTmpl, PO)) return; // C++ [over.match.funcs]p7: // In each case where a candidate is a function template, candidate // function template specializations are generated using template argument // deduction (14.8.3, 14.8.2). Those candidates are then handled as // candidate functions in the usual way.113) A given name can refer to one // or more function templates and also to a set of overloaded non-template // functions. In such a case, the candidate functions generated from each // function template are combined with the set of non-template candidate // functions. TemplateDeductionInfo Info(CandidateSet.getLocation()); FunctionDecl *Specialization = nullptr; ConversionSequenceList Conversions; if (TemplateDeductionResult Result = DeduceTemplateArguments( MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info, PartialOverloading, /*AggregateDeductionCandidate=*/false, ObjectType, ObjectClassification, [&](ArrayRef ParamTypes) { return CheckNonDependentConversions( MethodTmpl, ParamTypes, Args, CandidateSet, Conversions, SuppressUserConversions, ActingContext, ObjectType, ObjectClassification, PO); })) { OverloadCandidate &Candidate = CandidateSet.addCandidate(Conversions.size(), Conversions); Candidate.FoundDecl = FoundDecl; Candidate.Function = MethodTmpl->getTemplatedDecl(); Candidate.Viable = false; Candidate.RewriteKind = CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = cast(Candidate.Function)->isStatic() || ObjectType.isNull(); Candidate.ExplicitCallArguments = Args.size(); if (Result == TDK_NonDependentConversionFailure) Candidate.FailureKind = ovl_fail_bad_conversion; else { Candidate.FailureKind = ovl_fail_bad_deduction; Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, Info); } return; } // Add the function template specialization produced by template argument // deduction as a candidate. assert(Specialization && "Missing member function template specialization?"); assert(isa(Specialization) && "Specialization is not a member function?"); AddMethodCandidate(cast(Specialization), FoundDecl, ActingContext, ObjectType, ObjectClassification, Args, CandidateSet, SuppressUserConversions, PartialOverloading, Conversions, PO); } /// Determine whether a given function template has a simple explicit specifier /// or a non-value-dependent explicit-specification that evaluates to true. static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) { return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit(); } /// Add a C++ function template specialization as a candidate /// in the candidate set, using template argument deduction to produce /// an appropriate function template specialization. void Sema::AddTemplateOverloadCandidate( FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate, OverloadCandidateParamOrder PO, bool AggregateCandidateDeduction) { if (!CandidateSet.isNewCandidate(FunctionTemplate, PO)) return; // If the function template has a non-dependent explicit specification, // exclude it now if appropriate; we are not permitted to perform deduction // and substitution in this case. if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { OverloadCandidate &Candidate = CandidateSet.addCandidate(); Candidate.FoundDecl = FoundDecl; Candidate.Function = FunctionTemplate->getTemplatedDecl(); Candidate.Viable = false; Candidate.FailureKind = ovl_fail_explicit; return; } // C++ [over.match.funcs]p7: // In each case where a candidate is a function template, candidate // function template specializations are generated using template argument // deduction (14.8.3, 14.8.2). Those candidates are then handled as // candidate functions in the usual way.113) A given name can refer to one // or more function templates and also to a set of overloaded non-template // functions. In such a case, the candidate functions generated from each // function template are combined with the set of non-template candidate // functions. TemplateDeductionInfo Info(CandidateSet.getLocation()); FunctionDecl *Specialization = nullptr; ConversionSequenceList Conversions; if (TemplateDeductionResult Result = DeduceTemplateArguments( FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info, PartialOverloading, AggregateCandidateDeduction, /*ObjectType=*/QualType(), /*ObjectClassification=*/Expr::Classification(), [&](ArrayRef ParamTypes) { return CheckNonDependentConversions( FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions, SuppressUserConversions, nullptr, QualType(), {}, PO); })) { OverloadCandidate &Candidate = CandidateSet.addCandidate(Conversions.size(), Conversions); Candidate.FoundDecl = FoundDecl; Candidate.Function = FunctionTemplate->getTemplatedDecl(); Candidate.Viable = false; Candidate.RewriteKind = CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); Candidate.IsSurrogate = false; Candidate.IsADLCandidate = IsADLCandidate; // Ignore the object argument if there is one, since we don't have an object // type. Candidate.IgnoreObjectArgument = isa(Candidate.Function) && !isa(Candidate.Function); Candidate.ExplicitCallArguments = Args.size(); if (Result == TDK_NonDependentConversionFailure) Candidate.FailureKind = ovl_fail_bad_conversion; else { Candidate.FailureKind = ovl_fail_bad_deduction; Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, Info); } return; } // Add the function template specialization produced by template argument // deduction as a candidate. assert(Specialization && "Missing function template specialization?"); AddOverloadCandidate( Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions, PartialOverloading, AllowExplicit, /*AllowExplicitConversions=*/false, IsADLCandidate, Conversions, PO, Info.AggregateDeductionCandidateHasMismatchedArity); } /// Check that implicit conversion sequences can be formed for each argument /// whose corresponding parameter has a non-dependent type, per DR1391's /// [temp.deduct.call]p10. bool Sema::CheckNonDependentConversions( FunctionTemplateDecl *FunctionTemplate, ArrayRef ParamTypes, ArrayRef Args, OverloadCandidateSet &CandidateSet, ConversionSequenceList &Conversions, bool SuppressUserConversions, CXXRecordDecl *ActingContext, QualType ObjectType, Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) { // FIXME: The cases in which we allow explicit conversions for constructor // arguments never consider calling a constructor template. It's not clear // that is correct. const bool AllowExplicit = false; auto *FD = FunctionTemplate->getTemplatedDecl(); auto *Method = dyn_cast(FD); bool HasThisConversion = Method && !isa(Method); unsigned ThisConversions = HasThisConversion ? 1 : 0; Conversions = CandidateSet.allocateConversionSequences(ThisConversions + Args.size()); // Overload resolution is always an unevaluated context. EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); // For a method call, check the 'this' conversion here too. DR1391 doesn't // require that, but this check should never result in a hard error, and // overload resolution is permitted to sidestep instantiations. if (HasThisConversion && !cast(FD)->isStatic() && !ObjectType.isNull()) { unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; if (!FD->hasCXXExplicitFunctionObjectParameter() || !ParamTypes[0]->isDependentType()) { Conversions[ConvIdx] = TryObjectArgumentInitialization( *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, Method, ActingContext, /*InOverloadResolution=*/true, FD->hasCXXExplicitFunctionObjectParameter() ? ParamTypes[0] : QualType()); if (Conversions[ConvIdx].isBad()) return true; } } unsigned Offset = Method && Method->hasCXXExplicitFunctionObjectParameter() ? 1 : 0; for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N; ++I) { QualType ParamType = ParamTypes[I + Offset]; if (!ParamType->isDependentType()) { unsigned ConvIdx; if (PO == OverloadCandidateParamOrder::Reversed) { ConvIdx = Args.size() - 1 - I; assert(Args.size() + ThisConversions == 2 && "number of args (including 'this') must be exactly 2 for " "reversed order"); // For members, there would be only one arg 'Args[0]' whose ConvIdx // would also be 0. 'this' got ConvIdx = 1 previously. assert(!HasThisConversion || (ConvIdx == 0 && I == 0)); } else { // For members, 'this' got ConvIdx = 0 previously. ConvIdx = ThisConversions + I; } Conversions[ConvIdx] = TryCopyInitialization(*this, Args[I], ParamType, SuppressUserConversions, /*InOverloadResolution=*/true, /*AllowObjCWritebackConversion=*/ getLangOpts().ObjCAutoRefCount, AllowExplicit); if (Conversions[ConvIdx].isBad()) return true; } } return false; } /// Determine whether this is an allowable conversion from the result /// of an explicit conversion operator to the expected type, per C++ /// [over.match.conv]p1 and [over.match.ref]p1. /// /// \param ConvType The return type of the conversion function. /// /// \param ToType The type we are converting to. /// /// \param AllowObjCPointerConversion Allow a conversion from one /// Objective-C pointer to another. /// /// \returns true if the conversion is allowable, false otherwise. static bool isAllowableExplicitConversion(Sema &S, QualType ConvType, QualType ToType, bool AllowObjCPointerConversion) { QualType ToNonRefType = ToType.getNonReferenceType(); // Easy case: the types are the same. if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType)) return true; // Allow qualification conversions. bool ObjCLifetimeConversion; if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false, ObjCLifetimeConversion)) return true; // If we're not allowed to consider Objective-C pointer conversions, // we're done. if (!AllowObjCPointerConversion) return false; // Is this an Objective-C pointer conversion? bool IncompatibleObjC = false; QualType ConvertedType; return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType, IncompatibleObjC); } /// AddConversionCandidate - Add a C++ conversion function as a /// candidate in the candidate set (C++ [over.match.conv], /// C++ [over.match.copy]). From is the expression we're converting from, /// and ToType is the type that we're eventually trying to convert to /// (which may or may not be the same type as the type that the /// conversion function produces). void Sema::AddConversionCandidate( CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, Expr *From, QualType ToType, OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, bool AllowExplicit, bool AllowResultConversion) { assert(!Conversion->getDescribedFunctionTemplate() && "Conversion function templates use AddTemplateConversionCandidate"); QualType ConvType = Conversion->getConversionType().getNonReferenceType(); if (!CandidateSet.isNewCandidate(Conversion)) return; // If the conversion function has an undeduced return type, trigger its // deduction now. if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) { if (DeduceReturnType(Conversion, From->getExprLoc())) return; ConvType = Conversion->getConversionType().getNonReferenceType(); } // If we don't allow any conversion of the result type, ignore conversion // functions that don't convert to exactly (possibly cv-qualified) T. if (!AllowResultConversion && !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType)) return; // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion // operator is only a candidate if its return type is the target type or // can be converted to the target type with a qualification conversion. // // FIXME: Include such functions in the candidate list and explain why we // can't select them. if (Conversion->isExplicit() && !isAllowableExplicitConversion(*this, ConvType, ToType, AllowObjCConversionOnExplicit)) return; // Overload resolution is always an unevaluated context. EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); // Add this candidate OverloadCandidate &Candidate = CandidateSet.addCandidate(1); Candidate.FoundDecl = FoundDecl; Candidate.Function = Conversion; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; Candidate.FinalConversion.setAsIdentityConversion(); Candidate.FinalConversion.setFromType(ConvType); Candidate.FinalConversion.setAllToTypes(ToType); Candidate.Viable = true; Candidate.ExplicitCallArguments = 1; // Explicit functions are not actually candidates at all if we're not // allowing them in this context, but keep them around so we can point // to them in diagnostics. if (!AllowExplicit && Conversion->isExplicit()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_explicit; return; } // C++ [over.match.funcs]p4: // For conversion functions, the function is considered to be a member of // the class of the implicit implied object argument for the purpose of // defining the type of the implicit object parameter. // // Determine the implicit conversion sequence for the implicit // object parameter. QualType ObjectType = From->getType(); if (const auto *FromPtrType = ObjectType->getAs()) ObjectType = FromPtrType->getPointeeType(); const auto *ConversionContext = cast(ObjectType->castAs()->getDecl()); // C++23 [over.best.ics.general] // However, if the target is [...] // - the object parameter of a user-defined conversion function // [...] user-defined conversion sequences are not considered. Candidate.Conversions[0] = TryObjectArgumentInitialization( *this, CandidateSet.getLocation(), From->getType(), From->Classify(Context), Conversion, ConversionContext, /*InOverloadResolution*/ false, /*ExplicitParameterType=*/QualType(), /*SuppressUserConversion*/ true); if (Candidate.Conversions[0].isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; return; } if (Conversion->getTrailingRequiresClause()) { ConstraintSatisfaction Satisfaction; if (CheckFunctionConstraints(Conversion, Satisfaction) || !Satisfaction.IsSatisfied) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_constraints_not_satisfied; return; } } // We won't go through a user-defined type conversion function to convert a // derived to base as such conversions are given Conversion Rank. They only // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] QualType FromCanon = Context.getCanonicalType(From->getType().getUnqualifiedType()); QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); if (FromCanon == ToCanon || IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_trivial_conversion; return; } // To determine what the conversion from the result of calling the // conversion function to the type we're eventually trying to // convert to (ToType), we need to synthesize a call to the // conversion function and attempt copy initialization from it. This // makes sure that we get the right semantics with respect to // lvalues/rvalues and the type. Fortunately, we can allocate this // call on the stack and we don't need its arguments to be // well-formed. DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(), VK_LValue, From->getBeginLoc()); ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, Context.getPointerType(Conversion->getType()), CK_FunctionToPointerDecay, &ConversionRef, VK_PRValue, FPOptionsOverride()); QualType ConversionType = Conversion->getConversionType(); if (!isCompleteType(From->getBeginLoc(), ConversionType)) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_final_conversion; return; } ExprValueKind VK = Expr::getValueKindForType(ConversionType); // Note that it is safe to allocate CallExpr on the stack here because // there are 0 arguments (i.e., nothing is allocated using ASTContext's // allocator). QualType CallResultType = ConversionType.getNonLValueExprType(Context); alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)]; CallExpr *TheTemporaryCall = CallExpr::CreateTemporary( Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc()); ImplicitConversionSequence ICS = TryCopyInitialization(*this, TheTemporaryCall, ToType, /*SuppressUserConversions=*/true, /*InOverloadResolution=*/false, /*AllowObjCWritebackConversion=*/false); switch (ICS.getKind()) { case ImplicitConversionSequence::StandardConversion: Candidate.FinalConversion = ICS.Standard; // C++ [over.ics.user]p3: // If the user-defined conversion is specified by a specialization of a // conversion function template, the second standard conversion sequence // shall have exact match rank. if (Conversion->getPrimaryTemplate() && GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_final_conversion_not_exact; return; } // C++0x [dcl.init.ref]p5: // In the second case, if the reference is an rvalue reference and // the second standard conversion sequence of the user-defined // conversion sequence includes an lvalue-to-rvalue conversion, the // program is ill-formed. if (ToType->isRValueReferenceType() && ICS.Standard.First == ICK_Lvalue_To_Rvalue) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_final_conversion; return; } break; case ImplicitConversionSequence::BadConversion: Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_final_conversion; return; default: llvm_unreachable( "Can only end up with a standard conversion sequence or failure"); } if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, CandidateSet.getLocation(), std::nullopt)) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_enable_if; Candidate.DeductionFailure.Data = FailedAttr; return; } if (Conversion->isMultiVersion() && ((Conversion->hasAttr() && !Conversion->getAttr()->isDefaultVersion()) || (Conversion->hasAttr() && !Conversion->getAttr()->isDefaultVersion()))) { Candidate.Viable = false; Candidate.FailureKind = ovl_non_default_multiversion_function; } } /// Adds a conversion function template specialization /// candidate to the overload set, using template argument deduction /// to deduce the template arguments of the conversion function /// template from the type that we are converting to (C++ /// [temp.deduct.conv]). void Sema::AddTemplateConversionCandidate( FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, CXXRecordDecl *ActingDC, Expr *From, QualType ToType, OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, bool AllowExplicit, bool AllowResultConversion) { assert(isa(FunctionTemplate->getTemplatedDecl()) && "Only conversion function templates permitted here"); if (!CandidateSet.isNewCandidate(FunctionTemplate)) return; // If the function template has a non-dependent explicit specification, // exclude it now if appropriate; we are not permitted to perform deduction // and substitution in this case. if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { OverloadCandidate &Candidate = CandidateSet.addCandidate(); Candidate.FoundDecl = FoundDecl; Candidate.Function = FunctionTemplate->getTemplatedDecl(); Candidate.Viable = false; Candidate.FailureKind = ovl_fail_explicit; return; } QualType ObjectType = From->getType(); Expr::Classification ObjectClassification = From->Classify(getASTContext()); TemplateDeductionInfo Info(CandidateSet.getLocation()); CXXConversionDecl *Specialization = nullptr; if (TemplateDeductionResult Result = DeduceTemplateArguments( FunctionTemplate, ObjectType, ObjectClassification, ToType, Specialization, Info)) { OverloadCandidate &Candidate = CandidateSet.addCandidate(); Candidate.FoundDecl = FoundDecl; Candidate.Function = FunctionTemplate->getTemplatedDecl(); Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_deduction; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; Candidate.ExplicitCallArguments = 1; Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, Info); return; } // Add the conversion function template specialization produced by // template argument deduction as a candidate. assert(Specialization && "Missing function template specialization?"); AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit, AllowResultConversion); } /// AddSurrogateCandidate - Adds a "surrogate" candidate function that /// converts the given @c Object to a function pointer via the /// conversion function @c Conversion, and then attempts to call it /// with the given arguments (C++ [over.call.object]p2-4). Proto is /// the type of function that we'll eventually be calling. void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, const FunctionProtoType *Proto, Expr *Object, ArrayRef Args, OverloadCandidateSet& CandidateSet) { if (!CandidateSet.isNewCandidate(Conversion)) return; // Overload resolution is always an unevaluated context. EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); Candidate.FoundDecl = FoundDecl; Candidate.Function = nullptr; Candidate.Surrogate = Conversion; Candidate.Viable = true; Candidate.IsSurrogate = true; Candidate.IgnoreObjectArgument = false; Candidate.ExplicitCallArguments = Args.size(); // Determine the implicit conversion sequence for the implicit // object parameter. ImplicitConversionSequence ObjectInit; if (Conversion->hasCXXExplicitFunctionObjectParameter()) { ObjectInit = TryCopyInitialization(*this, Object, Conversion->getParamDecl(0)->getType(), /*SuppressUserConversions=*/false, /*InOverloadResolution=*/true, false); } else { ObjectInit = TryObjectArgumentInitialization( *this, CandidateSet.getLocation(), Object->getType(), Object->Classify(Context), Conversion, ActingContext); } if (ObjectInit.isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; Candidate.Conversions[0] = ObjectInit; return; } // The first conversion is actually a user-defined conversion whose // first conversion is ObjectInit's standard conversion (which is // effectively a reference binding). Record it as such. Candidate.Conversions[0].setUserDefined(); Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; Candidate.Conversions[0].UserDefined.EllipsisConversion = false; Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; Candidate.Conversions[0].UserDefined.After = Candidate.Conversions[0].UserDefined.Before; Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); // Find the unsigned NumParams = Proto->getNumParams(); // (C++ 13.3.2p2): A candidate function having fewer than m // parameters is viable only if it has an ellipsis in its parameter // list (8.3.5). if (Args.size() > NumParams && !Proto->isVariadic()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_too_many_arguments; return; } // Function types don't have any default arguments, so just check if // we have enough arguments. if (Args.size() < NumParams) { // Not enough arguments. Candidate.Viable = false; Candidate.FailureKind = ovl_fail_too_few_arguments; return; } // Determine the implicit conversion sequences for each of the // arguments. for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { if (ArgIdx < NumParams) { // (C++ 13.3.2p3): for F to be a viable function, there shall // exist for each argument an implicit conversion sequence // (13.3.3.1) that converts that argument to the corresponding // parameter of F. QualType ParamType = Proto->getParamType(ArgIdx); Candidate.Conversions[ArgIdx + 1] = TryCopyInitialization(*this, Args[ArgIdx], ParamType, /*SuppressUserConversions=*/false, /*InOverloadResolution=*/false, /*AllowObjCWritebackConversion=*/ getLangOpts().ObjCAutoRefCount); if (Candidate.Conversions[ArgIdx + 1].isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; return; } } else { // (C++ 13.3.2p2): For the purposes of overload resolution, any // argument for which there is no corresponding parameter is // considered to ""match the ellipsis" (C+ 13.3.3.1.3). Candidate.Conversions[ArgIdx + 1].setEllipsis(); } } if (Conversion->getTrailingRequiresClause()) { ConstraintSatisfaction Satisfaction; if (CheckFunctionConstraints(Conversion, Satisfaction, /*Loc*/ {}, /*ForOverloadResolution*/ true) || !Satisfaction.IsSatisfied) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_constraints_not_satisfied; return; } } if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, CandidateSet.getLocation(), std::nullopt)) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_enable_if; Candidate.DeductionFailure.Data = FailedAttr; return; } } /// Add all of the non-member operator function declarations in the given /// function set to the overload candidate set. void Sema::AddNonMemberOperatorCandidates( const UnresolvedSetImpl &Fns, ArrayRef Args, OverloadCandidateSet &CandidateSet, TemplateArgumentListInfo *ExplicitTemplateArgs) { for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { NamedDecl *D = F.getDecl()->getUnderlyingDecl(); ArrayRef FunctionArgs = Args; FunctionTemplateDecl *FunTmpl = dyn_cast(D); FunctionDecl *FD = FunTmpl ? FunTmpl->getTemplatedDecl() : cast(D); // Don't consider rewritten functions if we're not rewriting. if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD)) continue; assert(!isa(FD) && "unqualified operator lookup found a member function"); if (FunTmpl) { AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs, FunctionArgs, CandidateSet); if (CandidateSet.getRewriteInfo().shouldAddReversed(*this, Args, FD)) AddTemplateOverloadCandidate( FunTmpl, F.getPair(), ExplicitTemplateArgs, {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false, true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed); } else { if (ExplicitTemplateArgs) continue; AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet); if (CandidateSet.getRewriteInfo().shouldAddReversed(*this, Args, FD)) AddOverloadCandidate( FD, F.getPair(), {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false, true, false, ADLCallKind::NotADL, std::nullopt, OverloadCandidateParamOrder::Reversed); } } } /// Add overload candidates for overloaded operators that are /// member functions. /// /// Add the overloaded operator candidates that are member functions /// for the operator Op that was used in an operator expression such /// as "x Op y". , Args/NumArgs provides the operator arguments, and /// CandidateSet will store the added overload candidates. (C++ /// [over.match.oper]). void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, ArrayRef Args, OverloadCandidateSet &CandidateSet, OverloadCandidateParamOrder PO) { DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); // C++ [over.match.oper]p3: // For a unary operator @ with an operand of a type whose // cv-unqualified version is T1, and for a binary operator @ with // a left operand of a type whose cv-unqualified version is T1 and // a right operand of a type whose cv-unqualified version is T2, // three sets of candidate functions, designated member // candidates, non-member candidates and built-in candidates, are // constructed as follows: QualType T1 = Args[0]->getType(); // -- If T1 is a complete class type or a class currently being // defined, the set of member candidates is the result of the // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise, // the set of member candidates is empty. if (const RecordType *T1Rec = T1->getAs()) { // Complete the type if it can be completed. if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined()) return; // If the type is neither complete nor being defined, bail out now. if (!T1Rec->getDecl()->getDefinition()) return; LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); LookupQualifiedName(Operators, T1Rec->getDecl()); Operators.suppressAccessDiagnostics(); for (LookupResult::iterator Oper = Operators.begin(), OperEnd = Operators.end(); Oper != OperEnd; ++Oper) { if (Oper->getAsFunction() && PO == OverloadCandidateParamOrder::Reversed && !CandidateSet.getRewriteInfo().shouldAddReversed( *this, {Args[1], Args[0]}, Oper->getAsFunction())) continue; AddMethodCandidate(Oper.getPair(), Args[0]->getType(), Args[0]->Classify(Context), Args.slice(1), CandidateSet, /*SuppressUserConversion=*/false, PO); } } } /// AddBuiltinCandidate - Add a candidate for a built-in /// operator. ResultTy and ParamTys are the result and parameter types /// of the built-in candidate, respectively. Args and NumArgs are the /// arguments being passed to the candidate. IsAssignmentOperator /// should be true when this built-in candidate is an assignment /// operator. NumContextualBoolArguments is the number of arguments /// (at the beginning of the argument list) that will be contextually /// converted to bool. void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool IsAssignmentOperator, unsigned NumContextualBoolArguments) { // Overload resolution is always an unevaluated context. EnterExpressionEvaluationContext Unevaluated( *this, Sema::ExpressionEvaluationContext::Unevaluated); // Add this candidate OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none); Candidate.Function = nullptr; Candidate.IsSurrogate = false; Candidate.IgnoreObjectArgument = false; std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes); // Determine the implicit conversion sequences for each of the // arguments. Candidate.Viable = true; Candidate.ExplicitCallArguments = Args.size(); for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { // C++ [over.match.oper]p4: // For the built-in assignment operators, conversions of the // left operand are restricted as follows: // -- no temporaries are introduced to hold the left operand, and // -- no user-defined conversions are applied to the left // operand to achieve a type match with the left-most // parameter of a built-in candidate. // // We block these conversions by turning off user-defined // conversions, since that is the only way that initialization of // a reference to a non-class type can occur from something that // is not of the same type. if (ArgIdx < NumContextualBoolArguments) { assert(ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"); Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(*this, Args[ArgIdx]); } else { Candidate.Conversions[ArgIdx] = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], ArgIdx == 0 && IsAssignmentOperator, /*InOverloadResolution=*/false, /*AllowObjCWritebackConversion=*/ getLangOpts().ObjCAutoRefCount); } if (Candidate.Conversions[ArgIdx].isBad()) { Candidate.Viable = false; Candidate.FailureKind = ovl_fail_bad_conversion; break; } } } namespace { /// BuiltinCandidateTypeSet - A set of types that will be used for the /// candidate operator functions for built-in operators (C++ /// [over.built]). The types are separated into pointer types and /// enumeration types. class BuiltinCandidateTypeSet { /// TypeSet - A set of types. typedef llvm::SmallSetVector TypeSet; /// PointerTypes - The set of pointer types that will be used in the /// built-in candidates. TypeSet PointerTypes; /// MemberPointerTypes - The set of member pointer types that will be /// used in the built-in candidates. TypeSet MemberPointerTypes; /// EnumerationTypes - The set of enumeration types that will be /// used in the built-in candidates. TypeSet EnumerationTypes; /// The set of vector types that will be used in the built-in /// candidates. TypeSet VectorTypes; /// The set of matrix types that will be used in the built-in /// candidates. TypeSet MatrixTypes; /// A flag indicating non-record types are viable candidates bool HasNonRecordTypes; /// A flag indicating whether either arithmetic or enumeration types /// were present in the candidate set. bool HasArithmeticOrEnumeralTypes; /// A flag indicating whether the nullptr type was present in the /// candidate set. bool HasNullPtrType; /// Sema - The semantic analysis instance where we are building the /// candidate type set. Sema &SemaRef; /// Context - The AST context in which we will build the type sets. ASTContext &Context; bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, const Qualifiers &VisibleQuals); bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); public: /// iterator - Iterates through the types that are part of the set. typedef TypeSet::iterator iterator; BuiltinCandidateTypeSet(Sema &SemaRef) : HasNonRecordTypes(false), HasArithmeticOrEnumeralTypes(false), HasNullPtrType(false), SemaRef(SemaRef), Context(SemaRef.Context) { } void AddTypesConvertedFrom(QualType Ty, SourceLocation Loc, bool AllowUserConversions, bool AllowExplicitConversions, const Qualifiers &VisibleTypeConversionsQuals); llvm::iterator_range pointer_types() { return PointerTypes; } llvm::iterator_range member_pointer_types() { return MemberPointerTypes; } llvm::iterator_range enumeration_types() { return EnumerationTypes; } llvm::iterator_range vector_types() { return VectorTypes; } llvm::iterator_range matrix_types() { return MatrixTypes; } bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); } bool hasNonRecordTypes() { return HasNonRecordTypes; } bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } bool hasNullPtrType() const { return HasNullPtrType; } }; } // end anonymous namespace /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to /// the set of pointer types along with any more-qualified variants of /// that type. For example, if @p Ty is "int const *", this routine /// will add "int const *", "int const volatile *", "int const /// restrict *", and "int const volatile restrict *" to the set of /// pointer types. Returns true if the add of @p Ty itself succeeded, /// false otherwise. /// /// FIXME: what to do about extended qualifiers? bool BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, const Qualifiers &VisibleQuals) { // Insert this type. if (!PointerTypes.insert(Ty)) return false; QualType PointeeTy; const PointerType *PointerTy = Ty->getAs(); bool buildObjCPtr = false; if (!PointerTy) { const ObjCObjectPointerType *PTy = Ty->castAs(); PointeeTy = PTy->getPointeeType(); buildObjCPtr = true; } else { PointeeTy = PointerTy->getPointeeType(); } // Don't add qualified variants of arrays. For one, they're not allowed // (the qualifier would sink to the element type), and for another, the // only overload situation where it matters is subscript or pointer +- int, // and those shouldn't have qualifier variants anyway. if (PointeeTy->isArrayType()) return true; unsigned BaseCVR = PointeeTy.getCVRQualifiers(); bool hasVolatile = VisibleQuals.hasVolatile(); bool hasRestrict = VisibleQuals.hasRestrict(); // Iterate through all strict supersets of BaseCVR. for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { if ((CVR | BaseCVR) != CVR) continue; // Skip over volatile if no volatile found anywhere in the types. if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; // Skip over restrict if no restrict found anywhere in the types, or if // the type cannot be restrict-qualified. if ((CVR & Qualifiers::Restrict) && (!hasRestrict || (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) continue; // Build qualified pointee type. QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); // Build qualified pointer type. QualType QPointerTy; if (!buildObjCPtr) QPointerTy = Context.getPointerType(QPointeeTy); else QPointerTy = Context.getObjCObjectPointerType(QPointeeTy); // Insert qualified pointer type. PointerTypes.insert(QPointerTy); } return true; } /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty /// to the set of pointer types along with any more-qualified variants of /// that type. For example, if @p Ty is "int const *", this routine /// will add "int const *", "int const volatile *", "int const /// restrict *", and "int const volatile restrict *" to the set of /// pointer types. Returns