Index: head/contrib/binutils/bfd/elf-bfd.h =================================================================== --- head/contrib/binutils/bfd/elf-bfd.h (revision 281047) +++ head/contrib/binutils/bfd/elf-bfd.h (revision 281048) @@ -1,2130 +1,2130 @@ /* BFD back-end data structures for ELF files. Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. Written by Cygnus Support. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef _LIBELF_H_ #define _LIBELF_H_ 1 #include "elf/common.h" #include "elf/internal.h" #include "elf/external.h" #include "bfdlink.h" /* The number of entries in a section is its size divided by the size of a single entry. This is normally only applicable to reloc and symbol table sections. */ #define NUM_SHDR_ENTRIES(shdr) ((shdr)->sh_size / (shdr)->sh_entsize) /* If size isn't specified as 64 or 32, NAME macro should fail. */ #ifndef NAME #if ARCH_SIZE == 64 #define NAME(x, y) x ## 64 ## _ ## y #endif #if ARCH_SIZE == 32 #define NAME(x, y) x ## 32 ## _ ## y #endif #endif #ifndef NAME #define NAME(x, y) x ## NOSIZE ## _ ## y #endif #define ElfNAME(X) NAME(Elf,X) #define elfNAME(X) NAME(elf,X) /* Information held for an ELF symbol. The first field is the corresponding asymbol. Every symbol is an ELF file is actually a pointer to this structure, although it is often handled as a pointer to an asymbol. */ typedef struct { /* The BFD symbol. */ asymbol symbol; /* ELF symbol information. */ Elf_Internal_Sym internal_elf_sym; /* Backend specific information. */ union { unsigned int hppa_arg_reloc; void *mips_extr; void *any; } tc_data; /* Version information. This is from an Elf_Internal_Versym structure in a SHT_GNU_versym section. It is zero if there is no version information. */ unsigned short version; } elf_symbol_type; struct elf_strtab_hash; struct got_entry; struct plt_entry; /* ELF linker hash table entries. */ struct elf_link_hash_entry { struct bfd_link_hash_entry root; /* Symbol index in output file. This is initialized to -1. It is set to -2 if the symbol is used by a reloc. */ long indx; /* Symbol index as a dynamic symbol. Initialized to -1, and remains -1 if this is not a dynamic symbol. */ /* ??? Note that this is consistently used as a synonym for tests against whether we can perform various simplifying transformations to the code. (E.g. changing a pc-relative jump to a PLT entry into a pc-relative jump to the target function.) That test, which is often relatively complex, and someplaces wrong or incomplete, should really be replaced by a predicate in elflink.c. End result: this field -1 does not indicate that the symbol is not in the dynamic symbol table, but rather that the symbol is not visible outside this DSO. */ long dynindx; /* If this symbol requires an entry in the global offset table, the processor specific backend uses this field to track usage and final offset. Two schemes are supported: The first assumes that a symbol may only have one GOT entry, and uses REFCOUNT until size_dynamic_sections, at which point the contents of the .got is fixed. Afterward, if OFFSET is -1, then the symbol does not require a global offset table entry. The second scheme allows multiple GOT entries per symbol, managed via a linked list pointed to by GLIST. */ union gotplt_union { bfd_signed_vma refcount; bfd_vma offset; struct got_entry *glist; struct plt_entry *plist; } got; /* Same, but tracks a procedure linkage table entry. */ union gotplt_union plt; /* Symbol size. */ bfd_size_type size; /* Symbol type (STT_NOTYPE, STT_OBJECT, etc.). */ unsigned int type : 8; /* Symbol st_other value, symbol visibility. */ unsigned int other : 8; /* Symbol is referenced by a non-shared object. */ unsigned int ref_regular : 1; /* Symbol is defined by a non-shared object. */ unsigned int def_regular : 1; /* Symbol is referenced by a shared object. */ unsigned int ref_dynamic : 1; /* Symbol is defined by a shared object. */ unsigned int def_dynamic : 1; /* Symbol has a non-weak reference from a non-shared object. */ unsigned int ref_regular_nonweak : 1; /* Dynamic symbol has been adjustd. */ unsigned int dynamic_adjusted : 1; /* Symbol needs a copy reloc. */ unsigned int needs_copy : 1; /* Symbol needs a procedure linkage table entry. */ unsigned int needs_plt : 1; /* Symbol appears in a non-ELF input file. */ unsigned int non_elf : 1; /* Symbol should be marked as hidden in the version information. */ unsigned int hidden : 1; /* Symbol was forced to local scope due to a version script file. */ unsigned int forced_local : 1; /* Symbol was forced to be dynamic due to a version script file. */ unsigned int dynamic : 1; /* Symbol was marked during garbage collection. */ unsigned int mark : 1; /* Symbol is referenced by a non-GOT/non-PLT relocation. This is not currently set by all the backends. */ unsigned int non_got_ref : 1; /* Symbol has a definition in a shared object. FIXME: There is no real need for this field if def_dynamic is never cleared and all places that test def_dynamic also test def_regular. */ unsigned int dynamic_def : 1; /* Symbol is weak in all shared objects. */ unsigned int dynamic_weak : 1; /* Symbol is referenced with a relocation where C/C++ pointer equality matters. */ unsigned int pointer_equality_needed : 1; /* String table index in .dynstr if this is a dynamic symbol. */ unsigned long dynstr_index; union { /* If this is a weak defined symbol from a dynamic object, this field points to a defined symbol with the same value, if there is one. Otherwise it is NULL. */ struct elf_link_hash_entry *weakdef; /* Hash value of the name computed using the ELF hash function. Used part way through size_dynamic_sections, after we've finished with weakdefs. */ unsigned long elf_hash_value; } u; /* Version information. */ union { /* This field is used for a symbol which is not defined in a regular object. It points to the version information read in from the dynamic object. */ Elf_Internal_Verdef *verdef; /* This field is used for a symbol which is defined in a regular object. It is set up in size_dynamic_sections. It points to the version information we should write out for this symbol. */ struct bfd_elf_version_tree *vertree; } verinfo; struct { /* Virtual table entry use information. This array is nominally of size size/sizeof(target_void_pointer), though we have to be able to assume and track a size while the symbol is still undefined. It is indexed via offset/sizeof(target_void_pointer). */ size_t size; bfd_boolean *used; /* Virtual table derivation info. */ struct elf_link_hash_entry *parent; } *vtable; }; /* Will references to this symbol always reference the symbol in this object? STV_PROTECTED is excluded from the visibility test here so that function pointer comparisons work properly. Since function symbols not defined in an app are set to their .plt entry, it's necessary for shared libs to also reference the .plt even though the symbol is really local to the shared lib. */ #define SYMBOL_REFERENCES_LOCAL(INFO, H) \ _bfd_elf_symbol_refs_local_p (H, INFO, 0) /* Will _calls_ to this symbol always call the version in this object? */ #define SYMBOL_CALLS_LOCAL(INFO, H) \ _bfd_elf_symbol_refs_local_p (H, INFO, 1) /* Common symbols that are turned into definitions don't have the DEF_REGULAR flag set, so they might appear to be undefined. */ #define ELF_COMMON_DEF_P(H) \ (!(H)->def_regular \ && !(H)->def_dynamic \ && (H)->root.type == bfd_link_hash_defined) /* Records local symbols to be emitted in the dynamic symbol table. */ struct elf_link_local_dynamic_entry { struct elf_link_local_dynamic_entry *next; /* The input bfd this symbol came from. */ bfd *input_bfd; /* The index of the local symbol being copied. */ long input_indx; /* The index in the outgoing dynamic symbol table. */ long dynindx; /* A copy of the input symbol. */ Elf_Internal_Sym isym; }; struct elf_link_loaded_list { struct elf_link_loaded_list *next; bfd *abfd; }; /* Structures used by the eh_frame optimization code. */ struct eh_cie_fde { /* For FDEs, this points to the CIE used. */ struct eh_cie_fde *cie_inf; unsigned int size; unsigned int offset; unsigned int new_offset; unsigned char fde_encoding; unsigned char lsda_encoding; unsigned char lsda_offset; unsigned int cie : 1; unsigned int removed : 1; unsigned int add_augmentation_size : 1; unsigned int add_fde_encoding : 1; unsigned int make_relative : 1; unsigned int make_lsda_relative : 1; unsigned int need_lsda_relative : 1; unsigned int per_encoding_relative : 1; unsigned int *set_loc; }; struct eh_frame_sec_info { unsigned int count; struct eh_cie_fde entry[1]; }; struct eh_frame_array_ent { bfd_vma initial_loc; bfd_vma fde; }; struct htab; struct eh_frame_hdr_info { struct htab *cies; asection *hdr_sec; unsigned int fde_count, array_count; struct eh_frame_array_ent *array; /* TRUE if .eh_frame_hdr should contain the sorted search table. We build it if we successfully read all .eh_frame input sections and recognize them. */ bfd_boolean table; bfd_boolean offsets_adjusted; }; /* ELF linker hash table. */ struct elf_link_hash_table { struct bfd_link_hash_table root; /* Whether we have created the special dynamic sections required when linking against or generating a shared object. */ bfd_boolean dynamic_sections_created; /* True if this target has relocatable executables, so needs dynamic section symbols. */ bfd_boolean is_relocatable_executable; /* The BFD used to hold special sections created by the linker. This will be the first BFD found which requires these sections to be created. */ bfd *dynobj; /* The value to use when initialising got.refcount/offset and plt.refcount/offset in an elf_link_hash_entry. Set to zero when the values are refcounts. Set to init_got_offset/init_plt_offset in size_dynamic_sections when the values may be offsets. */ union gotplt_union init_got_refcount; union gotplt_union init_plt_refcount; /* The value to use for got.refcount/offset and plt.refcount/offset when the values may be offsets. Normally (bfd_vma) -1. */ union gotplt_union init_got_offset; union gotplt_union init_plt_offset; /* The number of symbols found in the link which must be put into the .dynsym section. */ bfd_size_type dynsymcount; /* The string table of dynamic symbols, which becomes the .dynstr section. */ struct elf_strtab_hash *dynstr; /* The number of buckets in the hash table in the .hash section. This is based on the number of dynamic symbols. */ bfd_size_type bucketcount; /* A linked list of DT_NEEDED names found in dynamic objects included in the link. */ struct bfd_link_needed_list *needed; /* Sections in the output bfd that provides a section symbol to be used by relocations emitted against local symbols. Most targets will not use data_index_section. */ asection *text_index_section; asection *data_index_section; /* The _GLOBAL_OFFSET_TABLE_ symbol. */ struct elf_link_hash_entry *hgot; /* The _PROCEDURE_LINKAGE_TABLE_ symbol. */ struct elf_link_hash_entry *hplt; /* A pointer to information used to merge SEC_MERGE sections. */ void *merge_info; /* Used to link stabs in sections. */ struct stab_info stab_info; /* Used by eh_frame code when editing .eh_frame. */ struct eh_frame_hdr_info eh_info; /* A linked list of local symbols to be added to .dynsym. */ struct elf_link_local_dynamic_entry *dynlocal; /* A linked list of DT_RPATH/DT_RUNPATH names found in dynamic objects included in the link. */ struct bfd_link_needed_list *runpath; /* Cached first output tls section and size of PT_TLS segment. */ asection *tls_sec; bfd_size_type tls_size; /* A linked list of BFD's loaded in the link. */ struct elf_link_loaded_list *loaded; }; /* Look up an entry in an ELF linker hash table. */ #define elf_link_hash_lookup(table, string, create, copy, follow) \ ((struct elf_link_hash_entry *) \ bfd_link_hash_lookup (&(table)->root, (string), (create), \ (copy), (follow))) /* Traverse an ELF linker hash table. */ #define elf_link_hash_traverse(table, func, info) \ (bfd_link_hash_traverse \ (&(table)->root, \ (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (func), \ (info))) /* Get the ELF linker hash table from a link_info structure. */ #define elf_hash_table(p) ((struct elf_link_hash_table *) ((p)->hash)) /* Returns TRUE if the hash table is a struct elf_link_hash_table. */ #define is_elf_hash_table(htab) \ (((struct bfd_link_hash_table *) (htab))->type == bfd_link_elf_hash_table) /* Used by bfd_section_from_r_symndx to cache a small number of local symbol to section mappings. */ #define LOCAL_SYM_CACHE_SIZE 32 struct sym_sec_cache { bfd *abfd; unsigned long indx[LOCAL_SYM_CACHE_SIZE]; asection *sec[LOCAL_SYM_CACHE_SIZE]; }; /* Constant information held for an ELF backend. */ struct elf_size_info { unsigned char sizeof_ehdr, sizeof_phdr, sizeof_shdr; unsigned char sizeof_rel, sizeof_rela, sizeof_sym, sizeof_dyn, sizeof_note; /* The size of entries in the .hash section. */ unsigned char sizeof_hash_entry; /* The number of internal relocations to allocate per external relocation entry. */ unsigned char int_rels_per_ext_rel; /* We use some fixed size arrays. This should be large enough to handle all back-ends. */ #define MAX_INT_RELS_PER_EXT_REL 3 unsigned char arch_size, log_file_align; unsigned char elfclass, ev_current; int (*write_out_phdrs) (bfd *, const Elf_Internal_Phdr *, unsigned int); bfd_boolean (*write_shdrs_and_ehdr) (bfd *); void (*write_relocs) (bfd *, asection *, void *); bfd_boolean (*swap_symbol_in) (bfd *, const void *, const void *, Elf_Internal_Sym *); void (*swap_symbol_out) (bfd *, const Elf_Internal_Sym *, void *, void *); bfd_boolean (*slurp_reloc_table) (bfd *, asection *, asymbol **, bfd_boolean); long (*slurp_symbol_table) (bfd *, asymbol **, bfd_boolean); void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); void (*swap_dyn_out) (bfd *, const Elf_Internal_Dyn *, void *); /* This function is called to swap in a REL relocation. If an external relocation corresponds to more than one internal relocation, then all relocations are swapped in at once. */ void (*swap_reloc_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); /* This function is called to swap out a REL relocation. */ void (*swap_reloc_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); /* This function is called to swap in a RELA relocation. If an external relocation corresponds to more than one internal relocation, then all relocations are swapped in at once. */ void (*swap_reloca_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); /* This function is called to swap out a RELA relocation. */ void (*swap_reloca_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); }; #define elf_symbol_from(ABFD,S) \ (((S)->the_bfd->xvec->flavour == bfd_target_elf_flavour \ && (S)->the_bfd->tdata.elf_obj_data != 0) \ ? (elf_symbol_type *) (S) \ : 0) enum elf_reloc_type_class { reloc_class_normal, reloc_class_relative, reloc_class_plt, reloc_class_copy }; struct elf_reloc_cookie { Elf_Internal_Rela *rels, *rel, *relend; Elf_Internal_Sym *locsyms; bfd *abfd; size_t locsymcount; size_t extsymoff; struct elf_link_hash_entry **sym_hashes; int r_sym_shift; bfd_boolean bad_symtab; }; /* The level of IRIX compatibility we're striving for. */ typedef enum { ict_none, ict_irix5, ict_irix6 } irix_compat_t; /* Mapping of ELF section names and types. */ struct bfd_elf_special_section { const char *prefix; int prefix_length; /* 0 means name must match PREFIX exactly. -1 means name must start with PREFIX followed by an arbitrary string. -2 means name must match PREFIX exactly or consist of PREFIX followed by a dot then anything. > 0 means name must start with the first