true if the add of @p Ty itself succeeded, /// false otherwise. /// /// FIXME: what to do about extended qualifiers? bool BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( QualType Ty) { // Insert this type. if (!MemberPointerTypes.insert(Ty)) return false; const MemberPointerType *PointerTy = Ty->getAs(); assert(PointerTy && "type was not a member pointer type!"); QualType PointeeTy = PointerTy->getPointeeType(); // Don't add qualified variants of arrays. For one, they're not allowed // (the qualifier would sink to the element type), and for another, the // only overload situation where it matters is subscript or pointer +- int, // and those shouldn't have qualifier variants anyway. if (PointeeTy->isArrayType()) return true; const Type *ClassTy = PointerTy->getClass(); // Iterate through all strict supersets of the pointee type's CVR // qualifiers. unsigned BaseCVR = PointeeTy.getCVRQualifiers(); for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { if ((CVR | BaseCVR) != CVR) continue; QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); MemberPointerTypes.insert( Context.getMemberPointerType(QPointeeTy, ClassTy)); } return true; } /// AddTypesConvertedFrom - Add each of the types to which the type @p /// Ty can be implicit converted to the given set of @p Types. We're /// primarily interested in pointer types and enumeration types. We also /// take member pointer types, for the conditional operator. /// AllowUserConversions is true if we should look at the conversion /// functions of a class type, and AllowExplicitConversions if we /// should also include the explicit conversion functions of a class /// type. void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, SourceLocation Loc, bool AllowUserConversions, bool AllowExplicitConversions, const Qualifiers &VisibleQuals) { // Only deal with canonical types. Ty = Context.getCanonicalType(Ty); // Look through reference types; they aren't part of the type of an // expression for the purposes of conversions. if (const ReferenceType *RefTy = Ty->getAs()) Ty = RefTy->getPointeeType(); // If we're dealing with an array type, decay to the pointer. if (Ty->isArrayType()) Ty = SemaRef.Context.getArrayDecayedType(Ty); // Otherwise, we don't care about qualifiers on the type. Ty = Ty.getLocalUnqualifiedType(); // Flag if we ever add a non-record type. const RecordType *TyRec = Ty->getAs(); HasNonRecordTypes = HasNonRecordTypes || !TyRec; // Flag if we encounter an arithmetic type. HasArithmeticOrEnumeralTypes = HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); if (Ty->isObjCIdType() || Ty->isObjCClassType()) PointerTypes.insert(Ty); else if (Ty->getAs() || Ty->getAs()) { // Insert our type, and its more-qualified variants, into the set // of types. if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) return; } else if (Ty->isMemberPointerType()) { // Member pointers are far easier, since the pointee can't be converted. if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) return; } else if (Ty->isEnumeralType()) { HasArithmeticOrEnumeralTypes = true; EnumerationTypes.insert(Ty); } else if (Ty->isVectorType()) { // We treat vector types as arithmetic types in many contexts as an // extension. HasArithmeticOrEnumeralTypes = true; VectorTypes.insert(Ty); } else if (Ty->isMatrixType()) { // Similar to vector types, we treat vector types as arithmetic types in // many contexts as an extension. HasArithmeticOrEnumeralTypes = true; MatrixTypes.insert(Ty); } else if (Ty->isNullPtrType()) { HasNullPtrType = true; } else if (AllowUserConversions && TyRec) { // No conversion functions in incomplete types. if (!SemaRef.isCompleteType(Loc, Ty)) return; CXXRecordDecl *ClassDecl = cast(TyRec->getDecl()); for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { if (isa(D)) D = cast(D)->getTargetDecl(); // Skip conversion function templates; they don't tell us anything // about which builtin types we can convert to. if (isa(D)) continue; CXXConversionDecl *Conv = cast(D); if (AllowExplicitConversions || !Conv->isExplicit()) { AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, VisibleQuals); } } } } /// Helper function for adjusting address spaces for the pointer or reference /// operands of builtin operators depending on the argument. static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T, Expr *Arg) { return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace()); } /// Helper function for AddBuiltinOperatorCandidates() that adds /// the volatile- and non-volatile-qualified assignment operators for the /// given type to the candidate set. static void AddBuiltinAssignmentOperatorCandidates(Sema &S, QualType T, ArrayRef Args, OverloadCandidateSet &CandidateSet) { QualType ParamTypes[2]; // T& operator=(T&, T) ParamTypes[0] = S.Context.getLValueReferenceType( AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0])); ParamTypes[1] = T; S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/true); if (!S.Context.getCanonicalType(T).isVolatileQualified()) { // volatile T& operator=(volatile T&, T) ParamTypes[0] = S.Context.getLValueReferenceType( AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T), Args[0])); ParamTypes[1] = T; S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/true); } } /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, /// if any, found in visible type conversion functions found in ArgExpr's type. static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { Qualifiers VRQuals; const RecordType *TyRec; if (const MemberPointerType *RHSMPType = ArgExpr->getType()->getAs()) TyRec = RHSMPType->getClass()->getAs(); else TyRec = ArgExpr->getType()->getAs(); if (!TyRec) { // Just to be safe, assume the worst case. VRQuals.addVolatile(); VRQuals.addRestrict(); return VRQuals; } CXXRecordDecl *ClassDecl = cast(TyRec->getDecl()); if (!ClassDecl->hasDefinition()) return VRQuals; for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { if (isa(D)) D = cast(D)->getTargetDecl(); if (CXXConversionDecl *Conv = dyn_cast(D)) { QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); if (const ReferenceType *ResTypeRef = CanTy->getAs()) CanTy = ResTypeRef->getPointeeType(); // Need to go down the pointer/mempointer chain and add qualifiers // as see them. bool done = false; while (!done) { if (CanTy.isRestrictQualified()) VRQuals.addRestrict(); if (const PointerType *ResTypePtr = CanTy->getAs()) CanTy = ResTypePtr->getPointeeType(); else if (const MemberPointerType *ResTypeMPtr = CanTy->getAs()) CanTy = ResTypeMPtr->getPointeeType(); else done = true; if (CanTy.isVolatileQualified()) VRQuals.addVolatile(); if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) return VRQuals; } } } return VRQuals; } // Note: We're currently only handling qualifiers that are meaningful for the // LHS of compound assignment overloading. static void forAllQualifierCombinationsImpl( QualifiersAndAtomic Available, QualifiersAndAtomic Applied, llvm::function_ref Callback) { // _Atomic if (Available.hasAtomic()) { Available.removeAtomic(); forAllQualifierCombinationsImpl(Available, Applied.withAtomic(), Callback); forAllQualifierCombinationsImpl(Available, Applied, Callback); return; } // volatile if (Available.hasVolatile()) { Available.removeVolatile(); assert(!Applied.hasVolatile()); forAllQualifierCombinationsImpl(Available, Applied.withVolatile(), Callback); forAllQualifierCombinationsImpl(Available, Applied, Callback); return; } Callback(Applied); } static void forAllQualifierCombinations( QualifiersAndAtomic Quals, llvm::function_ref Callback) { return forAllQualifierCombinationsImpl(Quals, QualifiersAndAtomic(), Callback); } static QualType makeQualifiedLValueReferenceType(QualType Base, QualifiersAndAtomic Quals, Sema &S) { if (Quals.hasAtomic()) Base = S.Context.getAtomicType(Base); if (Quals.hasVolatile()) Base = S.Context.getVolatileType(Base); return S.Context.getLValueReferenceType(Base); } namespace { /// Helper class to manage the addition of builtin operator overload /// candidates. It provides shared state and utility methods used throughout /// the process, as well as a helper method to add each group of builtin /// operator overloads from the standard to a candidate set. class BuiltinOperatorOverloadBuilder { // Common instance state available to all overload candidate addition methods. Sema &S; ArrayRef Args; QualifiersAndAtomic VisibleTypeConversionsQuals; bool HasArithmeticOrEnumeralCandidateType; SmallVectorImpl &CandidateTypes; OverloadCandidateSet &CandidateSet; static constexpr int ArithmeticTypesCap = 24; SmallVector ArithmeticTypes; // Define some indices used to iterate over the arithmetic types in // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic // types are that preserved by promotion (C++ [over.built]p2). unsigned FirstIntegralType, LastIntegralType; unsigned FirstPromotedIntegralType, LastPromotedIntegralType; unsigned FirstPromotedArithmeticType, LastPromotedArithmeticType; unsigned NumArithmeticTypes; void InitArithmeticTypes() { // Start of promoted types. FirstPromotedArithmeticType = 0; ArithmeticTypes.push_back(S.Context.FloatTy); ArithmeticTypes.push_back(S.Context.DoubleTy); ArithmeticTypes.push_back(S.Context.LongDoubleTy); if (S.Context.getTargetInfo().hasFloat128Type()) ArithmeticTypes.push_back(S.Context.Float128Ty); if (S.Context.getTargetInfo().hasIbm128Type()) ArithmeticTypes.push_back(S.Context.Ibm128Ty); // Start of integral types. FirstIntegralType = ArithmeticTypes.size(); FirstPromotedIntegralType = ArithmeticTypes.size(); ArithmeticTypes.push_back(S.Context.IntTy); ArithmeticTypes.push_back(S.Context.LongTy); ArithmeticTypes.push_back(S.Context.LongLongTy); if (S.Context.getTargetInfo().hasInt128Type() || (S.Context.getAuxTargetInfo() && S.Context.getAuxTargetInfo()->hasInt128Type())) ArithmeticTypes.push_back(S.Context.Int128Ty); ArithmeticTypes.push_back(S.Context.UnsignedIntTy); ArithmeticTypes.push_back(S.Context.UnsignedLongTy); ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy); if (S.Context.getTargetInfo().hasInt128Type() || (S.Context.getAuxTargetInfo() && S.Context.getAuxTargetInfo()->hasInt128Type())) ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty); LastPromotedIntegralType = ArithmeticTypes.size(); LastPromotedArithmeticType = ArithmeticTypes.size(); // End of promoted types. ArithmeticTypes.push_back(S.Context.BoolTy); ArithmeticTypes.push_back(S.Context.CharTy); ArithmeticTypes.push_back(S.Context.WCharTy); if (S.Context.getLangOpts().Char8) ArithmeticTypes.push_back(S.Context.Char8Ty); ArithmeticTypes.push_back(S.Context.Char16Ty); ArithmeticTypes.push_back(S.Context.Char32Ty); ArithmeticTypes.push_back(S.Context.SignedCharTy); ArithmeticTypes.push_back(S.Context.ShortTy); ArithmeticTypes.push_back(S.Context.UnsignedCharTy); ArithmeticTypes.push_back(S.Context.UnsignedShortTy); LastIntegralType = ArithmeticTypes.size(); NumArithmeticTypes = ArithmeticTypes.size(); // End of integral types. // FIXME: What about complex? What about half? assert(ArithmeticTypes.size() <= ArithmeticTypesCap && "Enough inline storage for all arithmetic types."); } /// Helper method to factor out the common pattern of adding overloads /// for '++' and '--' builtin operators. void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, bool HasVolatile, bool HasRestrict) { QualType ParamTypes[2] = { S.Context.getLValueReferenceType(CandidateTy), S.Context.IntTy }; // Non-volatile version. S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); // Use a heuristic to reduce number of builtin candidates in the set: // add volatile version only if there are conversions to a volatile type. if (HasVolatile) { ParamTypes[0] = S.Context.getLValueReferenceType( S.Context.getVolatileType(CandidateTy)); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } // Add restrict version only if there are conversions to a restrict type // and our candidate type is a non-restrict-qualified pointer. if (HasRestrict && CandidateTy->isAnyPointerType() && !CandidateTy.isRestrictQualified()) { ParamTypes[0] = S.Context.getLValueReferenceType( S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict)); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); if (HasVolatile) { ParamTypes[0] = S.Context.getLValueReferenceType( S.Context.getCVRQualifiedType(CandidateTy, (Qualifiers::Volatile | Qualifiers::Restrict))); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } } } /// Helper to add an overload candidate for a binary builtin with types \p L /// and \p R. void AddCandidate(QualType L, QualType R) { QualType LandR[2] = {L, R}; S.AddBuiltinCandidate(LandR, Args, CandidateSet); } public: BuiltinOperatorOverloadBuilder( Sema &S, ArrayRef Args, QualifiersAndAtomic VisibleTypeConversionsQuals, bool HasArithmeticOrEnumeralCandidateType, SmallVectorImpl &CandidateTypes, OverloadCandidateSet &CandidateSet) : S(S), Args(Args), VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), HasArithmeticOrEnumeralCandidateType( HasArithmeticOrEnumeralCandidateType), CandidateTypes(CandidateTypes), CandidateSet(CandidateSet) { InitArithmeticTypes(); } // Increment is deprecated for bool since C++17. // // C++ [over.built]p3: // // For every pair (T, VQ), where T is an arithmetic type other // than bool, and VQ is either volatile or empty, there exist // candidate operator functions of the form // // VQ T& operator++(VQ T&); // T operator++(VQ T&, int); // // C++ [over.built]p4: // // For every pair (T, VQ), where T is an arithmetic type other // than bool, and VQ is either volatile or empty, there exist // candidate operator functions of the form // // VQ T& operator--(VQ T&); // T operator--(VQ T&, int); void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { if (!HasArithmeticOrEnumeralCandidateType) return; for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) { const auto TypeOfT = ArithmeticTypes[Arith]; if (TypeOfT == S.Context.BoolTy) { if (Op == OO_MinusMinus) continue; if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17) continue; } addPlusPlusMinusMinusStyleOverloads( TypeOfT, VisibleTypeConversionsQuals.hasVolatile(), VisibleTypeConversionsQuals.hasRestrict()); } } // C++ [over.built]p5: // // For every pair (T, VQ), where T is a cv-qualified or // cv-unqualified object type, and VQ is either volatile or // empty, there exist candidate operator functions of the form // // T*VQ& operator++(T*VQ&); // T*VQ& operator--(T*VQ&); // T* operator++(T*VQ&, int); // T* operator--(T*VQ&, int); void addPlusPlusMinusMinusPointerOverloads() { for (QualType PtrTy : CandidateTypes[0].pointer_types()) { // Skip pointer types that aren't pointers to object types. if (!PtrTy->getPointeeType()->isObjectType()) continue; addPlusPlusMinusMinusStyleOverloads( PtrTy, (!PtrTy.isVolatileQualified() && VisibleTypeConversionsQuals.hasVolatile()), (!PtrTy.isRestrictQualified() && VisibleTypeConversionsQuals.hasRestrict())); } } // C++ [over.built]p6: // For every cv-qualified or cv-unqualified object type T, there // exist candidate operator functions of the form // // T& operator*(T*); // // C++ [over.built]p7: // For every function type T that does not have cv-qualifiers or a // ref-qualifier, there exist candidate operator functions of the form // T& operator*(T*); void addUnaryStarPointerOverloads() { for (QualType ParamTy : CandidateTypes[0].pointer_types()) { QualType PointeeTy = ParamTy->getPointeeType(); if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) continue; if (const FunctionProtoType *Proto =PointeeTy->getAs()) if (Proto->getMethodQuals() || Proto->getRefQualifier()) continue; S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); } } // C++ [over.built]p9: // For every promoted arithmetic type T, there exist candidate // operator functions of the form // // T operator+(T); // T operator-(T); void addUnaryPlusOrMinusArithmeticOverloads() { if (!HasArithmeticOrEnumeralCandidateType) return; for (unsigned Arith = FirstPromotedArithmeticType; Arith < LastPromotedArithmeticType; ++Arith) { QualType ArithTy = ArithmeticTypes[Arith]; S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet); } // Extension: We also add these operators for vector types. for (QualType VecTy : CandidateTypes[0].vector_types()) S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); } // C++ [over.built]p8: // For every type T, there exist candidate operator functions of // the form // // T* operator+(T*); void addUnaryPlusPointerOverloads() { for (QualType ParamTy : CandidateTypes[0].pointer_types()) S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); } // C++ [over.built]p10: // For every promoted integral type T, there exist candidate // operator functions of the form // // T operator~(T); void addUnaryTildePromotedIntegralOverloads() { if (!HasArithmeticOrEnumeralCandidateType) return; for (unsigned Int = FirstPromotedIntegralType; Int < LastPromotedIntegralType; ++Int) { QualType IntTy = ArithmeticTypes[Int]; S.AddBuiltinCandidate(&IntTy, Args, CandidateSet); } // Extension: We also add this operator for vector types. for (QualType VecTy : CandidateTypes[0].vector_types()) S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); } // C++ [over.match.oper]p16: // For every pointer to member type T or type std::nullptr_t, there // exist candidate operator functions of the form // // bool operator==(T,T); // bool operator!=(T,T); void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() { /// Set of (canonical) types that we've already handled. llvm::SmallPtrSet AddedTypes; for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { // Don't add the same builtin candidate twice. if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) continue; QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } if (CandidateTypes[ArgIdx].hasNullPtrType()) { CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); if (AddedTypes.insert(NullPtrTy).second) { QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } } } } // C++ [over.built]p15: // // For every T, where T is an enumeration type or a pointer type, // there exist candidate operator functions of the form // // bool operator<(T, T); // bool operator>(T, T); // bool operator<=(T, T); // bool operator>=(T, T); // bool operator==(T, T); // bool operator!=(T, T); // R operator<=>(T, T) void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) { // C++ [over.match.oper]p3: // [...]the built-in candidates include all of the candidate operator // functions defined in 13.6 that, compared to the given operator, [...] // do not have the same parameter-type-list as any non-template non-member // candidate. // // Note that in practice, this only affects enumeration types because there // aren't any built-in candidates of record type, and a user-defined operator // must have an operand of record or enumeration type. Also, the only other // overloaded operator with enumeration arguments, operator=, // cannot be overloaded for enumeration types, so this is the only place // where we must suppress candidates like this. llvm::DenseSet > UserDefinedBinaryOperators; for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { if (!CandidateTypes[ArgIdx].enumeration_types().empty()) { for (OverloadCandidateSet::iterator C = CandidateSet.begin(), CEnd = CandidateSet.end(); C != CEnd; ++C) { if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) continue; if (C->Function->isFunctionTemplateSpecialization()) continue; // We interpret "same parameter-type-list" as applying to the // "synthesized candidate, with the order of the two parameters // reversed", not to the original function. bool Reversed = C->isReversed(); QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0) ->getType() .getUnqualifiedType(); QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1) ->getType() .getUnqualifiedType(); // Skip if either parameter isn't of enumeral type. if (!FirstParamType->isEnumeralType() || !SecondParamType->isEnumeralType()) continue; // Add this operator to the set of known user-defined operators. UserDefinedBinaryOperators.insert( std::make_pair(S.Context.getCanonicalType(FirstParamType), S.Context.getCanonicalType(SecondParamType))); } } } /// Set of (canonical) types that we've already handled. llvm::SmallPtrSet AddedTypes; for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { // Don't add the same builtin candidate twice. if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) continue; if (IsSpaceship && PtrTy->isFunctionPointerType()) continue; QualType ParamTypes[2] = {PtrTy, PtrTy}; S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { CanQualType CanonType = S.Context.getCanonicalType(EnumTy); // Don't add the same builtin candidate twice, or if a user defined // candidate exists. if (!AddedTypes.insert(CanonType).second || UserDefinedBinaryOperators.count(std::make_pair(CanonType, CanonType))) continue; QualType ParamTypes[2] = {EnumTy, EnumTy}; S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } } } // C++ [over.built]p13: // // For every cv-qualified or cv-unqualified object type T // there exist candidate operator functions of the form // // T* operator+(T*, ptrdiff_t); // T& operator[](T*, ptrdiff_t); [BELOW] // T* operator-(T*, ptrdiff_t); // T* operator+(ptrdiff_t, T*); // T& operator[](ptrdiff_t, T*); [BELOW] // // C++ [over.built]p14: // // For every T, where T is a pointer to object type, there // exist candidate operator functions of the form // // ptrdiff_t operator-(T, T); void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { /// Set of (canonical) types that we've already handled. llvm::SmallPtrSet AddedTypes; for (int Arg = 0; Arg < 2; ++Arg) { QualType AsymmetricParamTypes[2] = { S.Context.getPointerDiffType(), S.Context.getPointerDiffType(), }; for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) { QualType PointeeTy = PtrTy->getPointeeType(); if (!PointeeTy->isObjectType()) continue; AsymmetricParamTypes[Arg] = PtrTy; if (Arg == 0 || Op == OO_Plus) { // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) // T* operator+(ptrdiff_t, T*); S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet); } if (Op == OO_Minus) { // ptrdiff_t operator-(T, T); if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) continue; QualType ParamTypes[2] = {PtrTy, PtrTy}; S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } } } } // C++ [over.built]p12: // // For every pair of promoted arithmetic types L and R, there // exist candidate operator functions of the form // // LR operator*(L, R); // LR operator/(L, R); // LR operator+(L, R); // LR operator-(L, R); // bool operator<(L, R); // bool operator>(L, R); // bool operator<=(L, R); // bool operator>=(L, R); // bool operator==(L, R); // bool operator!=(L, R); // // where LR is the result of the usual arithmetic conversions // between types L and R. // // C++ [over.built]p24: // // For every pair of promoted arithmetic types L and R, there exist // candidate operator functions of the form // // LR operator?(bool, L, R); // // where LR is the result of the usual arithmetic conversions // between types L and R. // Our candidates ignore the first parameter. void addGenericBinaryArithmeticOverloads() { if (!HasArithmeticOrEnumeralCandidateType) return; for (unsigned Left = FirstPromotedArithmeticType; Left < LastPromotedArithmeticType; ++Left) { for (unsigned Right = FirstPromotedArithmeticType; Right < LastPromotedArithmeticType; ++Right) { QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; S.AddBuiltinCandidate(LandR, Args, CandidateSet); } } // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the // conditional operator for vector types. for (QualType Vec1Ty : CandidateTypes[0].vector_types()) for (QualType Vec2Ty : CandidateTypes[1].vector_types()) { QualType LandR[2] = {Vec1Ty, Vec2Ty}; S.AddBuiltinCandidate(LandR, Args, CandidateSet); } } /// Add binary operator overloads for each candidate matrix type M1, M2: /// * (M1, M1) -> M1 /// * (M1, M1.getElementType()) -> M1 /// * (M2.getElementType(), M2) -> M2 /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0]. void addMatrixBinaryArithmeticOverloads() { if (!HasArithmeticOrEnumeralCandidateType) return; for (QualType M1 : CandidateTypes[0].matrix_types()) { AddCandidate(M1, cast(M1)->getElementType()); AddCandidate(M1, M1); } for (QualType M2 : CandidateTypes[1].matrix_types()) { AddCandidate(cast(M2)->getElementType(), M2); if (!CandidateTypes[0].containsMatrixType(M2)) AddCandidate(M2, M2); } } // C++2a [over.built]p14: // // For every integral type T there exists a candidate operator function // of the form // // std::strong_ordering operator<=>(T, T) // // C++2a [over.built]p15: // // For every pair of floating-point types L and R, there exists a candidate // operator function of the form // // std::partial_ordering operator<=>(L, R); // // FIXME: The current specification for integral types doesn't play nice with // the direction of p0946r0, which allows mixed integral and unscoped-enum // comparisons. Under the current spec this can lead to ambiguity during // overload resolution. For example: // // enum A : int {a}; // auto x = (a <=> (long)42); // // error: call is ambiguous for arguments 'A' and 'long'. // note: candidate operator<=>(int, int) // note: candidate operator<=>(long, long) // // To avoid this error, this function deviates from the specification and adds // the mixed overloads `operator<=>(L, R)` where L and R are promoted // arithmetic types (the same as the generic relational overloads). // // For now this function acts as a placeholder. void addThreeWayArithmeticOverloads() { addGenericBinaryArithmeticOverloads(); } // C++ [over.built]p17: // // For every pair of promoted integral types L and R, there // exist candidate operator functions of the form // // LR operator%(L, R); // LR operator&(L, R); // LR operator^(L, R); // LR operator|(L, R); // L operator<<(L, R); // L operator>>(L, R); // // where LR is the result of the usual arithmetic conversions // between types L and R. void addBinaryBitwiseArithmeticOverloads() { if (!HasArithmeticOrEnumeralCandidateType) return; for (unsigned Left = FirstPromotedIntegralType; Left < LastPromotedIntegralType; ++Left) { for (unsigned Right = FirstPromotedIntegralType; Right < LastPromotedIntegralType; ++Right) { QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; S.AddBuiltinCandidate(LandR, Args, CandidateSet); } } } // C++ [over.built]p20: // // For every pair (T, VQ), where T is an enumeration or // pointer to member type and VQ is either volatile or // empty, there exist candidate operator functions of the form // // VQ T& operator=(VQ T&, T); void addAssignmentMemberPointerOrEnumeralOverloads() { /// Set of (canonical) types that we've already handled. llvm::SmallPtrSet AddedTypes; for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) continue; AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet); } for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) continue; AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet); } } } // C++ [over.built]p19: // // For every pair (T, VQ), where T is any type and VQ is either // volatile or empty, there exist candidate operator functions // of the form // // T*VQ& operator=(T*VQ&, T*); // // C++ [over.built]p21: // // For every pair (T, VQ), where T is a cv-qualified or // cv-unqualified object type and VQ is either volatile or // empty, there exist candidate operator functions of the form // // T*VQ& operator+=(T*VQ&, ptrdiff_t); // T*VQ& operator-=(T*VQ&, ptrdiff_t); void addAssignmentPointerOverloads(bool isEqualOp) { /// Set of (canonical) types that we've already handled. llvm::SmallPtrSet AddedTypes; for (QualType PtrTy : CandidateTypes[0].pointer_types()) { // If this is operator=, keep track of the builtin candidates we added. if (isEqualOp) AddedTypes.insert(S.Context.getCanonicalType(PtrTy)); else if (!PtrTy->getPointeeType()->isObjectType()) continue; // non-volatile version QualType ParamTypes[2] = { S.Context.getLValueReferenceType(PtrTy), isEqualOp ? PtrTy : S.Context.getPointerDiffType(), }; S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/ isEqualOp); bool NeedVolatile = !PtrTy.isVolatileQualified() && VisibleTypeConversionsQuals.hasVolatile(); if (NeedVolatile) { // volatile version ParamTypes[0] = S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy)); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/isEqualOp); } if (!PtrTy.isRestrictQualified() && VisibleTypeConversionsQuals.hasRestrict()) { // restrict version ParamTypes[0] = S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy)); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/isEqualOp); if (NeedVolatile) { // volatile restrict version ParamTypes[0] = S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/isEqualOp); } } } if (isEqualOp) { for (QualType PtrTy : CandidateTypes[1].pointer_types()) { // Make sure we don't add the same candidate twice. if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) continue; QualType ParamTypes[2] = { S.Context.getLValueReferenceType(PtrTy), PtrTy, }; // non-volatile version S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/true); bool NeedVolatile = !PtrTy.isVolatileQualified() && VisibleTypeConversionsQuals.hasVolatile(); if (NeedVolatile) { // volatile version ParamTypes[0] = S.Context.getLValueReferenceType( S.Context.getVolatileType(PtrTy)); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/true); } if (!PtrTy.isRestrictQualified() && VisibleTypeConversionsQuals.hasRestrict()) { // restrict version ParamTypes[0] = S.Context.getLValueReferenceType( S.Context.getRestrictType(PtrTy)); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/true); if (NeedVolatile) { // volatile restrict version ParamTypes[0] = S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/true); } } } } } // C++ [over.built]p18: // // For every triple (L, VQ, R), where L is an arithmetic type, // VQ is either volatile or empty, and R is a promoted // arithmetic type, there exist candidate operator functions of // the form // // VQ L& operator=(VQ L&, R); // VQ L& operator*=(VQ L&, R); // VQ L& operator/=(VQ L&, R); // VQ L& operator+=(VQ L&, R); // VQ L& operator-=(VQ L&, R); void addAssignmentArithmeticOverloads(bool isEqualOp) { if (!HasArithmeticOrEnumeralCandidateType) return; for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { for (unsigned Right = FirstPromotedArithmeticType; Right < LastPromotedArithmeticType; ++Right) { QualType ParamTypes[2]; ParamTypes[1] = ArithmeticTypes[Right]; auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( S, ArithmeticTypes[Left], Args[0]); forAllQualifierCombinations( VisibleTypeConversionsQuals, [&](QualifiersAndAtomic Quals) { ParamTypes[0] = makeQualifiedLValueReferenceType(LeftBaseTy, Quals, S); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/isEqualOp); }); } } // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. for (QualType Vec1Ty : CandidateTypes[0].vector_types()) for (QualType Vec2Ty : CandidateTypes[0].vector_types()) { QualType ParamTypes[2]; ParamTypes[1] = Vec2Ty; // Add this built-in operator as a candidate (VQ is empty). ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/isEqualOp); // Add this built-in operator as a candidate (VQ is 'volatile'). if (VisibleTypeConversionsQuals.hasVolatile()) { ParamTypes[0] = S.Context.getVolatileType(Vec1Ty); ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/isEqualOp); } } } // C++ [over.built]p22: // // For every triple (L, VQ, R), where L is an integral type, VQ // is either volatile or empty, and R is a promoted integral // type, there exist candidate operator functions of the form // // VQ L& operator%=(VQ L&, R); // VQ L& operator<<=(VQ L&, R); // VQ L& operator>>=(VQ L&, R); // VQ L& operator&=(VQ L&, R); // VQ L& operator^=(VQ L&, R); // VQ L& operator|=(VQ L&, R); void addAssignmentIntegralOverloads() { if (!HasArithmeticOrEnumeralCandidateType) return; for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { for (unsigned Right = FirstPromotedIntegralType; Right < LastPromotedIntegralType; ++Right) { QualType ParamTypes[2]; ParamTypes[1] = ArithmeticTypes[Right]; auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( S, ArithmeticTypes[Left], Args[0]); forAllQualifierCombinations( VisibleTypeConversionsQuals, [&](QualifiersAndAtomic Quals) { ParamTypes[0] = makeQualifiedLValueReferenceType(LeftBaseTy, Quals, S); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); }); } } } // C++ [over.operator]p23: // // There also exist candidate operator functions of the form // // bool operator!(bool); // bool operator&&(bool, bool); // bool operator||(bool, bool); void addExclaimOverload() { QualType ParamTy = S.Context.BoolTy; S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet, /*IsAssignmentOperator=*/false, /*NumContextualBoolArguments=*/1); } void addAmpAmpOrPipePipeOverload() { QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, /*IsAssignmentOperator=*/false, /*NumContextualBoolArguments=*/2); } // C++ [over.built]p13: // // For every cv-qualified or cv-unqualified object type T there // exist candidate operator functions of the form // // T* operator+(T*, ptrdiff_t); [ABOVE] // T& operator[](T*, ptrdiff_t); // T* operator-(T*, ptrdiff_t); [ABOVE] // T* operator+(ptrdiff_t, T*); [ABOVE] // T& operator[](ptrdiff_t, T*); void addSubscriptOverloads() { for (QualType PtrTy : CandidateTypes[0].pointer_types()) { QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()}; QualType PointeeType = PtrTy->getPointeeType(); if (!PointeeType->isObjectType()) continue; // T& operator[](T*, ptrdiff_t) S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } for (QualType PtrTy : CandidateTypes[1].pointer_types()) { QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy}; QualType PointeeType = PtrTy->getPointeeType(); if (!PointeeType->isObjectType()) continue; // T& operator[](ptrdiff_t, T*) S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } } // C++ [over.built]p11: // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, // C1 is the same type as C2 or is a derived class of C2, T is an object // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, // there exist candidate operator functions of the form // // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); // // where CV12 is the union of CV1 and CV2. void addArrowStarOverloads() { for (QualType PtrTy : CandidateTypes[0].pointer_types()) { QualType C1Ty = PtrTy; QualType C1; QualifierCollector Q1; C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); if (!isa(C1)) continue; // heuristic to reduce number of builtin candidates in the set. // Add volatile/restrict version only if there are conversions to a // volatile/restrict type. if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) continue; if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) continue; for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) { const MemberPointerType *mptr = cast(MemPtrTy); QualType C2 = QualType(mptr->getClass(), 0); C2 = C2.getUnqualifiedType(); if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2)) break; QualType ParamTypes[2] = {PtrTy, MemPtrTy}; // build CV12 T& QualType T = mptr->getPointeeType(); if (!VisibleTypeConversionsQuals.hasVolatile() && T.isVolatileQualified()) continue; if (!VisibleTypeConversionsQuals.hasRestrict() && T.isRestrictQualified()) continue; T = Q1.apply(S.Context, T); S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } } } // Note that we don't consider the first argument, since it has been // contextually converted to bool long ago. The candidates below are // therefore added as binary. // // C++ [over.built]p25: // For every type T, where T is a pointer, pointer-to-member, or scoped // enumeration type, there exist candidate operator functions of the form // // T operator?