PREFIX_LENGTH chars of PREFIX and finish with the last SUFFIX_LENGTH chars of PREFIX. */ int suffix_length; int type; int attr; }; enum action_discarded { COMPLAIN = 1, PRETEND = 2 }; typedef asection * (*elf_gc_mark_hook_fn) (asection *, struct bfd_link_info *, Elf_Internal_Rela *, struct elf_link_hash_entry *, Elf_Internal_Sym *); struct elf_backend_data { /* The architecture for this backend. */ enum bfd_architecture arch; /* The ELF machine code (EM_xxxx) for this backend. */ int elf_machine_code; /* EI_OSABI. */ int elf_osabi; /* The maximum page size for this backend. */ bfd_vma maxpagesize; /* The minimum page size for this backend. An input object will not be considered page aligned unless its sections are correctly aligned for pages at least this large. May be smaller than maxpagesize. */ bfd_vma minpagesize; /* The common page size for this backend. */ bfd_vma commonpagesize; /* The BFD flags applied to sections created for dynamic linking. */ flagword dynamic_sec_flags; /* A function to translate an ELF RELA relocation to a BFD arelent structure. */ void (*elf_info_to_howto) (bfd *, arelent *, Elf_Internal_Rela *); /* A function to translate an ELF REL relocation to a BFD arelent structure. */ void (*elf_info_to_howto_rel) (bfd *, arelent *, Elf_Internal_Rela *); /* A function to determine whether a symbol is global when partitioning the symbol table into local and global symbols. This should be NULL for most targets, in which case the correct thing will be done. MIPS ELF, at least on the Irix 5, has special requirements. */ bfd_boolean (*elf_backend_sym_is_global) (bfd *, asymbol *); /* The remaining functions are hooks which are called only if they are not NULL. */ /* A function to permit a backend specific check on whether a particular BFD format is relevant for an object file, and to permit the backend to set any global information it wishes. When this is called elf_elfheader is set, but anything else should be used with caution. If this returns FALSE, the check_format routine will return a bfd_error_wrong_format error. */ bfd_boolean (*elf_backend_object_p) (bfd *); /* A function to do additional symbol processing when reading the ELF symbol table. This is where any processor-specific special section indices are handled. */ void (*elf_backend_symbol_processing) (bfd *, asymbol *); /* A function to do additional symbol processing after reading the entire ELF symbol table. */ bfd_boolean (*elf_backend_symbol_table_processing) (bfd *, elf_symbol_type *, unsigned int); /* A function to set the type of the info field. Processor-specific types should be handled here. */ int (*elf_backend_get_symbol_type) (Elf_Internal_Sym *, int); /* A function to return the linker hash table entry of a symbol that might be satisfied by an archive symbol. */ struct elf_link_hash_entry * (*elf_backend_archive_symbol_lookup) (bfd *, struct bfd_link_info *, const char *); /* Return true if local section symbols should have a non-null st_name. NULL implies false. */ bfd_boolean (*elf_backend_name_local_section_symbols) (bfd *); /* A function to do additional processing on the ELF section header just before writing it out. This is used to set the flags and type fields for some sections, or to actually write out data for unusual sections. */ bfd_boolean (*elf_backend_section_processing) (bfd *, Elf_Internal_Shdr *); /* A function to handle unusual section types when creating BFD sections from ELF sections. */ bfd_boolean (*elf_backend_section_from_shdr) (bfd *, Elf_Internal_Shdr *, const char *, int); /* A function to convert machine dependent ELF section header flags to BFD internal section header flags. */ bfd_boolean (*elf_backend_section_flags) (flagword *, const Elf_Internal_Shdr *); /* A function that returns a struct containing ELF section flags and type for the given BFD section. */ const struct bfd_elf_special_section * (*get_sec_type_attr) (bfd *, asection *); /* A function to handle unusual program segment types when creating BFD sections from ELF program segments. */ bfd_boolean (*elf_backend_section_from_phdr) (bfd *, Elf_Internal_Phdr *, int, const char *); /* A function to set up the ELF section header for a BFD section in preparation for writing it out. This is where the flags and type fields are set for unusual sections. */ bfd_boolean (*elf_backend_fake_sections) (bfd *, Elf_Internal_Shdr *, asection *); /* A function to get the ELF section index for a BFD section. If this returns TRUE, the section was found. If it is a normal ELF section, *RETVAL should be left unchanged. If it is not a normal ELF section *RETVAL should be set to the SHN_xxxx index. */ bfd_boolean (*elf_backend_section_from_bfd_section) (bfd *, asection *, int *retval); /* If this field is not NULL, it is called by the add_symbols phase of a link just before adding a symbol to the global linker hash table. It may modify any of the fields as it wishes. If *NAME is set to NULL, the symbol will be skipped rather than being added to the hash table. This function is responsible for handling all processor dependent symbol bindings and section indices, and must set at least *FLAGS and *SEC for each processor dependent case; failure to do so will cause a link error. */ bfd_boolean (*elf_add_symbol_hook) (bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *, const char **name, flagword *flags, asection **sec, bfd_vma *value); /* If this field is not NULL, it is called by the elf_link_output_sym phase of a link for each symbol which will appear in the object file. */ bfd_boolean (*elf_backend_link_output_symbol_hook) (struct bfd_link_info *info, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *); /* The CREATE_DYNAMIC_SECTIONS function is called by the ELF backend linker the first time it encounters a dynamic object in the link. This function must create any sections required for dynamic linking. The ABFD argument is a dynamic object. The .interp, .dynamic, .dynsym, .dynstr, and .hash functions have already been created, and this function may modify the section flags if desired. This function will normally create the .got and .plt sections, but different backends have different requirements. */ bfd_boolean (*elf_backend_create_dynamic_sections) (bfd *abfd, struct bfd_link_info *info); /* When creating a shared library, determine whether to omit the dynamic symbol for the section. */ bfd_boolean (*elf_backend_omit_section_dynsym) (bfd *output_bfd, struct bfd_link_info *info, asection *osec); /* Return TRUE if relocations of targets are compatible to the extent that CHECK_RELOCS will properly process them. PR 4424. */ bfd_boolean (*relocs_compatible) (const bfd_target *, const bfd_target *); /* The CHECK_RELOCS function is called by the add_symbols phase of the ELF backend linker. It is called once for each section with relocs of an object file, just after the symbols for the object file have been added to the global linker hash table. The function must look through the relocs and do any special handling required. This generally means allocating space in the global offset table, and perhaps allocating space for a reloc. The relocs are always passed as Rela structures; if the section actually uses Rel structures, the r_addend field will always be zero. */ bfd_boolean (*check_relocs) (bfd *abfd, struct bfd_link_info *info, asection *o, const Elf_Internal_Rela *relocs); /* The CHECK_DIRECTIVES function is called once per input file by the add_symbols phase of the ELF backend linker. The function must inspect the bfd and create any additional symbols according to any custom directives in the bfd. */ bfd_boolean (*check_directives) (bfd *abfd, struct bfd_link_info *info); /* The AS_NEEDED_CLEANUP function is called once per --as-needed input file that was not needed by the add_symbols phase of the ELF backend linker. The function must undo any target specific changes in the symbol hash table. */ bfd_boolean (*as_needed_cleanup) (bfd *abfd, struct bfd_link_info *info); /* The ADJUST_DYNAMIC_SYMBOL function is called by the ELF backend linker for every symbol which is defined by a dynamic object and referenced by a regular object. This is called after all the input files have been seen, but before the SIZE_DYNAMIC_SECTIONS function has been called. The hash table entry should be bfd_link_hash_defined ore bfd_link_hash_defweak, and it should be defined in a section from a dynamic object. Dynamic object sections are not included in the final link, and this function is responsible for changing the value to something which the rest of the link can deal with. This will normally involve adding an entry to the .plt or .got or some such section, and setting the symbol to point to that. */ bfd_boolean (*elf_backend_adjust_dynamic_symbol) (struct bfd_link_info *info, struct elf_link_hash_entry *h); /* The ALWAYS_SIZE_SECTIONS function is called by the backend linker after all the linker input files have been seen but before the section sizes have been set. This is called after ADJUST_DYNAMIC_SYMBOL, but before SIZE_DYNAMIC_SECTIONS. */ bfd_boolean (*elf_backend_always_size_sections) (bfd *output_bfd, struct bfd_link_info *info); /* The SIZE_DYNAMIC_SECTIONS function is called by the ELF backend linker after all the linker input files have been seen but before the sections sizes have been set. This is called after ADJUST_DYNAMIC_SYMBOL has been called on all appropriate symbols. It is only called when linking against a dynamic object. It must set the sizes of the dynamic sections, and may fill in their contents as well. The generic ELF linker can handle the .dynsym, .dynstr and .hash sections. This function must handle the .interp section and any sections created by the CREATE_DYNAMIC_SECTIONS entry point. */ bfd_boolean (*elf_backend_size_dynamic_sections) (bfd *output_bfd, struct bfd_link_info *info); /* Set TEXT_INDEX_SECTION and DATA_INDEX_SECTION, the output sections we keep to use as a base for relocs and symbols. */ void (*elf_backend_init_index_section) (bfd *output_bfd, struct bfd_link_info *info); /* The RELOCATE_SECTION function is called by the ELF backend linker to handle the relocations for a section. The relocs are always passed as Rela structures; if the section actually uses Rel structures, the r_addend field will always be zero. This function is responsible for adjust the section contents as necessary, and (if using Rela relocs and generating a relocatable output file) adjusting the reloc addend as necessary. This function does not have to worry about setting the reloc address or the reloc symbol index. LOCAL_SYMS is a pointer to the swapped in local symbols. LOCAL_SECTIONS is an array giving the section in the input file corresponding to the st_shndx field of each local symbol. The global hash table entry for the global symbols can be found via elf_sym_hashes (input_bfd). When generating relocatable output, this function must handle STB_LOCAL/STT_SECTION symbols specially. The output symbol is going to be the section symbol corresponding to the output section, which means that the addend must be adjusted accordingly. Returns FALSE on error, TRUE on success, 2 if successful and relocations should be written for this section. */ int (*elf_backend_relocate_section) (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections); /* The FINISH_DYNAMIC_SYMBOL function is called by the ELF backend linker just before it writes a symbol out to the .dynsym section. The processor backend may make any required adjustment to the symbol. It may also take the opportunity to set contents of the dynamic sections. Note that FINISH_DYNAMIC_SYMBOL is called on all .dynsym symbols, while ADJUST_DYNAMIC_SYMBOL is only called on those symbols which are defined by a dynamic object. */ bfd_boolean (*elf_backend_finish_dynamic_symbol) (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym); /* The FINISH_DYNAMIC_SECTIONS function is called by the ELF backend linker just before it writes all the dynamic sections out to the output file. The FINISH_DYNAMIC_SYMBOL will have been called on all dynamic symbols. */ bfd_boolean (*elf_backend_finish_dynamic_sections) (bfd *output_bfd, struct bfd_link_info *info); /* A function to do any beginning processing needed for the ELF file before building the ELF headers and computing file positions. */ void (*elf_backend_begin_write_processing) (bfd *, struct bfd_link_info *); /* A function to do any final processing needed for the ELF file before writing it out. The LINKER argument is TRUE if this BFD was created by the ELF backend linker. */ void (*elf_backend_final_write_processing) (bfd *, bfd_boolean linker); /* This function is called by get_program_header_size. It should return the number of additional program segments which this BFD will need. It should return -1 on error. */ int (*elf_backend_additional_program_headers) (bfd *, struct bfd_link_info *); /* This function is called to modify an existing segment map in a backend specific fashion. */ bfd_boolean (*elf_backend_modify_segment_map) (bfd *, struct bfd_link_info *); /* This function is called to modify program headers just before they are written. */ bfd_boolean (*elf_backend_modify_program_headers) (bfd *, struct bfd_link_info *); /* This function is called during section garbage collection to mark sections that define global symbols. */ bfd_boolean (*gc_mark_dynamic_ref) (struct elf_link_hash_entry *h, void *inf); /* This function is called during section gc to discover the section a particular relocation refers to. */ elf_gc_mark_hook_fn gc_mark_hook; /* This function, if defined, is called after the first gc marking pass to allow the backend to mark additional sections. */ bfd_boolean (*gc_mark_extra_sections) (struct bfd_link_info *info, elf_gc_mark_hook_fn gc_mark_hook); /* This function, if defined, is called during the sweep phase of gc in order that a backend might update any data structures it might be maintaining. */ bfd_boolean (*gc_sweep_hook) (bfd *abfd, struct bfd_link_info *info, asection *o, const Elf_Internal_Rela *relocs); /* This function, if defined, is called after the ELF headers have been created. This allows for things like the OS and ABI versions to be changed. */ void (*elf_backend_post_process_headers) (bfd *, struct bfd_link_info *); /* This function, if defined, prints a symbol to file and returns the name of the symbol to be printed. It should return NULL to fall back to default symbol printing. */ const char *(*elf_backend_print_symbol_all) (bfd *, void *, asymbol *); /* This function, if defined, is called after all local symbols and global symbols converted to locals are emitted into the symtab section. It allows the backend to emit special local symbols not handled in the hash table. */ bfd_boolean (*elf_backend_output_arch_local_syms) (bfd *, struct bfd_link_info *, void *, bfd_boolean (*) (void *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *)); /* This function, if defined, is called after all symbols are emitted into the symtab section. It allows the backend to emit special global symbols not handled in the hash table. */ bfd_boolean (*elf_backend_output_arch_syms) (bfd *, struct bfd_link_info *, void *, bfd_boolean (*) (void *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *)); /* Copy any information related to dynamic linking from a pre-existing symbol to a newly created symbol. Also called to copy flags and other back-end info to a weakdef, in which case the symbol is not newly created and plt/got refcounts and dynamic indices should not be copied. */ void (*elf_backend_copy_indirect_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, struct elf_link_hash_entry *); /* Modify any information related to dynamic linking such that the symbol is not exported. */ void (*elf_backend_hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean); /* A function to do additional symbol fixup, called by _bfd_elf_fix_symbol_flags. */ bfd_boolean (*elf_backend_fixup_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *); /* Merge the backend specific symbol attribute. */ void (*elf_backend_merge_symbol_attribute) (struct elf_link_hash_entry *, const Elf_Internal_Sym *, bfd_boolean, bfd_boolean); /* Decide whether an undefined symbol is special and can be ignored. This is the case for OPTIONAL symbols on IRIX. */ bfd_boolean (*elf_backend_ignore_undef_symbol) (struct elf_link_hash_entry *); /* Emit relocations. Overrides default routine for emitting relocs, except during a relocatable link, or if all relocs are being emitted. */ bfd_boolean (*elf_backend_emit_relocs) (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *, struct elf_link_hash_entry **); /* Count relocations. Not called for relocatable links or if all relocs are being preserved in the output. */ unsigned int (*elf_backend_count_relocs) (asection *, Elf_Internal_Rela *); /* This function, if defined, is called when an NT_PRSTATUS note is found in a core file. */ bfd_boolean (*elf_backend_grok_prstatus) (bfd *, Elf_Internal_Note *); /* This function, if defined, is called when an NT_PSINFO or NT_PRPSINFO note is found in a core file. */ bfd_boolean (*elf_backend_grok_psinfo) (bfd *, Elf_Internal_Note *); /* This function, if defined, is called to write a note to a corefile. */ char *(*elf_backend_write_core_note) (bfd *abfd, char *buf, int *bufsiz, int note_type, ...); /* Functions to print VMAs. Special code to handle 64 bit ELF files. */ void (* elf_backend_sprintf_vma) (bfd *, char *, bfd_vma); void (* elf_backend_fprintf_vma) (bfd *, void *, bfd_vma); /* This function returns class of a reloc type. */ enum elf_reloc_type_class (*elf_backend_reloc_type_class) (const Elf_Internal_Rela *); /* This function, if defined, removes information about discarded functions from other sections which mention them. */ bfd_boolean (*elf_backend_discard_info) (bfd *, struct elf_reloc_cookie *, struct bfd_link_info *); /* This function, if defined, signals that the function above has removed the discarded relocations for this section. */ bfd_boolean (*elf_backend_ignore_discarded_relocs) (asection *); /* What to do when ld finds relocations against symbols defined in discarded sections. */ unsigned int (*action_discarded) (asection *); /* This function returns the width of FDE pointers in bytes, or 0 if that can't be determined for some reason. The default definition goes by the bfd's EI_CLASS. */ unsigned int (*elf_backend_eh_frame_address_size) (bfd *, asection *); /* These functions tell elf-eh-frame whether to attempt to turn absolute or lsda encodings into pc-relative ones. The default definition enables these transformations. */ bfd_boolean (*elf_backend_can_make_relative_eh_frame) (bfd *, struct bfd_link_info *, asection *); bfd_boolean (*elf_backend_can_make_lsda_relative_eh_frame) (bfd *, struct bfd_link_info *, asection *); /* This function returns an encoding after computing the encoded value (and storing it in ENCODED) for the given OFFSET into OSEC, to be stored in at LOC_OFFSET into the LOC_SEC input section. The default definition chooses a 32-bit PC-relative encoding. */ bfd_byte (*elf_backend_encode_eh_address) (bfd *abfd, struct bfd_link_info *info, asection *osec, bfd_vma offset, asection *loc_sec, bfd_vma loc_offset, bfd_vma *encoded); /* This function, if defined, may write out the given section. Returns TRUE if it did so and FALSE if the caller should. */ bfd_boolean (*elf_backend_write_section) (bfd *, struct bfd_link_info *, asection *, bfd_byte *); /* The level of IRIX compatibility we're striving for. MIPS ELF specific function. */ irix_compat_t (*elf_backend_mips_irix_compat) (bfd *); reloc_howto_type *(*elf_backend_mips_rtype_to_howto) (unsigned int, bfd_boolean); /* The swapping table to use when dealing with ECOFF information. Used for the MIPS ELF .mdebug section. */ const struct ecoff_debug_swap *elf_backend_ecoff_debug_swap; /* This function implements `bfd_elf_bfd_from_remote_memory'; see elf.c, elfcode.h. */ bfd *(*elf_backend_bfd_from_remote_memory) (bfd *templ, bfd_vma ehdr_vma, bfd_vma *loadbasep, int (*target_read_memory) (bfd_vma vma, bfd_byte *myaddr, int len)); /* This function is used by `_bfd_elf_get_synthetic_symtab'; see elf.c. */ bfd_vma (*plt_sym_val) (bfd_vma, const asection *, const arelent *); /* Is symbol defined in common section? */ bfd_boolean (*common_definition) (Elf_Internal_Sym *); /* Return a common section index for section. */ unsigned int (*common_section_index) (asection *); /* Return a common section for section. */ asection *(*common_section) (asection *); /* Return TRUE if we can merge 2 definitions. */ bfd_boolean (*merge_symbol) (struct bfd_link_info *, struct elf_link_hash_entry **, struct elf_link_hash_entry *, Elf_Internal_Sym *, asection **, bfd_vma *, unsigned int *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd *, asection **, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd *, asection **); /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ bfd_boolean (*elf_hash_symbol) (struct elf_link_hash_entry *); /* Return TRUE if type is a function symbol type. */ bfd_boolean (*is_function_type) (unsigned int type); /* Used to handle bad SHF_LINK_ORDER input. */ bfd_error_handler_type link_order_error_handler; /* Name of the PLT relocation section. */ const char *relplt_name; /* Alternate EM_xxxx machine codes for this backend. */ int elf_machine_alt1; int elf_machine_alt2; const struct elf_size_info *s; /* An array of target specific special sections. */ const struct bfd_elf_special_section *special_sections; /* The size in bytes of the header for the GOT. This includes the so-called reserved entries on some systems. */ bfd_vma got_header_size; /* The vendor name to use for a processor-standard attributes section. */ const char *obj_attrs_vendor; /* The section name to use for a processor-standard attributes section. */ const char *obj_attrs_section; /* Return 1, 2 or 3 to indicate what type of arguments a processor-specific tag takes. */ int (*obj_attrs_arg_type) (int); /* The section type to use for an attributes section. */ unsigned int obj_attrs_section_type; /* This is TRUE if the linker should act like collect and gather global constructors and destructors by name. This is TRUE for MIPS ELF because the Irix 5 tools can not handle the .init section. */ unsigned collect : 1; /* This is TRUE if the linker should ignore changes to the type of a symbol. This is TRUE for MIPS ELF because some Irix 5 objects record undefined functions as STT_OBJECT although the definitions are STT_FUNC. */ unsigned type_change_ok : 1; /* Whether the backend may use REL relocations. (Some backends use both REL and RELA relocations, and this flag is set for those backends.) */ unsigned may_use_rel_p : 1; /* Whether the backend may use RELA relocations. (Some backends use both REL and RELA relocations, and this flag is set for those backends.) */ unsigned may_use_rela_p : 1; /* Whether the default relocation type is RELA. If a backend with this flag set wants REL relocations for a particular section, it must note that explicitly. Similarly, if this flag is clear, and the backend wants RELA relocations for a particular section. */ unsigned default_use_rela_p : 1; /* Set if RELA relocations for a relocatable link can be handled by generic code. Backends that set this flag need do nothing in the backend relocate_section routine for relocatable linking. */ unsigned rela_normal : 1; /* TRUE if addresses "naturally" sign extend. This is used when swapping in from Elf32 when BFD64. */ unsigned sign_extend_vma : 1; unsigned want_got_plt : 1; unsigned plt_readonly : 1; unsigned want_plt_sym : 1; unsigned plt_not_loaded : 1; unsigned plt_alignment : 4; unsigned can_gc_sections : 1; unsigned can_refcount : 1; unsigned want_got_sym : 1; unsigned want_dynbss : 1; /* Targets which do not support physical addressing often require that the p_paddr field in the section header to be set to zero. This field indicates whether this behavior is required. */ unsigned want_p_paddr_set_to_zero : 1; /* True if an object file lacking a .note.GNU-stack section should be assumed to be requesting exec stack. At least one other file in the link needs to have a .note.GNU-stack section for a PT_GNU_STACK segment to be created. */ unsigned default_execstack : 1; }; /* Information stored for each BFD section in an ELF file. This structure is allocated by elf_new_section_hook. */ struct bfd_elf_section_data { /* The ELF header for this section. */ Elf_Internal_Shdr this_hdr; /* The ELF header for the reloc section associated with this section, if any. */ Elf_Internal_Shdr rel_hdr; /* If there is a second reloc section associated with this section, as can happen on Irix 6, this field points to the header. */ Elf_Internal_Shdr *rel_hdr2; /* The number of relocations currently assigned to REL_HDR. */ unsigned int rel_count; /* The number of relocations currently assigned to REL_HDR2. */ unsigned int rel_count2; /* The ELF section number of this section. */ int this_idx; /* The ELF section number of the reloc section indicated by REL_HDR if any. Only used for an output file. */ int rel_idx; /* The ELF section number of the reloc section indicated by REL_HDR2 if any. Only used for an output file. */ int rel_idx2; /* Used by the backend linker when generating a shared library to record the dynamic symbol index for a section symbol corresponding to this section. A value of 0 means that there is no dynamic symbol for this section. */ int dynindx; /* A pointer to the linked-to section for SHF_LINK_ORDER. */ asection *linked_to; /* Used by the backend linker to store the symbol hash table entries associated with relocs against global symbols. */ struct elf_link_hash_entry **rel_hashes; /* A pointer to the swapped relocs. If the section uses REL relocs, rather than RELA, all the r_addend fields will be zero. This pointer may be NULL. It is used by the backend linker. */ Elf_Internal_Rela *relocs; /* A pointer to a linked list tracking dynamic relocs copied for local symbols. */ void *local_dynrel; /* A pointer to the bfd section used for dynamic relocs. */ asection *sreloc; union { /* Group name, if this section is a member of a group. */ const char *name; /* Group signature sym, if this is the SHT_GROUP section. */ struct bfd_symbol *id; } group; /* For a member of a group, points to the SHT_GROUP section. NULL for the SHT_GROUP section itself and non-group sections. */ asection *sec_group; /* A linked list of member sections in the group. Circular when used by the linker. For the SHT_GROUP section, points at first member. */ asection *next_in_group; /* A pointer used for various section optimizations. */ void *sec_info; }; #define elf_section_data(sec) ((struct bfd_elf_section_data*)(sec)->used_by_bfd) #define elf_linked_to_section(sec) (elf_section_data(sec)->linked_to) #define elf_section_type(sec) (elf_section_data(sec)->this_hdr.sh_type) #define elf_section_flags(sec) (elf_section_data(sec)->this_hdr.sh_flags) #define elf_group_name(sec) (elf_section_data(sec)->group.name) #define elf_group_id(sec) (elf_section_data(sec)->group.id) #define elf_next_in_group(sec) (elf_section_data(sec)->next_in_group) #define elf_sec_group(sec) (elf_section_data(sec)->sec_group) #define xvec_get_elf_backend_data(xvec) \ ((struct elf_backend_data *) (xvec)->backend_data) #define get_elf_backend_data(abfd) \ xvec_get_elf_backend_data ((abfd)->xvec) /* This struct is used to pass information to routines called via elf_link_hash_traverse which must return failure. */ struct elf_info_failed { bfd_boolean failed; struct bfd_link_info *info; struct bfd_elf_version_tree *verdefs; }; /* This structure is used to pass information to _bfd_elf_link_assign_sym_version. */ struct elf_assign_sym_version_info { /* Output BFD. */ bfd *output_bfd; /* General link information. */ struct bfd_link_info *info; /* Version tree. */ struct bfd_elf_version_tree *verdefs; /* Whether we had a failure. */ bfd_boolean failed; }; /* This structure is used to pass information to _bfd_elf_link_find_version_dependencies. */ struct elf_find_verdep_info { /* Output BFD. */ bfd *output_bfd; /* General link information. */ struct bfd_link_info *info; /* The number of dependencies. */ unsigned int vers; /* Whether we had a failure. */ bfd_boolean failed; }; /* The maximum number of known object attributes for any target. */ -#define NUM_KNOWN_OBJ_ATTRIBUTES 32 +#define NUM_KNOWN_OBJ_ATTRIBUTES 71 /* The value of an object attribute. type & 1 indicates whether there is an integer value; type & 2 indicates whether there is a string value. */ typedef struct obj_attribute { int type; unsigned int i; char *s; } obj_attribute; typedef struct obj_attribute_list { struct obj_attribute_list *next; int tag; obj_attribute attr; } obj_attribute_list; /* Object attributes may either be defined by the processor ABI, index OBJ_ATTR_PROC in the *_obj_attributes arrays, or be GNU-specific (and possibly also processor-specific), index OBJ_ATTR_GNU. */ #define OBJ_ATTR_PROC 0 #define OBJ_ATTR_GNU 1 #define OBJ_ATTR_FIRST OBJ_ATTR_PROC #define OBJ_ATTR_LAST OBJ_ATTR_GNU /* The following object attribute tags are taken as generic, for all targets and for "gnu" where there is no target standard. */ enum { Tag_NULL = 0, Tag_File = 1, Tag_Section = 2, Tag_Symbol = 3, Tag_compatibility = 32 }; /* Some private data is stashed away for future use using the tdata pointer in the bfd structure. */ struct elf_obj_tdata { Elf_Internal_Ehdr elf_header[1]; /* Actual data, but ref like ptr */ Elf_Internal_Shdr **elf_sect_ptr; Elf_Internal_Phdr *phdr; struct elf_segment_map *segment_map; struct elf_strtab_hash *strtab_ptr; int num_locals; int num_globals; unsigned int num_elf_sections; /* elf_sect_ptr size */ int num_section_syms; asymbol **section_syms; /* STT_SECTION symbols for each section */ Elf_Internal_Shdr symtab_hdr; Elf_Internal_Shdr shstrtab_hdr; Elf_Internal_Shdr strtab_hdr; Elf_Internal_Shdr dynsymtab_hdr; Elf_Internal_Shdr dynstrtab_hdr; Elf_Internal_Shdr dynversym_hdr; Elf_Internal_Shdr dynverref_hdr; Elf_Internal_Shdr dynverdef_hdr; Elf_Internal_Shdr symtab_shndx_hdr; unsigned int symtab_section, shstrtab_section; unsigned int strtab_section, dynsymtab_section; unsigned int symtab_shndx_section; unsigned int dynversym_section, dynverdef_section, dynverref_section; file_ptr next_file_pos; bfd_vma gp; /* The gp value */ unsigned int gp_size; /* The gp size */ /* Information grabbed from an elf core file. */ int core_signal; int core_pid; int core_lwpid; char* core_program; char* core_command; /* A mapping from external symbols to entries in the linker hash table, used when linking. This is indexed by the symbol index minus the sh_info field of the symbol table header. */ struct elf_link_hash_entry **sym_hashes; /* Track usage and final offsets of GOT entries for local symbols. This array is indexed by symbol index. Elements are used identically to "got" in struct elf_link_hash_entry. */ union { bfd_signed_vma *refcounts; bfd_vma *offsets; struct got_entry **ents; } local_got; /* The linker ELF emulation code needs to let the backend ELF linker know what filename should be used for a dynamic object if the dynamic object is found using a search. The emulation code then sometimes needs to know what name was actually used. Until the file has been added to the linker symbol table, this field holds the name the linker wants. After it has been added, it holds the name actually used, which will be the DT_SONAME entry if there is one. */ const char *dt_name; /* Records the result of `get_program_header_size'. */ bfd_size_type program_header_size; /* Used by find_nearest_line entry point. */ void *line_info; /* Used by MIPS ELF find_nearest_line entry point. The structure could be included directly in this one, but there's no point to wasting the memory just for the infrequently called find_nearest_line. */ struct mips_elf_find_line *find_line_info; /* A place to stash dwarf1 info for this bfd. */ struct dwarf1_debug *dwarf1_find_line_info; /* A place to stash dwarf2 info for this bfd. */ void *dwarf2_find_line_info; /* An array of stub sections indexed by symbol number, used by the MIPS ELF linker. FIXME: We should figure out some way to only include this field for a MIPS ELF target. */ asection **local_stubs; asection **local_call_stubs; /* Used to determine if PT_GNU_EH_FRAME segment header should be created. */ asection *eh_frame_hdr; Elf_Internal_Shdr **group_sect_ptr; int num_group; /* Number of symbol version definitions we are about to emit. */ unsigned int cverdefs; /* Number of symbol version references we are about to emit. */ unsigned int cverrefs; /* Segment flags for the PT_GNU_STACK segment. */ unsigned int stack_flags; /* Should the PT_GNU_RELRO segment be emitted? */ bfd_boolean relro; /* Symbol version definitions in external objects. */ Elf_Internal_Verdef *verdef; /* Symbol version references to external objects. */ Elf_Internal_Verneed *verref; /* The Irix 5 support uses two virtual sections, which represent text/data symbols defined in dynamic objects. */ asymbol *elf_data_symbol; asymbol *elf_text_symbol; asection *elf_data_section; asection *elf_text_section; /* Whether a dyanmic object was specified normally on the linker command line, or was specified when --as-needed was in effect, or was found via a DT_NEEDED entry. */ enum dynamic_lib_link_class dyn_lib_class; /* This is set to TRUE if the object was created by the backend linker. */ bfd_boolean linker; /* Irix 5 often screws up the symbol table, sorting local symbols after global symbols. This flag is set if the symbol table in this BFD appears to be screwed up. If it is, we ignore the sh_info field in the symbol table header, and always read all the symbols. */ bfd_boolean bad_symtab; /* Used to determine if the e_flags field has been initialized */ bfd_boolean flags_init; /* Symbol buffer. */ void *symbuf; obj_attribute known_obj_attributes[2][NUM_KNOWN_OBJ_ATTRIBUTES]; obj_attribute_list *other_obj_attributes[2]; }; #define elf_tdata(bfd) ((bfd) -> tdata.elf_obj_data) #define elf_elfheader(bfd) (elf_tdata(bfd) -> elf_header) #define elf_elfsections(bfd) (elf_tdata(bfd) -> elf_sect_ptr) #define elf_numsections(bfd) (elf_tdata(bfd) -> num_elf_sections) #define elf_shstrtab(bfd) (elf_tdata(bfd) -> strtab_ptr) #define elf_onesymtab(bfd) (elf_tdata(bfd) -> symtab_section) #define elf_symtab_shndx(bfd) (elf_tdata(bfd) -> symtab_shndx_section) #define elf_dynsymtab(bfd) (elf_tdata(bfd) -> dynsymtab_section) #define elf_dynversym(bfd) (elf_tdata(bfd) -> dynversym_section) #define elf_dynverdef(bfd) (elf_tdata(bfd) -> dynverdef_section) #define elf_dynverref(bfd) (elf_tdata(bfd) -> dynverref_section) #define elf_num_locals(bfd) (elf_tdata(bfd) -> num_locals) #define elf_num_globals(bfd) (elf_tdata(bfd) -> num_globals) #define elf_section_syms(bfd) (elf_tdata(bfd) -> section_syms) #define elf_num_section_syms(bfd) (elf_tdata(bfd) -> num_section_syms) #define core_prpsinfo(bfd) (elf_tdata(bfd) -> prpsinfo) #define core_prstatus(bfd) (elf_tdata(bfd) -> prstatus) #define elf_gp(bfd) (elf_tdata(bfd) -> gp) #define elf_gp_size(bfd) (elf_tdata(bfd) -> gp_size) #define elf_sym_hashes(bfd) (elf_tdata(bfd) -> sym_hashes) #define elf_local_got_refcounts(bfd) (elf_tdata(bfd) -> local_got.refcounts) #define elf_local_got_offsets(bfd) (elf_tdata(bfd) -> local_got.offsets) #define elf_local_got_ents(bfd) (elf_tdata(bfd) -> local_got.ents) #define elf_dt_name(bfd) (elf_tdata(bfd) -> dt_name) #define elf_dyn_lib_class(bfd) (elf_tdata(bfd) -> dyn_lib_class) #define elf_bad_symtab(bfd) (elf_tdata(bfd) -> bad_symtab) #define elf_flags_init(bfd) (elf_tdata(bfd) -> flags_init) #define elf_known_obj_attributes(bfd) (elf_tdata (bfd) -> known_obj_attributes) #define elf_other_obj_attributes(bfd) (elf_tdata (bfd) -> other_obj_attributes) #define elf_known_obj_attributes_proc(bfd) \ (elf_known_obj_attributes (bfd) [OBJ_ATTR_PROC]) #define elf_other_obj_attributes_proc(bfd) \ (elf_other_obj_attributes (bfd) [OBJ_ATTR_PROC]) extern void _bfd_elf_swap_verdef_in (bfd *, const Elf_External_Verdef *, Elf_Internal_Verdef *); extern void _bfd_elf_swap_verdef_out (bfd *, const Elf_Internal_Verdef *, Elf_External_Verdef *); extern void _bfd_elf_swap_verdaux_in (bfd *, const Elf_External_Verdaux *, Elf_Internal_Verdaux *); extern void _bfd_elf_swap_verdaux_out (bfd *, const Elf_Internal_Verdaux *, Elf_External_Verdaux *); extern void _bfd_elf_swap_verneed_in (bfd *, const Elf_External_Verneed *, Elf_Internal_Verneed *); extern void _bfd_elf_swap_verneed_out (bfd *, const Elf_Internal_Verneed *, Elf_External_Verneed *); extern void _bfd_elf_swap_vernaux_in (bfd *, const Elf_External_Vernaux *, Elf_Internal_Vernaux *); extern void _bfd_elf_swap_vernaux_out (bfd *, const Elf_Internal_Vernaux *, Elf_External_Vernaux *); extern void _bfd_elf_swap_versym_in (bfd *, const Elf_External_Versym *, Elf_Internal_Versym *); extern void _bfd_elf_swap_versym_out (bfd *, const Elf_Internal_Versym *, Elf_External_Versym *); extern int _bfd_elf_section_from_bfd_section (bfd *, asection *); extern char *bfd_elf_string_from_elf_section (bfd *, unsigned, unsigned); extern char *bfd_elf_get_str_section (bfd *, unsigned); extern Elf_Internal_Sym *bfd_elf_get_elf_syms (bfd *, Elf_Internal_Shdr *, size_t, size_t, Elf_Internal_Sym *, void *, Elf_External_Sym_Shndx *); extern const char *bfd_elf_sym_name (bfd *, Elf_Internal_Shdr *, Elf_Internal_Sym *, asection *); extern bfd_boolean _bfd_elf_copy_private_bfd_data (bfd *, bfd *); extern bfd_boolean _bfd_elf_print_private_bfd_data (bfd *, void *); extern void bfd_elf_print_symbol (bfd *, void *, asymbol *, bfd_print_symbol_type); extern void _bfd_elf_sprintf_vma (bfd *, char *, bfd_vma); extern void _bfd_elf_fprintf_vma (bfd *, void *, bfd_vma); extern unsigned int _bfd_elf_eh_frame_address_size (bfd *, asection *); extern bfd_byte _bfd_elf_encode_eh_address (bfd *abfd, struct bfd_link_info *info, asection *osec, bfd_vma offset, asection *loc_sec, bfd_vma loc_offset, bfd_vma *encoded); extern bfd_boolean _bfd_elf_can_make_relative (bfd *input_bfd, struct bfd_link_info *info, asection *eh_frame_section); extern enum elf_reloc_type_class _bfd_elf_reloc_type_class (const Elf_Internal_Rela *); extern bfd_vma _bfd_elf_rela_local_sym (bfd *, Elf_Internal_Sym *, asection **, Elf_Internal_Rela *); extern bfd_vma _bfd_elf_rel_local_sym (bfd *, Elf_Internal_Sym *, asection **, bfd_vma); extern bfd_vma _bfd_elf_section_offset (bfd *, struct bfd_link_info *, asection *, bfd_vma); extern unsigned long bfd_elf_hash (const char *); extern unsigned long bfd_elf_gnu_hash (const char *); extern bfd_reloc_status_type bfd_elf_generic_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); extern bfd_boolean bfd_elf_mkobject (bfd *); extern bfd_boolean bfd_elf_mkcorefile (bfd *); extern Elf_Internal_Shdr *bfd_elf_find_section (bfd *, char *); extern bfd_boolean _bfd_elf_make_section_from_shdr (bfd *, Elf_Internal_Shdr *, const char *, int); extern bfd_boolean _bfd_elf_make_section_from_phdr (bfd *, Elf_Internal_Phdr *, int, const char *); extern struct bfd_hash_entry *_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); extern struct bfd_link_hash_table *_bfd_elf_link_hash_table_create (bfd *); extern void _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *, struct elf_link_hash_entry *, struct elf_link_hash_entry *); extern void _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean); extern bfd_boolean _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *, struct elf_link_hash_entry *); extern bfd_boolean _bfd_elf_link_hash_table_init (struct elf_link_hash_table *, bfd *, struct bfd_hash_entry *(*) (struct bfd_hash_entry *, struct bfd_hash_table *, const char *), unsigned int); extern bfd_boolean _bfd_elf_slurp_version_tables (bfd *, bfd_boolean); extern bfd_boolean _bfd_elf_merge_sections (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_match_sections_by_type (bfd *, const asection *, bfd *, const asection *); extern bfd_boolean bfd_elf_is_group_section (bfd *, const struct bfd_section *); extern void _bfd_elf_section_already_linked (bfd *, struct bfd_section *, struct bfd_link_info *); extern void bfd_elf_set_group_contents (bfd *, asection *, void *); extern asection *_bfd_elf_check_kept_section (asection *, struct bfd_link_info *); extern void _bfd_elf_link_just_syms (asection *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_copy_private_header_data (bfd *, bfd *); extern bfd_boolean _bfd_elf_copy_private_symbol_data (bfd *, asymbol *, bfd *, asymbol *); #define _bfd_generic_init_private_section_data \ _bfd_elf_init_private_section_data extern bfd_boolean _bfd_elf_init_private_section_data (bfd *, asection *, bfd *, asection *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_copy_private_section_data (bfd *, asection *, bfd *, asection *); extern bfd_boolean _bfd_elf_write_object_contents (bfd *); extern bfd_boolean _bfd_elf_write_corefile_contents (bfd *); extern bfd_boolean _bfd_elf_set_section_contents (bfd *, sec_ptr, const void *, file_ptr, bfd_size_type); extern long _bfd_elf_get_symtab_upper_bound (bfd *); extern long _bfd_elf_canonicalize_symtab (bfd *, asymbol **); extern long _bfd_elf_get_dynamic_symtab_upper_bound (bfd *); extern long _bfd_elf_canonicalize_dynamic_symtab (bfd *, asymbol **); extern long _bfd_elf_get_synthetic_symtab (bfd *, long, asymbol **, long, asymbol **, asymbol **); extern long _bfd_elf_get_reloc_upper_bound (bfd *, sec_ptr); extern long _bfd_elf_canonicalize_reloc (bfd *, sec_ptr, arelent **, asymbol **); extern long _bfd_elf_get_dynamic_reloc_upper_bound (bfd *); extern long _bfd_elf_canonicalize_dynamic_reloc (bfd *, arelent **, asymbol **); extern asymbol *_bfd_elf_make_empty_symbol (bfd *); extern void _bfd_elf_get_symbol_info (bfd *, asymbol *, symbol_info *); extern bfd_boolean _bfd_elf_is_local_label_name (bfd *, const char *); extern alent *_bfd_elf_get_lineno (bfd *, asymbol *); extern bfd_boolean _bfd_elf_set_arch_mach (bfd *, enum bfd_architecture, unsigned long); extern bfd_boolean _bfd_elf_find_nearest_line (bfd *, asection *, asymbol **, bfd_vma, const char **, const char **, unsigned int *); extern bfd_boolean _bfd_elf_find_line (bfd *, asymbol **, asymbol *, const char **, unsigned int *); #define _bfd_generic_find_line _bfd_elf_find_line extern bfd_boolean _bfd_elf_find_inliner_info (bfd *, const char **, const char **, unsigned int *); #define _bfd_elf_read_minisymbols _bfd_generic_read_minisymbols #define _bfd_elf_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol extern int _bfd_elf_sizeof_headers (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_new_section_hook (bfd *, asection *); extern bfd_boolean _bfd_elf_init_reloc_shdr (bfd *, Elf_Internal_Shdr *, asection *, bfd_boolean); extern const struct bfd_elf_special_section *_bfd_elf_get_special_section (const char *, const struct bfd_elf_special_section *, unsigned int); extern const struct bfd_elf_special_section *_bfd_elf_get_sec_type_attr (bfd *, asection *); /* If the target doesn't have reloc handling written yet: */ extern void _bfd_elf_no_info_to_howto (bfd *, arelent *, Elf_Internal_Rela *); extern bfd_boolean bfd_section_from_shdr (bfd *, unsigned int shindex); extern bfd_boolean bfd_section_from_phdr (bfd *, Elf_Internal_Phdr *, int); extern int _bfd_elf_symbol_from_bfd_symbol (bfd *, asymbol **); extern asection *bfd_section_from_r_symndx (bfd *, struct sym_sec_cache *, asection *, unsigned long); extern asection *bfd_section_from_elf_index (bfd *, unsigned int); extern struct bfd_strtab_hash *_bfd_elf_stringtab_init (void); extern struct elf_strtab_hash * _bfd_elf_strtab_init (void); extern void _bfd_elf_strtab_free (struct elf_strtab_hash *); extern bfd_size_type _bfd_elf_strtab_add (struct elf_strtab_hash *, const char *, bfd_boolean); extern void _bfd_elf_strtab_addref (struct elf_strtab_hash *, bfd_size_type); extern void _bfd_elf_strtab_delref (struct elf_strtab_hash *, bfd_size_type); extern void _bfd_elf_strtab_clear_all_refs (struct elf_strtab_hash *); extern bfd_size_type _bfd_elf_strtab_size (struct elf_strtab_hash *); extern bfd_size_type _bfd_elf_strtab_offset (struct elf_strtab_hash *, bfd_size_type); extern bfd_boolean _bfd_elf_strtab_emit (bfd *, struct elf_strtab_hash *); extern void _bfd_elf_strtab_finalize (struct elf_strtab_hash *); extern bfd_boolean _bfd_elf_discard_section_eh_frame (bfd *, struct bfd_link_info *, asection *, bfd_boolean (*) (bfd_vma, void *), struct elf_reloc_cookie *); extern bfd_boolean _bfd_elf_discard_section_eh_frame_hdr (bfd *, struct bfd_link_info *); extern bfd_vma _bfd_elf_eh_frame_section_offset (bfd *, struct bfd_link_info *, asection *, bfd_vma); extern bfd_boolean _bfd_elf_write_section_eh_frame (bfd *, struct bfd_link_info *, asection *, bfd_byte *); extern bfd_boolean _bfd_elf_write_section_eh_frame_hdr (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *); extern bfd_boolean _bfd_elf_merge_symbol (bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection **, bfd_vma *, unsigned int *, struct elf_link_hash_entry **, bfd_boolean *, bfd_boolean *, bfd_boolean *, bfd_boolean *); extern bfd_boolean _bfd_elf_hash_symbol (struct elf_link_hash_entry *); extern bfd_boolean _bfd_elf_add_default_symbol (bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, const char *, Elf_Internal_Sym *, asection **, bfd_vma *, bfd_boolean *, bfd_boolean); extern bfd_boolean _bfd_elf_export_symbol (struct elf_link_hash_entry *, void *); extern bfd_boolean _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *, void *); extern bfd_boolean _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *, void *); extern long _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *, bfd *, long); extern bfd_boolean _bfd_elf_compute_section_file_positions (bfd *, struct bfd_link_info *); extern void _bfd_elf_assign_file_positions_for_relocs (bfd *); extern file_ptr _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *, file_ptr, bfd_boolean); extern bfd_boolean _bfd_elf_validate_reloc (bfd *, arelent *); extern bfd_boolean _bfd_elf_link_create_dynamic_sections (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_link_omit_section_dynsym (bfd *, struct bfd_link_info *, asection *); extern bfd_boolean _bfd_elf_create_dynamic_sections (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_create_got_section (bfd *, struct bfd_link_info *); extern struct elf_link_hash_entry *_bfd_elf_define_linkage_sym (bfd *, struct bfd_link_info *, asection *, const char *); extern void _bfd_elf_init_1_index_section (bfd *, struct bfd_link_info *); extern void _bfd_elf_init_2_index_sections (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elfcore_make_pseudosection (bfd *, char *, size_t, ufile_ptr); extern char *_bfd_elfcore_strndup (bfd *, char *, size_t); extern Elf_Internal_Rela *_bfd_elf_link_read_relocs (bfd *, asection *, void *, Elf_Internal_Rela *, bfd_boolean); extern bfd_boolean _bfd_elf_link_size_reloc_section (bfd *, Elf_Internal_Shdr *, asection *); extern bfd_boolean _bfd_elf_link_output_relocs (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *, struct elf_link_hash_entry **); extern bfd_boolean _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *, struct elf_info_failed *); extern bfd_boolean _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *, void *); extern bfd_boolean _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *, asection *); extern bfd_boolean _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *, void *); extern bfd_boolean _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *, struct bfd_link_info *, bfd_boolean); extern bfd_boolean _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *, struct bfd_link_info *, bfd_boolean); extern bfd_boolean bfd_elf_match_symbols_in_sections (asection *, asection *, struct bfd_link_info *); extern void bfd_elf_perform_complex_relocation (bfd * output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info * info, bfd * input_bfd, asection * input_section, bfd_byte * contents, Elf_Internal_Rela * rel, Elf_Internal_Sym * local_syms, asection ** local_sections); extern bfd_boolean _bfd_elf_setup_sections (bfd *); extern void _bfd_elf_set_osabi (bfd * , struct bfd_link_info *); extern const bfd_target *bfd_elf32_object_p (bfd *); extern const bfd_target *bfd_elf32_core_file_p (bfd *); extern char *bfd_elf32_core_file_failing_command (bfd *); extern int bfd_elf32_core_file_failing_signal (bfd *); extern bfd_boolean bfd_elf32_core_file_matches_executable_p (bfd *, bfd *); extern bfd_boolean bfd_elf32_swap_symbol_in (bfd *, const void *, const void *, Elf_Internal_Sym *); extern void bfd_elf32_swap_symbol_out (bfd *, const Elf_Internal_Sym *, void *, void *); extern void bfd_elf32_swap_reloc_in (bfd *, const bfd_byte *, Elf_Internal_Rela *); extern void bfd_elf32_swap_reloc_out (bfd *, const Elf_Internal_Rela *, bfd_byte *); extern void bfd_elf32_swap_reloca_in (bfd *, const bfd_byte *, Elf_Internal_Rela *); extern void bfd_elf32_swap_reloca_out (bfd *, const Elf_Internal_Rela *, bfd_byte *); extern void bfd_elf32_swap_phdr_in (bfd *, const Elf32_External_Phdr *, Elf_Internal_Phdr *); extern void bfd_elf32_swap_phdr_out (bfd *, const Elf_Internal_Phdr *, Elf32_External_Phdr *); extern void bfd_elf32_swap_dyn_in (bfd *, const void *, Elf_Internal_Dyn *); extern void bfd_elf32_swap_dyn_out (bfd *, const Elf_Internal_Dyn *, void *); extern long bfd_elf32_slurp_symbol_table (bfd *, asymbol **, bfd_boolean); extern bfd_boolean bfd_elf32_write_shdrs_and_ehdr (bfd *); extern int bfd_elf32_write_out_phdrs (bfd *, const Elf_Internal_Phdr *, unsigned int); extern void bfd_elf32_write_relocs (bfd *, asection *, void *); extern bfd_boolean bfd_elf32_slurp_reloc_table (bfd *, asection *, asymbol **, bfd_boolean); extern const bfd_target *bfd_elf64_object_p (bfd *); extern const bfd_target *bfd_elf64_core_file_p (bfd *); extern char *bfd_elf64_core_file_failing_command (bfd *); extern int bfd_elf64_core_file_failing_signal (bfd *); extern bfd_boolean bfd_elf64_core_file_matches_executable_p (bfd *, bfd *); extern bfd_boolean bfd_elf64_swap_symbol_in (bfd *, const void *, const void *, Elf_Internal_Sym *); extern void bfd_elf64_swap_symbol_out (bfd *, const Elf_Internal_Sym *, void *, void *); extern void bfd_elf64_swap_reloc_in (bfd *, const bfd_byte *, Elf_Internal_Rela *); extern void bfd_elf64_swap_reloc_out (bfd *, const Elf_Internal_Rela *, bfd_byte *); extern void bfd_elf64_swap_reloca_in (bfd *, const bfd_byte *, Elf_Internal_Rela *); extern void bfd_elf64_swap_reloca_out (bfd *, const Elf_Internal_Rela *, bfd_byte *); extern void bfd_elf64_swap_phdr_in (bfd *, const Elf64_External_Phdr *, Elf_Internal_Phdr *); extern void bfd_elf64_swap_phdr_out (bfd *, const Elf_Internal_Phdr *, Elf64_External_Phdr *); extern void bfd_elf64_swap_dyn_in (bfd *, const void *, Elf_Internal_Dyn *); extern void bfd_elf64_swap_dyn_out (bfd *, const Elf_Internal_Dyn *, void *); extern long bfd_elf64_slurp_symbol_table (bfd *, asymbol **, bfd_boolean); extern bfd_boolean bfd_elf64_write_shdrs_and_ehdr (bfd *); extern int bfd_elf64_write_out_phdrs (bfd *, const Elf_Internal_Phdr *, unsigned int); extern void bfd_elf64_write_relocs (bfd *, asection *, void *); extern bfd_boolean bfd_elf64_slurp_reloc_table (bfd *, asection *, asymbol **, bfd_boolean); extern bfd_boolean _bfd_elf_default_relocs_compatible (const bfd_target *, const bfd_target *); extern bfd_boolean _bfd_elf_relocs_compatible (const bfd_target *, const bfd_target *); extern struct elf_link_hash_entry *_bfd_elf_archive_symbol_lookup (bfd *, struct bfd_link_info *, const char *); extern bfd_boolean bfd_elf_link_add_symbols (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_add_dynamic_entry (struct bfd_link_info *, bfd_vma, bfd_vma); extern bfd_boolean bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *, struct elf_link_hash_entry *); extern int bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *, bfd *, long); extern void bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *); extern bfd_boolean _bfd_elf_close_and_cleanup (bfd *); extern bfd_boolean _bfd_elf_common_definition (Elf_Internal_Sym *); extern unsigned int _bfd_elf_common_section_index (asection *); extern asection *_bfd_elf_common_section (asection *); extern void _bfd_dwarf2_cleanup_debug_info (bfd *); extern bfd_reloc_status_type _bfd_elf_rel_vtable_reloc_fn (bfd *, arelent *, struct bfd_symbol *, void *, asection *, bfd *, char **); extern bfd_boolean bfd_elf_final_link (bfd *, struct bfd_link_info *); extern bfd_boolean bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf); extern bfd_boolean bfd_elf_gc_sections (bfd *, struct bfd_link_info *); extern bfd_boolean bfd_elf_gc_record_vtinherit (bfd *, asection *, struct elf_link_hash_entry *, bfd_vma); extern bfd_boolean bfd_elf_gc_record_vtentry (bfd *, asection *, struct elf_link_hash_entry *, bfd_vma); extern asection *_bfd_elf_gc_mark_hook (asection *, struct bfd_link_info *, Elf_Internal_Rela *, struct elf_link_hash_entry *, Elf_Internal_Sym *); extern bfd_boolean _bfd_elf_gc_mark (struct bfd_link_info *, asection *, asection * (*) (asection *, struct bfd_link_info *, Elf_Internal_Rela *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); extern bfd_boolean bfd_elf_gc_common_finalize_got_offsets (bfd *, struct bfd_link_info *); extern bfd_boolean bfd_elf_gc_common_final_link (bfd *, struct bfd_link_info *); extern bfd_boolean bfd_elf_reloc_symbol_deleted_p (bfd_vma, void *); extern struct elf_segment_map * _bfd_elf_make_dynamic_segment (bfd *, asection *); extern bfd_boolean _bfd_elf_map_sections_to_segments (bfd *, struct bfd_link_info *); extern bfd_boolean _bfd_elf_is_function_type (unsigned int); /* Exported interface for writing elf corefile notes. */ extern char *elfcore_write_note (bfd *, char *, int *, const char *, int, const void *, int); extern char *elfcore_write_prpsinfo (bfd *, char *, int *, const char *, const char *); extern char *elfcore_write_prstatus (bfd *, char *, int *, long, int, const void *); extern char * elfcore_write_pstatus (bfd *, char *, int *, long, int, const void *); extern char *elfcore_write_prfpreg (bfd *, char *, int *, const void *, int); extern char *elfcore_write_thrmisc (bfd *, char *, int *, const char *, int); extern char *elfcore_write_prxfpreg (bfd *, char *, int *, const void *, int); extern char *elfcore_write_lwpstatus (bfd *, char *, int *, long, int, const void *); extern bfd *_bfd_elf32_bfd_from_remote_memory (bfd *templ, bfd_vma ehdr_vma, bfd_vma *loadbasep, int (*target_read_memory) (bfd_vma, bfd_byte *, int)); extern bfd *_bfd_elf64_bfd_from_remote_memory (bfd *templ, bfd_vma ehdr_vma, bfd_vma *loadbasep, int (*target_read_memory) (bfd_vma, bfd_byte *, int)); extern bfd_vma bfd_elf_obj_attr_size (bfd *); extern void bfd_elf_set_obj_attr_contents (bfd *, bfd_byte *, bfd_vma); extern int bfd_elf_get_obj_attr_int (bfd *, int, int); extern void bfd_elf_add_obj_attr_int (bfd *, int, int, unsigned int); #define bfd_elf_add_proc_attr_int(BFD, TAG, VALUE) \ bfd_elf_add_obj_attr_int ((BFD), OBJ_ATTR_PROC, (TAG), (VALUE)) extern void bfd_elf_add_obj_attr_string (bfd *, int, int, const char *); #define bfd_elf_add_proc_attr_string(BFD, TAG, VALUE) \ bfd_elf_add_obj_attr_string ((BFD), OBJ_ATTR_PROC, (TAG), (VALUE)) extern void bfd_elf_add_obj_attr_compat (bfd *, int, unsigned int, const char *); #define bfd_elf_add_proc_attr_compat(BFD, INTVAL, STRVAL) \ bfd_elf_add_obj_attr_compat ((BFD), OBJ_ATTR_PROC, (INTVAL), (STRVAL)) extern char *_bfd_elf_attr_strdup (bfd *, const char *); extern void _bfd_elf_copy_obj_attributes (bfd *, bfd *); extern int _bfd_elf_obj_attrs_arg_type (bfd *, int, int); extern void _bfd_elf_parse_attributes (bfd *, Elf_Internal_Shdr *); extern bfd_boolean _bfd_elf_merge_object_attributes (bfd *, bfd *); /* Large common section. */ extern asection _bfd_elf_large_com_section; /* SH ELF specific routine. */ extern bfd_boolean _sh_elf_set_mach_from_flags (bfd *); /* This is the condition under which finish_dynamic_symbol will be called. If our finish_dynamic_symbol isn't called, we'll need to do something about initializing any .plt and .got entries in relocate_section. */ #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, SHARED, H) \ ((DYN) \ && ((SHARED) || !(H)->forced_local) \ && ((H)->dynindx != -1 || (H)->forced_local)) /* This macro is to avoid lots of duplicated code in the body of xxx_relocate_section() in the various elfxx-xxxx.c files. */ #define RELOC_FOR_GLOBAL_SYMBOL(info, input_bfd, input_section, rel, \ r_symndx, symtab_hdr, sym_hashes, \ h, sec, relocation, \ unresolved_reloc, warned) \ do \ { \ /* It seems this can happen with erroneous or unsupported \ input (mixing a.out and elf in an archive, for example.) */ \ if (sym_hashes == NULL) \ return FALSE; \ \ h = sym_hashes[r_symndx - symtab_hdr->sh_info]; \ \ while (h->root.type == bfd_link_hash_indirect \ || h->root.type == bfd_link_hash_warning) \ h = (struct elf_link_hash_entry *) h->root.u.i.link; \ \ warned = FALSE; \ unresolved_reloc = FALSE; \ relocation = 0; \ if (h->root.type == bfd_link_hash_defined \ || h->root.type == bfd_link_hash_defweak) \ { \ sec = h->root.u.def.section; \ if (sec == NULL \ || sec->output_section == NULL) \ /* Set a flag that will be cleared later if we find a \ relocation value for this symbol. output_section \ is typically NULL for symbols satisfied by a shared \ library. */ \ unresolved_reloc = TRUE; \ else \ relocation = (h->root.u.def.value \ + sec->output_section->vma \ + sec->output_offset); \ } \ else if (h->root.type == bfd_link_hash_undefweak) \ ; \ else if (info->unresolved_syms_in_objects == RM_IGNORE \ && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) \ ; \ else if (!info->relocatable) \ { \ bfd_boolean err; \ err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR \ || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT); \ if (!info->callbacks->undefined_symbol (info, \ h->root.root.string, \ input_bfd, \ input_section, \ rel->r_offset, err)) \ return FALSE; \ warned = TRUE; \ } \ } \ while (0) /* Will a symbol be bound to the the definition within the shared library, if any. */ #define SYMBOLIC_BIND(INFO, H) \ ((INFO)->symbolic || ((INFO)->dynamic && !(H)->dynamic)) #endif /* _LIBELF_H_ */ Index: head/contrib/binutils/bfd/elf32-arm.c =================================================================== --- head/contrib/binutils/bfd/elf32-arm.c (revision 281047) +++ head/contrib/binutils/bfd/elf32-arm.c (revision 281048) @@ -1,10447 +1,10451 @@ /* 32-bit ELF support for ARM Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "bfd.h" #include "libiberty.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf-vxworks.h" #include "elf/arm.h" #ifndef NUM_ELEM #define NUM_ELEM(a) (sizeof (a) / (sizeof (a)[0])) #endif /* Return the relocation section associated with NAME. HTAB is the bfd's elf32_arm_link_hash_entry. */ #define RELOC_SECTION(HTAB, NAME) \ ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME) /* Return size of a relocation entry. HTAB is the bfd's elf32_arm_link_hash_entry. */ #define RELOC_SIZE(HTAB) \ ((HTAB)->use_rel \ ? sizeof (Elf32_External_Rel) \ : sizeof (Elf32_External_Rela)) /* Return function to swap relocations in. HTAB is the bfd's elf32_arm_link_hash_entry. */ #define SWAP_RELOC_IN(HTAB) \ ((HTAB)->use_rel \ ? bfd_elf32_swap_reloc_in \ : bfd_elf32_swap_reloca_in) /* Return function to swap relocations out. HTAB is the bfd's elf32_arm_link_hash_entry. */ #define SWAP_RELOC_OUT(HTAB) \ ((HTAB)->use_rel \ ? bfd_elf32_swap_reloc_out \ : bfd_elf32_swap_reloca_out) #define elf_info_to_howto 0 #define elf_info_to_howto_rel elf32_arm_info_to_howto #define ARM_ELF_ABI_VERSION 0 #ifdef __FreeBSD__ #define ARM_ELF_OS_ABI_VERSION ELFOSABI_FREEBSD #else #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM #endif static struct elf_backend_data elf32_arm_vxworks_bed; /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g. R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO in that slot. */ static reloc_howto_type elf32_arm_howto_table_1[] = { /* No relocation */ HOWTO (R_ARM_NONE, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_NONE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_PC24, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_PC24", /* name */ FALSE, /* partial_inplace */ 0x00ffffff, /* src_mask */ 0x00ffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* 32 bit absolute */ HOWTO (R_ARM_ABS32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ABS32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* standard 32bit pc-relative reloc */ HOWTO (R_ARM_REL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_REL32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */ HOWTO (R_ARM_LDR_PC_G0, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_PC_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* 16 bit absolute */ HOWTO (R_ARM_ABS16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ABS16", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* 12 bit absolute */ HOWTO (R_ARM_ABS12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ABS12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_ABS5, /* type */ 6, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 5, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_ABS5", /* name */ FALSE, /* partial_inplace */ 0x000007e0, /* src_mask */ 0x000007e0, /* dst_mask */ FALSE), /* pcrel_offset */ /* 8 bit absolute */ HOWTO (R_ARM_ABS8, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ABS8", /* name */ FALSE, /* partial_inplace */ 0x000000ff, /* src_mask */ 0x000000ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_SBREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_SBREL32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_CALL, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 25, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_CALL", /* name */ FALSE, /* partial_inplace */ 0x07ff07ff, /* src_mask */ 0x07ff07ff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_PC8, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_PC8", /* name */ FALSE, /* partial_inplace */ 0x000000ff, /* src_mask */ 