(bool, T, T); // void addConditionalOperatorOverloads() { /// Set of (canonical) types that we've already handled. llvm::SmallPtrSet AddedTypes; for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) continue; QualType ParamTypes[2] = {PtrTy, PtrTy}; S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) continue; QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } if (S.getLangOpts().CPlusPlus11) { for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { if (!EnumTy->castAs()->getDecl()->isScoped()) continue; if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) continue; QualType ParamTypes[2] = {EnumTy, EnumTy}; S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); } } } } }; } // end anonymous namespace /// AddBuiltinOperatorCandidates - Add the appropriate built-in /// operator overloads to the candidate set (C++ [over.built]), based /// on the operator @p Op and the arguments given. For example, if the /// operator is a binary '+', this routine might add "int /// operator+(int, int)" to cover integer addition. void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, ArrayRef Args, OverloadCandidateSet &CandidateSet) { // Find all of the types that the arguments can convert to, but only // if the operator we're looking at has built-in operator candidates // that make use of these types. Also record whether we encounter non-record // candidate types or either arithmetic or enumeral candidate types. QualifiersAndAtomic VisibleTypeConversionsQuals; VisibleTypeConversionsQuals.addConst(); for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); if (Args[ArgIdx]->getType()->isAtomicType()) VisibleTypeConversionsQuals.addAtomic(); } bool HasNonRecordCandidateType = false; bool HasArithmeticOrEnumeralCandidateType = false; SmallVector CandidateTypes; for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { CandidateTypes.emplace_back(*this); CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), OpLoc, true, (Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe), VisibleTypeConversionsQuals); HasNonRecordCandidateType = HasNonRecordCandidateType || CandidateTypes[ArgIdx].hasNonRecordTypes(); HasArithmeticOrEnumeralCandidateType = HasArithmeticOrEnumeralCandidateType || CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); } // Exit early when no non-record types have been added to the candidate set // for any of the arguments to the operator. // // We can't exit early for !, ||, or &&, since there we have always have // 'bool' overloads. if (!HasNonRecordCandidateType && !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) return; // Setup an object to manage the common state for building overloads. BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, VisibleTypeConversionsQuals, HasArithmeticOrEnumeralCandidateType, CandidateTypes, CandidateSet); // Dispatch over the operation to add in only those overloads which apply. switch (Op) { case OO_None: case NUM_OVERLOADED_OPERATORS: llvm_unreachable("Expected an overloaded operator"); case OO_New: case OO_Delete: case OO_Array_New: case OO_Array_Delete: case OO_Call: llvm_unreachable( "Special operators don't use AddBuiltinOperatorCandidates"); case OO_Comma: case OO_Arrow: case OO_Coawait: // C++ [over.match.oper]p3: // -- For the operator ',', the unary operator '&', the // operator '->', or the operator 'co_await', the // built-in candidates set is empty. break; case OO_Plus: // '+' is either unary or binary if (Args.size() == 1) OpBuilder.addUnaryPlusPointerOverloads(); [[fallthrough]]; case OO_Minus: // '-' is either unary or binary if (Args.size() == 1) { OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); } else { OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); OpBuilder.addGenericBinaryArithmeticOverloads(); OpBuilder.addMatrixBinaryArithmeticOverloads(); } break; case OO_Star: // '*' is either unary or binary if (Args.size() == 1) OpBuilder.addUnaryStarPointerOverloads(); else { OpBuilder.addGenericBinaryArithmeticOverloads(); OpBuilder.addMatrixBinaryArithmeticOverloads(); } break; case OO_Slash: OpBuilder.addGenericBinaryArithmeticOverloads(); break; case OO_PlusPlus: case OO_MinusMinus: OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); OpBuilder.addPlusPlusMinusMinusPointerOverloads(); break; case OO_EqualEqual: case OO_ExclaimEqual: OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads(); OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); OpBuilder.addGenericBinaryArithmeticOverloads(); break; case OO_Less: case OO_Greater: case OO_LessEqual: case OO_GreaterEqual: OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); OpBuilder.addGenericBinaryArithmeticOverloads(); break; case OO_Spaceship: OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true); OpBuilder.addThreeWayArithmeticOverloads(); break; case OO_Percent: case OO_Caret: case OO_Pipe: case OO_LessLess: case OO_GreaterGreater: OpBuilder.addBinaryBitwiseArithmeticOverloads(); break; case OO_Amp: // '&' is either unary or binary if (Args.size() == 1) // C++ [over.match.oper]p3: // -- For the operator ',', the unary operator '&', or the // operator '->', the built-in candidates set is empty. break; OpBuilder.addBinaryBitwiseArithmeticOverloads(); break; case OO_Tilde: OpBuilder.addUnaryTildePromotedIntegralOverloads(); break; case OO_Equal: OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); [[fallthrough]]; case OO_PlusEqual: case OO_MinusEqual: OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); [[fallthrough]]; case OO_StarEqual: case OO_SlashEqual: OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); break; case OO_PercentEqual: case OO_LessLessEqual: case OO_GreaterGreaterEqual: case OO_AmpEqual: case OO_CaretEqual: case OO_PipeEqual: OpBuilder.addAssignmentIntegralOverloads(); break; case OO_Exclaim: OpBuilder.addExclaimOverload(); break; case OO_AmpAmp: case OO_PipePipe: OpBuilder.addAmpAmpOrPipePipeOverload(); break; case OO_Subscript: if (Args.size() == 2) OpBuilder.addSubscriptOverloads(); break; case OO_ArrowStar: OpBuilder.addArrowStarOverloads(); break; case OO_Conditional: OpBuilder.addConditionalOperatorOverloads(); OpBuilder.addGenericBinaryArithmeticOverloads(); break; } } /// Add function candidates found via argument-dependent lookup /// to the set of overloading candidates. /// /// This routine performs argument-dependent name lookup based on the /// given function name (which may also be an operator name) and adds /// all of the overload candidates found by ADL to the overload /// candidate set (C++ [basic.lookup.argdep]). void Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, SourceLocation Loc, ArrayRef Args, TemplateArgumentListInfo *ExplicitTemplateArgs, OverloadCandidateSet& CandidateSet, bool PartialOverloading) { ADLResult Fns; // FIXME: This approach for uniquing ADL results (and removing // redundant candidates from the set) relies on pointer-equality, // which means we need to key off the canonical decl. However, // always going back to the canonical decl might not get us the // right set of default arguments. What default arguments are // we supposed to consider on ADL candidates, anyway? // FIXME: Pass in the explicit template arguments? ArgumentDependentLookup(Name, Loc, Args, Fns); // Erase all of the candidates we already knew about. for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), CandEnd = CandidateSet.end(); Cand != CandEnd; ++Cand) if (Cand->Function) { Fns.erase(Cand->Function); if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) Fns.erase(FunTmpl); } // For each of the ADL candidates we found, add it to the overload // set. for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); if (FunctionDecl *FD = dyn_cast(*I)) { if (ExplicitTemplateArgs) continue; AddOverloadCandidate( FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading, /*AllowExplicit=*/true, /*AllowExplicitConversion=*/false, ADLCallKind::UsesADL); if (CandidateSet.getRewriteInfo().shouldAddReversed(*this, Args, FD)) { AddOverloadCandidate( FD, FoundDecl, {Args[1], Args[0]}, CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading, /*AllowExplicit=*/true, /*AllowExplicitConversion=*/false, ADLCallKind::UsesADL, std::nullopt, OverloadCandidateParamOrder::Reversed); } } else { auto *FTD = cast(*I); AddTemplateOverloadCandidate( FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading, /*AllowExplicit=*/true, ADLCallKind::UsesADL); if (CandidateSet.getRewriteInfo().shouldAddReversed( *this, Args, FTD->getTemplatedDecl())) { AddTemplateOverloadCandidate( FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]}, CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading, /*AllowExplicit=*/true, ADLCallKind::UsesADL, OverloadCandidateParamOrder::Reversed); } } } } namespace { enum class Comparison { Equal, Better, Worse }; } /// Compares the enable_if attributes of two FunctionDecls, for the purposes of /// overload resolution. /// /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff /// Cand1's first N enable_if attributes have precisely the same conditions as /// Cand2's first N enable_if attributes (where N = the number of enable_if /// attributes on Cand2), and Cand1 has more than N enable_if attributes. /// /// Note that you can have a pair of candidates such that Cand1's enable_if /// attributes are worse than Cand2's, and Cand2's enable_if attributes are /// worse than Cand1's. static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1, const FunctionDecl *Cand2) { // Common case: One (or both) decls don't have enable_if attrs. bool Cand1Attr = Cand1->hasAttr(); bool Cand2Attr = Cand2->hasAttr(); if (!Cand1Attr || !Cand2Attr) { if (Cand1Attr == Cand2Attr) return Comparison::Equal; return Cand1Attr ? Comparison::Better : Comparison::Worse; } auto Cand1Attrs = Cand1->specific_attrs(); auto Cand2Attrs = Cand2->specific_attrs(); llvm::FoldingSetNodeID Cand1ID, Cand2ID; for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) { std::optional Cand1A = std::get<0>(Pair); std::optional Cand2A = std::get<1>(Pair); // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1 // has fewer enable_if attributes than Cand2, and vice versa. if (!Cand1A) return Comparison::Worse; if (!Cand2A) return Comparison::Better; Cand1ID.clear(); Cand2ID.clear(); (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true); (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true); if (Cand1ID != Cand2ID) return Comparison::Worse; } return Comparison::Equal; } static Comparison isBetterMultiversionCandidate(const OverloadCandidate &Cand1, const OverloadCandidate &Cand2) { if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function || !Cand2.Function->isMultiVersion()) return Comparison::Equal; // If both are invalid, they are equal. If one of them is invalid, the other // is better. if (Cand1.Function->isInvalidDecl()) { if (Cand2.Function->isInvalidDecl()) return Comparison::Equal; return Comparison::Worse; } if (Cand2.Function->isInvalidDecl()) return Comparison::Better; // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer // cpu_dispatch, else arbitrarily based on the identifiers. bool Cand1CPUDisp = Cand1.Function->hasAttr(); bool Cand2CPUDisp = Cand2.Function->hasAttr(); const auto *Cand1CPUSpec = Cand1.Function->getAttr(); const auto *Cand2CPUSpec = Cand2.Function->getAttr(); if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec) return Comparison::Equal; if (Cand1CPUDisp && !Cand2CPUDisp) return Comparison::Better; if (Cand2CPUDisp && !Cand1CPUDisp) return Comparison::Worse; if (Cand1CPUSpec && Cand2CPUSpec) { if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size()) return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size() ? Comparison::Better : Comparison::Worse; std::pair FirstDiff = std::mismatch( Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(), Cand2CPUSpec->cpus_begin(), [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) { return LHS->getName() == RHS->getName(); }); assert(FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same " "identifier list, otherwise they'd be the same decl!"); return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName() ? Comparison::Better : Comparison::Worse; } llvm_unreachable("No way to get here unless both had cpu_dispatch"); } /// Compute the type of the implicit object parameter for the given function, /// if any. Returns std::nullopt if there is no implicit object parameter, and a /// null QualType if there is a 'matches anything' implicit object parameter. static std::optional getImplicitObjectParamType(ASTContext &Context, const FunctionDecl *F) { if (!isa(F) || isa(F)) return std::nullopt; auto *M = cast(F); // Static member functions' object parameters match all types. if (M->isStatic()) return QualType(); return M->getFunctionObjectParameterReferenceType(); } // As a Clang extension, allow ambiguity among F1 and F2 if they represent // represent the same entity. static bool allowAmbiguity(ASTContext &Context, const FunctionDecl *F1, const FunctionDecl *F2) { if (declaresSameEntity(F1, F2)) return true; auto PT1 = F1->getPrimaryTemplate(); auto PT2 = F2->getPrimaryTemplate(); if (PT1 && PT2) { if (declaresSameEntity(PT1, PT2) || declaresSameEntity(PT1->getInstantiatedFromMemberTemplate(), PT2->getInstantiatedFromMemberTemplate())) return true; } // TODO: It is not clear whether comparing parameters is necessary (i.e. // different functions with same params). Consider removing this (as no test // fail w/o it). auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) { if (First) { if (std::optional T = getImplicitObjectParamType(Context, F)) return *T; } assert(I < F->getNumParams()); return F->getParamDecl(I++)->getType(); }; unsigned F1NumParams = F1->getNumParams() + isa(F1); unsigned F2NumParams = F2->getNumParams() + isa(F2); if (F1NumParams != F2NumParams) return false; unsigned I1 = 0, I2 = 0; for (unsigned I = 0; I != F1NumParams; ++I) { QualType T1 = NextParam(F1, I1, I == 0); QualType T2 = NextParam(F2, I2, I == 0); assert(!T1.isNull() && !T2.isNull() && "Unexpected null param types"); if (!Context.hasSameUnqualifiedType(T1, T2)) return false; } return true; } /// We're allowed to use constraints partial ordering only if the candidates /// have the same parameter types: /// [over.match.best.general]p2.6 /// F1 and F2 are non-template functions with the same /// non-object-parameter-type-lists, and F1 is more constrained than F2 [...] static bool sameFunctionParameterTypeLists(Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2) { if (!Cand1.Function || !Cand2.Function) return false; FunctionDecl *Fn1 = Cand1.Function; FunctionDecl *Fn2 = Cand2.Function; if (Fn1->isVariadic() != Fn1->isVariadic()) return false; if (!S.FunctionNonObjectParamTypesAreEqual( Fn1, Fn2, nullptr, Cand1.isReversed() ^ Cand2.isReversed())) return false; auto *Mem1 = dyn_cast(Fn1); auto *Mem2 = dyn_cast(Fn2); if (Mem1 && Mem2) { // if they are member functions, both are direct members of the same class, // and if (Mem1->getParent() != Mem2->getParent()) return false; // if both are non-static member functions, they have the same types for // their object parameters if (Mem1->isInstance() && Mem2->isInstance() && !S.getASTContext().hasSameType( Mem1->getFunctionObjectParameterReferenceType(), Mem1->getFunctionObjectParameterReferenceType())) return false; } return true; } /// isBetterOverloadCandidate - Determines whether the first overload /// candidate is a better candidate than the second (C++ 13.3.3p1). bool clang::isBetterOverloadCandidate( Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2, SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) { // Define viable functions to be better candidates than non-viable // functions. if (!Cand2.Viable) return Cand1.Viable; else if (!Cand1.Viable) return false; // [CUDA] A function with 'never' preference is marked not viable, therefore // is never shown up here. The worst preference shown up here is 'wrong side', // e.g. an H function called by a HD function in device compilation. This is // valid AST as long as the HD function is not emitted, e.g. it is an inline // function which is called only by an H function. A deferred diagnostic will // be triggered if it is emitted. However a wrong-sided function is still // a viable candidate here. // // If Cand1 can be emitted and Cand2 cannot be emitted in the current // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2 // can be emitted, Cand1 is not better than Cand2. This rule should have // precedence over other rules. // // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then // other rules should be used to determine which is better. This is because // host/device based overloading resolution is mostly for determining // viability of a function. If two functions are both viable, other factors // should take precedence in preference, e.g. the standard-defined preferences // like argument conversion ranks or enable_if partial-ordering. The // preference for pass-object-size parameters is probably most similar to a // type-based-overloading decision and so should take priority. // // If other rules cannot determine which is better, CUDA preference will be // used again to determine which is better. // // TODO: Currently IdentifyCUDAPreference does not return correct values // for functions called in global variable initializers due to missing // correct context about device/host. Therefore we can only enforce this // rule when there is a caller. We should enforce this rule for functions // in global variable initializers once proper context is added. // // TODO: We can only enable the hostness based overloading resolution when // -fgpu-exclude-wrong-side-overloads is on since this requires deferring // overloading resolution diagnostics. if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function && S.getLangOpts().GPUExcludeWrongSideOverloads) { if (FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true)) { bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller); bool IsCand1ImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function); bool IsCand2ImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function); auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function); auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function); assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never); // The implicit HD function may be a function in a system header which // is forced by pragma. In device compilation, if we prefer HD candidates // over wrong-sided candidates, overloading resolution may change, which // may result in non-deferrable diagnostics. As a workaround, we let // implicit HD candidates take equal preference as wrong-sided candidates. // This will preserve the overloading resolution. // TODO: We still need special handling of implicit HD functions since // they may incur other diagnostics to be deferred. We should make all // host/device related diagnostics deferrable and remove special handling // of implicit HD functions. auto EmitThreshold = (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD && (IsCand1ImplicitHD || IsCand2ImplicitHD)) ? Sema::CFP_Never : Sema::CFP_WrongSide; auto Cand1Emittable = P1 > EmitThreshold; auto Cand2Emittable = P2 > EmitThreshold; if (Cand1Emittable && !Cand2Emittable) return true; if (!Cand1Emittable && Cand2Emittable) return false; } } // C++ [over.match.best]p1: (Changed in C++23) // // -- if F is a static member function, ICS1(F) is defined such // that ICS1(F) is neither better nor worse than ICS1(G) for // any function G, and, symmetrically, ICS1(G) is neither // better nor worse than ICS1(F). unsigned StartArg = 0; if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) StartArg = 1; auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) { // We don't allow incompatible pointer conversions in C++. if (!S.getLangOpts().CPlusPlus) return ICS.isStandard() && ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion; // The only ill-formed conversion we allow in C++ is the string literal to // char* conversion, which is only considered ill-formed after C++11. return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && hasDeprecatedStringLiteralToCharPtrConversion(ICS); }; // Define functions that don't require ill-formed conversions for a given // argument to be better candidates than functions that do. unsigned NumArgs = Cand1.Conversions.size(); assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); bool HasBetterConversion = false; for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]); bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]); if (Cand1Bad != Cand2Bad) { if (Cand1Bad) return false; HasBetterConversion = true; } } if (HasBetterConversion) return true; // C++ [over.match.best]p1: // A viable function F1 is defined to be a better function than another // viable function F2 if for all arguments i, ICSi(F1) is not a worse // conversion sequence than ICSi(F2), and then... bool HasWorseConversion = false; for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { switch (CompareImplicitConversionSequences(S, Loc, Cand1.Conversions[ArgIdx], Cand2.Conversions[ArgIdx])) { case ImplicitConversionSequence::Better: // Cand1 has a better conversion sequence. HasBetterConversion = true; break; case ImplicitConversionSequence::Worse: if (Cand1.Function && Cand2.Function && Cand1.isReversed() != Cand2.isReversed() && allowAmbiguity(S.Context, Cand1.Function, Cand2.Function)) { // Work around large-scale breakage caused by considering reversed // forms of operator== in C++20: // // When comparing a function against a reversed function, if we have a // better conversion for one argument and a worse conversion for the // other, the implicit conversion sequences are treated as being equally // good. // // This prevents a comparison function from being considered ambiguous // with a reversed form that is written in the same way. // // We diagnose this as an extension from CreateOverloadedBinOp. HasWorseConversion = true; break; } // Cand1 can't be better than Cand2. return false; case ImplicitConversionSequence::Indistinguishable: // Do nothing. break; } } // -- for some argument j, ICSj(F1) is a better conversion sequence than // ICSj(F2), or, if not that, if (HasBetterConversion && !HasWorseConversion) return true; // -- the context is an initialization by user-defined conversion // (see 8.5, 13.3.1.5) and the standard conversion sequence // from the return type of F1 to the destination type (i.e., // the type of the entity being initialized) is a better // conversion sequence than the standard conversion sequence // from the return type of F2 to the destination type. if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion && Cand1.Function && Cand2.Function && isa(Cand1.Function) && isa(Cand2.Function)) { // First check whether we prefer one of the conversion functions over the // other. This only distinguishes the results in non-standard, extension // cases such as the conversion from a lambda closure type to a function // pointer or block. ImplicitConversionSequence::CompareKind Result = compareConversionFunctions(S, Cand1.Function, Cand2.Function); if (Result == ImplicitConversionSequence::Indistinguishable) Result = CompareStandardConversionSequences(S, Loc, Cand1.FinalConversion, Cand2.FinalConversion); if (Result != ImplicitConversionSequence::Indistinguishable) return Result == ImplicitConversionSequence::Better; // FIXME: Compare kind of reference binding if conversion functions // convert to a reference type used in direct reference binding, per // C++14 [over.match.best]p1 section 2 bullet 3. } // FIXME: Work around a defect in the C++17 guaranteed copy elision wording, // as combined with the resolution to CWG issue 243. // // When the context is initialization by constructor ([over.match.ctor] or // either phase of [over.match.list]), a constructor is preferred over // a conversion function. if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 && Cand1.Function && Cand2.Function && isa(Cand1.Function) != isa(Cand2.Function)) return isa(Cand1.Function); // -- F1 is a non-template function and F2 is a function template // specialization, or, if not that, bool Cand1IsSpecialization = Cand1.Function && Cand1.Function->getPrimaryTemplate(); bool Cand2IsSpecialization = Cand2.Function && Cand2.Function->getPrimaryTemplate(); if (Cand1IsSpecialization != Cand2IsSpecialization) return Cand2IsSpecialization; // -- F1 and F2 are function template specializations, and the function // template for F1 is more specialized than the template for F2 // according to the partial ordering rules described in 14.5.5.2, or, // if not that, if (Cand1IsSpecialization && Cand2IsSpecialization) { if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate( Cand1.Function->getPrimaryTemplate(), Cand2.Function->getPrimaryTemplate(), Loc, isa(Cand1.Function) ? TPOC_Conversion : TPOC_Call, Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments, Cand1.isReversed() ^ Cand2.isReversed())) return BetterTemplate == Cand1.Function->getPrimaryTemplate(); } // -— F1 and F2 are non-template functions with the same // parameter-type-lists, and F1 is more constrained than F2 [...], if (!Cand1IsSpecialization && !Cand2IsSpecialization && sameFunctionParameterTypeLists(S, Cand1, Cand2)) { FunctionDecl *Function1 = Cand1.Function; FunctionDecl *Function2 = Cand2.Function; if (FunctionDecl *MF = Function1->getInstantiatedFromMemberFunction()) Function1 = MF; if (FunctionDecl *MF = Function2->getInstantiatedFromMemberFunction()) Function2 = MF; const Expr *RC1 = Function1->getTrailingRequiresClause(); const Expr *RC2 = Function2->getTrailingRequiresClause(); if (RC1 && RC2) { bool AtLeastAsConstrained1, AtLeastAsConstrained2; if (S.IsAtLeastAsConstrained(Function1, RC1, Function2, RC2, AtLeastAsConstrained1) || S.IsAtLeastAsConstrained(Function2, RC2, Function1, RC1, AtLeastAsConstrained2)) return false; if (AtLeastAsConstrained1 != AtLeastAsConstrained2) return AtLeastAsConstrained1; } else if (RC1 || RC2) { return RC1 != nullptr; } } // -- F1 is a constructor for a class D, F2 is a constructor for a base // class B of D, and for all arguments the corresponding parameters of // F1 and F2 have the same type. // FIXME: Implement the "all parameters have the same type" check. bool Cand1IsInherited = isa_and_nonnull(Cand1.FoundDecl.getDecl()); bool Cand2IsInherited = isa_and_nonnull(Cand2.FoundDecl.getDecl()); if (Cand1IsInherited != Cand2IsInherited) return Cand2IsInherited; else if (Cand1IsInherited) { assert(Cand2IsInherited); auto *Cand1Class = cast(Cand1.Function->getDeclContext()); auto *Cand2Class = cast(Cand2.Function->getDeclContext()); if (Cand1Class->isDerivedFrom(Cand2Class)) return true; if (Cand2Class->isDerivedFrom(Cand1Class)) return false; // Inherited from sibling base classes: still ambiguous. } // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate // with reversed order of parameters and F1 is not // // We rank reversed + different operator as worse than just reversed, but // that comparison can never happen, because we only consider reversing for // the maximally-rewritten operator (== or <=>). if (Cand1.RewriteKind != Cand2.RewriteKind) return Cand1.RewriteKind < Cand2.RewriteKind; // Check C++17 tie-breakers for deduction guides. { auto *Guide1 = dyn_cast_or_null(Cand1.Function); auto *Guide2 = dyn_cast_or_null(Cand2.Function); if (Guide1 && Guide2) { // -- F1 is generated from a deduction-guide and F2 is not if (Guide1->isImplicit() != Guide2->isImplicit()) return Guide2->isImplicit(); // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not if (Guide1->getDeductionCandidateKind() == DeductionCandidate::Copy) return true; if (Guide2->getDeductionCandidateKind() == DeductionCandidate::Copy) return false; // --F1 is generated from a non-template constructor and F2 is generated // from a constructor template const auto *Constructor1 = Guide1->getCorrespondingConstructor(); const auto *Constructor2 = Guide2->getCorrespondingConstructor(); if (Constructor1 && Constructor2) { bool isC1Templated = Constructor1->getTemplatedKind() != FunctionDecl::TemplatedKind::TK_NonTemplate; bool isC2Templated = Constructor2->getTemplatedKind() != FunctionDecl::TemplatedKind::TK_NonTemplate; if (isC1Templated != isC2Templated) return isC2Templated; } } } // Check for enable_if value-based overload resolution. if (Cand1.Function && Cand2.Function) { Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function); if (Cmp != Comparison::Equal) return Cmp == Comparison::Better; } bool HasPS1 = Cand1.Function != nullptr && functionHasPassObjectSizeParams(Cand1.Function); bool HasPS2 = Cand2.Function != nullptr && functionHasPassObjectSizeParams(Cand2.Function); if (HasPS1 != HasPS2 && HasPS1) return true; auto MV = isBetterMultiversionCandidate(Cand1, Cand2); if (MV == Comparison::Better) return true; if (MV == Comparison::Worse) return false; // If other rules cannot determine which is better, CUDA preference is used // to determine which is better. if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) { FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); return S.IdentifyCUDAPreference(Caller, Cand1.Function) > S.IdentifyCUDAPreference(Caller, Cand2.Function); } // General member function overloading is handled above, so this only handles // constructors with address spaces. // This only handles address spaces since C++ has no other // qualifier that can be used with constructors. const auto *CD1 = dyn_cast_or_null(Cand1.Function); const auto *CD2 = dyn_cast_or_null(Cand2.Function); if (CD1 && CD2) { LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace(); LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace(); if (AS1 != AS2) { if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) return true; if (Qualifiers::isAddressSpaceSupersetOf(AS1, AS2)) return false; } } return false; } /// Determine whether two declarations are "equivalent" for the purposes of /// name lookup and overload resolution. This applies when the same internal/no /// linkage entity is defined by two modules (probably by textually including /// the same header). In such a case, we don't consider the declarations to /// declare the same entity, but we also don't want lookups with both /// declarations visible to be ambiguous in some cases (this happens when using /// a modularized libstdc++). bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A, const NamedDecl *B) { auto *VA = dyn_cast_or_null(A); auto *VB = dyn_cast_or_null(B); if (!VA || !VB) return false; // The declarations must be declaring the same name as an internal linkage // entity in different modules. if (!VA->getDeclContext()->getRedeclContext()->Equals( VB->getDeclContext()->getRedeclContext()) || getOwningModule(VA) == getOwningModule(VB) || VA->isExternallyVisible() || VB->isExternallyVisible()) return false; // Check that the declarations appear to be equivalent. // // FIXME: Checking the type isn't really enough to resolve the ambiguity. // For constants and functions, we should check the initializer or body is // the same. For non-constant variables, we shouldn't allow it at all. if (Context.hasSameType(VA->getType(), VB->getType())) return true; // Enum constants within unnamed enumerations will have different types, but // may still be similar enough to be interchangeable for our purposes. if (auto *EA = dyn_cast(VA)) { if (auto *EB = dyn_cast(VB)) { // Only handle anonymous enums. If the enumerations were named and // equivalent, they would have been merged to the same type. auto *EnumA = cast(EA->getDeclContext()); auto *EnumB = cast(EB->getDeclContext()); if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() || !Context.hasSameType(EnumA->getIntegerType(), EnumB->getIntegerType())) return false; // Allow this only if the value is the same for both enumerators. return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal()); } } // Nothing else is sufficiently similar. return false; } void Sema::diagnoseEquivalentInternalLinkageDeclarations( SourceLocation Loc, const NamedDecl *D, ArrayRef Equiv) { assert(D && "Unknown declaration"); Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D; Module *M = getOwningModule(D); Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl) << !M << (M ? M->getFullModuleName() : ""); for (auto *E : Equiv) { Module *M = getOwningModule(E); Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl) << !M << (M ? M->getFullModuleName() : ""); } } bool OverloadCandidate::NotValidBecauseConstraintExprHasError() const { return FailureKind == ovl_fail_bad_deduction && DeductionFailure.Result == Sema::TDK_ConstraintsNotSatisfied && static_cast(DeductionFailure.Data) ->Satisfaction.ContainsErrors; } /// Computes the best viable function (C++ 13.3.3) /// within an overload candidate set. /// /// \param Loc The location of the function name (or operator symbol) for /// which overload resolution occurs. /// /// \param Best If overload resolution was successful or found a deleted /// function, \p Best points to the candidate function found. /// /// \returns The result of overload resolution. OverloadingResult OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, iterator &Best) { llvm::SmallVector Candidates; std::transform(begin(), end(), std::back_inserter(Candidates), [](OverloadCandidate &Cand) { return &Cand; }); // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but // are accepted by both clang and NVCC. However, during a particular // compilation mode only one call variant is viable. We need to // exclude non-viable overload candidates from consideration based // only on their host/device attributes. Specifically, if one // candidate call is WrongSide and the other is SameSide, we ignore // the WrongSide candidate. // We only need to remove wrong-sided candidates here if // -fgpu-exclude-wrong-side-overloads is off. When // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared // uniformly in isBetterOverloadCandidate. if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) { const FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); bool ContainsSameSideCandidate = llvm::any_of(Candidates, [&](OverloadCandidate *Cand) { // Check viable function only. return Cand->Viable && Cand->Function && S.IdentifyCUDAPreference(Caller, Cand->Function) == Sema::CFP_SameSide; }); if (ContainsSameSideCandidate) { auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) { // Check viable function only to avoid unnecessary data copying/moving. return Cand->Viable && Cand->Function && S.IdentifyCUDAPreference(Caller, Cand->Function) == Sema::CFP_WrongSide; }; llvm::erase_if(Candidates, IsWrongSideCandidate); } } // Find the best viable function. Best = end(); for (auto *Cand : Candidates) { Cand->Best = false; if (Cand->Viable) { if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind)) Best = Cand; } else if (Cand->NotValidBecauseConstraintExprHasError()) { // This candidate has constraint that we were unable to evaluate because // it referenced an expression that contained an error. Rather than fall // back onto a potentially unintended candidate (made worse by // subsuming constraints), treat this as 'no viable candidate'. Best = end(); return OR_No_Viable_Function; } } // If we didn't find any viable functions, abort. if (Best == end()) return OR_No_Viable_Function; llvm::SmallVector EquivalentCands; llvm::SmallVector PendingBest; PendingBest.push_back(&*Best); Best->Best = true; // Make sure that this function is better than every other viable // function. If not, we have an ambiguity. while (!PendingBest.empty()) { auto *Curr = PendingBest.pop_back_val(); for (auto *Cand : Candidates) { if (Cand->Viable && !Cand->Best && !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) { PendingBest.push_back(Cand); Cand->Best = true; if (S.isEquivalentInternalLinkageDeclaration(Cand->Function, Curr->Function)) EquivalentCands.push_back(Cand->Function); else Best = end(); } } } // If we found more than one best candidate, this is ambiguous. if (Best == end()) return OR_Ambiguous; // Best is the best viable function. if (Best->Function && Best->Function->isDeleted()) return OR_Deleted; if (!EquivalentCands.empty()) S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function, EquivalentCands); return OR_Success; } namespace { enum OverloadCandidateKind { oc_function, oc_method, oc_reversed_binary_operator, oc_constructor, oc_implicit_default_constructor, oc_implicit_copy_constructor, oc_implicit_move_constructor, oc_implicit_copy_assignment, oc_implicit_move_assignment, oc_implicit_equality_comparison, oc_inherited_constructor }; enum OverloadCandidateSelect { ocs_non_template, ocs_template, ocs_described_template, }; static std::pair ClassifyOverloadCandidate(Sema &S, const NamedDecl *Found, const FunctionDecl *Fn, OverloadCandidateRewriteKind CRK, std::string &Description) { bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl(); if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { isTemplate = true; Description = S.getTemplateArgumentBindingsText( FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); } OverloadCandidateSelect Select = [&]() { if (!Description.empty()) return ocs_described_template; return isTemplate ? ocs_template : ocs_non_template; }(); OverloadCandidateKind Kind = [&]() { if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual) return oc_implicit_equality_comparison; if (CRK & CRK_Reversed) return oc_reversed_binary_operator; if (const auto *Ctor = dyn_cast(Fn)) { if (!Ctor->isImplicit()) { if (isa(Found)) return oc_inherited_constructor; else return oc_constructor; } if (Ctor->isDefaultConstructor()) return oc_implicit_default_constructor; if (Ctor->isMoveConstructor()) return oc_implicit_move_constructor; assert(Ctor->isCopyConstructor() && "unexpected sort of implicit constructor"); return oc_implicit_copy_constructor; } if (const auto *Meth = dyn_cast(Fn)) { // This actually gets spelled 'candidate function' for now, but // it doesn't hurt to split it out. if (!Meth->isImplicit()) return oc_method; if (Meth->isMoveAssignmentOperator()) return oc_implicit_move_assignment; if (Meth->isCopyAssignmentOperator()) return oc_implicit_copy_assignment; assert(isa(Meth) && "expected conversion"); return oc_method; } return oc_function; }(); return std::make_pair(Kind, Select); } void MaybeEmitInheritedConstructorNote(Sema &S, const Decl *FoundDecl) { // FIXME: It'd be nice to only emit a note once per using-decl per overload // set. if (const auto *Shadow = dyn_cast(FoundDecl)) S.Diag(FoundDecl->getLocation(), diag::note_ovl_candidate_inherited_constructor) << Shadow->getNominatedBaseClass(); } } // end anonymous namespace static bool isFunctionAlwaysEnabled(const ASTContext &Ctx, const FunctionDecl *FD) { for (auto *EnableIf : FD->specific_attrs()) { bool AlwaysTrue; if (EnableIf->getCond()->isValueDependent() || !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx)) return false; if (!AlwaysTrue) return false; } return true; } /// Returns true if we can take the address of the function. /// /// \param Complain - If true, we'll emit a diagnostic /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are /// we in overload resolution? /// \param Loc - The location of the statement we're complaining about. Ignored /// if we're not complaining, or if we're in overload resolution. static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD, bool Complain, bool InOverloadResolution, SourceLocation Loc) { if (!isFunctionAlwaysEnabled(S.Context, FD)) { if (Complain) { if (InOverloadResolution) S.Diag(FD->getBeginLoc(), diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr); else S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD; } return false; } if (FD->getTrailingRequiresClause()) { ConstraintSatisfaction Satisfaction; if (S.CheckFunctionConstraints(FD, Satisfaction, Loc)) return false; if (!Satisfaction.IsSatisfied) { if (Complain) { if (InOverloadResolution) { SmallString<128> TemplateArgString; if (FunctionTemplateDecl *FunTmpl = FD->getPrimaryTemplate()) { TemplateArgString += " "; TemplateArgString += S.getTemplateArgumentBindingsText( FunTmpl->getTemplateParameters(), *FD->getTemplateSpecializationArgs()); } S.Diag(FD->getBeginLoc(), diag::note_ovl_candidate_unsatisfied_constraints) << TemplateArgString; } else S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied) << FD; S.DiagnoseUnsatisfiedConstraint(Satisfaction); } return false; } } auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) { return P->hasAttr(); }); if (I == FD->param_end()) return true; if (Complain) { // Add one to ParamNo because it's user-facing unsigned ParamNo = std::distance(FD->param_begin(), I) + 1; if (InOverloadResolution) S.Diag(FD->getLocation(), diag::note_ovl_candidate_has_pass_object_size_params) << ParamNo; else S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params) << FD << ParamNo; } return false; } static bool checkAddressOfCandidateIsAvailable(Sema &S, const FunctionDecl *FD) { return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true, /*InOverloadResolution=*/true, /*Loc=*/SourceLocation()); } bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, bool Complain, SourceLocation Loc) { return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain, /*InOverloadResolution=*/false, Loc); } // Don't print candidates other than the one that matches the calling // convention of the call operator, since that is guaranteed to exist. static bool shouldSkipNotingLambdaConversionDecl(const FunctionDecl *Fn) { const auto *ConvD = dyn_cast(Fn); if (!ConvD) return false; const auto *RD = cast(Fn->getParent()); if (!RD->isLambda()) return false; CXXMethodDecl *CallOp = RD->getLambdaCallOperator(); CallingConv CallOpCC = CallOp->getType()->castAs()->getCallConv(); QualType ConvRTy = ConvD->getType()->castAs()->getReturnType(); CallingConv ConvToCC = ConvRTy->getPointeeType()->castAs()->getCallConv(); return ConvToCC != CallOpCC; } // Notes the location of an overload candidate. void Sema::NoteOverloadCandidate(const NamedDecl *Found, const FunctionDecl *Fn, OverloadCandidateRewriteKind RewriteKind, QualType DestType, bool TakingAddress) { if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn)) return; if (Fn->isMultiVersion() && Fn->hasAttr() && !Fn->getAttr()->isDefaultVersion()) return; if (Fn->isMultiVersion() && Fn->hasAttr() && !Fn->getAttr()->isDefaultVersion()) return; if (shouldSkipNotingLambdaConversionDecl(Fn)) return; std::string FnDesc; std::pair KSPair = ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc); PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) << (unsigned)KSPair.first << (unsigned)KSPair.second << Fn << FnDesc; HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); Diag(Fn->getLocation(), PD); MaybeEmitInheritedConstructorNote(*this, Found); } static void MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef Cands) { // Perhaps the ambiguity was caused by two atomic constraints that are // 'identical' but not equivalent: // // void foo() requires (sizeof(T) > 4) { } // #1 // void foo() requires (sizeof(T) > 4) && T::value { } // #2 // // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause // #2 to subsume #1, but these constraint are not considered equivalent // according to the subsumption rules because they are not the same // source-level construct. This behavior is quite confusing and we should try // to help the user figure out what happened. SmallVector FirstAC, SecondAC; FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr; for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) { if (!I->Function) continue; SmallVector AC; if (auto *Template = I->Function->getPrimaryTemplate()) Template->getAssociatedConstraints(AC); else I->Function->getAssociatedConstraints(AC); if (AC.empty()) continue; if (FirstCand == nullptr) { FirstCand = I->Function; FirstAC = AC; } else if (SecondCand == nullptr) { SecondCand = I->Function; SecondAC = AC; } else { // We have more than one pair of constrained functions - this check is // expensive and we'd rather not try to diagnose it. return; } } if (!SecondCand) return; // The diagnostic can only happen if there are associated constraints on // both sides (there needs to be some identical atomic constraint). if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC, SecondCand, SecondAC)) // Just show the user one diagnostic, they'll probably figure it out // from here. return; } // Notes the location of all overload candidates designated through // OverloadedExpr void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType, bool TakingAddress) { assert(OverloadedExpr->getType() == Context.OverloadTy); OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); OverloadExpr *OvlExpr = Ovl.Expression; for (UnresolvedSetIterator I = OvlExpr->decls_begin(), IEnd = OvlExpr->decls_end(); I != IEnd; ++I) { if (FunctionTemplateDecl *FunTmpl = dyn_cast((*I)->getUnderlyingDecl()) ) { NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType, TakingAddress); } else if (FunctionDecl *Fun = dyn_cast((*I)->getUnderlyingDecl()) ) { NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress); } } } /// Diagnoses an ambiguous conversion. The partial diagnostic is the /// "lead" diagnostic; it will be given two arguments, the source and /// target types of the conversion. void ImplicitConversionSequence::DiagnoseAmbiguousConversion( Sema &S, SourceLocation CaretLoc, const PartialDiagnostic &PDiag) const { S.Diag(CaretLoc, PDiag) << Ambiguous.getFromType() << Ambiguous.getToType(); unsigned CandsShown = 0; AmbiguousConversionSequence::const_iterator I, E; for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow()) break; ++CandsShown; S.NoteOverloadCandidate(I->first, I->second); } S.Diags.overloadCandidatesShown(CandsShown); if (I != E) S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I); } static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I, bool TakingCandidateAddress) { const ImplicitConversionSequence &Conv = Cand->Conversions[I]; assert(Conv.isBad()); assert(Cand->Function && "for now, candidate must be a function"); FunctionDecl *Fn = Cand->Function; // There's a conversion slot for the object argument if this is a // non-constructor method. Note that 'I' corresponds the // conversion-slot index. bool isObjectArgument = false; if (isa(Fn) && !isa(Fn)) { if (I == 0) isObjectArgument = true; else I--; } std::string FnDesc; std::pair FnKindPair = ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(), FnDesc); Expr *FromExpr = Conv.Bad.FromExpr; QualType FromTy = Conv.Bad.getFromType(); QualType ToTy = Conv.Bad.getToType(); SourceRange ToParamRange = !isObjectArgument ? Fn->getParamDecl(I)->getSourceRange() : SourceRange(); if (FromTy == S.Context.OverloadTy) { assert(FromExpr && "overload set argument came from implicit argument?"); Expr *E = FromExpr->IgnoreParens(); if (isa(E)) E = cast(E)->getSubExpr()->IgnoreParens(); DeclarationName Name = cast(E)->getName(); S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << ToParamRange << ToTy << Name << I + 1; MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } // Do some hand-waving analysis to see if the non-viability is due // to a qualifier mismatch. CanQualType CFromTy = S.Context.getCanonicalType(FromTy); CanQualType CToTy = S.Context.getCanonicalType(ToTy); if (CanQual RT = CToTy->getAs()) CToTy = RT->getPointeeType(); else { // TODO: detect and diagnose the full richness of const mismatches. if (CanQual FromPT = CFromTy->getAs()) if (CanQual ToPT = CToTy->getAs()) { CFromTy = FromPT->getPointeeType(); CToTy = ToPT->getPointeeType(); } } if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { Qualifiers FromQs = CFromTy.getQualifiers(); Qualifiers ToQs = CToTy.getQualifiers(); if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { if (isObjectArgument) S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << FromQs.getAddressSpace() << ToQs.getAddressSpace(); else S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << ToParamRange << FromQs.getAddressSpace() << ToQs.getAddressSpace() << ToTy->isReferenceType() << I + 1; MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << ToParamRange << FromTy << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() << (unsigned)isObjectArgument << I + 1; MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << ToParamRange << FromTy << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() << (unsigned)isObjectArgument << I + 1; MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); assert(CVR && "expected qualifiers mismatch"); if (isObjectArgument) { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << FromTy << (CVR - 1); } else { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << ToParamRange << FromTy << (CVR - 1) << I + 1; } MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue || Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << (unsigned)isObjectArgument << I + 1 << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) << ToParamRange; MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } // Special diagnostic for failure to convert an initializer list, since // telling the user that it has type void is not useful. if (FromExpr && isa(FromExpr)) { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << ToParamRange << FromTy << ToTy << (unsigned)isObjectArgument << I + 1 << (Conv.Bad.Kind == BadConversionSequence::too_few_initializers ? 1 : Conv.Bad.Kind == BadConversionSequence::too_many_initializers ? 2 : 0); MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } // Diagnose references or pointers to incomplete types differently, // since it's far from impossible that the incompleteness triggered // the failure. QualType TempFromTy = FromTy.getNonReferenceType(); if (const PointerType *PTy = TempFromTy->getAs()) TempFromTy = PTy->getPointeeType(); if (TempFromTy->isIncompleteType()) { // Emit the generic diagnostic and, optionally, add the hints to it. S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << ToParamRange << FromTy << ToTy << (unsigned)isObjectArgument << I + 1 << (unsigned)(Cand->Fix.Kind); MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } // Diagnose base -> derived pointer conversions. unsigned BaseToDerivedConversion = 0; if (const PointerType *FromPtrTy = FromTy->getAs()) { if (const PointerType *ToPtrTy = ToTy->getAs()) { if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( FromPtrTy->getPointeeType()) && !FromPtrTy->getPointeeType()->isIncompleteType() && !ToPtrTy->getPointeeType()->isIncompleteType() && S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(), FromPtrTy->getPointeeType())) BaseToDerivedConversion = 1; } } else if (const ObjCObjectPointerType *FromPtrTy = FromTy->getAs()) { if (const ObjCObjectPointerType *ToPtrTy = ToTy->getAs()) if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( FromPtrTy->getPointeeType()) && FromIface->isSuperClassOf(ToIface)) BaseToDerivedConversion = 2; } else if (const ReferenceType *ToRefTy = ToTy->getAs()) { if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && !FromTy->isIncompleteType() && !ToRefTy->getPointeeType()->isIncompleteType() && S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) { BaseToDerivedConversion = 3; } } if (BaseToDerivedConversion) { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << ToParamRange << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1; MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } if (isa(CFromTy) && isa(CToTy)) { Qualifiers FromQs = CFromTy.getQualifiers(); Qualifiers ToQs = CToTy.getQualifiers(); if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << ToParamRange << FromTy << ToTy << (unsigned)isObjectArgument << I + 1; MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } } if (TakingCandidateAddress && !checkAddressOfCandidateIsAvailable(S, Cand->Function)) return; // Emit the generic diagnostic and, optionally, add the hints to it. PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << ToParamRange << FromTy << ToTy << (unsigned)isObjectArgument << I + 1 << (unsigned)(Cand->Fix.Kind); // Check that location of Fn is not in system header. if (!S.SourceMgr.isInSystemHeader(Fn->getLocation())) { // If we can fix the conversion, suggest the FixIts. for (const FixItHint &HI : Cand->Fix.Hints) FDiag << HI; } S.Diag(Fn->getLocation(), FDiag); MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); } /// Additional arity mismatch diagnosis specific to a function overload /// candidates. This is not covered by the more general DiagnoseArityMismatch() /// over a candidate in any candidate set. static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand, unsigned NumArgs) { FunctionDecl *Fn = Cand->Function; unsigned MinParams = Fn->getMinRequiredArguments(); // With invalid overloaded operators, it's possible that we think we // have an arity mismatch when in fact it looks like we have the // right number of arguments, because only overloaded operators have // the weird behavior of overloading member and non-member functions. // Just don't report anything. if (Fn->isInvalidDecl() && Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) return true; if (NumArgs < MinParams) { assert((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); } else { assert((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); } return false; } /// General arity mismatch diagnosis over a candidate in a candidate set. static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D, unsigned NumFormalArgs) { assert(isa(D) && "The templated declaration should at least be a function" " when diagnosing bad template argument deduction due to too many" " or too few arguments"); FunctionDecl *Fn = cast(D); // TODO: treat calls to a missing default constructor as a special case const auto *FnTy = Fn->getType()->castAs(); unsigned MinParams = Fn->getMinRequiredExplicitArguments(); // at least / at most / exactly bool HasExplicitObjectParam = Fn->hasCXXExplicitFunctionObjectParameter(); unsigned ParamCount = FnTy->getNumParams() - (HasExplicitObjectParam ? 1 : 0); unsigned mode, modeCount; if (NumFormalArgs < MinParams) { if (MinParams != ParamCount || FnTy->isVariadic() || FnTy->isTemplateVariadic()) mode = 0; // "at least" else mode = 2; // "exactly" modeCount = MinParams; } else { if (MinParams != ParamCount) mode = 1; // "at most" else mode = 2; // "exactly" modeCount = ParamCount; } std::string Description; std::pair FnKindPair = ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description); if (modeCount == 1 && Fn->getParamDecl(HasExplicitObjectParam ? 1 : 0)->getDeclName()) S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << Description << mode << Fn->getParamDecl(HasExplicitObjectParam ? 1 : 0) << NumFormalArgs << HasExplicitObjectParam << Fn->getParametersSourceRange(); else S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << Description << mode << modeCount << NumFormalArgs << HasExplicitObjectParam << Fn->getParametersSourceRange(); MaybeEmitInheritedConstructorNote(S, Found); } /// Arity mismatch diagnosis specific to a function overload candidate. static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, unsigned NumFormalArgs) { if (!CheckArityMismatch(S, Cand, NumFormalArgs)) DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs); } static TemplateDecl *getDescribedTemplate(Decl *Templated) { if (TemplateDecl *TD = Templated->getDescribedTemplate()) return TD; llvm_unreachable("Unsupported: Getting the described template declaration" " for bad deduction diagnosis"); } /// Diagnose a failed template-argument deduction. static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated, DeductionFailureInfo &DeductionFailure, unsigned NumArgs, bool TakingCandidateAddress) { TemplateParameter Param = DeductionFailure.getTemplateParameter(); NamedDecl *ParamD; (ParamD = Param.dyn_cast()) || (ParamD = Param.dyn_cast()) || (ParamD = Param.dyn_cast()); switch (DeductionFailure.Result) { case Sema::TDK_Success: llvm_unreachable("TDK_success while diagnosing bad deduction"); case Sema::TDK_Incomplete: { assert(ParamD && "no parameter found for incomplete deduction result"); S.Diag(Templated->getLocation(), diag::note_ovl_candidate_incomplete_deduction) << ParamD->getDeclName(); MaybeEmitInheritedConstructorNote(S, Found); return; } case Sema::TDK_IncompletePack: { assert(ParamD && "no parameter found for incomplete deduction result"); S.Diag(Templated->getLocation(), diag::note_ovl_candidate_incomplete_deduction_pack) << ParamD->getDeclName() << (DeductionFailure.getFirstArg()->pack_size() + 1) << *DeductionFailure.getFirstArg(); MaybeEmitInheritedConstructorNote(S, Found); return; } case Sema::TDK_Underqualified: { assert(ParamD && "no parameter found for bad qualifiers deduction result"); TemplateTypeParmDecl *TParam = cast(ParamD); QualType Param = DeductionFailure.getFirstArg()->getAsType(); // Param will have been canonicalized, but it should just be a // qualified version of ParamD, so move the qualifiers to that. QualifierCollector Qs; Qs.strip(Param); QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); assert(S.Context.hasSameType(Param, NonCanonParam)); // Arg has also been canonicalized, but there's nothing we can do // about that. It also doesn't matter as much, because it won't // have any template parameters in it (because deduction isn't // done on dependent types). QualType Arg = DeductionFailure.getSecondArg()->getAsType(); S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified) << ParamD->getDeclName() << Arg << NonCanonParam; MaybeEmitInheritedConstructorNote(S, Found); return; } case Sema::TDK_Inconsistent: { assert(ParamD && "no parameter found for inconsistent deduction result"); int which = 0; if (isa(ParamD)) which = 0; else if (isa(ParamD)) { // Deduction might have failed because we deduced arguments of two // different types for a non-type template parameter. // FIXME: Use a different TDK value for this. QualType T1 = DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType(); QualType T2 = DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType(); if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) { S.Diag(Templated->getLocation(), diag::note_ovl_candidate_inconsistent_deduction_types) << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1 << *DeductionFailure.getSecondArg() << T2; MaybeEmitInheritedConstructorNote(S, Found); return; } which = 1; } else { which = 2; } // Tweak the diagnostic if the problem is that we deduced packs of // different arities. We'll print the actual packs anyway in case that // includes additional useful information. if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack && DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack && DeductionFailure.getFirstArg()->pack_size() != DeductionFailure.getSecondArg()->pack_size()) { which = 3; } S.Diag(Templated->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg(); MaybeEmitInheritedConstructorNote(S, Found); return; } case Sema::TDK_InvalidExplicitArguments: assert(ParamD && "no parameter found for invalid explicit arguments"); if (ParamD->getDeclName()) S.Diag(Templated->getLocation(), diag::note_ovl_candidate_explicit_arg_mismatch_named) << ParamD->getDeclName(); else { int index = 0; if (TemplateTypeParmDecl *TTP = dyn_cast(ParamD)) index = TTP->getIndex(); else if (NonTypeTemplateParmDecl *NTTP = dyn_cast(ParamD)) index = NTTP->getIndex(); else index = cast(ParamD)->getIndex(); S.Diag(Templated->getLocation(), diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) << (index + 1); } MaybeEmitInheritedConstructorNote(S, Found); return; case Sema::TDK_ConstraintsNotSatisfied: { // Format the template argument list into the argument string. SmallString<128> TemplateArgString; TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList(); TemplateArgString = " "; TemplateArgString += S.getTemplateArgumentBindingsText( getDescribedTemplate(Templated)->getTemplateParameters(), *Args); if (TemplateArgString.size() == 1) TemplateArgString.clear(); S.Diag(Templated->getLocation(), diag::note_ovl_candidate_unsatisfied_constraints) << TemplateArgString; S.DiagnoseUnsatisfiedConstraint( static_cast(DeductionFailure.Data)->Satisfaction); return; } case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: DiagnoseArityMismatch(S, Found, Templated, NumArgs); return; case Sema::TDK_InstantiationDepth: S.Diag(Templated->getLocation(), diag::note_ovl_candidate_instantiation_depth); MaybeEmitInheritedConstructorNote(S, Found); return; case Sema::TDK_SubstitutionFailure: { // Format the template argument list into the argument string. SmallString<128> TemplateArgString; if (TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList()) { TemplateArgString = " "; TemplateArgString += S.getTemplateArgumentBindingsText( getDescribedTemplate(Templated)->getTemplateParameters(), *Args); if (TemplateArgString.size() == 1) TemplateArgString.clear(); } // If this candidate was disabled by enable_if, say so. PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic(); if (PDiag && PDiag->second.getDiagID() == diag::err_typename_nested_not_found_enable_if) { // FIXME: Use the source range of the condition, and the fully-qualified // name of the enable_if template. These are both present in PDiag. S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if) << "'enable_if'" << TemplateArgString; return; } // We found a specific requirement that disabled the enable_if. if (PDiag && PDiag->second.getDiagID() == diag::err_typename_nested_not_found_requirement) { S.Diag(Templated->getLocation(), diag::note_ovl_candidate_disabled_by_requirement) << PDiag->second.getStringArg(0) << TemplateArgString; return; } // Format the SFINAE diagnostic into the argument string. // FIXME: Add a general mechanism to include a PartialDiagnostic *'s // formatted message in another diagnostic. SmallString<128> SFINAEArgString; SourceRange R; if (PDiag) { SFINAEArgString = ": "; R = SourceRange(PDiag->first, PDiag->first); PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString); } S.Diag(Templated->getLocation(), diag::note_ovl_candidate_substitution_failure) << TemplateArgString << SFINAEArgString << R; MaybeEmitInheritedConstructorNote(S, Found); return; } case Sema::TDK_DeducedMismatch: case Sema::TDK_DeducedMismatchNested: { // Format the template argument list into the argument string. SmallString<128> TemplateArgString; if (TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList()) { TemplateArgString = " "; TemplateArgString += S.getTemplateArgumentBindingsText( getDescribedTemplate(Templated)->getTemplateParameters(), *Args); if (TemplateArgString.size() == 1) TemplateArgString.clear(); } S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch) << (*DeductionFailure.getCallArgIndex() + 1) << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg() << TemplateArgString << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested); break; } case Sema::TDK_NonDeducedMismatch: { // FIXME: Provide a source location to indicate what we couldn't match. TemplateArgument FirstTA = *DeductionFailure.getFirstArg(); TemplateArgument SecondTA = *DeductionFailure.getSecondArg(); if (FirstTA.getKind() == TemplateArgument::Template && SecondTA.getKind() == TemplateArgument::Template) { TemplateName FirstTN = FirstTA.getAsTemplate(); TemplateName SecondTN = SecondTA.getAsTemplate(); if (FirstTN.getKind() == TemplateName::Template && SecondTN.getKind() == TemplateName::Template) { if (FirstTN.getAsTemplateDecl()->getName() == SecondTN.getAsTemplateDecl()->getName()) { // FIXME: This fixes a bad diagnostic where both templates are named // the same. This particular case is a bit difficult since: // 1) It is passed as a string to the diagnostic printer. // 2) The diagnostic printer only attempts to find a better // name for types, not decls. // Ideally, this should folded into the diagnostic printer. S.Diag(Templated->getLocation(), diag::note_ovl_candidate_non_deduced_mismatch_qualified) << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl(); return; } } } if (TakingCandidateAddress && isa(Templated) && !checkAddressOfCandidateIsAvailable(S, cast(Templated))) return; // FIXME: For generic lambda parameters, check if the function is a lambda // call operator, and if so, emit a prettier and more informative // diagnostic that mentions 'auto' and lambda in addition to // (or instead of?) the canonical template type parameters. S.Diag(Templated->getLocation(), diag::note_ovl_candidate_non_deduced_mismatch) << FirstTA << SecondTA; return; } // TODO: diagnose these individually, then kill off // note_ovl_candidate_bad_deduction, which is uselessly vague. case Sema::TDK_MiscellaneousDeductionFailure: S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction); MaybeEmitInheritedConstructorNote(S, Found); return; case Sema::TDK_CUDATargetMismatch: S.Diag(Templated->getLocation(), diag::note_cuda_ovl_candidate_target_mismatch); return; } } /// Diagnose a failed template-argument deduction, for function calls. static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, unsigned NumArgs, bool TakingCandidateAddress) { unsigned TDK = Cand->DeductionFailure.Result; if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) { if (CheckArityMismatch(S, Cand, NumArgs)) return; } DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern Cand->DeductionFailure, NumArgs, TakingCandidateAddress); } /// CUDA: diagnose an invalid call across targets. static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); FunctionDecl *Callee = Cand->Function; Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), CalleeTarget = S.IdentifyCUDATarget(Callee); std::string FnDesc; std::pair FnKindPair = ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, Cand->getRewriteKind(), FnDesc); S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) << (unsigned)FnKindPair.first << (unsigned)ocs_non_template << FnDesc /* Ignored */ << CalleeTarget << CallerTarget; // This could be an implicit constructor for which we could not infer the // target due to a collsion. Diagnose that case. CXXMethodDecl *Meth = dyn_cast(Callee); if (Meth != nullptr && Meth->isImplicit()) { CXXRecordDecl *ParentClass = Meth->getParent(); Sema::CXXSpecialMember CSM; switch (FnKindPair.first) { default: return; case oc_implicit_default_constructor: CSM = Sema::CXXDefaultConstructor; break; case oc_implicit_copy_constructor: CSM = Sema::CXXCopyConstructor; break; case oc_implicit_move_constructor: CSM = Sema::CXXMoveConstructor; break; case oc_implicit_copy_assignment: CSM = Sema::CXXCopyAssignment; break; case oc_implicit_move_assignment: CSM = Sema::CXXMoveAssignment; break; }; bool ConstRHS = false; if (Meth->getNumParams()) { if (const ReferenceType *RT = Meth->getParamDecl(0)->getType()->getAs()) { ConstRHS = RT->getPointeeType().isConstQualified(); } } S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth, /* ConstRHS */ ConstRHS, /* Diagnose */ true); } } static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) { FunctionDecl *Callee = Cand->Function; EnableIfAttr *Attr = static_cast(Cand->DeductionFailure.Data); S.Diag(Callee->getLocation(), diag::note_ovl_candidate_disabled_by_function_cond_attr) << Attr->getCond()->getSourceRange() << Attr->getMessage(); } static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) { ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function); assert(ES.isExplicit() && "not an explicit candidate"); unsigned Kind; switch (Cand->Function->getDeclKind()) { case Decl::Kind::CXXConstructor: Kind = 0; break; case Decl::Kind::CXXConversion: Kind = 1; break; case Decl::Kind::CXXDeductionGuide: Kind = Cand->Function->isImplicit() ? 0 : 2; break; default: llvm_unreachable("invalid Decl"); } // Note the location of the first (in-class) declaration; a redeclaration // (particularly an out-of-class definition) will typically lack the // 'explicit' specifier. // FIXME: This is probably a good thing to do for all 'candidate' notes. FunctionDecl *First = Cand->Function->getFirstDecl(); if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern()) First = Pattern->getFirstDecl(); S.Diag(First->getLocation(), diag::note_ovl_candidate_explicit) << Kind << (ES.getExpr() ? 