0x000000ff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_BREL_ADJ, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_BREL_ADJ", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_SWI24, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_SWI24", /* name */ FALSE, /* partial_inplace */ 0x00000000, /* src_mask */ 0x00000000, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_SWI8, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_SWI8", /* name */ FALSE, /* partial_inplace */ 0x00000000, /* src_mask */ 0x00000000, /* dst_mask */ FALSE), /* pcrel_offset */ /* BLX instruction for the ARM. */ HOWTO (R_ARM_XPC25, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 25, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_XPC25", /* name */ FALSE, /* partial_inplace */ 0x00ffffff, /* src_mask */ 0x00ffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* BLX instruction for the Thumb. */ HOWTO (R_ARM_THM_XPC22, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 22, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_XPC22", /* name */ FALSE, /* partial_inplace */ 0x07ff07ff, /* src_mask */ 0x07ff07ff, /* dst_mask */ TRUE), /* pcrel_offset */ /* Dynamic TLS relocations. */ HOWTO (R_ARM_TLS_DTPMOD32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_DTPMOD32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_DTPOFF32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_DTPOFF32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_TPOFF32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_TPOFF32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relocs used in ARM Linux */ HOWTO (R_ARM_COPY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_COPY", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_GLOB_DAT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GLOB_DAT", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_JUMP_SLOT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_JUMP_SLOT", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_RELATIVE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_RELATIVE", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_GOTOFF32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOTOFF32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_GOTPC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOTPC", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_GOT32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOT32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_PLT32, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_PLT32", /* name */ FALSE, /* partial_inplace */ 0x00ffffff, /* src_mask */ 0x00ffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_CALL, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_CALL", /* name */ FALSE, /* partial_inplace */ 0x00ffffff, /* src_mask */ 0x00ffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_JUMP24, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_JUMP24", /* name */ FALSE, /* partial_inplace */ 0x00ffffff, /* src_mask */ 0x00ffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_JUMP24, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_JUMP24", /* name */ FALSE, /* partial_inplace */ 0x07ff2fff, /* src_mask */ 0x07ff2fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_BASE_ABS, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_BASE_ABS", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PCREL7_0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PCREL_7_0", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PCREL15_8, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ TRUE, /* pc_relative */ 8, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PCREL_15_8",/* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PCREL23_15, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ TRUE, /* pc_relative */ 16, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PCREL_23_15",/* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDR_SBREL_11_0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_SBREL_11_0",/* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SBREL_19_12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ FALSE, /* pc_relative */ 12, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SBREL_19_12",/* name */ FALSE, /* partial_inplace */ 0x000ff000, /* src_mask */ 0x000ff000, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SBREL_27_20, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ FALSE, /* pc_relative */ 20, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SBREL_27_20",/* name */ FALSE, /* partial_inplace */ 0x0ff00000, /* src_mask */ 0x0ff00000, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TARGET1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TARGET1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_ROSEGREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ROSEGREL32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_V4BX, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_V4BX", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TARGET2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TARGET2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_PREL31, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 31, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_PREL31", /* name */ FALSE, /* partial_inplace */ 0x7fffffff, /* src_mask */ 0x7fffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_MOVW_ABS_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVW_ABS_NC", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_MOVT_ABS, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVT_ABS", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_MOVW_PREL_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVW_PREL_NC", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_MOVT_PREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVT_PREL", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVW_ABS_NC",/* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVT_ABS, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVT_ABS", /* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVW_PREL_NC",/* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVT_PREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVT_PREL", /* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_JUMP19, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 19, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_JUMP19", /* name */ FALSE, /* partial_inplace */ 0x043f2fff, /* src_mask */ 0x043f2fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_JUMP6, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 6, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_JUMP6", /* name */ FALSE, /* partial_inplace */ 0x02f8, /* src_mask */ 0x02f8, /* dst_mask */ TRUE), /* pcrel_offset */ /* These are declared as 13-bit signed relocations because we can address -4095 .. 4095(base) by altering ADDW to SUBW or vice versa. */ HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 13, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_ALU_PREL_11_0",/* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_PC12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 13, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_PC12", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ABS32_NOI, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ABS32_NOI", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_REL32_NOI, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_REL32_NOI", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Group relocations. */ HOWTO (R_ARM_ALU_PC_G0_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PC_G0_NC", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PC_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PC_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PC_G1_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PC_G1_NC", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PC_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PC_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PC_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PC_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDR_PC_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_PC_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDR_PC_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_PC_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDRS_PC_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDRS_PC_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDRS_PC_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDRS_PC_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDRS_PC_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDRS_PC_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDC_PC_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDC_PC_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDC_PC_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDC_PC_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDC_PC_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDC_PC_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SB_G0_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SB_G0_NC", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SB_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SB_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SB_G1_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SB_G1_NC", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SB_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SB_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SB_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SB_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDR_SB_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_SB_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDR_SB_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_SB_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDR_SB_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_SB_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDRS_SB_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDRS_SB_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDRS_SB_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDRS_SB_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDRS_SB_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDRS_SB_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDC_SB_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDC_SB_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDC_SB_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDC_SB_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDC_SB_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDC_SB_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* End of group relocations. */ HOWTO (R_ARM_MOVW_BREL_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVW_BREL_NC", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_MOVT_BREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVT_BREL", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_MOVW_BREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVW_BREL", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVW_BREL_NC",/* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVT_BREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVT_BREL", /* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVW_BREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVW_BREL", /* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ FALSE), /* pcrel_offset */ EMPTY_HOWTO (90), /* unallocated */ EMPTY_HOWTO (91), EMPTY_HOWTO (92), EMPTY_HOWTO (93), HOWTO (R_ARM_PLT32_ABS, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_PLT32_ABS", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_GOT_ABS, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOT_ABS", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_GOT_PREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOT_PREL", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_GOT_BREL12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOT_BREL12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_GOTOFF12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOTOFF12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */ /* GNU extension to record C++ vtable member usage */ HOWTO (R_ARM_GNU_VTENTRY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_elf_rel_vtable_reloc_fn, /* special_function */ "R_ARM_GNU_VTENTRY", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* GNU extension to record C++ vtable hierarchy */ HOWTO (R_ARM_GNU_VTINHERIT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ NULL, /* special_function */ "R_ARM_GNU_VTINHERIT", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_JUMP11, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 11, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_JUMP11", /* name */ FALSE, /* partial_inplace */ 0x000007ff, /* src_mask */ 0x000007ff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_JUMP8, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_JUMP8", /* name */ FALSE, /* partial_inplace */ 0x000000ff, /* src_mask */ 0x000000ff, /* dst_mask */ TRUE), /* pcrel_offset */ /* TLS relocations */ HOWTO (R_ARM_TLS_GD32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ NULL, /* special_function */ "R_ARM_TLS_GD32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_LDM32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_LDM32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_LDO32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_LDO32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_IE32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ NULL, /* special_function */ "R_ARM_TLS_IE32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_LE32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_LE32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_LDO12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_LDO12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_LE12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_LE12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_IE12GP, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_IE12GP", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ }; /* 112-127 private relocations 128 R_ARM_ME_TOO, obsolete 129-255 unallocated in AAELF. 