1 : 0) << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange()); } /// Generates a 'note' diagnostic for an overload candidate. We've /// already generated a primary error at the call site. /// /// It really does need to be a single diagnostic with its caret /// pointed at the candidate declaration. Yes, this creates some /// major challenges of technical writing. Yes, this makes pointing /// out problems with specific arguments quite awkward. It's still /// better than generating twenty screens of text for every failed /// overload. /// /// It would be great to be able to express per-candidate problems /// more richly for those diagnostic clients that cared, but we'd /// still have to be just as careful with the default diagnostics. /// \param CtorDestAS Addr space of object being constructed (for ctor /// candidates only). static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, unsigned NumArgs, bool TakingCandidateAddress, LangAS CtorDestAS = LangAS::Default) { FunctionDecl *Fn = Cand->Function; if (shouldSkipNotingLambdaConversionDecl(Fn)) return; // There is no physical candidate declaration to point to for OpenCL builtins. // Except for failed conversions, the notes are identical for each candidate, // so do not generate such notes. if (S.getLangOpts().OpenCL && Fn->isImplicit() && Cand->FailureKind != ovl_fail_bad_conversion) return; // Note deleted candidates, but only if they're viable. if (Cand->Viable) { if (Fn->isDeleted()) { std::string FnDesc; std::pair FnKindPair = ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(), FnDesc); S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } // We don't really have anything else to say about viable candidates. S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); return; } switch (Cand->FailureKind) { case ovl_fail_too_many_arguments: case ovl_fail_too_few_arguments: return DiagnoseArityMismatch(S, Cand, NumArgs); case ovl_fail_bad_deduction: return DiagnoseBadDeduction(S, Cand, NumArgs, TakingCandidateAddress); case ovl_fail_illegal_constructor: { S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor) << (Fn->getPrimaryTemplate() ? 1 : 0); MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } case ovl_fail_object_addrspace_mismatch: { Qualifiers QualsForPrinting; QualsForPrinting.setAddressSpace(CtorDestAS); S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch) << QualsForPrinting; MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; } case ovl_fail_trivial_conversion: case ovl_fail_bad_final_conversion: case ovl_fail_final_conversion_not_exact: return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); case ovl_fail_bad_conversion: { unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); for (unsigned N = Cand->Conversions.size(); I != N; ++I) if (Cand->Conversions[I].isBad()) return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress); // FIXME: this currently happens when we're called from SemaInit // when user-conversion overload fails. Figure out how to handle // those conditions and diagnose them well. return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); } case ovl_fail_bad_target: return DiagnoseBadTarget(S, Cand); case ovl_fail_enable_if: return DiagnoseFailedEnableIfAttr(S, Cand); case ovl_fail_explicit: return DiagnoseFailedExplicitSpec(S, Cand); case ovl_fail_inhctor_slice: // It's generally not interesting to note copy/move constructors here. if (cast(Fn)->isCopyOrMoveConstructor()) return; S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inherited_constructor_slice) << (Fn->getPrimaryTemplate() ? 1 : 0) << Fn->getParamDecl(0)->getType()->isRValueReferenceType(); MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); return; case ovl_fail_addr_not_available: { bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function); (void)Available; assert(!Available); break; } case ovl_non_default_multiversion_function: // Do nothing, these should simply be ignored. break; case ovl_fail_constraints_not_satisfied: { std::string FnDesc; std::pair FnKindPair = ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(), FnDesc); S.Diag(Fn->getLocation(), diag::note_ovl_candidate_constraints_not_satisfied) << (unsigned)FnKindPair.first << (unsigned)ocs_non_template << FnDesc /* Ignored */; ConstraintSatisfaction Satisfaction; if (S.CheckFunctionConstraints(Fn, Satisfaction)) break; S.DiagnoseUnsatisfiedConstraint(Satisfaction); } } } static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate)) return; // Desugar the type of the surrogate down to a function type, // retaining as many typedefs as possible while still showing // the function type (and, therefore, its parameter types). QualType FnType = Cand->Surrogate->getConversionType(); bool isLValueReference = false; bool isRValueReference = false; bool isPointer = false; if (const LValueReferenceType *FnTypeRef = FnType->getAs()) { FnType = FnTypeRef->getPointeeType(); isLValueReference = true; } else if (const RValueReferenceType *FnTypeRef = FnType->getAs()) { FnType = FnTypeRef->getPointeeType(); isRValueReference = true; } if (const PointerType *FnTypePtr = FnType->getAs()) { FnType = FnTypePtr->getPointeeType(); isPointer = true; } // Desugar down to a function type. FnType = QualType(FnType->getAs(), 0); // Reconstruct the pointer/reference as appropriate. if (isPointer) FnType = S.Context.getPointerType(FnType); if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); if (!Cand->Viable && Cand->FailureKind == ovl_fail_constraints_not_satisfied) { S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_constraints_not_satisfied) << Cand->Surrogate; ConstraintSatisfaction Satisfaction; if (S.CheckFunctionConstraints(Cand->Surrogate, Satisfaction)) S.DiagnoseUnsatisfiedConstraint(Satisfaction); } else { S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) << FnType; } } static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc, SourceLocation OpLoc, OverloadCandidate *Cand) { assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); std::string TypeStr("operator"); TypeStr += Opc; TypeStr += "("; TypeStr += Cand->BuiltinParamTypes[0].getAsString(); if (Cand->Conversions.size() == 1) { TypeStr += ")"; S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; } else { TypeStr += ", "; TypeStr += Cand->BuiltinParamTypes[1].getAsString(); TypeStr += ")"; S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; } } static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, OverloadCandidate *Cand) { for (const ImplicitConversionSequence &ICS : Cand->Conversions) { if (ICS.isBad()) break; // all meaningless after first invalid if (!ICS.isAmbiguous()) continue; ICS.DiagnoseAmbiguousConversion( S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion)); } } static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { if (Cand->Function) return Cand->Function->getLocation(); if (Cand->IsSurrogate) return Cand->Surrogate->getLocation(); return SourceLocation(); } static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) { switch ((Sema::TemplateDeductionResult)DFI.Result) { case Sema::TDK_Success: case Sema::TDK_NonDependentConversionFailure: case Sema::TDK_AlreadyDiagnosed: llvm_unreachable("non-deduction failure while diagnosing bad deduction"); case Sema::TDK_Invalid: case Sema::TDK_Incomplete: case Sema::TDK_IncompletePack: return 1; case Sema::TDK_Underqualified: case Sema::TDK_Inconsistent: return 2; case Sema::TDK_SubstitutionFailure: case Sema::TDK_DeducedMismatch: case Sema::TDK_ConstraintsNotSatisfied: case Sema::TDK_DeducedMismatchNested: case Sema::TDK_NonDeducedMismatch: case Sema::TDK_MiscellaneousDeductionFailure: case Sema::TDK_CUDATargetMismatch: return 3; case Sema::TDK_InstantiationDepth: return 4; case Sema::TDK_InvalidExplicitArguments: return 5; case Sema::TDK_TooManyArguments: case Sema::TDK_TooFewArguments: return 6; } llvm_unreachable("Unhandled deduction result"); } namespace { struct CompareOverloadCandidatesForDisplay { Sema &S; SourceLocation Loc; size_t NumArgs; OverloadCandidateSet::CandidateSetKind CSK; CompareOverloadCandidatesForDisplay( Sema &S, SourceLocation Loc, size_t NArgs, OverloadCandidateSet::CandidateSetKind CSK) : S(S), NumArgs(NArgs), CSK(CSK) {} OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const { // If there are too many or too few arguments, that's the high-order bit we // want to sort by, even if the immediate failure kind was something else. if (C->FailureKind == ovl_fail_too_many_arguments || C->FailureKind == ovl_fail_too_few_arguments) return static_cast(C->FailureKind); if (C->Function) { if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic()) return ovl_fail_too_many_arguments; if (NumArgs < C->Function->getMinRequiredArguments()) return ovl_fail_too_few_arguments; } return static_cast(C->FailureKind); } bool operator()(const OverloadCandidate *L, const OverloadCandidate *R) { // Fast-path this check. if (L == R) return false; // Order first by viability. if (L->Viable) { if (!R->Viable) return true; if (int Ord = CompareConversions(*L, *R)) return Ord < 0; // Use other tie breakers. } else if (R->Viable) return false; assert(L->Viable == R->Viable); // Criteria by which we can sort non-viable candidates: if (!L->Viable) { OverloadFailureKind LFailureKind = EffectiveFailureKind(L); OverloadFailureKind RFailureKind = EffectiveFailureKind(R); // 1. Arity mismatches come after other candidates. if (LFailureKind == ovl_fail_too_many_arguments || LFailureKind == ovl_fail_too_few_arguments) { if (RFailureKind == ovl_fail_too_many_arguments || RFailureKind == ovl_fail_too_few_arguments) { int LDist = std::abs((int)L->getNumParams() - (int)NumArgs); int RDist = std::abs((int)R->getNumParams() - (int)NumArgs); if (LDist == RDist) { if (LFailureKind == RFailureKind) // Sort non-surrogates before surrogates. return !L->IsSurrogate && R->IsSurrogate; // Sort candidates requiring fewer parameters than there were // arguments given after candidates requiring more parameters // than there were arguments given. return LFailureKind == ovl_fail_too_many_arguments; } return LDist < RDist; } return false; } if (RFailureKind == ovl_fail_too_many_arguments || RFailureKind == ovl_fail_too_few_arguments) return true; // 2. Bad conversions come first and are ordered by the number // of bad conversions and quality of good conversions. if (LFailureKind == ovl_fail_bad_conversion) { if (RFailureKind != ovl_fail_bad_conversion) return true; // The conversion that can be fixed with a smaller number of changes, // comes first. unsigned numLFixes = L->Fix.NumConversionsFixed; unsigned numRFixes = R->Fix.NumConversionsFixed; numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; if (numLFixes != numRFixes) { return numLFixes < numRFixes; } // If there's any ordering between the defined conversions... if (int Ord = CompareConversions(*L, *R)) return Ord < 0; } else if (RFailureKind == ovl_fail_bad_conversion) return false; if (LFailureKind == ovl_fail_bad_deduction) { if (RFailureKind != ovl_fail_bad_deduction) return true; if (L->DeductionFailure.Result != R->DeductionFailure.Result) { unsigned LRank = RankDeductionFailure(L->DeductionFailure); unsigned RRank = RankDeductionFailure(R->DeductionFailure); if (LRank != RRank) return LRank < RRank; } } else if (RFailureKind == ovl_fail_bad_deduction) return false; // TODO: others? } // Sort everything else by location. SourceLocation LLoc = GetLocationForCandidate(L); SourceLocation RLoc = GetLocationForCandidate(R); // Put candidates without locations (e.g. builtins) at the end. if (LLoc.isValid() && RLoc.isValid()) return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); if (LLoc.isValid() && !RLoc.isValid()) return true; if (RLoc.isValid() && !LLoc.isValid()) return false; assert(!LLoc.isValid() && !RLoc.isValid()); // For builtins and other functions without locations, fallback to the order // in which they were added into the candidate set. return L < R; } private: struct ConversionSignals { unsigned KindRank = 0; ImplicitConversionRank Rank = ICR_Exact_Match; static ConversionSignals ForSequence(ImplicitConversionSequence &Seq) { ConversionSignals Sig; Sig.KindRank = Seq.getKindRank(); if (Seq.isStandard()) Sig.Rank = Seq.Standard.getRank(); else if (Seq.isUserDefined()) Sig.Rank = Seq.UserDefined.After.getRank(); // We intend StaticObjectArgumentConversion to compare the same as // StandardConversion with ICR_ExactMatch rank. return Sig; } static ConversionSignals ForObjectArgument() { // We intend StaticObjectArgumentConversion to compare the same as // StandardConversion with ICR_ExactMatch rank. Default give us that. return {}; } }; // Returns -1 if conversions in L are considered better. // 0 if they are considered indistinguishable. // 1 if conversions in R are better. int CompareConversions(const OverloadCandidate &L, const OverloadCandidate &R) { // We cannot use `isBetterOverloadCandidate` because it is defined // according to the C++ standard and provides a partial order, but we need // a total order as this function is used in sort. assert(L.Conversions.size() == R.Conversions.size()); for (unsigned I = 0, N = L.Conversions.size(); I != N; ++I) { auto LS = L.IgnoreObjectArgument && I == 0 ? ConversionSignals::ForObjectArgument() : ConversionSignals::ForSequence(L.Conversions[I]); auto RS = R.IgnoreObjectArgument ? ConversionSignals::ForObjectArgument() : ConversionSignals::ForSequence(R.Conversions[I]); if (std::tie(LS.KindRank, LS.Rank) != std::tie(RS.KindRank, RS.Rank)) return std::tie(LS.KindRank, LS.Rank) < std::tie(RS.KindRank, RS.Rank) ? -1 : 1; } // FIXME: find a way to compare templates for being more or less // specialized that provides a strict weak ordering. return 0; } }; } /// CompleteNonViableCandidate - Normally, overload resolution only /// computes up to the first bad conversion. Produces the FixIt set if /// possible. static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, ArrayRef Args, OverloadCandidateSet::CandidateSetKind CSK) { assert(!Cand->Viable); // Don't do anything on failures other than bad conversion. if (Cand->FailureKind != ovl_fail_bad_conversion) return; // We only want the FixIts if all the arguments can be corrected. bool Unfixable = false; // Use a implicit copy initialization to check conversion fixes. Cand->Fix.setConversionChecker(TryCopyInitialization); // Attempt to fix the bad conversion. unsigned ConvCount = Cand->Conversions.size(); for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/; ++ConvIdx) { assert(ConvIdx != ConvCount && "no bad conversion in candidate"); if (Cand->Conversions[ConvIdx].isInitialized() && Cand->Conversions[ConvIdx].isBad()) { Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); break; } } // FIXME: this should probably be preserved from the overload // operation somehow. bool SuppressUserConversions = false; unsigned ConvIdx = 0; unsigned ArgIdx = 0; ArrayRef ParamTypes; bool Reversed = Cand->isReversed(); if (Cand->IsSurrogate) { QualType ConvType = Cand->Surrogate->getConversionType().getNonReferenceType(); if (const PointerType *ConvPtrType = ConvType->getAs()) ConvType = ConvPtrType->getPointeeType(); ParamTypes = ConvType->castAs()->getParamTypes(); // Conversion 0 is 'this', which doesn't have a corresponding parameter. ConvIdx = 1; } else if (Cand->Function) { ParamTypes = Cand->Function->getType()->castAs()->getParamTypes(); if (isa(Cand->Function) && !isa(Cand->Function) && !Reversed) { // Conversion 0 is 'this', which doesn't have a corresponding parameter. ConvIdx = 1; if (CSK == OverloadCandidateSet::CSK_Operator && Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call && Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Subscript) // Argument 0 is 'this', which doesn't have a corresponding parameter. ArgIdx = 1; } } else { // Builtin operator. assert(ConvCount <= 3); ParamTypes = Cand->BuiltinParamTypes; } // Fill in the rest of the conversions. for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) { assert(ArgIdx < Args.size() && "no argument for this arg conversion"); if (Cand->Conversions[ConvIdx].isInitialized()) { // We've already checked this conversion. } else if (ParamIdx < ParamTypes.size()) { if (ParamTypes[ParamIdx]->isDependentType()) Cand->Conversions[ConvIdx].setAsIdentityConversion( Args[ArgIdx]->getType()); else { Cand->Conversions[ConvIdx] = TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx], SuppressUserConversions, /*InOverloadResolution=*/true, /*AllowObjCWritebackConversion=*/ S.getLangOpts().ObjCAutoRefCount); // Store the FixIt in the candidate if it exists. if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); } } else Cand->Conversions[ConvIdx].setEllipsis(); } } SmallVector OverloadCandidateSet::CompleteCandidates( Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef Args, SourceLocation OpLoc, llvm::function_ref Filter) { // Sort the candidates by viability and position. Sorting directly would // be prohibitive, so we make a set of pointers and sort those. SmallVector Cands; if (OCD == OCD_AllCandidates) Cands.reserve(size()); for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { if (!Filter(*Cand)) continue; switch (OCD) { case OCD_AllCandidates: if (!Cand->Viable) { if (!Cand->Function && !Cand->IsSurrogate) { // This a non-viable builtin candidate. We do not, in general, // want to list every possible builtin candidate. continue; } CompleteNonViableCandidate(S, Cand, Args, Kind); } break; case OCD_ViableCandidates: if (!Cand->Viable) continue; break; case OCD_AmbiguousCandidates: if (!Cand->Best) continue; break; } Cands.push_back(Cand); } llvm::stable_sort( Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind)); return Cands; } bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef Args, SourceLocation OpLoc) { bool DeferHint = false; if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) { // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or // host device candidates. auto WrongSidedCands = CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) { return (Cand.Viable == false && Cand.FailureKind == ovl_fail_bad_target) || (Cand.Function && Cand.Function->template hasAttr() && Cand.Function->template hasAttr()); }); DeferHint = !WrongSidedCands.empty(); } return DeferHint; } /// When overload resolution fails, prints diagnostic messages containing the /// candidates in the candidate set. void OverloadCandidateSet::NoteCandidates( PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef Args, StringRef Opc, SourceLocation OpLoc, llvm::function_ref Filter) { auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter); S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc)); // In WebAssembly we don't want to emit further diagnostics if a table is // passed as an argument to a function. bool NoteCands = true; for (const Expr *Arg : Args) { if (Arg->getType()->isWebAssemblyTableType()) NoteCands = false; } if (NoteCands) NoteCandidates(S, Args, Cands, Opc, OpLoc); if (OCD == OCD_AmbiguousCandidates) MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()}); } void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef Args, ArrayRef Cands, StringRef Opc, SourceLocation OpLoc) { bool ReportedAmbiguousConversions = false; const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); unsigned CandsShown = 0; auto I = Cands.begin(), E = Cands.end(); for (; I != E; ++I) { OverloadCandidate *Cand = *I; if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() && ShowOverloads == Ovl_Best) { break; } ++CandsShown; if (Cand->Function) NoteFunctionCandidate(S, Cand, Args.size(), /*TakingCandidateAddress=*/false, DestAS); else if (Cand->IsSurrogate) NoteSurrogateCandidate(S, Cand); else { assert(Cand->Viable && "Non-viable built-in candidates are not added to Cands."); // Generally we only see ambiguities including viable builtin // operators if overload resolution got screwed up by an // ambiguous user-defined conversion. // // FIXME: It's quite possible for different conversions to see // different ambiguities, though. if (!ReportedAmbiguousConversions) { NoteAmbiguousUserConversions(S, OpLoc, Cand); ReportedAmbiguousConversions = true; } // If this is a viable builtin, print it. NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); } } // Inform S.Diags that we've shown an overload set with N elements. This may // inform the future value of S.Diags.getNumOverloadCandidatesToShow(). S.Diags.overloadCandidatesShown(CandsShown); if (I != E) S.Diag(OpLoc, diag::note_ovl_too_many_candidates, shouldDeferDiags(S, Args, OpLoc)) << int(E - I); } static SourceLocation GetLocationForCandidate(const TemplateSpecCandidate *Cand) { return Cand->Specialization ? Cand->Specialization->getLocation() : SourceLocation(); } namespace { struct CompareTemplateSpecCandidatesForDisplay { Sema &S; CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {} bool operator()(const TemplateSpecCandidate *L, const TemplateSpecCandidate *R) { // Fast-path this check. if (L == R) return false; // Assuming that both candidates are not matches... // Sort by the ranking of deduction failures. if (L->DeductionFailure.Result != R->DeductionFailure.Result) return RankDeductionFailure(L->DeductionFailure) < RankDeductionFailure(R->DeductionFailure); // Sort everything else by location. SourceLocation LLoc = GetLocationForCandidate(L); SourceLocation RLoc = GetLocationForCandidate(R); // Put candidates without locations (e.g. builtins) at the end. if (LLoc.isInvalid()) return false; if (RLoc.isInvalid()) return true; return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); } }; } /// Diagnose a template argument deduction failure. /// We are treating these failures as overload failures due to bad /// deductions. void TemplateSpecCandidate::NoteDeductionFailure(Sema &S, bool ForTakingAddress) { DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern DeductionFailure, /*NumArgs=*/0, ForTakingAddress); } void TemplateSpecCandidateSet::destroyCandidates() { for (iterator i = begin(), e = end(); i != e; ++i) { i->DeductionFailure.Destroy(); } } void TemplateSpecCandidateSet::clear() { destroyCandidates(); Candidates.clear(); } /// NoteCandidates - When no template specialization match is found, prints /// diagnostic messages containing the non-matching specializations that form /// the candidate set. /// This is analoguous to OverloadCandidateSet::NoteCandidates() with /// OCD == OCD_AllCandidates and Cand->Viable == false. void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) { // Sort the candidates by position (assuming no candidate is a match). // Sorting directly would be prohibitive, so we make a set of pointers // and sort those. SmallVector Cands; Cands.reserve(size()); for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { if (Cand->Specialization) Cands.push_back(Cand); // Otherwise, this is a non-matching builtin candidate. We do not, // in general, want to list every possible builtin candidate. } llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S)); // FIXME: Perhaps rename OverloadsShown and getShowOverloads() // for generalization purposes (?). const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); SmallVectorImpl::iterator I, E; unsigned CandsShown = 0; for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { TemplateSpecCandidate *Cand = *I; // Set an arbitrary limit on the number of candidates we'll spam // the user with. FIXME: This limit should depend on details of the // candidate list. if (CandsShown >= 4 && ShowOverloads == Ovl_Best) break; ++CandsShown; assert(Cand->Specialization && "Non-matching built-in candidates are not added to Cands."); Cand->NoteDeductionFailure(S, ForTakingAddress); } if (I != E) S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I); } // [PossiblyAFunctionType] --> [Return] // NonFunctionType --> NonFunctionType // R (A) --> R(A) // R (*)(A) --> R (A) // R (&)(A) --> R (A) // R (S::*)(A) --> R (A) QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { QualType Ret = PossiblyAFunctionType; if (const PointerType *ToTypePtr = PossiblyAFunctionType->getAs()) Ret = ToTypePtr->getPointeeType(); else if (const ReferenceType *ToTypeRef = PossiblyAFunctionType->getAs()) Ret = ToTypeRef->getPointeeType(); else if (const MemberPointerType *MemTypePtr = PossiblyAFunctionType->getAs()) Ret = MemTypePtr->getPointeeType(); Ret = Context.getCanonicalType(Ret).getUnqualifiedType(); return Ret; } static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc, bool Complain = true) { if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && S.DeduceReturnType(FD, Loc, Complain)) return true; auto *FPT = FD->getType()->castAs(); if (S.getLangOpts().CPlusPlus17 && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && !S.ResolveExceptionSpec(Loc, FPT)) return true; return false; } namespace { // A helper class to help with address of function resolution // - allows us to avoid passing around all those ugly parameters class AddressOfFunctionResolver { Sema& S; Expr* SourceExpr; const QualType& TargetType; QualType TargetFunctionType; // Extracted function type from target type bool Complain; //DeclAccessPair& ResultFunctionAccessPair; ASTContext& Context; bool TargetTypeIsNonStaticMemberFunction; bool FoundNonTemplateFunction; bool StaticMemberFunctionFromBoundPointer; bool HasComplained; OverloadExpr::FindResult OvlExprInfo; OverloadExpr *OvlExpr; TemplateArgumentListInfo OvlExplicitTemplateArgs; SmallVector, 4> Matches; TemplateSpecCandidateSet FailedCandidates; public: AddressOfFunctionResolver(Sema &S, Expr *SourceExpr, const QualType &TargetType, bool Complain) : S(S), SourceExpr(SourceExpr), TargetType(TargetType), Complain(Complain), Context(S.getASTContext()), TargetTypeIsNonStaticMemberFunction( !!TargetType->getAs()), FoundNonTemplateFunction(false), StaticMemberFunctionFromBoundPointer(false), HasComplained(false), OvlExprInfo(OverloadExpr::find(SourceExpr)), OvlExpr(OvlExprInfo.Expression), FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) { ExtractUnqualifiedFunctionTypeFromTargetType(); if (TargetFunctionType->isFunctionType()) { if (UnresolvedMemberExpr *UME = dyn_cast(OvlExpr)) if (!UME->isImplicitAccess() && !S.ResolveSingleFunctionTemplateSpecialization(UME)) StaticMemberFunctionFromBoundPointer = true; } else if (OvlExpr->hasExplicitTemplateArgs()) { DeclAccessPair dap; if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization( OvlExpr, false, &dap)) { if (CXXMethodDecl *Method = dyn_cast(Fn)) if (!Method->isStatic()) { // If the target type is a non-function type and the function found // is a non-static member function, pretend as if that was the // target, it's the only possible type to end up with. TargetTypeIsNonStaticMemberFunction = true; // And skip adding the function if its not in the proper form. // We'll diagnose this due to an empty set of functions. if (!OvlExprInfo.HasFormOfMemberPointer) return; } Matches.push_back(std::make_pair(dap, Fn)); } return; } if (OvlExpr->hasExplicitTemplateArgs()) OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs); if (FindAllFunctionsThatMatchTargetTypeExactly()) { // C++ [over.over]p4: // If more than one function is selected, [...] if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) { if (FoundNonTemplateFunction) EliminateAllTemplateMatches(); else EliminateAllExceptMostSpecializedTemplate(); } } if (S.getLangOpts().CUDA && Matches.size() > 1) EliminateSuboptimalCudaMatches(); } bool hasComplained() const { return HasComplained; } private: bool candidateHasExactlyCorrectType(const FunctionDecl *FD) { QualType Discard; return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) || S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard); } /// \return true if A is considered a better overload candidate for the /// desired type than B. bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) { // If A doesn't have exactly the correct type, we don't want to classify it // as "better" than anything else. This way, the user is required to // disambiguate for us if there are multiple candidates and no exact match. return candidateHasExactlyCorrectType(A) && (!candidateHasExactlyCorrectType(B) || compareEnableIfAttrs(S, A, B) == Comparison::Better); } /// \return true if we were able to eliminate all but one overload candidate, /// false otherwise. bool eliminiateSuboptimalOverloadCandidates() { // Same algorithm as overload resolution -- one pass to pick the "best", // another pass to be sure that nothing is better than the best. auto Best = Matches.begin(); for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I) if (isBetterCandidate(I->second, Best->second)) Best = I; const FunctionDecl *BestFn = Best->second; auto IsBestOrInferiorToBest = [this, BestFn]( const std::pair &Pair) { return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second); }; // Note: We explicitly leave Matches unmodified if there isn't a clear best // option, so we can potentially give the user a better error if (!llvm::all_of(Matches, IsBestOrInferiorToBest)) return false; Matches[0] = *Best; Matches.resize(1); return true; } bool isTargetTypeAFunction() const { return TargetFunctionType->isFunctionType(); } // [ToType] [Return] // R (*)(A) --> R (A), IsNonStaticMemberFunction = false // R (&)(A) --> R (A), IsNonStaticMemberFunction = false // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true void inline ExtractUnqualifiedFunctionTypeFromTargetType() { TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); } // return true if any matching specializations were found bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, const DeclAccessPair& CurAccessFunPair) { if (CXXMethodDecl *Method = dyn_cast(FunctionTemplate->getTemplatedDecl())) { // Skip non-static function templates when converting to pointer, and // static when converting to member pointer. bool CanConvertToFunctionPointer = Method->isStatic() || Method->isExplicitObjectMemberFunction(); if (CanConvertToFunctionPointer == TargetTypeIsNonStaticMemberFunction) return false; } else if (TargetTypeIsNonStaticMemberFunction) return false; // C++ [over.over]p2: // If the name is a function template, template argument deduction is // done (14.8.2.2), and if the argument deduction succeeds, the // resulting template argument list is used to generate a single // function template specialization, which is added to the set of // overloaded functions considered. FunctionDecl *Specialization = nullptr; TemplateDeductionInfo Info(FailedCandidates.getLocation()); if (Sema::TemplateDeductionResult Result = S.DeduceTemplateArguments(FunctionTemplate, &OvlExplicitTemplateArgs, TargetFunctionType, Specialization, Info, /*IsAddressOfFunction*/true)) { // Make a note of the failed deduction for diagnostics. FailedCandidates.addCandidate() .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(), MakeDeductionFailureInfo(Context, Result, Info)); return false; } // Template argument deduction ensures that we have an exact match or // compatible pointer-to-function arguments that would be adjusted by ICS. // This function template specicalization works. assert(S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))); if (!S.checkAddressOfFunctionIsAvailable(Specialization)) return false; Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); return true; } bool AddMatchingNonTemplateFunction(NamedDecl* Fn, const DeclAccessPair& CurAccessFunPair) { if (CXXMethodDecl *Method = dyn_cast(Fn)) { // Skip non-static functions when converting to pointer, and static // when converting to member pointer. bool CanConvertToFunctionPointer = Method->isStatic() || Method->isExplicitObjectMemberFunction(); if (CanConvertToFunctionPointer == TargetTypeIsNonStaticMemberFunction) return false; } else if (TargetTypeIsNonStaticMemberFunction) return false; if (FunctionDecl *FunDecl = dyn_cast(Fn)) { if (S.getLangOpts().CUDA) { FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); if (!(Caller && Caller->isImplicit()) && !S.IsAllowedCUDACall(Caller, FunDecl)) return false; } if (FunDecl->isMultiVersion()) { const auto *TA = FunDecl->getAttr(); if (TA && !TA->isDefaultVersion()) return false; const auto *TVA = FunDecl->getAttr(); if (TVA && !TVA->isDefaultVersion()) return false; } // If any candidate has a placeholder return type, trigger its deduction // now. if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(), Complain)) { HasComplained |= Complain; return false; } if (!S.checkAddressOfFunctionIsAvailable(FunDecl)) return false; // If we're in C, we need to support types that aren't exactly identical. if (!S.getLangOpts().CPlusPlus || candidateHasExactlyCorrectType(FunDecl)) { Matches.push_back(std::make_pair( CurAccessFunPair, cast(FunDecl->getCanonicalDecl()))); FoundNonTemplateFunction = true; return true; } } return false; } bool FindAllFunctionsThatMatchTargetTypeExactly() { bool Ret = false; // If the overload expression doesn't have the form of a pointer to // member, don't try to convert it to a pointer-to-member type. if (IsInvalidFormOfPointerToMemberFunction()) return false; for (UnresolvedSetIterator I = OvlExpr->decls_begin(), E = OvlExpr->decls_end(); I != E; ++I) { // Look through any using declarations to find the underlying function. NamedDecl *Fn = (*I)->getUnderlyingDecl(); // C++ [over.over]p3: // Non-member functions and static member functions match // targets of type "pointer-to-function" or "reference-to-function." // Nonstatic member functions match targets of // type "pointer-to-member-function." // Note that according to DR 247, the containing class does not matter. if (FunctionTemplateDecl *FunctionTemplate = dyn_cast(Fn)) { if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) Ret = true; } // If we have explicit template arguments supplied, skip non-templates. else if (!OvlExpr->hasExplicitTemplateArgs() && AddMatchingNonTemplateFunction(Fn, I.getPair())) Ret = true; } assert(Ret || Matches.empty()); return Ret; } void EliminateAllExceptMostSpecializedTemplate() { // [...] and any given function template specialization F1 is // eliminated if the set contains a second function template // specialization whose function template is more specialized // than the function template of F1 according to the partial // ordering rules of 14.5.5.2. // The algorithm specified above is quadratic. We instead use a // two-pass algorithm (similar to the one used to identify the // best viable function in an overload set) that identifies the // best function template (if it exists). UnresolvedSet<4> MatchesCopy; // TODO: avoid! for (unsigned I = 0, E = Matches.size(); I != E; ++I) MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); // TODO: It looks like FailedCandidates does not serve much purpose // here, since the no_viable diagnostic has index 0. UnresolvedSetIterator Result = S.getMostSpecialized( MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates, SourceExpr->getBeginLoc(), S.PDiag(), S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0].second->getDeclName(), S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function << (unsigned)ocs_described_template, Complain, TargetFunctionType); if (Result != MatchesCopy.end()) { // Make it the first and only element Matches[0].first = Matches[Result - MatchesCopy.begin()].first; Matches[0].second = cast(*Result); Matches.resize(1); } else HasComplained |= Complain; } void EliminateAllTemplateMatches() { // [...] any function template specializations in the set are // eliminated if the set also contains a non-template function, [...] for (unsigned I = 0, N = Matches.size(); I != N; ) { if (Matches[I].second->getPrimaryTemplate() == nullptr) ++I; else { Matches[I] = Matches[--N]; Matches.resize(N); } } } void EliminateSuboptimalCudaMatches() { S.EraseUnwantedCUDAMatches(S.getCurFunctionDecl(/*AllowLambda=*/true), Matches); } public: void ComplainNoMatchesFound() const { assert(Matches.empty()); S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable) << OvlExpr->getName() << TargetFunctionType << OvlExpr->getSourceRange(); if (FailedCandidates.empty()) S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, /*TakingAddress=*/true); else { // We have some deduction failure messages. Use them to diagnose // the function templates, and diagnose the non-template candidates // normally. for (UnresolvedSetIterator I = OvlExpr->decls_begin(), IEnd = OvlExpr->decls_end(); I != IEnd; ++I) if (FunctionDecl *Fun = dyn_cast((*I)->getUnderlyingDecl())) if (!functionHasPassObjectSizeParams(Fun)) S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType, /*TakingAddress=*/true); FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc()); } } bool IsInvalidFormOfPointerToMemberFunction() const { return TargetTypeIsNonStaticMemberFunction && !OvlExprInfo.HasFormOfMemberPointer; } void ComplainIsInvalidFormOfPointerToMemberFunction() const { // TODO: Should we condition this on whether any functions might // have matched, or is it more appropriate to do that in callers? // TODO: a fixit wouldn't hurt. S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) << TargetType << OvlExpr->getSourceRange(); } bool IsStaticMemberFunctionFromBoundPointer() const { return StaticMemberFunctionFromBoundPointer; } void ComplainIsStaticMemberFunctionFromBoundPointer() const { S.Diag(OvlExpr->getBeginLoc(), diag::err_invalid_form_pointer_member_function) << OvlExpr->getSourceRange(); } void ComplainOfInvalidConversion() const { S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref) << OvlExpr->getName() << TargetType; } void ComplainMultipleMatchesFound() const { assert(Matches.size() > 1); S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous) << OvlExpr->getName() << OvlExpr->getSourceRange(); S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, /*TakingAddress=*/true); } bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } int getNumMatches() const { return Matches.size(); } FunctionDecl* getMatchingFunctionDecl() const { if (Matches.size() != 1) return nullptr; return Matches[0].second; } const DeclAccessPair* getMatchingFunctionAccessPair() const { if (Matches.size() != 1) return nullptr; return &Matches[0].first; } }; } /// ResolveAddressOfOverloadedFunction - Try to resolve the address of /// an overloaded function (C++ [over.over]), where @p From is an /// expression with overloaded function type and @p ToType is the type /// we're trying to resolve to. For example: /// /// @code /// int f(double); /// int f(int); /// /// int (*pfd)(double) = f; // selects f(double) /// @endcode /// /// This routine returns the resulting FunctionDecl if it could be /// resolved, and NULL otherwise. When @p Complain is true, this /// routine will emit diagnostics if there is an error. FunctionDecl * Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType, bool Complain, DeclAccessPair &FoundResult, bool *pHadMultipleCandidates) { assert(AddressOfExpr->getType() == Context.OverloadTy); AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, Complain); int NumMatches = Resolver.getNumMatches(); FunctionDecl *Fn = nullptr; bool ShouldComplain = Complain && !Resolver.hasComplained(); if (NumMatches == 0 && ShouldComplain) { if (Resolver.IsInvalidFormOfPointerToMemberFunction()) Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); else Resolver.ComplainNoMatchesFound(); } else if (NumMatches > 1 && ShouldComplain) Resolver.ComplainMultipleMatchesFound(); else if (NumMatches == 1) { Fn = Resolver.getMatchingFunctionDecl(); assert(Fn); if (auto *FPT = Fn->getType()->getAs()) ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT); FoundResult = *Resolver.getMatchingFunctionAccessPair(); if (Complain) { if (Resolver.IsStaticMemberFunctionFromBoundPointer()) Resolver.ComplainIsStaticMemberFunctionFromBoundPointer(); else CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); } } if (pHadMultipleCandidates) *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); return Fn; } /// Given an expression that refers to an overloaded function, try to /// resolve that function to a single function that can have its address taken. /// This will modify `Pair` iff it returns non-null. /// /// This routine can only succeed if from all of the candidates in the overload /// set for SrcExpr that can have their addresses taken, there is one candidate /// that is more constrained than the rest. FunctionDecl * Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) { OverloadExpr::FindResult R = OverloadExpr::find(E); OverloadExpr *Ovl = R.Expression; bool IsResultAmbiguous = false; FunctionDecl *Result = nullptr; DeclAccessPair DAP; SmallVector AmbiguousDecls; // Return positive for better, negative for worse, 0 for equal preference. auto CheckCUDAPreference = [&](FunctionDecl *FD1, FunctionDecl *FD2) { FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); return static_cast(IdentifyCUDAPreference(Caller, FD1)) - static_cast(IdentifyCUDAPreference(Caller, FD2)); }; auto CheckMoreConstrained = [&](FunctionDecl *FD1, FunctionDecl *FD2) -> std::optional { if (FunctionDecl *MF = FD1->getInstantiatedFromMemberFunction()) FD1 = MF; if (FunctionDecl *MF = FD2->getInstantiatedFromMemberFunction()) FD2 = MF; SmallVector AC1, AC2; FD1->getAssociatedConstraints(AC1); FD2->getAssociatedConstraints(AC2); bool AtLeastAsConstrained1, AtLeastAsConstrained2; if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1)) return std::nullopt; if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2)) return std::nullopt; if (AtLeastAsConstrained1 == AtLeastAsConstrained2) return std::nullopt; return AtLeastAsConstrained1; }; // Don't use the AddressOfResolver because we're specifically looking for // cases where we have one overload candidate that lacks // enable_if/pass_object_size/... for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) { auto *FD = dyn_cast(I->getUnderlyingDecl()); if (!FD) return nullptr; if (!checkAddressOfFunctionIsAvailable(FD)) continue; // If we found a better result, update Result. auto FoundBetter = [&]() { IsResultAmbiguous = false; DAP = I.getPair(); Result = FD; }; // We have more than one result - see if it is more constrained than the // previous one. if (Result) { // Check CUDA preference first. If the candidates have differennt CUDA // preference, choose the one with higher CUDA preference. Otherwise, // choose the one with more constraints. if (getLangOpts().CUDA) { int PreferenceByCUDA = CheckCUDAPreference(FD, Result); // FD has different preference than Result. if (PreferenceByCUDA != 0) { // FD is more preferable than Result. if (PreferenceByCUDA > 0) FoundBetter(); continue; } } // FD has the same CUDA prefernece than Result. Continue check // constraints. std::optional MoreConstrainedThanPrevious = CheckMoreConstrained(FD, Result); if (!MoreConstrainedThanPrevious) { IsResultAmbiguous = true; AmbiguousDecls.push_back(FD); continue; } if (!*MoreConstrainedThanPrevious) continue; // FD is more constrained - replace Result with it. } FoundBetter(); } if (IsResultAmbiguous) return nullptr; if (Result) { SmallVector ResultAC; // We skipped over some ambiguous declarations which might be ambiguous with // the selected result. for (FunctionDecl *Skipped : AmbiguousDecls) { // If skipped candidate has different CUDA preference than the result, // there is no ambiguity. Otherwise check whether they have different // constraints. if (getLangOpts().CUDA && CheckCUDAPreference(Skipped, Result) != 0) continue; if (!CheckMoreConstrained(Skipped, Result)) return nullptr; } Pair = DAP; } return Result; } /// Given an overloaded function, tries to turn it into a non-overloaded /// function reference using resolveAddressOfSingleOverloadCandidate. This /// will perform access checks, diagnose the use of the resultant decl, and, if /// requested, potentially perform a function-to-pointer decay. /// /// Returns false if resolveAddressOfSingleOverloadCandidate fails. /// Otherwise, returns true. This may emit diagnostics and return true. bool Sema::resolveAndFixAddressOfSingleOverloadCandidate( ExprResult &SrcExpr, bool DoFunctionPointerConversion) { Expr *E = SrcExpr.get(); assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload"); DeclAccessPair DAP; FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP); if (!Found || Found->isCPUDispatchMultiVersion() || Found->isCPUSpecificMultiVersion()) return false; // Emitting multiple diagnostics for a function that is both inaccessible and // unavailable is consistent with our behavior elsewhere. So, always check // for both. DiagnoseUseOfDecl(Found, E->getExprLoc()); CheckAddressOfMemberAccess(E, DAP); ExprResult Res = FixOverloadedFunctionReference(E, DAP, Found); if (Res.isInvalid()) return false; Expr *Fixed = Res.get(); if (DoFunctionPointerConversion && Fixed->getType()->isFunctionType()) SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false); else SrcExpr = Fixed; return true; } /// Given an expression that refers to an overloaded function, try to /// resolve that overloaded function expression down to a single function. /// /// This routine can only resolve template-ids that refer to a single function /// template, where that template-id refers to a single template whose template /// arguments are either provided by the template-id or have defaults, /// as described in C++0x [temp.arg.explicit]p3. /// /// If no template-ids are found, no diagnostics are emitted and NULL is /// returned. FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization( OverloadExpr *ovl, bool Complain, DeclAccessPair *FoundResult, TemplateSpecCandidateSet *FailedTSC) { // C++ [over.over]p1: // [...] [Note: any redundant set of parentheses surrounding the // overloaded function name is ignored (5.1). ] // C++ [over.over]p1: // [...] The overloaded function name can be preceded by the & // operator. // If we didn't actually find any template-ids, we're done. if (!ovl->hasExplicitTemplateArgs()) return nullptr; TemplateArgumentListInfo ExplicitTemplateArgs; ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); // Look through all of the overloaded functions, searching for one // whose type matches exactly. FunctionDecl *Matched = nullptr; for (UnresolvedSetIterator I = ovl->decls_begin(), E = ovl->decls_end(); I != E; ++I) { // C++0x [temp.arg.explicit]p3: // [...] In contexts where deduction is done and fails, or in contexts // where deduction is not done, if a template argument list is // specified and it, along with any default template arguments, // identifies a single function template specialization, then the // template-id is an lvalue for the function template specialization. FunctionTemplateDecl *FunctionTemplate = cast((*I)->getUnderlyingDecl()); // C++ [over.over]p2: // If the name is a function template, template argument deduction is // done (14.8.2.2), and if the argument deduction succeeds, the // resulting template argument list is used to generate a single // function template specialization, which is added to the set of // overloaded functions considered. FunctionDecl *Specialization = nullptr; TemplateDeductionInfo Info(ovl->getNameLoc()); if (TemplateDeductionResult Result = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, Specialization, Info, /*IsAddressOfFunction*/true)) { // Make a note of the failed deduction for diagnostics. if (FailedTSC) FailedTSC->addCandidate().set( I.getPair(), FunctionTemplate->getTemplatedDecl(), MakeDeductionFailureInfo(Context, Result, Info)); continue; } assert(Specialization && "no specialization and no error?"); // Multiple matches; we can't resolve to a single declaration. if (Matched) { if (Complain) { Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) << ovl->getName(); NoteAllOverloadCandidates(ovl); } return nullptr; } Matched = Specialization; if (FoundResult) *FoundResult = I.getPair(); } if (Matched && completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain)) return nullptr; return Matched; } // Resolve and fix an overloaded expression that can be resolved // because it identifies a single function template specialization. // // Last three arguments should only be supplied if Complain = true // // Return true if it was logically possible to so resolve the // expression, regardless of whether or not it succeeded. Always // returns true if 'complain' is set. bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( ExprResult &SrcExpr, bool doFunctionPointerConversion, bool complain, SourceRange OpRangeForComplaining, QualType DestTypeForComplaining, unsigned DiagIDForComplaining) { assert(SrcExpr.get()->getType() == Context.OverloadTy); OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); DeclAccessPair found; ExprResult SingleFunctionExpression; if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( ovl.Expression, /*complain*/ false, &found)) { if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) { SrcExpr = ExprError(); return true; } // It is only correct to resolve to an instance method if we're // resolving a form that's permitted to be a pointer to member. // Otherwise we'll end up making a bound member expression, which // is illegal in all the contexts we resolve like this. if (!ovl.HasFormOfMemberPointer && isa(fn) && cast(fn)->isInstance()) { if (!complain) return false; Diag(ovl.Expression->getExprLoc(), diag::err_bound_member_function) << 0 << ovl.Expression->getSourceRange(); // TODO: I believe we only end up here if there's a mix of // static and non-static candidates (otherwise the expression // would have 'bound member' type, not 'overload' type). // Ideally we would note which candidate was chosen and why // the static candidates were rejected. SrcExpr = ExprError(); return true; } // Fix the expression to refer to 'fn'. SingleFunctionExpression = FixOverloadedFunctionReference(SrcExpr.get(), found, fn); // If desired, do function-to-pointer decay. if (doFunctionPointerConversion) { SingleFunctionExpression = DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get()); if (SingleFunctionExpression.isInvalid()) { SrcExpr = ExprError(); return true; } } } if (!SingleFunctionExpression.isUsable()) { if (complain) { Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) << ovl.Expression->getName() << DestTypeForComplaining << OpRangeForComplaining << ovl.Expression->getQualifierLoc().getSourceRange(); NoteAllOverloadCandidates(SrcExpr.get()); SrcExpr = ExprError(); return true; } return false; } SrcExpr = SingleFunctionExpression; return true; } /// Add a single candidate to the overload set. static void AddOverloadedCallCandidate(Sema &S, DeclAccessPair FoundDecl, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool PartialOverloading, bool KnownValid) { NamedDecl *Callee = FoundDecl.getDecl(); if (isa(Callee)) Callee = cast(Callee)->getTargetDecl(); if (FunctionDecl *Func = dyn_cast(Callee)) { if (ExplicitTemplateArgs) { assert(!KnownValid && "Explicit template arguments?"); return; } // Prevent ill-formed function decls to be added as overload candidates. if (!isa(Func->getType()->getAs())) return; S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading); return; } if (FunctionTemplateDecl *FuncTemplate = dyn_cast(Callee)) { S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading); return; } assert(!KnownValid && "unhandled case in overloaded call candidate"); } /// Add the overload candidates named by callee and/or found by argument /// dependent lookup to the given overload set. void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool PartialOverloading) { #ifndef NDEBUG // Verify that ArgumentDependentLookup is consistent with the rules // in C++0x [basic.lookup.argdep]p3: // // Let X be the lookup set produced by unqualified lookup (3.4.1) // and let Y be the lookup set produced by argument dependent // lookup (defined as follows). If X contains // // -- a declaration of a class member, or // // -- a block-scope function declaration that is not a // using-declaration, or // // -- a declaration that is neither a function or a function // template // // then Y is empty. if (ULE->requiresADL()) { for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) { assert(!(*I)->getDeclContext()->isRecord()); assert(isa(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()); assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); } } #endif // It would be nice to avoid this copy. TemplateArgumentListInfo TABuffer; TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; if (ULE->hasExplicitTemplateArgs()) { ULE->copyTemplateArgumentsInto(TABuffer); ExplicitTemplateArgs = &TABuffer; } for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, CandidateSet, PartialOverloading, /*KnownValid*/ true); if (ULE->requiresADL()) AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(), Args, ExplicitTemplateArgs, CandidateSet, PartialOverloading); } /// Add the call candidates from the given set of lookup results to the given /// overload set. Non-function lookup results are ignored. void Sema::AddOverloadedCallCandidates( LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, OverloadCandidateSet &CandidateSet) { for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, CandidateSet, false, /*KnownValid*/ false); } /// Determine whether a declaration with the specified name could be moved into /// a different namespace. static bool canBeDeclaredInNamespace(const DeclarationName &Name) { switch (Name.getCXXOverloadedOperator()) { case OO_New: case OO_Array_New: case OO_Delete: case OO_Array_Delete: return false; default: return true; } } /// Attempt to recover from an ill-formed use of a non-dependent name in a /// template, where the non-dependent name was declared after the template /// was defined. This is common in code written for a compilers which do not /// correctly implement two-stage name lookup. /// /// Returns true if a viable candidate was found and a diagnostic was issued. static bool DiagnoseTwoPhaseLookup( Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS, LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, CXXRecordDecl **FoundInClass = nullptr) { if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty()) return false; for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { if (DC->isTransparentContext()) continue; SemaRef.LookupQualifiedName(R, DC); if (!R.empty()) { R.suppressDiagnostics(); OverloadCandidateSet Candidates(FnLoc, CSK); SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates); OverloadCandidateSet::iterator Best; OverloadingResult OR = Candidates.BestViableFunction(SemaRef, FnLoc, Best); if (auto *RD = dyn_cast(DC)) { // We either found non-function declarations or a best viable function // at class scope. A class-scope lookup result disables ADL. Don't // look past this, but let the caller know that we found something that // either is, or might be, usable in this class. if (FoundInClass) { *FoundInClass = RD; if (OR == OR_Success) { R.clear(); R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); R.resolveKind(); } } return false; } if (OR != OR_Success) { // There wasn't a unique best function or function template. return false; } // Find the namespaces where ADL would have looked, and suggest // declaring the function there instead. Sema::AssociatedNamespaceSet AssociatedNamespaces; Sema::AssociatedClassSet AssociatedClasses; SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args, AssociatedNamespaces, AssociatedClasses); Sema::AssociatedNamespaceSet SuggestedNamespaces; if (canBeDeclaredInNamespace(R.getLookupName())) { DeclContext *Std = SemaRef.getStdNamespace(); for (Sema::AssociatedNamespaceSet::iterator it = AssociatedNamespaces.begin(), end = AssociatedNamespaces.end(); it != end; ++it) { // Never suggest declaring a function within namespace 'std'. if (Std && Std->Encloses(*it)) continue; // Never suggest declaring a function within a namespace with a // reserved name, like __gnu_cxx. NamespaceDecl *NS = dyn_cast(*it); if (NS && NS->getQualifiedNameAsString().find("__") != std::string::npos) continue; SuggestedNamespaces.insert(*it); } } SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) << R.getLookupName(); if (SuggestedNamespaces.empty()) { SemaRef.Diag(Best->Function->getLocation(), diag::note_not_found_by_two_phase_lookup) << R.getLookupName() << 0; } else if (SuggestedNamespaces.size() == 1) { SemaRef.Diag(Best->Function->getLocation(), diag::note_not_found_by_two_phase_lookup) << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); } else { // FIXME: It would be useful to list the associated namespaces here, // but the diagnostics infrastructure doesn't provide a way to produce // a localized representation of a list of items. SemaRef.Diag(Best->Function->getLocation(), diag::note_not_found_by_two_phase_lookup) << R.getLookupName() << 2; } // Try to recover by calling this function. return true; } R.clear(); } return false; } /// Attempt to recover from ill-formed use of a non-dependent operator in a /// template, where the non-dependent operator was declared after the template /// was defined. /// /// Returns true if a viable candidate was found and a diagnostic was issued. static bool DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, SourceLocation OpLoc, ArrayRef Args) { DeclarationName OpName = SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, OverloadCandidateSet::CSK_Operator, /*ExplicitTemplateArgs=*/nullptr, Args); } namespace { class BuildRecoveryCallExprRAII { Sema &SemaRef; Sema::SatisfactionStackResetRAII SatStack; public: BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S), SatStack(S) { assert(SemaRef.IsBuildingRecoveryCallExpr == false); SemaRef.IsBuildingRecoveryCallExpr = true; } ~BuildRecoveryCallExprRAII() { SemaRef.IsBuildingRecoveryCallExpr = false; } }; } /// Attempts to recover from a call where no functions were found. /// /// This function will do one of three things: /// * Diagnose, recover, and return a recovery expression. /// * Diagnose, fail to recover, and return ExprError(). /// * Do not diagnose, do not recover, and return ExprResult(). The caller is /// expected to diagnose as appropriate. static ExprResult BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, SourceLocation LParenLoc, MutableArrayRef Args, SourceLocation RParenLoc, bool EmptyLookup, bool AllowTypoCorrection) { // Do not try to recover if it is already building a recovery call. // This stops infinite loops for template instantiations like // // template auto foo(T t) -> decltype(foo(t)) {} // template auto foo(T t) -> decltype(foo(&t)) {} if (SemaRef.IsBuildingRecoveryCallExpr) return ExprResult(); BuildRecoveryCallExprRAII RCE(SemaRef); CXXScopeSpec SS; SS.Adopt(ULE->getQualifierLoc()); SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); TemplateArgumentListInfo TABuffer; TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; if (ULE->hasExplicitTemplateArgs()) { ULE->copyTemplateArgumentsInto(TABuffer); ExplicitTemplateArgs = &TABuffer; } LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), Sema::LookupOrdinaryName); CXXRecordDecl *FoundInClass = nullptr; if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, OverloadCandidateSet::CSK_Normal, ExplicitTemplateArgs, Args, &FoundInClass)) { // OK, diagnosed a two-phase lookup issue. } else if (EmptyLookup) { // Try to recover from an empty lookup with typo correction. R.clear(); NoTypoCorrectionCCC NoTypoValidator{}; FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(), ExplicitTemplateArgs != nullptr, dyn_cast(Fn)); CorrectionCandidateCallback &Validator = AllowTypoCorrection ? static_cast(FunctionCallValidator) : static_cast(NoTypoValidator); if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs, Args)) return ExprError(); } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) { // We found a usable declaration of the name in a dependent base of some // enclosing class. // FIXME: We should also explain why the candidates found by name lookup // were not viable. if (SemaRef.DiagnoseDependentMemberLookup(R)) return ExprError(); } else { // We had viable candidates and couldn't recover; let the caller diagnose // this. return ExprResult(); } // If we get here, we should have issued a diagnostic and formed a recovery // lookup result. assert(!R.empty() && "lookup results empty despite recovery"); // If recovery created an ambiguity, just bail out. if (R.isAmbiguous()) { R.suppressDiagnostics(); return ExprError(); } // Build an implicit member call if appropriate. Just drop the // casts and such from the call, we don't really care. ExprResult NewFn = ExprError(); if ((*R.begin())->isCXXClassMember()) NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, ExplicitTemplateArgs, S); else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, ExplicitTemplateArgs); else NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); if (NewFn.isInvalid()) return ExprError(); // This shouldn't cause an infinite loop because we're giving it // an expression with viable lookup results, which should never // end up here. return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc, MultiExprArg(Args.data(), Args.size()), RParenLoc); } /// Constructs and populates an OverloadedCandidateSet from /// the given function. /// \returns true when an the ExprResult output parameter has been set. bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, MultiExprArg Args, SourceLocation RParenLoc, OverloadCandidateSet *CandidateSet, ExprResult *Result) { #ifndef NDEBUG if (ULE->requiresADL()) { // To do ADL, we must have found an unqualified name. assert(!ULE->getQualifier() && "qualified name with ADL"); // We don't perform ADL for implicit declarations of builtins. // Verify that this was correctly set up. FunctionDecl *F; if (ULE->decls_begin() != ULE->decls_end() && ULE->decls_begin() + 1 == ULE->decls_end() && (F = dyn_cast(*ULE->decls_begin())) && F->getBuiltinID() && F->isImplicit()) llvm_unreachable("performing ADL for builtin"); // We don't perform ADL in C. assert(getLangOpts().CPlusPlus && "ADL enabled in C"); } #endif UnbridgedCastsSet UnbridgedCasts; if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { *Result = ExprError(); return true; } // Add the functions denoted by the callee to the set of candidate // functions, including those from argument-dependent lookup. AddOverloadedCallCandidates(ULE, Args, *CandidateSet); if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && !isSFINAEContext() && (isa(CurContext) || isa(CurContext))) { OverloadCandidateSet::iterator Best; if (CandidateSet->empty() || CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) == OR_No_Viable_Function) { // In Microsoft mode, if we are inside a template class member function // then create a type dependent CallExpr. The goal is to postpone name // lookup to instantiation time to be able to search into type dependent // base classes. CallExpr *CE = CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue, RParenLoc, CurFPFeatureOverrides()); CE->markDependentForPostponedNameLookup(); *Result = CE; return true; } } if (CandidateSet->empty()) return false; UnbridgedCasts.restore(); return false; } // Guess at what the return type for an unresolvable overload should be. static QualType chooseRecoveryType(OverloadCandidateSet &CS, OverloadCandidateSet::iterator *Best) { std::optional Result; // Adjust Type after seeing a candidate. auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) { if (!Candidate.Function) return; if (Candidate.Function->isInvalidDecl()) return; QualType T = Candidate.Function->getReturnType(); if (T.isNull()) return; if (!Result) Result = T; else if (Result != T) Result = QualType(); }; // Look for an unambiguous type from a progressively larger subset. // e.g. if types disagree, but all *viable* overloads return int, choose int. // // First, consider only the best candidate. if (Best && *Best != CS.end()) ConsiderCandidate(**Best); // Next, consider only viable candidates. if (!Result) for (const auto &C : CS) if (C.Viable) ConsiderCandidate(C); // Finally, consider all candidates. if (!Result) for (const auto &C : CS) ConsiderCandidate(C); if (!Result) return QualType(); auto Value = *Result; if (Value.isNull() || Value->isUndeducedType()) return QualType(); return Value; } /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns /// the completed call expression. If overload resolution fails, emits /// diagnostics and returns ExprError() static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc, Expr *ExecConfig, OverloadCandidateSet *CandidateSet, OverloadCandidateSet::iterator *Best, OverloadingResult OverloadResult, bool AllowTypoCorrection) { switch (OverloadResult) { case OR_Success: { FunctionDecl *FDecl = (*Best)->Function; SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl); if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc())) return ExprError(); ExprResult Res = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); if (Res.isInvalid()) return ExprError(); return SemaRef.BuildResolvedCallExpr( Res.get(), FDecl, LParenLoc, Args, RParenLoc, ExecConfig, /*IsExecConfig=*/false, (*Best)->IsADLCandidate); } case OR_No_Viable_Function: { // Try to recover by looking for viable functions which the user might // have meant to call. ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args, RParenLoc, CandidateSet->empty(), AllowTypoCorrection); if (Recovery.isInvalid() || Recovery.isUsable()) return Recovery; // If the user passes in a function that we can't take the address of, we // generally end up emitting really bad error messages. Here, we attempt to // emit better ones. for (const Expr *Arg : Args) { if (!Arg->getType()->isFunctionType()) continue; if (auto *DRE = dyn_cast(Arg->IgnoreParenImpCasts())) { auto *FD = dyn_cast(DRE->getDecl()); if (FD && !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, Arg->getExprLoc())) return ExprError(); } } CandidateSet->NoteCandidates( PartialDiagnosticAt( Fn->getBeginLoc(), SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call) << ULE->getName() << Fn->getSourceRange()), SemaRef, OCD_AllCandidates, Args); break; } case OR_Ambiguous: CandidateSet->NoteCandidates( PartialDiagnosticAt(Fn->getBeginLoc(), SemaRef.PDiag(diag::err_ovl_ambiguous_call) << ULE->getName() << Fn->getSourceRange()), SemaRef, OCD_AmbiguousCandidates, Args); break; case OR_Deleted: { CandidateSet->NoteCandidates( PartialDiagnosticAt(Fn->getBeginLoc(), SemaRef.PDiag(diag::err_ovl_deleted_call) << ULE->getName() << Fn->getSourceRange()), SemaRef, OCD_AllCandidates, Args); // We emitted an error for the unavailable/deleted function call but keep // the call in the AST. FunctionDecl *FDecl = (*Best)->Function; ExprResult Res = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); if (Res.isInvalid()) return ExprError(); return SemaRef.BuildResolvedCallExpr( Res.get(), FDecl, LParenLoc, Args, RParenLoc, ExecConfig, /*IsExecConfig=*/false, (*Best)->IsADLCandidate); } } // Overload resolution failed, try to recover. SmallVector SubExprs = {Fn}; SubExprs.append(Args.begin(), Args.end()); return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs, chooseRecoveryType(*CandidateSet, Best)); } static void markUnaddressableCandidatesUnviable(Sema &S, OverloadCandidateSet &CS) { for (auto I = CS.begin(), E = CS.end(); I != E; ++I) { if (I->Viable && !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) { I->Viable = false; I->FailureKind = ovl_fail_addr_not_available; } } } /// BuildOverloadedCallExpr - Given the call expression that calls Fn /// (which eventually refers to the declaration Func) and the call /// arguments Args/NumArgs, attempt to resolve the function call down /// to a specific function. If overload resolution succeeds, returns /// the call expression produced by overload resolution. /// Otherwise, emits diagnostics and returns ExprError. ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc, Expr *ExecConfig, bool AllowTypoCorrection, bool CalleesAddressIsTaken) { OverloadCandidateSet CandidateSet(Fn->getExprLoc(), OverloadCandidateSet::CSK_Normal); ExprResult result; if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet, &result)) return result; // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that // functions that aren't addressible are considered unviable. if (CalleesAddressIsTaken) markUnaddressableCandidatesUnviable(*this, CandidateSet); OverloadCandidateSet::iterator Best; OverloadingResult OverloadResult = CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best); // Model the case with a call to a templated function whose definition // encloses the call and whose return type contains a placeholder type as if // the UnresolvedLookupExpr was type-dependent. if (OverloadResult == OR_Success) { const FunctionDecl *FDecl = Best->Function; if (FDecl && FDecl->isTemplateInstantiation() && FDecl->getReturnType()->isUndeducedType()) { if (const auto *TP = FDecl->getTemplateInstantiationPattern(/*ForDefinition=*/false); TP && TP->willHaveBody()) { return CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue, RParenLoc, CurFPFeatureOverrides()); } } } return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc, ExecConfig, &CandidateSet, &Best, OverloadResult, AllowTypoCorrection); } static bool IsOverloaded(const UnresolvedSetImpl &Functions) { return Functions.size() > 1 || (Functions.size() == 1 && isa((*Functions.begin())->getUnderlyingDecl())); } ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass, NestedNameSpecifierLoc NNSLoc, DeclarationNameInfo DNI, const UnresolvedSetImpl &Fns, bool PerformADL) { return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI, PerformADL, IsOverloaded(Fns), Fns.begin(), Fns.end()); } ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, CXXConversionDecl *Method, bool HadMultipleCandidates) { // Convert the expression to match the conversion function's implicit object // parameter. ExprResult Exp; if (Method->isExplicitObjectMemberFunction()) Exp = InitializeExplicitObjectArgument(*this, E, Method); else Exp = PerformImplicitObjectArgumentInitialization(E, /*Qualifier=*/nullptr, FoundDecl, Method); if (Exp.isInvalid()) return true; if (Method->getParent()->isLambda() && Method->getConversionType()->isBlockPointerType()) { // This is a lambda conversion to block pointer; check if the argument // was a LambdaExpr. Expr *SubE = E; auto *CE = dyn_cast(SubE); if (CE && CE->getCastKind() == CK_NoOp) SubE = CE->getSubExpr(); SubE = SubE->IgnoreParens(); if (auto *BE = dyn_cast(SubE)) SubE = BE->getSubExpr(); if (isa(SubE)) { // For the conversion to block pointer on a lambda expression, we // construct a special BlockLiteral instead; this doesn't really make // a difference in ARC, but outside of ARC the resulting block literal // follows the normal lifetime rules for block literals instead of being // autoreleased. PushExpressionEvaluationContext( ExpressionEvaluationContext::PotentiallyEvaluated); ExprResult BlockExp = BuildBlockForLambdaConversion( Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); PopExpressionEvaluationContext(); // FIXME: This note should be produced by a CodeSynthesisContext. if (BlockExp.isInvalid()) Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); return BlockExp; } } CallExpr *CE; QualType ResultType = Method->getReturnType(); ExprValueKind VK = Expr::getValueKindForType(ResultType); ResultType = ResultType.getNonLValueExprType(Context); if (Method->isExplicitObjectMemberFunction()) { ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, FoundDecl, Exp.get(), HadMultipleCandidates, E->getBeginLoc()); if (FnExpr.isInvalid()) return ExprError(); Expr *ObjectParam = Exp.get(); CE = CallExpr::Create(Context, FnExpr.get(), MultiExprArg(&ObjectParam, 1), ResultType, VK, Exp.get()->getEndLoc(), CurFPFeatureOverrides()); } else { MemberExpr *ME = BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), NestedNameSpecifierLoc(), SourceLocation(), Method, DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), HadMultipleCandidates, DeclarationNameInfo(), Context.BoundMemberTy, VK_PRValue, OK_Ordinary); CE = CXXMemberCallExpr::Create(Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(), CurFPFeatureOverrides()); } if (CheckFunctionCall(Method, CE, Method->getType()->castAs())) return ExprError(); return CheckForImmediateInvocation(CE, CE->getDirectCallee()); } /// Create a unary operation that may resolve to an overloaded /// operator. /// /// \param OpLoc The location of the operator itself (e.g., '*'). /// /// \param Opc The UnaryOperatorKind that describes this operator. /// /// \param Fns The set of non-member functions that will be /// considered by overload resolution. The caller needs to build this /// set based on the context using, e.g., /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This /// set should not contain any member functions; those will be added /// by CreateOverloadedUnaryOp(). /// /// \param Input The input argument. ExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, const UnresolvedSetImpl &Fns, Expr *Input, bool PerformADL) { OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); // TODO: provide better source location info. DeclarationNameInfo OpNameInfo(OpName, OpLoc); if (checkPlaceholderForOverload(*this, Input)) return ExprError(); Expr *Args[2] = { Input, nullptr }; unsigned NumArgs = 1; // For post-increment and post-decrement, add the implicit '0' as // the second argument, so that we know this is a post-increment or // post-decrement. if (Opc == UO_PostInc || Opc == UO_PostDec) { llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, SourceLocation()); NumArgs = 2; } ArrayRef ArgsArray(Args, NumArgs); if (Input->isTypeDependent()) { if (Fns.empty()) return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy, VK_PRValue, OK_Ordinary, OpLoc, false, CurFPFeatureOverrides()); CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators ExprResult Fn = CreateUnresolvedLookupExpr( NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns); if (Fn.isInvalid()) return ExprError(); return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray, Context.DependentTy, VK_PRValue, OpLoc, CurFPFeatureOverrides()); } // Build an empty overload set. OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); // Add the candidates from the given function set. AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet); // Add operator candidates that are member functions. AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); // Add candidates from ADL. if (PerformADL) { AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray, /*ExplicitTemplateArgs*/nullptr, CandidateSet); } // Add builtin operator candidates. AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); bool HadMultipleCandidates = (CandidateSet.size() > 1); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { Expr *Base = nullptr; // We matched an overloaded operator. Build a call to that // operator. // Convert the arguments. if (CXXMethodDecl *Method = dyn_cast(FnDecl)) { CheckMemberOperatorAccess(OpLoc, Input, nullptr, Best->FoundDecl); ExprResult InputInit; if (Method->isExplicitObjectMemberFunction()) InputInit = InitializeExplicitObjectArgument(*this, Input, Method); else InputInit = PerformImplicitObjectArgumentInitialization( Input, /*Qualifier=*/nullptr, Best->FoundDecl, Method); if (InputInit.isInvalid()) return ExprError(); Base = Input = InputInit.get(); } else { // Convert the arguments. ExprResult InputInit = PerformCopyInitialization(InitializedEntity::InitializeParameter( Context, FnDecl->getParamDecl(0)), SourceLocation(), Input); if (InputInit.isInvalid()) return ExprError(); Input = InputInit.get(); } // Build the actual expression node. ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl, Base, HadMultipleCandidates, OpLoc); if (FnExpr.isInvalid()) return ExprError(); // Determine the result type. QualType ResultTy = FnDecl->getReturnType(); ExprValueKind VK = Expr::getValueKindForType(ResultTy); ResultTy = ResultTy.getNonLValueExprType(Context); Args[0] = Input; CallExpr *TheCall = CXXOperatorCallExpr::Create( Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc, CurFPFeatureOverrides(), Best->IsADLCandidate); if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl)) return ExprError(); if (CheckFunctionCall(FnDecl, TheCall, FnDecl->getType()->castAs())) return ExprError(); return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. ExprResult InputRes = PerformImplicitConversion( Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing, CCK_ForBuiltinOverloadedOp); if (InputRes.isInvalid()) return ExprError(); Input = InputRes.get(); break; } } case OR_No_Viable_Function: // This is an erroneous use of an operator which can be overloaded by // a non-member function. Check for non-member operators which were // defined too late to be candidates. if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray)) // FIXME: Recover by calling the found function. return ExprError(); // No viable function; fall through to handling this as a // built-in operator, which will produce an error message for us. break; case OR_Ambiguous: CandidateSet.NoteCandidates( PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary) << UnaryOperator::getOpcodeStr(Opc) << Input->getType() << Input->getSourceRange()), *this, OCD_AmbiguousCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc), OpLoc); return ExprError(); case OR_Deleted: // CreateOverloadedUnaryOp fills the first element of ArgsArray with the // object whose method was called. Later in NoteCandidates size of ArgsArray // is passed further and it eventually ends up compared to number of // function candidate parameters which never includes the object parameter, // so slice ArgsArray to make sure apples are compared to apples. CandidateSet.NoteCandidates( PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) << UnaryOperator::getOpcodeStr(Opc) << Input->getSourceRange()), *this, OCD_AllCandidates, ArgsArray.drop_front(), UnaryOperator::getOpcodeStr(Opc), OpLoc); return ExprError(); } // Either we found no viable overloaded operator or we matched a // built-in operator. In either case, fall through to trying to // build a built-in operation. return CreateBuiltinUnaryOp(OpLoc, Opc, Input); } /// Perform lookup for an overloaded binary operator. void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, OverloadedOperatorKind Op, const UnresolvedSetImpl &Fns, ArrayRef Args, bool PerformADL) { SourceLocation OpLoc = CandidateSet.getLocation(); OverloadedOperatorKind ExtraOp = CandidateSet.getRewriteInfo().AllowRewrittenCandidates ? getRewrittenOverloadedOperator(Op) : OO_None; // Add the candidates from the given function set. This also adds the // rewritten candidates using these functions if necessary. AddNonMemberOperatorCandidates(Fns, Args, CandidateSet); // Add operator candidates that are member functions. AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet); if (CandidateSet.getRewriteInfo().allowsReversed(Op)) AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet, OverloadCandidateParamOrder::Reversed); // In C++20, also add any rewritten member candidates. if (ExtraOp) { AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet); if (CandidateSet.getRewriteInfo().allowsReversed(ExtraOp)) AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]}, CandidateSet, OverloadCandidateParamOrder::Reversed); } // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not // performed for an assignment operator (nor for operator[] nor operator->, // which don't get here). if (Op != OO_Equal && PerformADL) { DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); AddArgumentDependentLookupCandidates(OpName, OpLoc, Args, /*ExplicitTemplateArgs*/ nullptr, CandidateSet); if (ExtraOp) { DeclarationName ExtraOpName = Context.DeclarationNames.getCXXOperatorName(ExtraOp); AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args, /*ExplicitTemplateArgs*/ nullptr, CandidateSet); } } // Add builtin operator candidates. // // FIXME: We don't add any rewritten candidates here. This is strictly // incorrect; a builtin candidate could be hidden by a non-viable candidate, // resulting in our selecting a rewritten builtin candidate. For example: // // enum class E { e }; // bool operator!=(E, E) requires false; // bool k = E::e != E::e; // // ... should select the rewritten builtin candidate 'operator==(E, E)'. But // it seems unreasonable to consider rewritten builtin candidates. A core // issue has been filed proposing to removed this requirement. AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet); } /// Create a binary operation that may resolve to an overloaded /// operator. /// /// \param OpLoc The location of the operator itself (e.g., '+'). /// /// \param Opc The BinaryOperatorKind that describes this operator. /// /// \param Fns The set of non-member functions that will be /// considered by overload resolution. The caller needs to build this /// set based on the context using, e.g., /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This /// set should not contain any member functions; those will be added /// by CreateOverloadedBinOp(). /// /// \param LHS Left-hand argument. /// \param RHS Right-hand argument. /// \param PerformADL Whether to consider operator candidates found by ADL. /// \param AllowRewrittenCandidates Whether to consider candidates found by /// C++20 operator rewrites. /// \param DefaultedFn If we are synthesizing a defaulted operator function, /// the function in question. Such a function is never a candidate in /// our overload resolution. This also enables synthesizing a three-way /// comparison from < and == as described in C++20 [class.spaceship]p1. ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, bool PerformADL, bool AllowRewrittenCandidates, FunctionDecl *DefaultedFn) { Expr *Args[2] = { LHS, RHS }; LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple if (!getLangOpts().CPlusPlus20) AllowRewrittenCandidates = false; OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); // If either side is type-dependent, create an appropriate dependent // expression. if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { if (Fns.empty()) { // If there are no functions to store, just build a dependent // BinaryOperator or CompoundAssignment. if (BinaryOperator::isCompoundAssignmentOp(Opc)) return CompoundAssignOperator::Create( Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy, Context.DependentTy); return BinaryOperator::Create( Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue, OK_Ordinary, OpLoc, CurFPFeatureOverrides()); } // FIXME: save results of ADL from here? CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators // TODO: provide better source location info in DNLoc component. DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); DeclarationNameInfo OpNameInfo(OpName, OpLoc); ExprResult Fn = CreateUnresolvedLookupExpr( NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL); if (Fn.isInvalid()) return ExprError(); return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args, Context.DependentTy, VK_PRValue, OpLoc, CurFPFeatureOverrides()); } // Always do placeholder-like conversions on the RHS. if (checkPlaceholderForOverload(*this, Args[1])) return ExprError(); // Do placeholder-like conversion on the LHS; note that we should // not get here with a PseudoObject LHS. assert(Args[0]->getObjectKind() != OK_ObjCProperty); if (checkPlaceholderForOverload(*this, Args[0])) return ExprError(); // If this is the assignment operator, we only perform overload resolution // if the left-hand side is a class or enumeration type. This is actually // a hack. The standard requires that we do overload resolution between the // various built-in candidates, but as DR507 points out, this can lead to // problems. So we do it this way, which pretty much follows what GCC does. // Note that we go the traditional code path for compound assignment forms. if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); // If this is the .* operator, which is not overloadable, just // create a built-in binary operator. if (Opc == BO_PtrMemD) return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); // Build the overload set. OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator, OverloadCandidateSet::OperatorRewriteInfo( Op, OpLoc, AllowRewrittenCandidates)); if (DefaultedFn) CandidateSet.exclude(DefaultedFn); LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL); bool HadMultipleCandidates = (CandidateSet.size() > 1); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; bool IsReversed = Best->isReversed(); if (IsReversed) std::swap(Args[0], Args[1]); if (FnDecl) { if (FnDecl->isInvalidDecl()) return ExprError(); Expr *Base = nullptr; // We matched an overloaded operator. Build a call to that // operator. OverloadedOperatorKind ChosenOp = FnDecl->getDeclName().getCXXOverloadedOperator(); // C++2a [over.match.oper]p9: // If a rewritten operator== candidate is selected by overload // resolution for an operator@, its return type shall be cv bool if (Best->RewriteKind && ChosenOp == OO_EqualEqual && !FnDecl->getReturnType()->isBooleanType()) { bool IsExtension = FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType(); Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool : diag::err_ovl_rewrite_equalequal_not_bool) << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc) << Args[0]->getSourceRange() << Args[1]->getSourceRange(); Diag(FnDecl->getLocation(), diag::note_declared_at); if (!IsExtension) return ExprError(); } if (AllowRewrittenCandidates && !IsReversed && CandidateSet.getRewriteInfo().isReversible()) { // We could have reversed this operator, but didn't. Check if some // reversed form was a viable candidate, and if so, if it had a // better conversion for either parameter. If so, this call is // formally ambiguous, and allowing it is an extension. llvm::SmallVector AmbiguousWith; for (OverloadCandidate &Cand : CandidateSet) { if (Cand.Viable && Cand.Function && Cand.isReversed() && allowAmbiguity(Context, Cand.Function, FnDecl)) { for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { if (CompareImplicitConversionSequences( *this, OpLoc, Cand.Conversions[ArgIdx], Best->Conversions[ArgIdx]) == ImplicitConversionSequence::Better) { AmbiguousWith.push_back(Cand.Function); break; } } } } if (!AmbiguousWith.empty()) { bool AmbiguousWithSelf = AmbiguousWith.size() == 1 && declaresSameEntity(AmbiguousWith.front(), FnDecl); Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed) << BinaryOperator::getOpcodeStr(Opc) << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf << Args[0]->getSourceRange() << Args[1]->getSourceRange(); if (AmbiguousWithSelf) { Diag(FnDecl->getLocation(), diag::note_ovl_ambiguous_oper_binary_reversed_self); // Mark member== const or provide matching != to disallow reversed // args. Eg. // struct S { bool operator==(const S&); }; // S()==S(); if (auto *MD = dyn_cast(FnDecl)) if (Op == OverloadedOperatorKind::OO_EqualEqual && !MD->isConst() && !MD->hasCXXExplicitFunctionObjectParameter() && Context.hasSameUnqualifiedType( MD->getFunctionObjectParameterType(), MD->getParamDecl(0)->getType().getNonReferenceType()) && Context.hasSameUnqualifiedType( MD->getFunctionObjectParameterType(), Args[0]->getType()) && Context.hasSameUnqualifiedType( MD->getFunctionObjectParameterType(), Args[1]->getType())) Diag(FnDecl->getLocation(), diag::note_ovl_ambiguous_eqeq_reversed_self_non_const); } else { Diag(FnDecl->getLocation(), diag::note_ovl_ambiguous_oper_binary_selected_candidate); for (auto *F : AmbiguousWith) Diag(F->getLocation(), diag::note_ovl_ambiguous_oper_binary_reversed_candidate); } } } // Convert the arguments. if (CXXMethodDecl *Method = dyn_cast(FnDecl)) { // Best->Access is only meaningful for class members. CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); ExprResult Arg0, Arg1; unsigned ParamIdx = 0; if (Method->isExplicitObjectMemberFunction()) { Arg0 = InitializeExplicitObjectArgument(*this, Args[0], FnDecl); ParamIdx = 1; } else { Arg0 = PerformImplicitObjectArgumentInitialization( Args[0], /*Qualifier=*/nullptr, Best->FoundDecl, Method); } Arg1 = PerformCopyInitialization( InitializedEntity::InitializeParameter( Context, FnDecl->getParamDecl(ParamIdx)), SourceLocation(), Args[1]); if (Arg0.isInvalid() || Arg1.isInvalid()) return ExprError(); Base = Args[0] = Arg0.getAs(); Args[1] = RHS = Arg1.getAs(); } else { // Convert the arguments. ExprResult Arg0 = PerformCopyInitialization( InitializedEntity::InitializeParameter(Context, FnDecl->getParamDecl(0)), SourceLocation(), Args[0]); if (Arg0.isInvalid()) return ExprError(); ExprResult Arg1 = PerformCopyInitialization( InitializedEntity::InitializeParameter(Context, FnDecl->getParamDecl(1)), SourceLocation(), Args[1]); if (Arg1.isInvalid()) return ExprError(); Args[0] = LHS = Arg0.getAs(); Args[1] = RHS = Arg1.getAs(); } // Build the actual expression node. ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl, Base, HadMultipleCandidates, OpLoc); if (FnExpr.isInvalid()) return ExprError(); // Determine the result type. QualType ResultTy = FnDecl->getReturnType(); ExprValueKind VK = Expr::getValueKindForType(ResultTy); ResultTy = ResultTy.getNonLValueExprType(Context); CallExpr *TheCall; ArrayRef ArgsArray(Args, 2); const Expr *ImplicitThis = nullptr; // We always create a CXXOperatorCallExpr, even for explicit object // members; CodeGen should take care not to emit the this pointer. TheCall = CXXOperatorCallExpr::Create( Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc, CurFPFeatureOverrides(), Best->IsADLCandidate); if (const auto *Method = dyn_cast(FnDecl); Method && Method->isImplicitObjectMemberFunction()) { // Cut off the implicit 'this'. ImplicitThis = ArgsArray[0]; ArgsArray = ArgsArray.slice(1); } if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl)) return ExprError(); // Check for a self move. if (Op == OO_Equal) DiagnoseSelfMove(Args[0], Args[1], OpLoc); if (ImplicitThis) { QualType ThisType = Context.getPointerType(ImplicitThis->getType()); QualType ThisTypeFromDecl = Context.getPointerType( cast(FnDecl)->getFunctionObjectParameterType()); CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType, ThisTypeFromDecl); } checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray, isa(FnDecl), OpLoc, TheCall->getSourceRange(), VariadicDoesNotApply); ExprResult R = MaybeBindToTemporary(TheCall); if (R.isInvalid()) return ExprError(); R = CheckForImmediateInvocation(R, FnDecl); if (R.isInvalid()) return ExprError(); // For a rewritten candidate, we've already reversed the arguments // if needed. Perform the rest of the rewrite now. if ((Best->RewriteKind & CRK_DifferentOperator) || (Op == OO_Spaceship && IsReversed)) { if (Op == OO_ExclaimEqual) { assert(ChosenOp == OO_EqualEqual && "unexpected operator name"); R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get()); } else { assert(ChosenOp == OO_Spaceship && "unexpected operator name"); llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); Expr *ZeroLiteral = IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc); Sema::CodeSynthesisContext Ctx; Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship; Ctx.Entity = FnDecl; pushCodeSynthesisContext(Ctx); R = CreateOverloadedBinOp( OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(), IsReversed ? R.get() : ZeroLiteral, /*PerformADL=*/true, /*AllowRewrittenCandidates=*/false); popCodeSynthesisContext(); } if (R.isInvalid()) return ExprError(); } else { assert(ChosenOp == Op && "unexpected operator name"); } // Make a note in the AST if we did any rewriting. if (Best->RewriteKind != CRK_None) R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed); return R; } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. ExprResult ArgsRes0 = PerformImplicitConversion( Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing, CCK_ForBuiltinOverloadedOp); if (ArgsRes0.isInvalid()) return ExprError(); Args[0] = ArgsRes0.get(); ExprResult ArgsRes1 = PerformImplicitConversion( Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], AA_Passing, CCK_ForBuiltinOverloadedOp); if (ArgsRes1.isInvalid()) return ExprError(); Args[1] = ArgsRes1.get(); break; } } case OR_No_Viable_Function: { // C++ [over.match.oper]p9: // If the operator is the operator , [...] and there are no // viable functions, then the operator is assumed to be the // built-in operator and interpreted according to clause 5. if (Opc == BO_Comma) break; // When defaulting an 'operator<=>', we can try to synthesize a three-way // compare result using '==' and '<'. if (DefaultedFn && Opc == BO_Cmp) { ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0], Args[1], DefaultedFn); if (E.isInvalid() || E.isUsable()) return E; } // For class as left operand for assignment or compound assignment // operator do not fall through to handling in built-in, but report that // no overloaded assignment operator found ExprResult Result = ExprError(); StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc); auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Args, OpLoc); DeferDiagsRAII DDR(*this, CandidateSet.shouldDeferDiags(*this, Args, OpLoc)); if (Args[0]->getType()->isRecordType() && Opc >= BO_Assign && Opc <= BO_OrAssign) { Diag(OpLoc, diag::err_ovl_no_viable_oper) << BinaryOperator::getOpcodeStr(Opc) << Args[0]->getSourceRange() << Args[1]->getSourceRange(); if (Args[0]->getType()->isIncompleteType()) { Diag(OpLoc, diag::note_assign_lhs_incomplete) << Args[0]->getType() << Args[0]->getSourceRange() << Args[1]->getSourceRange(); } } else { // This is an erroneous use of an operator which can be overloaded by // a non-member function. Check for non-member operators which were // defined too late to be candidates. if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args)) // FIXME: Recover by calling the found function. return ExprError(); // No viable function; try to create a built-in operation, which will // produce an error. Then, show the non-viable candidates. Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); } assert(Result.isInvalid() && "C++ binary operator overloading is missing candidates!"); CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc); return Result; } case OR_Ambiguous: CandidateSet.NoteCandidates( PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) << BinaryOperator::getOpcodeStr(Opc) << Args[0]->getType() << Args[1]->getType() << Args[0]->getSourceRange() << Args[1]->getSourceRange()), *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc), OpLoc); return ExprError(); case OR_Deleted: if (isImplicitlyDeleted(Best->Function)) { FunctionDecl *DeletedFD = Best->Function; DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD); if (DFK.isSpecialMember()) { Diag(OpLoc, diag::err_ovl_deleted_special_oper) << Args[0]->getType() << DFK.asSpecialMember(); } else { assert(DFK.isComparison()); Diag(OpLoc, diag::err_ovl_deleted_comparison) << Args[0]->getType() << DeletedFD; } // The user probably meant to call this special member. Just // explain why it's deleted. NoteDeletedFunction(DeletedFD); return ExprError(); } CandidateSet.NoteCandidates( PartialDiagnosticAt( OpLoc, PDiag(diag::err_ovl_deleted_oper) << getOperatorSpelling(Best->Function->getDeclName() .getCXXOverloadedOperator()) << Args[0]->getSourceRange() << Args[1]->getSourceRange()), *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc), OpLoc); return ExprError(); } // We matched a built-in operator; build it. return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); } ExprResult Sema::BuildSynthesizedThreeWayComparison( SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, FunctionDecl *DefaultedFn) { const ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType()); // If we're not producing a known comparison category type, we can't // synthesize a three-way comparison. Let the caller diagnose this. if (!Info) return ExprResult((Expr*)nullptr); // If we ever want to perform this synthesis more generally, we will need to // apply the temporary materialization conversion to the operands. assert(LHS->isGLValue() && RHS->isGLValue() && "cannot use prvalue expressions more than once"); Expr *OrigLHS = LHS; Expr *OrigRHS = RHS; // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to // each of them multiple times below. LHS = new (Context) OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(), LHS->getObjectKind(), LHS); RHS = new (Context) OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(), RHS->getObjectKind(), RHS); ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true, DefaultedFn); if (Eq.isInvalid()) return ExprError(); ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true, true, DefaultedFn); if (Less.isInvalid()) return ExprError(); ExprResult Greater; if (Info->isPartial()) { Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true, DefaultedFn); if (Greater.isInvalid()) return ExprError(); } // Form the list of comparisons we're going to perform. struct Comparison { ExprResult Cmp; ComparisonCategoryResult Result; } Comparisons[4] = { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal : ComparisonCategoryResult::Equivalent}, {Less, ComparisonCategoryResult::Less}, {Greater, ComparisonCategoryResult::Greater}, {ExprResult(), ComparisonCategoryResult::Unordered}, }; int I = Info->isPartial() ? 3 : 2; // Combine the comparisons with suitable conditional expressions. ExprResult Result; for (; I >= 0; --I) { // Build a reference to the comparison category constant. auto *VI = Info->lookupValueInfo(Comparisons[I].Result); // FIXME: Missing a constant for a comparison category. Diagnose this? if (!VI) return ExprResult((Expr*)nullptr); ExprResult ThisResult = BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD); if (ThisResult.isInvalid()) return ExprError(); // Build a conditional unless this is the final case. if (Result.get()) { Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(), ThisResult.get(), Result.get()); if (Result.isInvalid()) return ExprError(); } else { Result = ThisResult; } } // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to // bind the OpaqueValueExprs before they're (repeatedly) used. Expr *SyntacticForm = BinaryOperator::Create( Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(), Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc, CurFPFeatureOverrides()); Expr *SemanticForm[] = {LHS, RHS, Result.get()}; return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2); } static bool PrepareArgumentsForCallToObjectOfClassType( Sema &S, SmallVectorImpl &MethodArgs, CXXMethodDecl *Method, MultiExprArg Args, SourceLocation LParenLoc) { const auto *Proto = Method->getType()->castAs(); unsigned NumParams = Proto->getNumParams(); unsigned NumArgsSlots = MethodArgs.size() + std::max(Args.size(), NumParams); // Build the full argument list for the method call (the implicit object // parameter is placed at the beginning of the list). MethodArgs.reserve(MethodArgs.size() + NumArgsSlots); bool IsError = false; // Initialize the implicit object parameter. // Check the argument types. for (unsigned i = 0; i != NumParams; i++) { Expr *Arg; if (i < Args.size()) { Arg = Args[i]; ExprResult InputInit = S.PerformCopyInitialization(InitializedEntity::InitializeParameter( S.Context, Method->getParamDecl(i)), SourceLocation(), Arg); IsError |= InputInit.isInvalid(); Arg = InputInit.getAs(); } else { ExprResult DefArg = S.BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); if (DefArg.isInvalid()) { IsError = true; break; } Arg = DefArg.getAs(); } MethodArgs.push_back(Arg); } return IsError; } ExprResult Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, SourceLocation RLoc, Expr *Base, MultiExprArg ArgExpr) { SmallVector Args; Args.push_back(Base); for (auto *e : ArgExpr) { Args.push_back(e); } DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Subscript); SourceRange Range = ArgExpr.empty() ? SourceRange{} : SourceRange(ArgExpr.front()->getBeginLoc(), ArgExpr.back()->getEndLoc()); // If either side is type-dependent, create an appropriate dependent // expression. if (Expr::hasAnyTypeDependentArguments(Args)) { CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators // CHECKME: no 'operator' keyword? DeclarationNameInfo OpNameInfo(OpName, LLoc); OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); ExprResult Fn = CreateUnresolvedLookupExpr( NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>()); if (Fn.isInvalid()) return ExprError(); // Can't add any actual overloads yet return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args, Context.DependentTy, VK_PRValue, RLoc, CurFPFeatureOverrides()); } // Handle placeholders UnbridgedCastsSet UnbridgedCasts; if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { return ExprError(); } // Build an empty overload set. OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator); // Subscript can only be overloaded as a member function. // Add operator candidates that are member functions. AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); // Add builtin operator candidates. if (Args.size() == 2) AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); bool HadMultipleCandidates = (CandidateSet.size() > 1); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { // We matched an overloaded operator. Build a call to that // operator. CheckMemberOperatorAccess(LLoc, Args[0], ArgExpr, Best->FoundDecl); // Convert the arguments. CXXMethodDecl *Method = cast(FnDecl); SmallVector MethodArgs; // Handle 'this' parameter if the selected function is not static. if (Method->isExplicitObjectMemberFunction()) { ExprResult Res = InitializeExplicitObjectArgument(*this, Args[0], Method); if (Res.isInvalid()) return ExprError(); Args[0] = Res.get(); ArgExpr = Args; } else if (Method->isInstance()) { ExprResult Arg0 = PerformImplicitObjectArgumentInitialization( Args[0], /*Qualifier=*/nullptr, Best->FoundDecl, Method); if (Arg0.isInvalid()) return ExprError(); MethodArgs.push_back(Arg0.get()); } bool IsError = PrepareArgumentsForCallToObjectOfClassType( *this, MethodArgs, Method, ArgExpr, LLoc); if (IsError) return ExprError(); // Build the actual expression node. DeclarationNameInfo OpLocInfo(OpName, LLoc); OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); ExprResult FnExpr = CreateFunctionRefExpr( *this, FnDecl, Best->FoundDecl, Base, HadMultipleCandidates, OpLocInfo.getLoc(), OpLocInfo.getInfo()); if (FnExpr.isInvalid()) return ExprError(); // Determine the result type QualType ResultTy = FnDecl->getReturnType(); ExprValueKind VK = Expr::getValueKindForType(ResultTy); ResultTy = ResultTy.getNonLValueExprType(Context); CallExpr *TheCall; if (Method->isInstance()) TheCall = CXXOperatorCallExpr::Create( Context, OO_Subscript, FnExpr.get(), MethodArgs, ResultTy, VK, RLoc, CurFPFeatureOverrides()); else TheCall = CallExpr::Create(Context, FnExpr.get(), MethodArgs, ResultTy, VK, RLoc, CurFPFeatureOverrides()); if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl)) return ExprError(); if (CheckFunctionCall(Method, TheCall, Method->getType()->castAs())) return ExprError(); return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. ExprResult ArgsRes0 = PerformImplicitConversion( Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing, CCK_ForBuiltinOverloadedOp); if (ArgsRes0.isInvalid()) return ExprError(); Args[0] = ArgsRes0.get(); ExprResult ArgsRes1 = PerformImplicitConversion( Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], AA_Passing, CCK_ForBuiltinOverloadedOp); if (ArgsRes1.isInvalid()) return ExprError(); Args[1] = ArgsRes1.get(); break; } } case OR_No_Viable_Function: { PartialDiagnostic PD = CandidateSet.empty() ? (PDiag(diag::err_ovl_no_oper) << Args[0]->getType() << /*subscript*/ 0 << Args[0]->getSourceRange() << Range) : (PDiag(diag::err_ovl_no_viable_subscript) << Args[0]->getType() << Args[0]->getSourceRange() << Range); CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this, OCD_AllCandidates, ArgExpr, "[]", LLoc); return ExprError(); } case OR_Ambiguous: if (Args.size() == 2) { CandidateSet.NoteCandidates( PartialDiagnosticAt( LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) << "[]" << Args[0]->getType() << Args[1]->getType() << Args[0]->getSourceRange() << Range), *this, OCD_AmbiguousCandidates, Args, "[]", LLoc); } else { CandidateSet.NoteCandidates( PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_subscript_call) << Args[0]->getType() << Args[0]->getSourceRange() << Range), *this, OCD_AmbiguousCandidates, Args, "[]", LLoc); } return ExprError(); case OR_Deleted: CandidateSet.NoteCandidates( PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper) << "[]" << Args[0]->getSourceRange() << Range), *this, OCD_AllCandidates, Args, "[]", LLoc); return ExprError(); } // We matched a built-in operator; build it. return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); } /// BuildCallToMemberFunction - Build a call to a member /// function. MemExpr is the expression that refers to the member /// function (and includes the object parameter), Args/NumArgs are the /// arguments to the function call (not including the object /// parameter). The caller needs to validate that the member /// expression refers to a non-static member function or an overloaded /// member function. ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc, Expr *ExecConfig, bool IsExecConfig, bool AllowRecovery) { assert(MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy); // Dig out the member expression. This holds both the object // argument and the member function we're referring to. Expr *NakedMemExpr = MemExprE->IgnoreParens(); // Determine whether this is a call to a pointer-to-member function. if (BinaryOperator *op = dyn_cast(NakedMemExpr)) { assert(op->getType() == Context.BoundMemberTy); assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); QualType fnType = op->getRHS()->getType()->castAs()->getPointeeType(); const FunctionProtoType *proto = fnType->castAs(); QualType resultType = proto->getCallResultType(Context); ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType()); // Check that the object type isn't more qualified than the // member function we're calling. Qualifiers funcQuals = proto->getMethodQuals(); QualType objectType = op->getLHS()->getType(); if (op->getOpcode() == BO_PtrMemI) objectType = objectType->castAs()->getPointeeType(); Qualifiers objectQuals = objectType.getQualifiers(); Qualifiers difference = objectQuals - funcQuals; difference.removeObjCGCAttr(); difference.removeAddressSpace(); if (difference) { std::string qualsString = difference.getAsString(); Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) << fnType.getUnqualifiedType() << qualsString << (qualsString.find(' ') == std::string::npos ? 1 : 2); } CXXMemberCallExpr *call = CXXMemberCallExpr::Create( Context, MemExprE, Args, resultType, valueKind, RParenLoc, CurFPFeatureOverrides(), proto->getNumParams()); if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(), call, nullptr)) return ExprError(); if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc)) return ExprError(); if (CheckOtherCall(call, proto)) return ExprError(); return MaybeBindToTemporary(call); } // We only try to build a recovery expr at this level if we can preserve // the return type, otherwise we return ExprError() and let the caller // recover. auto BuildRecoveryExpr = [&](QualType Type) { if (!AllowRecovery) return ExprError(); std::vector SubExprs = {MemExprE}; llvm::append_range(SubExprs, Args); return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs, Type); }; if (isa(NakedMemExpr)) return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue, RParenLoc, CurFPFeatureOverrides()); UnbridgedCastsSet UnbridgedCasts; if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) return ExprError(); MemberExpr *MemExpr; CXXMethodDecl *Method = nullptr; bool HadMultipleCandidates = false; DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public); NestedNameSpecifier *Qualifier = nullptr; if (isa(NakedMemExpr)) { MemExpr = cast(NakedMemExpr); Method = cast(MemExpr->getMemberDecl()); FoundDecl = MemExpr->getFoundDecl(); Qualifier = MemExpr->getQualifier(); UnbridgedCasts.restore(); } else { UnresolvedMemberExpr *UnresExpr = cast(NakedMemExpr); Qualifier = UnresExpr->getQualifier(); QualType ObjectType = UnresExpr->getBaseType(); Expr::Classification ObjectClassification = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() : UnresExpr->getBase()->Classify(Context); // Add overload candidates OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(), OverloadCandidateSet::CSK_Normal); // FIXME: avoid copy. TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; if (UnresExpr->hasExplicitTemplateArgs()) { UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); TemplateArgs = &TemplateArgsBuffer; } for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), E = UnresExpr->decls_end(); I != E; ++I) { QualType ExplicitObjectType = ObjectType; NamedDecl *Func = *I; CXXRecordDecl *ActingDC = cast(Func->getDeclContext()); if (isa(Func)) Func = cast(Func)->getTargetDecl(); bool HasExplicitParameter = false; if (const auto *M = dyn_cast(Func); M && M->hasCXXExplicitFunctionObjectParameter()) HasExplicitParameter = true; else if (const auto *M = dyn_cast(Func); M && M->getTemplatedDecl()->hasCXXExplicitFunctionObjectParameter()) HasExplicitParameter = true; if (HasExplicitParameter) ExplicitObjectType = GetExplicitObjectType(*this, UnresExpr); // Microsoft supports direct constructor calls. if (getLangOpts().MicrosoftExt && isa(Func)) { AddOverloadCandidate(cast(Func), I.getPair(), Args, CandidateSet, /*SuppressUserConversions*/ false); } else if ((Method = dyn_cast(Func))) { // If explicit template arguments were provided, we can't call a // non-template member function. if (TemplateArgs) continue; AddMethodCandidate(Method, I.getPair(), ActingDC, ExplicitObjectType, ObjectClassification, Args, CandidateSet, /*SuppressUserConversions=*/false); } else { AddMethodTemplateCandidate(cast(Func), I.getPair(), ActingDC, TemplateArgs, ExplicitObjectType, ObjectClassification, Args, CandidateSet, /*SuppressUserConversions=*/false); } } HadMultipleCandidates = (CandidateSet.size() > 1); DeclarationName DeclName = UnresExpr->getMemberName(); UnbridgedCasts.restore(); OverloadCandidateSet::iterator Best; bool Succeeded = false; switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(), Best)) { case OR_Success: Method = cast(Best->Function); FoundDecl = Best->FoundDecl; CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); if (DiagnoseUseOfOverloadedDecl(Best->FoundDecl, UnresExpr->getNameLoc())) break; // If FoundDecl is different from Method (such as if one is a template // and the other a specialization), make sure DiagnoseUseOfDecl is // called on both. // FIXME: This would be more comprehensively addressed by modifying // DiagnoseUseOfDecl to accept both the FoundDecl and the decl // being used. if (Method != FoundDecl.getDecl() && DiagnoseUseOfOverloadedDecl(Method, UnresExpr->getNameLoc())) break; Succeeded = true; break; case OR_No_Viable_Function: CandidateSet.NoteCandidates( PartialDiagnosticAt( UnresExpr->getMemberLoc(), PDiag(diag::err_ovl_no_viable_member_function_in_call) << DeclName << MemExprE->getSourceRange()), *this, OCD_AllCandidates, Args); break; case OR_Ambiguous: CandidateSet.NoteCandidates( PartialDiagnosticAt(UnresExpr->getMemberLoc(), PDiag(diag::err_ovl_ambiguous_member_call) << DeclName << MemExprE->getSourceRange()), *this, OCD_AmbiguousCandidates, Args); break; case OR_Deleted: CandidateSet.NoteCandidates( PartialDiagnosticAt(UnresExpr->getMemberLoc(), PDiag(diag::err_ovl_deleted_member_call) << DeclName << MemExprE->getSourceRange()), *this, OCD_AllCandidates, Args); break; } // Overload resolution fails, try to recover. if (!Succeeded) return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best)); ExprResult Res = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); if (Res.isInvalid()) return ExprError(); MemExprE = Res.get(); // If overload resolution picked a static member // build a non-member call based on that function. if (Method->isStatic()) { return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, RParenLoc, ExecConfig, IsExecConfig); } MemExpr = cast(MemExprE->IgnoreParens()); } QualType ResultType = Method->getReturnType(); ExprValueKind VK = Expr::getValueKindForType(ResultType); ResultType = ResultType.getNonLValueExprType(Context); assert(Method && "Member call to something that isn't a method?"); const auto *Proto = Method->getType()->castAs(); CallExpr *TheCall = nullptr; llvm::SmallVector NewArgs; if (Method->isExplicitObjectMemberFunction()) { PrepareExplicitObjectArgument(*this, Method, MemExpr->getBase(), Args, NewArgs); // Build the actual expression node. ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, FoundDecl, MemExpr, HadMultipleCandidates, MemExpr->getExprLoc()); if (FnExpr.isInvalid()) return ExprError(); TheCall = CallExpr::Create(Context, FnExpr.get(), Args, ResultType, VK, RParenLoc, CurFPFeatureOverrides(), Proto->getNumParams()); } else { // Convert the object argument (for a non-static member function call). // We only need to do this if there was actually an overload; otherwise // it was done at lookup. ExprResult ObjectArg = PerformImplicitObjectArgumentInitialization( MemExpr->getBase(), Qualifier, FoundDecl, Method); if (ObjectArg.isInvalid()) return ExprError(); MemExpr->setBase(ObjectArg.get()); TheCall = CXXMemberCallExpr::Create(Context, MemExprE, Args, ResultType, VK, RParenLoc, CurFPFeatureOverrides(), Proto->getNumParams()); } // Check for a valid return type. if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(), TheCall, Method)) return BuildRecoveryExpr(ResultType); // Convert the rest of the arguments if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, RParenLoc)) return BuildRecoveryExpr(ResultType); DiagnoseSentinelCalls(Method, LParenLoc, Args); if (CheckFunctionCall(Method, TheCall, Proto)) return ExprError(); // In the case the method to call was not selected by the overloading // resolution process, we still need to handle the enable_if attribute. Do // that here, so it will not hide previous -- and more relevant -- errors. if (auto *MemE = dyn_cast(NakedMemExpr)) { if (const EnableIfAttr *Attr = CheckEnableIf(Method, LParenLoc, Args, true)) { Diag(MemE->getMemberLoc(), diag::err_ovl_no_viable_member_function_in_call) << Method << Method->getSourceRange(); Diag(Method->getLocation(), diag::note_ovl_candidate_disabled_by_function_cond_attr) << Attr->getCond()->getSourceRange() << Attr->getMessage(); return ExprError(); } } if (isa(CurContext) && TheCall->getDirectCallee()->isPureVirtual()) { const FunctionDecl *MD = TheCall->getDirectCallee(); if (isa(MemExpr->getBase()->IgnoreParenCasts()) && MemExpr->performsVirtualDispatch(getLangOpts())) { Diag(MemExpr->getBeginLoc(), diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) << MD->getDeclName() << isa(CurContext) << MD->getParent(); Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName(); if (getLangOpts().AppleKext) Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext) << MD->getParent() << MD->getDeclName(); } } if (auto *DD = dyn_cast(TheCall->getDirectCallee())) { // a->A::f() doesn't go through the vtable, except in AppleKext mode. bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext; CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false, CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true, MemExpr->getMemberLoc()); } return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), TheCall->getDirectCallee()); } /// BuildCallToObjectOfClassType - Build a call to an object of class /// type (C++ [over.call.object]), which can end up invoking an /// overloaded function call operator (@c operator()) or performing a /// user-defined conversion on the object argument. ExprResult Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc) { if (checkPlaceholderForOverload(*this, Obj)) return ExprError(); ExprResult Object = Obj; UnbridgedCastsSet UnbridgedCasts; if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) return ExprError(); assert(Object.get()->getType()->isRecordType() && "Requires object type argument"); // C++ [over.call.object]p1: // If the primary-expression E in the function call syntax // evaluates to a class object of type "cv T", then the set of // candidate functions includes at least the function call // operators of T. The function call operators of T are obtained by // ordinary lookup of the name operator() in the context of // (E).operator(). OverloadCandidateSet CandidateSet(LParenLoc, OverloadCandidateSet::CSK_Operator); DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); if (RequireCompleteType(LParenLoc, Object.get()->getType(), diag::err_incomplete_object_call, Object.get())) return true; const auto *Record = Object.get()->getType()->castAs(); LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); LookupQualifiedName(R, Record->getDecl()); R.suppressAccessDiagnostics(); for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); Oper != OperEnd; ++Oper) { AddMethodCandidate(Oper.getPair(), Object.get()->getType(), Object.get()->Classify(Context), Args, CandidateSet, /*SuppressUserConversion=*/false); } // When calling a lambda, both the call operator, and // the conversion operator to function pointer // are considered. But when constraint checking // on the call operator fails, it will also fail on the // conversion operator as the constraints are always the same. // As the user probably does not intend to perform a surrogate call, // we filter them out to produce better error diagnostics, ie to avoid // showing 2 failed overloads instead of one. bool IgnoreSurrogateFunctions = false; if (CandidateSet.size() == 1 && Record->getAsCXXRecordDecl()->isLambda()) { const OverloadCandidate &Candidate = *CandidateSet.begin(); if (!Candidate.Viable && Candidate.FailureKind == ovl_fail_constraints_not_satisfied) IgnoreSurrogateFunctions = true; } // C++ [over.call.object]p2: // In addition, for each (non-explicit in C++0x) conversion function // declared in T of the form // // operator conversion-type-id () cv-qualifier; // // where cv-qualifier is the same cv-qualification as, or a // greater cv-qualification than, cv, and where conversion-type-id // denotes the type "pointer to function of (P1,...,Pn) returning // R", or the type "reference to pointer to function of // (P1,...,Pn) returning R", or the type "reference to function // of (P1,...,Pn) returning R", a surrogate call function [...] // is also considered as a candidate function. Similarly, // surrogate call functions are added to the set of candidate // functions for each conversion function declared in an // accessible base class provided the function is not hidden // within T by another intervening declaration. const auto &Conversions = cast(Record->getDecl())->getVisibleConversionFunctions(); for (auto I = Conversions.begin(), E = Conversions.end(); !IgnoreSurrogateFunctions && I != E; ++I) { NamedDecl *D = *I; CXXRecordDecl *ActingContext = cast(D->getDeclContext()); if (isa(D)) D = cast(D)->getTargetDecl(); // Skip over templated conversion functions; they aren't // surrogates. if (isa(D)) continue; CXXConversionDecl *Conv = cast(D); if (!Conv->isExplicit()) { // Strip the reference type (if any) and then the pointer type (if // any) to get down to what might be a function type. QualType ConvType = Conv->getConversionType().getNonReferenceType(); if (const PointerType *ConvPtrType = ConvType->getAs()) ConvType = ConvPtrType->getPointeeType(); if (const FunctionProtoType *Proto = ConvType->getAs()) { AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, Object.get(), Args, CandidateSet); } } } bool HadMultipleCandidates = (CandidateSet.size() > 1); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(), Best)) { case OR_Success: // Overload resolution succeeded; we'll build the appropriate call // below. break; case OR_No_Viable_Function: { PartialDiagnostic PD = CandidateSet.empty() ? (PDiag(diag::err_ovl_no_oper) << Object.get()->getType() << /*call*/ 1 << Object.get()->getSourceRange()) : (PDiag(diag::err_ovl_no_viable_object_call) << Object.get()->getType() << Object.get()->getSourceRange()); CandidateSet.NoteCandidates( PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this, OCD_AllCandidates, Args); break; } case OR_Ambiguous: if (!R.isAmbiguous()) CandidateSet.NoteCandidates( PartialDiagnosticAt(Object.get()->getBeginLoc(), PDiag(diag::err_ovl_ambiguous_object_call) << Object.get()->getType() << Object.get()->getSourceRange()), *this, OCD_AmbiguousCandidates, Args); break; case OR_Deleted: CandidateSet.NoteCandidates( PartialDiagnosticAt(Object.get()->getBeginLoc(), PDiag(diag::err_ovl_deleted_object_call) << Object.get()->getType() << Object.get()->getSourceRange()), *this, OCD_AllCandidates, Args); break; } if (Best == CandidateSet.end()) return true; UnbridgedCasts.restore(); if (Best->Function == nullptr) { // Since there is no function declaration, this is one of the // surrogate candidates. Dig out the conversion function. CXXConversionDecl *Conv = cast( Best->Conversions[0].UserDefined.ConversionFunction); CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl); if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc)) return ExprError(); assert(Conv == Best->FoundDecl.getDecl() && "Found Decl & conversion-to-functionptr should be same, right?!"); // We selected one of the surrogate functions that converts the // object parameter to a function pointer. Perform the conversion // on the object argument, then let BuildCallExpr finish the job. // Create an implicit member expr to refer to the conversion operator. // and then call it. ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, Conv, HadMultipleCandidates); if (Call.isInvalid()) return ExprError(); // Record usage of conversion in an implicit cast. Call = ImplicitCastExpr::Create( Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(), nullptr, VK_PRValue, CurFPFeatureOverrides()); return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc); } CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl); // We found an overloaded operator(). Build a CXXOperatorCallExpr // that calls this method, using Object for the implicit object // parameter and passing along the remaining arguments. CXXMethodDecl *Method = cast(Best->Function); // An error diagnostic has already been printed when parsing the declaration. if (Method->isInvalidDecl()) return ExprError(); const auto *Proto = Method->getType()->castAs(); unsigned NumParams = Proto->getNumParams(); DeclarationNameInfo OpLocInfo( Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, Obj, HadMultipleCandidates, OpLocInfo.getLoc(), OpLocInfo.getInfo()); if (NewFn.isInvalid()) return true; SmallVector MethodArgs; MethodArgs.reserve(NumParams + 1); bool IsError = false; // Initialize the implicit object parameter if needed. // Since C++23, this could also be a call to a static call operator // which we emit as a regular CallExpr. llvm::SmallVector NewArgs; if (Method->isExplicitObjectMemberFunction()) { // FIXME: we should do that during the definition of the lambda when we can. DiagnoseInvalidExplicitObjectParameterInLambda(Method); PrepareExplicitObjectArgument(*this, Method, Obj, Args, NewArgs); } else if (Method->isInstance()) { ExprResult ObjRes = PerformImplicitObjectArgumentInitialization( Object.get(), /*Qualifier=*/nullptr, Best->FoundDecl, Method); if (ObjRes.isInvalid()) IsError = true; else Object = ObjRes; MethodArgs.push_back(Object.get()); } IsError |= PrepareArgumentsForCallToObjectOfClassType( *this, MethodArgs, Method, Args, LParenLoc); // If this is a variadic call, handle args passed through "...". if (Proto->isVariadic()) { // Promote the arguments (C99 6.5.2.2p7). for (unsigned i = NumParams, e = Args.size(); i < e; i++) { ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, nullptr); IsError |= Arg.isInvalid(); MethodArgs.push_back(Arg.get()); } } if (IsError) return true; DiagnoseSentinelCalls(Method, LParenLoc, Args); // Once we've built TheCall, all of the expressions are properly owned. QualType ResultTy = Method->getReturnType(); ExprValueKind VK = Expr::getValueKindForType(ResultTy); ResultTy = ResultTy.getNonLValueExprType(Context); CallExpr *TheCall; if (Method->isInstance()) TheCall = CXXOperatorCallExpr::Create(Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc, CurFPFeatureOverrides()); else TheCall = CallExpr::Create(Context, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc, CurFPFeatureOverrides()); if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method)) return true; if (CheckFunctionCall(Method, TheCall, Proto)) return true; return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); } /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> /// (if one exists), where @c Base is an expression of class type and /// @c Member is the name of the member we're trying to find. ExprResult Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, bool *NoArrowOperatorFound) { assert(Base->getType()->isRecordType() && "left-hand side must have class type"); if (checkPlaceholderForOverload(*this, Base)) return ExprError(); SourceLocation Loc = Base->getExprLoc(); // C++ [over.ref]p1: // // [...] An expression x->m is interpreted as (x.operator->())->m // for a class object x of type T if T::operator->() exists and if // the operator is selected as the best match function by the // overload resolution mechanism (13.3). DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator); if (RequireCompleteType(Loc, Base->getType(), diag::err_typecheck_incomplete_tag, Base)) return ExprError(); LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); LookupQualifiedName(R, Base->getType()->castAs()->getDecl()); R.suppressAccessDiagnostics(); for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); Oper != OperEnd; ++Oper) { AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), std::nullopt, CandidateSet, /*SuppressUserConversion=*/false); } bool HadMultipleCandidates = (CandidateSet.size() > 1); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { case OR_Success: // Overload resolution succeeded; we'll build the call below. break; case OR_No_Viable_Function: { auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base); if (CandidateSet.empty()) { QualType BaseType = Base->getType(); if (NoArrowOperatorFound) { // Report this specific error to the caller instead of emitting a // diagnostic, as requested. *NoArrowOperatorFound = true; return ExprError(); } Diag(OpLoc, diag::err_typecheck_member_reference_arrow) << BaseType << Base->getSourceRange(); if (BaseType->isRecordType() && !BaseType->isPointerType()) { Diag(OpLoc, diag::note_typecheck_member_reference_suggestion) << FixItHint::CreateReplacement(OpLoc, "."); } } else Diag(OpLoc, diag::err_ovl_no_viable_oper) << "operator->" << Base->getSourceRange(); CandidateSet.NoteCandidates(*this, Base, Cands); return ExprError(); } case OR_Ambiguous: if (!R.isAmbiguous()) CandidateSet.NoteCandidates( PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary) << "->" << Base->getType() << Base->getSourceRange()), *this, OCD_AmbiguousCandidates, Base); return ExprError(); case OR_Deleted: CandidateSet.NoteCandidates( PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) << "->" << Base->getSourceRange()), *this, OCD_AllCandidates, Base); return ExprError(); } CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl); // Convert the object parameter. CXXMethodDecl *Method = cast(Best->Function); if (Method->isExplicitObjectMemberFunction()) { ExprResult R = InitializeExplicitObjectArgument(*this, Base, Method); if (R.isInvalid()) return ExprError(); Base = R.get(); } else { ExprResult BaseResult = PerformImplicitObjectArgumentInitialization( Base, /*Qualifier=*/nullptr, Best->FoundDecl, Method); if (BaseResult.isInvalid()) return ExprError(); Base = BaseResult.get(); } // Build the operator call. ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, Base, HadMultipleCandidates, OpLoc); if (FnExpr.isInvalid()) return ExprError(); QualType ResultTy = Method->getReturnType(); ExprValueKind VK = Expr::getValueKindForType(ResultTy); ResultTy = ResultTy.getNonLValueExprType(Context); CallExpr *TheCall = CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base, ResultTy, VK, OpLoc, CurFPFeatureOverrides()); if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method)) return ExprError(); if (CheckFunctionCall(Method, TheCall, Method->getType()->castAs())) return ExprError(); return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); } /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to /// a literal operator described by the provided lookup results. ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, DeclarationNameInfo &SuffixInfo, ArrayRef Args, SourceLocation LitEndLoc, TemplateArgumentListInfo *TemplateArgs) { SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); OverloadCandidateSet CandidateSet(UDSuffixLoc, OverloadCandidateSet::CSK_Normal); AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs); bool HadMultipleCandidates = (CandidateSet.size() > 1); // Perform overload resolution. This will usually be trivial, but might need // to perform substitutions for a literal operator template. OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) { case OR_Success: case OR_Deleted: break; case OR_No_Viable_Function: CandidateSet.NoteCandidates( PartialDiagnosticAt(UDSuffixLoc, PDiag(diag::err_ovl_no_viable_function_in_call) << R.getLookupName()), *this, OCD_AllCandidates, Args); return ExprError(); case OR_Ambiguous: CandidateSet.NoteCandidates( PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call) << R.getLookupName()), *this, OCD_AmbiguousCandidates, Args); return ExprError(); } FunctionDecl *FD = Best->Function; ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl, nullptr, HadMultipleCandidates, SuffixInfo.getLoc(), SuffixInfo.getInfo()); if (Fn.isInvalid()) return true; // Check the argument types. This should almost always be a no-op, except // that array-to-pointer decay is applied to string literals. Expr *ConvArgs[2]; for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { ExprResult InputInit = PerformCopyInitialization( InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)), SourceLocation(), Args[ArgIdx]); if (InputInit.isInvalid()) return true; ConvArgs[ArgIdx] = InputInit.get(); } QualType ResultTy = FD->getReturnType(); ExprValueKind VK = Expr::getValueKindForType(ResultTy); ResultTy = ResultTy.getNonLValueExprType(Context); UserDefinedLiteral *UDL = UserDefinedLiteral::Create( Context, Fn.get(), llvm::ArrayRef(ConvArgs, Args.size()), ResultTy, VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides()); if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD)) return ExprError(); if (CheckFunctionCall(FD, UDL, nullptr)) return ExprError(); return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD); } /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the /// given LookupResult is non-empty, it is assumed to describe a member which /// will be invoked. Otherwise, the function will be found via argument /// dependent lookup. /// CallExpr is set to a valid expression and FRS_Success returned on success, /// otherwise CallExpr is set to ExprError() and some non-success value /// is returned. Sema::ForRangeStatus Sema::BuildForRangeBeginEndCall(SourceLocation Loc, SourceLocation RangeLoc, const DeclarationNameInfo &NameInfo, LookupResult &MemberLookup, OverloadCandidateSet *CandidateSet, Expr *Range, ExprResult *CallExpr) { Scope *S = nullptr; CandidateSet->clear(OverloadCandidateSet::CSK_Normal); if (!MemberLookup.empty()) { ExprResult MemberRef = BuildMemberReferenceExpr(Range, Range->getType(), Loc, /*IsPtr=*/false, CXXScopeSpec(), /*TemplateKWLoc=*/SourceLocation(), /*FirstQualifierInScope=*/nullptr, MemberLookup, /*TemplateArgs=*/nullptr, S); if (MemberRef.isInvalid()) { *CallExpr = ExprError(); return FRS_DiagnosticIssued; } *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, std::nullopt, Loc, nullptr); if (CallExpr->isInvalid()) { *CallExpr = ExprError(); return FRS_DiagnosticIssued; } } else { ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr, NestedNameSpecifierLoc(), NameInfo, UnresolvedSet<0>()); if (FnR.isInvalid()) return FRS_DiagnosticIssued; UnresolvedLookupExpr *Fn = cast(FnR.get()); bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc, CandidateSet, CallExpr); if (CandidateSet->empty() || CandidateSetError) { *CallExpr = ExprError(); return FRS_NoViableFunction; } OverloadCandidateSet::iterator Best; OverloadingResult OverloadResult = CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best); if (OverloadResult == OR_No_Viable_Function) { *CallExpr = ExprError(); return FRS_NoViableFunction; } *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range, Loc, nullptr, CandidateSet, &Best, OverloadResult, /*AllowTypoCorrection=*/false); if (CallExpr->isInvalid() || OverloadResult != OR_Success) { *CallExpr = ExprError(); return FRS_DiagnosticIssued; } } return FRS_Success; } /// FixOverloadedFunctionReference - E is an expression that refers to /// a C++ overloaded function (possibly with some parentheses and /// perhaps a '&' around it). We have resolved the overloaded function /// to the function declaration Fn, so patch up the expression E to /// refer (possibly indirectly) to Fn. Returns the new expr. ExprResult Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, FunctionDecl *Fn) { if (ParenExpr *PE = dyn_cast(E)) { ExprResult SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Found, Fn); if (SubExpr.isInvalid()) return ExprError(); if (SubExpr.get() == PE->getSubExpr()) return PE; return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); } if (ImplicitCastExpr *ICE = dyn_cast(E)) { ExprResult SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Found, Fn); if (SubExpr.isInvalid()) return ExprError(); assert(Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr.get()->getType()) && "Implicit cast type cannot be determined from overload"); assert(ICE->path_empty() && "fixing up hierarchy conversion?"); if (SubExpr.get() == ICE->getSubExpr()) return ICE; return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(), SubExpr.get(), nullptr, ICE->getValueKind(), CurFPFeatureOverrides()); } if (auto *GSE = dyn_cast(E)) { if (!GSE->isResultDependent()) { ExprResult SubExpr = FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn); if (SubExpr.isInvalid()) return ExprError(); if (SubExpr.get() == GSE->getResultExpr()) return GSE; // Replace the resulting type information before rebuilding the generic // selection expression. ArrayRef A = GSE->getAssocExprs(); SmallVector AssocExprs(A.begin(), A.end()); unsigned ResultIdx = GSE->getResultIndex(); AssocExprs[ResultIdx] = SubExpr.get(); if (GSE->isExprPredicate()) return GenericSelectionExpr::Create( Context, GSE->getGenericLoc(), GSE->getControllingExpr(), GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(), GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(), ResultIdx); return GenericSelectionExpr::Create( Context, GSE->getGenericLoc(), GSE->getControllingType(), GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(), GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(), ResultIdx); } // Rather than fall through to the unreachable, return the original generic // selection expression. return GSE; } if (UnaryOperator *UnOp = dyn_cast(E)) { assert(UnOp->getOpcode() == UO_AddrOf && "Can only take the address of an overloaded function"); if (CXXMethodDecl *Method = dyn_cast(Fn)) { if (Method->isStatic()) { // Do nothing: static member functions aren't any different // from non-member functions. } else { // Fix the subexpression, which really has to be an // UnresolvedLookupExpr holding an overloaded member function // or template. ExprResult SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Found, Fn); if (SubExpr.isInvalid()) return ExprError(); if (SubExpr.get() == UnOp->getSubExpr()) return UnOp; if (CheckUseOfCXXMethodAsAddressOfOperand(UnOp->getBeginLoc(), SubExpr.get(), Method)) return ExprError(); assert(isa(SubExpr.get()) && "fixed to something other than a decl ref"); assert(cast(SubExpr.get())->getQualifier() && "fixed to a member ref with no nested name qualifier"); // We have taken the address of a pointer to member // function. Perform the computation here so that we get the // appropriate pointer to member type. QualType ClassType = Context.getTypeDeclType(cast(Method->getDeclContext())); QualType MemPtrType = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); // Under the MS ABI, lock down the inheritance model now. if (Context.getTargetInfo().getCXXABI().isMicrosoft()) (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType); return UnaryOperator::Create(Context, SubExpr.get(), UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary, UnOp->getOperatorLoc(), false, CurFPFeatureOverrides()); } } ExprResult SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Found, Fn); if (SubExpr.isInvalid()) return ExprError(); if (SubExpr.get() == UnOp->getSubExpr()) return UnOp; return CreateBuiltinUnaryOp(UnOp->getOperatorLoc(), UO_AddrOf, SubExpr.get()); } if (UnresolvedLookupExpr *ULE = dyn_cast(E)) { // FIXME: avoid copy. TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; if (ULE->hasExplicitTemplateArgs()) { ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); TemplateArgs = &TemplateArgsBuffer; } QualType Type = Fn->getType(); ExprValueKind ValueKind = getLangOpts().CPlusPlus ? VK_LValue : VK_PRValue; // FIXME: Duplicated from BuildDeclarationNameExpr. if (unsigned BID = Fn->getBuiltinID()) { if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) { Type = Context.BuiltinFnTy; ValueKind = VK_PRValue; } } DeclRefExpr *DRE = BuildDeclRefExpr( Fn, Type, ValueKind, ULE->getNameInfo(), ULE->getQualifierLoc(), Found.getDecl(), ULE->getTemplateKeywordLoc(), TemplateArgs); DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); return DRE; } if (UnresolvedMemberExpr *MemExpr = dyn_cast(E)) { // FIXME: avoid copy. TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; if (MemExpr->hasExplicitTemplateArgs()) { MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); TemplateArgs = &TemplateArgsBuffer; } Expr *Base; // If we're filling in a static method where we used to have an // implicit member access, rewrite to a simple decl ref. if (MemExpr->isImplicitAccess()) { if (cast(Fn)->isStatic()) { DeclRefExpr *DRE = BuildDeclRefExpr( Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(), MemExpr->getQualifierLoc(), Found.getDecl(), MemExpr->getTemplateKeywordLoc(), TemplateArgs); DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); return DRE; } else { SourceLocation Loc = MemExpr->getMemberLoc(); if (MemExpr->getQualifier()) Loc = MemExpr->getQualifierLoc().getBeginLoc(); Base = BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true); } } else Base = MemExpr->getBase(); ExprValueKind valueKind; QualType type; if (cast(Fn)->isStatic()) { valueKind = VK_LValue; type = Fn->getType(); } else { valueKind = VK_PRValue; type = Context.BoundMemberTy; } return BuildMemberExpr( Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(), MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found, /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(), type, valueKind, OK_Ordinary, TemplateArgs); } llvm_unreachable("Invalid reference to overloaded function"); } ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, DeclAccessPair Found, FunctionDecl *Fn) { return FixOverloadedFunctionReference(E.get(), Found, Fn); } bool clang::shouldEnforceArgLimit(bool PartialOverloading, FunctionDecl *Function) { if (!PartialOverloading || !Function) return true; if (Function->isVariadic()) return false; if (const auto *Proto = dyn_cast(Function->getFunctionType())) if (Proto->isTemplateVariadic()) return false; if (auto *Pattern = Function->getTemplateInstantiationPattern()) if (const auto *Proto = dyn_cast(Pattern->getFunctionType())) if (Proto->isTemplateVariadic()) return false; return true; }