249-255 extended, currently unused, relocations: */ static reloc_howto_type elf32_arm_howto_table_2[4] = { HOWTO (R_ARM_RREL32, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_RREL32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_RABS32, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_RABS32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_RPC24, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_RPC24", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_RBASE, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_RBASE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE) /* pcrel_offset */ }; static reloc_howto_type * elf32_arm_howto_from_type (unsigned int r_type) { if (r_type < NUM_ELEM (elf32_arm_howto_table_1)) return &elf32_arm_howto_table_1[r_type]; if (r_type >= R_ARM_RREL32 && r_type < R_ARM_RREL32 + NUM_ELEM (elf32_arm_howto_table_2)) return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32]; return NULL; } static void elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc, Elf_Internal_Rela * elf_reloc) { unsigned int r_type; r_type = ELF32_R_TYPE (elf_reloc->r_info); bfd_reloc->howto = elf32_arm_howto_from_type (r_type); } struct elf32_arm_reloc_map { bfd_reloc_code_real_type bfd_reloc_val; unsigned char elf_reloc_val; }; /* All entries in this list must also be present in elf32_arm_howto_table. */ static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] = { {BFD_RELOC_NONE, R_ARM_NONE}, {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24}, {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL}, {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24}, {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25}, {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22}, {BFD_RELOC_32, R_ARM_ABS32}, {BFD_RELOC_32_PCREL, R_ARM_REL32}, {BFD_RELOC_8, R_ARM_ABS8}, {BFD_RELOC_16, R_ARM_ABS16}, {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12}, {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5}, {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24}, {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL}, {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11}, {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19}, {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8}, {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6}, {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT}, {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT}, {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE}, {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32}, {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC}, {BFD_RELOC_ARM_GOT32, R_ARM_GOT32}, {BFD_RELOC_ARM_PLT32, R_ARM_PLT32}, {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1}, {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32}, {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32}, {BFD_RELOC_ARM_PREL31, R_ARM_PREL31}, {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2}, {BFD_RELOC_ARM_PLT32, R_ARM_PLT32}, {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32}, {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32}, {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32}, {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32}, {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32}, {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32}, {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32}, {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32}, {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT}, {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY}, {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC}, {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS}, {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC}, {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL}, {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC}, {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS}, {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC}, {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL}, {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC}, {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0}, {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC}, {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1}, {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2}, {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0}, {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1}, {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2}, {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0}, {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1}, {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2}, {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0}, {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1}, {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2}, {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC}, {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0}, {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC}, {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1}, {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2}, {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0}, {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1}, {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2}, {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0}, {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1}, {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2}, {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0}, {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1}, {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2} }; static reloc_howto_type * elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { unsigned int i; for (i = 0; i < NUM_ELEM (elf32_arm_reloc_map); i ++) if (elf32_arm_reloc_map[i].bfd_reloc_val == code) return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val); return NULL; } static reloc_howto_type * elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < (sizeof (elf32_arm_howto_table_1) / sizeof (elf32_arm_howto_table_1[0])); i++) if (elf32_arm_howto_table_1[i].name != NULL && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0) return &elf32_arm_howto_table_1[i]; for (i = 0; i < (sizeof (elf32_arm_howto_table_2) / sizeof (elf32_arm_howto_table_2[0])); i++) if (elf32_arm_howto_table_2[i].name != NULL && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0) return &elf32_arm_howto_table_2[i]; return NULL; } /* Support for core dump NOTE sections */ static bfd_boolean elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) { int offset; size_t size; switch (note->descsz) { default: return FALSE; case 148: /* Linux/ARM 32-bit*/ /* pr_cursig */ elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); /* pr_pid */ elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); /* pr_reg */ offset = 72; size = 72; break; case 96: /* FreeBSD/ARM */ /* pr_cursig */ if (elf_tdata(abfd)->core_signal == 0) elf_tdata (abfd)->core_signal = ((int *)(note->descdata))[5]; /* pr_pid */ elf_tdata (abfd)->core_pid = ((int *)(note->descdata))[6]; /* pr_reg */ offset = 28; size = 68; break; } /* Make a ".reg/999" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", size, note->descpos + offset); } static bfd_boolean elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) { switch (note->descsz) { default: return FALSE; case 124: /* Linux/ARM elf_prpsinfo */ elf_tdata (abfd)->core_program = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); elf_tdata (abfd)->core_command = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); } /* Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ { char *command = elf_tdata (abfd)->core_command; int n = strlen (command); if (0 < n && command[n - 1] == ' ') command[n - 1] = '\0'; } return TRUE; } #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec #define TARGET_LITTLE_NAME "elf32-littlearm" #define TARGET_BIG_SYM bfd_elf32_bigarm_vec #define TARGET_BIG_NAME "elf32-bigarm" #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo typedef unsigned long int insn32; typedef unsigned short int insn16; /* In lieu of proper flags, assume all EABIv4 or later objects are interworkable. */ #define INTERWORK_FLAG(abfd) \ (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \ || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)) /* The linker script knows the section names for placement. The entry_names are used to do simple name mangling on the stubs. Given a function name, and its type, the stub can be found. The name can be changed. The only requirement is the %s be present. */ #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t" #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb" #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7" #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm" #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer" #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x" /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" #ifdef FOUR_WORD_PLT /* The first entry in a procedure linkage table looks like this. It is set up so that any shared library function that is called before the relocation has been set up calls the dynamic linker first. */ static const bfd_vma elf32_arm_plt0_entry [] = { 0xe52de004, /* str lr, [sp, #-4]! */ 0xe59fe010, /* ldr lr, [pc, #16] */ 0xe08fe00e, /* add lr, pc, lr */ 0xe5bef008, /* ldr pc, [lr, #8]! */ }; /* Subsequent entries in a procedure linkage table look like this. */ static const bfd_vma elf32_arm_plt_entry [] = { 0xe28fc600, /* add ip, pc, #NN */ 0xe28cca00, /* add ip, ip, #NN */ 0xe5bcf000, /* ldr pc, [ip, #NN]! */ 0x00000000, /* unused */ }; #else /* The first entry in a procedure linkage table looks like this. It is set up so that any shared library function that is called before the relocation has been set up calls the dynamic linker first. */ static const bfd_vma elf32_arm_plt0_entry [] = { 0xe52de004, /* str lr, [sp, #-4]! */ 0xe59fe004, /* ldr lr, [pc, #4] */ 0xe08fe00e, /* add lr, pc, lr */ 0xe5bef008, /* ldr pc, [lr, #8]! */ 0x00000000, /* &GOT[0] - . */ }; /* Subsequent entries in a procedure linkage table look like this. */ static const bfd_vma elf32_arm_plt_entry [] = { 0xe28fc600, /* add ip, pc, #0xNN00000 */ 0xe28cca00, /* add ip, ip, #0xNN000 */ 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */ }; #endif /* The format of the first entry in the procedure linkage table for a VxWorks executable. */ static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] = { 0xe52dc008, /* str ip,[sp,#-8]! */ 0xe59fc000, /* ldr ip,[pc] */ 0xe59cf008, /* ldr pc,[ip,#8] */ 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */ }; /* The format of subsequent entries in a VxWorks executable. */ static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] = { 0xe59fc000, /* ldr ip,[pc] */ 0xe59cf000, /* ldr pc,[ip] */ 0x00000000, /* .long @got */ 0xe59fc000, /* ldr ip,[pc] */ 0xea000000, /* b _PLT */ 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */ }; /* The format of entries in a VxWorks shared library. */ static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] = { 0xe59fc000, /* ldr ip,[pc] */ 0xe79cf009, /* ldr pc,[ip,r9] */ 0x00000000, /* .long @got */ 0xe59fc000, /* ldr ip,[pc] */ 0xe599f008, /* ldr pc,[r9,#8] */ 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */ }; /* An initial stub used if the PLT entry is referenced from Thumb code. */ #define PLT_THUMB_STUB_SIZE 4 static const bfd_vma elf32_arm_plt_thumb_stub [] = { 0x4778, /* bx pc */ 0x46c0 /* nop */ }; /* The entries in a PLT when using a DLL-based target with multiple address spaces. */ static const bfd_vma elf32_arm_symbian_plt_entry [] = { 0xe51ff004, /* ldr pc, [pc, #-4] */ 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */ }; /* Used to build a map of a section. This is required for mixed-endian code/data. */ typedef struct elf32_elf_section_map { bfd_vma vma; char type; } elf32_arm_section_map; /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */ typedef enum { VFP11_ERRATUM_BRANCH_TO_ARM_VENEER, VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER, VFP11_ERRATUM_ARM_VENEER, VFP11_ERRATUM_THUMB_VENEER } elf32_vfp11_erratum_type; typedef struct elf32_vfp11_erratum_list { struct elf32_vfp11_erratum_list *next; bfd_vma vma; union { struct { struct elf32_vfp11_erratum_list *veneer; unsigned int vfp_insn; } b; struct { struct elf32_vfp11_erratum_list *branch; unsigned int id; } v; } u; elf32_vfp11_erratum_type type; } elf32_vfp11_erratum_list; typedef struct _arm_elf_section_data { struct bfd_elf_section_data elf; unsigned int mapcount; unsigned int mapsize; elf32_arm_section_map *map; unsigned int erratumcount; elf32_vfp11_erratum_list *erratumlist; } _arm_elf_section_data; #define elf32_arm_section_data(sec) \ ((_arm_elf_section_data *) elf_section_data (sec)) /* The size of the thread control block. */ #define TCB_SIZE 8 struct elf32_arm_obj_tdata { struct elf_obj_tdata root; /* tls_type for each local got entry. */ char *local_got_tls_type; /* Zero to warn when linking objects with incompatible enum sizes. */ int no_enum_size_warning; }; #define elf32_arm_tdata(abfd) \ ((struct elf32_arm_obj_tdata *) (abfd)->tdata.any) #define elf32_arm_local_got_tls_type(abfd) \ (elf32_arm_tdata (abfd)->local_got_tls_type) static bfd_boolean elf32_arm_mkobject (bfd *abfd) { if (abfd->tdata.any == NULL) { bfd_size_type amt = sizeof (struct elf32_arm_obj_tdata); abfd->tdata.any = bfd_zalloc (abfd, amt); if (abfd->tdata.any == NULL) return FALSE; } return bfd_elf_mkobject (abfd); } /* The ARM linker needs to keep track of the number of relocs that it decides to copy in check_relocs for each symbol. This is so that it can discard PC relative relocs if it doesn't need them when linking with -Bsymbolic. We store the information in a field extending the regular ELF linker hash table. */ /* This structure keeps track of the number of relocs we have copied for a given symbol. */ struct elf32_arm_relocs_copied { /* Next section. */ struct elf32_arm_relocs_copied * next; /* A section in dynobj. */ asection * section; /* Number of relocs copied in this section. */ bfd_size_type count; /* Number of PC-relative relocs copied in this section. */ bfd_size_type pc_count; }; #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent)) /* Arm ELF linker hash entry. */ struct elf32_arm_link_hash_entry { struct elf_link_hash_entry root; /* Number of PC relative relocs copied for this symbol. */ struct elf32_arm_relocs_copied * relocs_copied; /* We reference count Thumb references to a PLT entry separately, so that we can emit the Thumb trampoline only if needed. */ bfd_signed_vma plt_thumb_refcount; /* Since PLT entries have variable size if the Thumb prologue is used, we need to record the index into .got.plt instead of recomputing it from the PLT offset. */ bfd_signed_vma plt_got_offset; #define GOT_UNKNOWN 0 #define GOT_NORMAL 1 #define GOT_TLS_GD 2 #define GOT_TLS_IE 4 unsigned char tls_type; /* The symbol marking the real symbol location for exported thumb symbols with Arm stubs. */ struct elf_link_hash_entry *export_glue; }; /* Traverse an arm ELF linker hash table. */ #define elf32_arm_link_hash_traverse(table, func, info) \ (elf_link_hash_traverse \ (&(table)->root, \ (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ (info))) /* Get the ARM elf linker hash table from a link_info structure. */ #define elf32_arm_hash_table(info) \ ((struct elf32_arm_link_hash_table *) ((info)->hash)) /* ARM ELF linker hash table. */ struct elf32_arm_link_hash_table { /* The main hash table. */ struct elf_link_hash_table root; /* The size in bytes of the section containing the Thumb-to-ARM glue. */ bfd_size_type thumb_glue_size; /* The size in bytes of the section containing the ARM-to-Thumb glue. */ bfd_size_type arm_glue_size; /* The size in bytes of the section containing glue for VFP11 erratum veneers. */ bfd_size_type vfp11_erratum_glue_size; /* An arbitrary input BFD chosen to hold the glue sections. */ bfd * bfd_of_glue_owner; /* Nonzero to output a BE8 image. */ int byteswap_code; /* Zero if R_ARM_TARGET1 means R_ARM_ABS32. Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */ int target1_is_rel; /* The relocation to use for R_ARM_TARGET2 relocations. */ int target2_reloc; /* Nonzero to fix BX instructions for ARMv4 targets. */ int fix_v4bx; /* Nonzero if the ARM/Thumb BLX instructions are available for use. */ int use_blx; /* What sort of code sequences we should look for which may trigger the VFP11 denorm erratum. */ bfd_arm_vfp11_fix vfp11_fix; /* Global counter for the number of fixes we have emitted. */ int num_vfp11_fixes; /* Nonzero to force PIC branch veneers. */ int pic_veneer; /* The number of bytes in the initial entry in the PLT. */ bfd_size_type plt_header_size; /* The number of bytes in the subsequent PLT etries. */ bfd_size_type plt_entry_size; /* True if the target system is VxWorks. */ int vxworks_p; /* True if the target system is Symbian OS. */ int symbian_p; /* True if the target uses REL relocations. */ int use_rel; /* Short-cuts to get to dynamic linker sections. */ asection *sgot; asection *sgotplt; asection *srelgot; asection *splt; asection *srelplt; asection *sdynbss; asection *srelbss; /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */ asection *srelplt2; /* Data for R_ARM_TLS_LDM32 relocations. */ union { bfd_signed_vma refcount; bfd_vma offset; } tls_ldm_got; /* Small local sym to section mapping cache. */ struct sym_sec_cache sym_sec; /* For convenience in allocate_dynrelocs. */ bfd * obfd; }; /* Create an entry in an ARM ELF linker hash table. */ static struct bfd_hash_entry * elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry, struct bfd_hash_table * table, const char * string) { struct elf32_arm_link_hash_entry * ret = (struct elf32_arm_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == (struct elf32_arm_link_hash_entry *) NULL) ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry)); if (ret == NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = ((struct elf32_arm_link_hash_entry *) _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != NULL) { ret->relocs_copied = NULL; ret->tls_type = GOT_UNKNOWN; ret->plt_thumb_refcount = 0; ret->plt_got_offset = -1; ret->export_glue = NULL; } return (struct bfd_hash_entry *) ret; } /* Return true if NAME is the name of the relocation section associated with S. */ static bfd_boolean reloc_section_p (struct elf32_arm_link_hash_table *htab, const char *name, asection *s) { if (htab->use_rel) return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0; else return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0; } /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static bfd_boolean create_got_section (bfd *dynobj, struct bfd_link_info *info) { struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); /* BPABI objects never have a GOT, or associated sections. */ if (htab->symbian_p) return TRUE; if (! _bfd_elf_create_got_section (dynobj, info)) return FALSE; htab->sgot = bfd_get_section_by_name (dynobj, ".got"); htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); if (!htab->sgot || !htab->sgotplt) abort (); htab->srelgot = bfd_make_section_with_flags (dynobj, RELOC_SECTION (htab, ".got"), (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)); if (htab->srelgot == NULL || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2)) return FALSE; return TRUE; } /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static bfd_boolean elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) { struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); if (!htab->sgot && !create_got_section (dynobj, info)) return FALSE; if (!_bfd_elf_create_dynamic_sections (dynobj, info)) return FALSE; htab->splt = bfd_get_section_by_name (dynobj, ".plt"); htab->srelplt = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt")); htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss"); if (!info->shared) htab->srelbss = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".bss")); if (htab->vxworks_p) { if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2)) return FALSE; if (info->shared) { htab->plt_header_size = 0; htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry); } else { htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry); htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry); } } if (!htab->splt || !htab->srelplt || !htab->sdynbss || (!info->shared && !htab->srelbss)) abort (); return TRUE; } /* Copy the extra info we tack onto an elf_link_hash_entry. */ static void elf32_arm_copy_indirect_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *dir, struct elf_link_hash_entry *ind) { struct elf32_arm_link_hash_entry *edir, *eind; edir = (struct elf32_arm_link_hash_entry *) dir; eind = (struct elf32_arm_link_hash_entry *) ind; if (eind->relocs_copied != NULL) { if (edir->relocs_copied != NULL) { struct elf32_arm_relocs_copied **pp; struct elf32_arm_relocs_copied *p; /* Add reloc counts against the indirect sym to the direct sym list. Merge any entries against the same section. */ for (pp = &eind->relocs_copied; (p = *pp) != NULL; ) { struct elf32_arm_relocs_copied *q; for (q = edir->relocs_copied; q != NULL; q = q->next) if (q->section == p->section) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->relocs_copied; } edir->relocs_copied = eind->relocs_copied; eind->relocs_copied = NULL; } if (ind->root.type == bfd_link_hash_indirect) { /* Copy over PLT info. */ edir->plt_thumb_refcount += eind->plt_thumb_refcount; eind->plt_thumb_refcount = 0; if (dir->got.refcount <= 0) { edir->tls_type = eind->tls_type; eind->tls_type = GOT_UNKNOWN; } } _bfd_elf_link_hash_copy_indirect (info, dir, ind); } /* Create an ARM elf linker hash table. */ static struct bfd_link_hash_table * elf32_arm_link_hash_table_create (bfd *abfd) { struct elf32_arm_link_hash_table *ret; bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table); ret = bfd_malloc (amt); if (ret == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (& ret->root, abfd, elf32_arm_link_hash_newfunc, sizeof (struct elf32_arm_link_hash_entry))) { free (ret); return NULL; } ret->sgot = NULL; ret->sgotplt = NULL; ret->srelgot = NULL; ret->splt = NULL; ret->srelplt = NULL; ret->sdynbss = NULL; ret->srelbss = NULL; ret->srelplt2 = NULL; ret->thumb_glue_size = 0; ret->arm_glue_size = 0; ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; ret->vfp11_erratum_glue_size = 0; ret->num_vfp11_fixes = 0; ret->bfd_of_glue_owner = NULL; ret->byteswap_code = 0; ret->target1_is_rel = 0; ret->target2_reloc = R_ARM_NONE; #ifdef FOUR_WORD_PLT ret->plt_header_size = 16; ret->plt_entry_size = 16; #else ret->plt_header_size = 20; ret->plt_entry_size = 12; #endif ret->fix_v4bx = 0; ret->use_blx = 0; ret->vxworks_p = 0; ret->symbian_p = 0; ret->use_rel = 1; ret->sym_sec.abfd = NULL; ret->obfd = abfd; ret->tls_ldm_got.refcount = 0; return &ret->root.root; } /* Locate the Thumb encoded calling stub for NAME. */ static struct elf_link_hash_entry * find_thumb_glue (struct bfd_link_info *link_info, const char *name, char **error_message) { char *tmp_name; struct elf_link_hash_entry *hash; struct elf32_arm_link_hash_table *hash_table; /* We need a pointer to the armelf specific hash table. */ hash_table = elf32_arm_hash_table (link_info); tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1); BFD_ASSERT (tmp_name); sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name); hash = elf_link_hash_lookup (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); if (hash == NULL) asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"), tmp_name, name); free (tmp_name); return hash; } /* Locate the ARM encoded calling stub for NAME. */ static struct elf_link_hash_entry * find_arm_glue (struct bfd_link_info *link_info, const char *name, char **error_message) { char *tmp_name; struct elf_link_hash_entry *myh; struct elf32_arm_link_hash_table *hash_table; /* We need a pointer to the elfarm specific hash table. */ hash_table = elf32_arm_hash_table (link_info); tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1); BFD_ASSERT (tmp_name); sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name); myh = elf_link_hash_lookup (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); if (myh == NULL) asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"), tmp_name, name); free (tmp_name); return myh; } /* ARM->Thumb glue (static images): .arm __func_from_arm: ldr r12, __func_addr bx r12 __func_addr: .word func @ behave as if you saw a ARM_32 reloc. (v5t static images) .arm __func_from_arm: ldr pc, __func_addr __func_addr: .word func @ behave as if you saw a ARM_32 reloc. (relocatable images) .arm __func_from_arm: ldr r12, __func_offset add r12, r12, pc bx r12 __func_offset: .word func - . */ #define ARM2THUMB_STATIC_GLUE_SIZE 12 static const insn32 a2t1_ldr_insn = 0xe59fc000; static const insn32 a2t2_bx_r12_insn = 0xe12fff1c; static const insn32 a2t3_func_addr_insn = 0x00000001; #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8 static const insn32 a2t1v5_ldr_insn = 0xe51ff004; static const insn32 a2t2v5_func_addr_insn = 0x00000001; #define ARM2THUMB_PIC_GLUE_SIZE 16 static const insn32 a2t1p_ldr_insn = 0xe59fc004; static const insn32 a2t2p_add_pc_insn = 0xe08cc00f; static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c; /* Thumb->ARM: Thumb->(non-interworking aware) ARM .thumb .thumb .align 2 .align 2 __func_from_thumb: __func_from_thumb: bx pc push {r6, lr} nop ldr r6, __func_addr .arm mov lr, pc __func_change_to_arm: bx r6 b func .arm __func_back_to_thumb: ldmia r13! {r6, lr} bx lr __func_addr: .word func */ #define THUMB2ARM_GLUE_SIZE 8 static const insn16 t2a1_bx_pc_insn = 0x4778; static const insn16 t2a2_noop_insn = 0x46c0; static const insn32 t2a3_b_insn = 0xea000000; #define VFP11_ERRATUM_VENEER_SIZE 8 #ifndef ELFARM_NABI_C_INCLUDED bfd_boolean bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info) { asection * s; bfd_byte * foo; struct elf32_arm_link_hash_table * globals; globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); if (globals->arm_glue_size != 0) { BFD_ASSERT (globals->bfd_of_glue_owner != NULL); s = bfd_get_section_by_name (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size); BFD_ASSERT (s->size == globals->arm_glue_size); s->contents = foo; } if (globals->thumb_glue_size != 0) { BFD_ASSERT (globals->bfd_of_glue_owner != NULL); s = bfd_get_section_by_name (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size); BFD_ASSERT (s->size == globals->thumb_glue_size); s->contents = foo; } if (globals->vfp11_erratum_glue_size != 0) { BFD_ASSERT (globals->bfd_of_glue_owner != NULL); s = bfd_get_section_by_name (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME); BFD_ASSERT (s != NULL); foo = bfd_alloc (globals->bfd_of_glue_owner, globals->vfp11_erratum_glue_size); BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size); s->contents = foo; } return TRUE; } /* Allocate space and symbols for calling a Thumb function from Arm mode. returns the symbol identifying teh stub. */ static struct elf_link_hash_entry * record_arm_to_thumb_glue (struct bfd_link_info * link_info, struct elf_link_hash_entry * h) { const char * name = h->root.root.string; asection * s; char * tmp_name; struct elf_link_hash_entry * myh; struct bfd_link_hash_entry * bh; struct elf32_arm_link_hash_table * globals; bfd_vma val; bfd_size_type size; globals = elf32_arm_hash_table (link_info); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); s = bfd_get_section_by_name (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1); BFD_ASSERT (tmp_name); sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name); myh = elf_link_hash_lookup (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); if (myh != NULL) { /* We've already seen this guy. */ free (tmp_name); return myh; } /* The only trick here is using hash_table->arm_glue_size as the value. Even though the section isn't allocated yet, this is where we will be putting it. */ bh = NULL; val = globals->arm_glue_size + 1; _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, tmp_name, BSF_GLOBAL, s, val, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); myh->forced_local = 1; free (tmp_name); if (link_info->shared || globals->root.is_relocatable_executable || globals->pic_veneer) size = ARM2THUMB_PIC_GLUE_SIZE; else if (globals->use_blx) size = ARM2THUMB_V5_STATIC_GLUE_SIZE; else size = ARM2THUMB_STATIC_GLUE_SIZE; s->size += size; globals->arm_glue_size += size; return myh; } static void record_thumb_to_arm_glue (struct bfd_link_info *link_info, struct elf_link_hash_entry *h) { const char *name = h->root.root.string; asection *s; char *tmp_name; struct elf_link_hash_entry *myh; struct bfd_link_hash_entry *bh; struct elf32_arm_link_hash_table *hash_table; bfd_vma val; hash_table = elf32_arm_hash_table (link_info); BFD_ASSERT (hash_table != NULL); BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL); s = bfd_get_section_by_name (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1); BFD_ASSERT (tmp_name); sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name); myh = elf_link_hash_lookup (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); if (myh != NULL) { /* We've already seen this guy. */ free (tmp_name); return; } bh = NULL; val = hash_table->thumb_glue_size + 1; _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name, BSF_GLOBAL, s, val, NULL, TRUE, FALSE, &bh); /* If we mark it 'Thumb', the disassembler will do a better job. */ myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC); myh->forced_local = 1; free (tmp_name); #define CHANGE_TO_ARM "__%s_change_to_arm" #define BACK_FROM_ARM "__%s_back_from_arm" /* Allocate another symbol to mark where we switch to Arm mode. */ tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (CHANGE_TO_ARM) + 1); BFD_ASSERT (tmp_name); sprintf (tmp_name, CHANGE_TO_ARM, name); bh = NULL; val = hash_table->thumb_glue_size + 4, _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name, BSF_LOCAL, s, val, NULL, TRUE, FALSE, &bh); free (tmp_name); s->size += THUMB2ARM_GLUE_SIZE; hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE; return; } /* Add an entry to the code/data map for section SEC. */ static void elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma) { struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); unsigned int newidx; if (sec_data->map == NULL) { sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map)); sec_data->mapcount = 0; sec_data->mapsize = 1; } newidx = sec_data->mapcount++; if (sec_data->mapcount > sec_data->mapsize) { sec_data->mapsize *= 2; sec_data->map = bfd_realloc (sec_data->map, sec_data->mapsize * sizeof (elf32_arm_section_map)); } sec_data->map[newidx].vma = vma; sec_data->map[newidx].type = type; } /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode veneers are handled for now. */ static bfd_vma record_vfp11_erratum_veneer (struct bfd_link_info *link_info, elf32_vfp11_erratum_list *branch, bfd *branch_bfd, asection *branch_sec, unsigned int offset) { asection *s; struct elf32_arm_link_hash_table *hash_table; char *tmp_name; struct elf_link_hash_entry *myh; struct bfd_link_hash_entry *bh; bfd_vma val; struct _arm_elf_section_data *sec_data; int errcount; elf32_vfp11_erratum_list *newerr; hash_table = elf32_arm_hash_table (link_info); BFD_ASSERT (hash_table != NULL); BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL); s = bfd_get_section_by_name (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME); sec_data = elf32_arm_section_data (s); BFD_ASSERT (s != NULL); tmp_name = bfd_malloc ((bfd_size_type) strlen (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10); BFD_ASSERT (tmp_name); sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME, hash_table->num_vfp11_fixes); myh = elf_link_hash_lookup (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); BFD_ASSERT (myh == NULL); bh = NULL; val = hash_table->vfp11_erratum_glue_size; _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); myh->forced_local = 1; /* Link veneer back to calling location. */ errcount = ++(sec_data->erratumcount); newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list)); newerr->type = VFP11_ERRATUM_ARM_VENEER; newerr->vma = -1; newerr->u.v.branch = branch; newerr->u.v.id = hash_table->num_vfp11_fixes; branch->u.b.veneer = newerr; newerr->next = sec_data->erratumlist; sec_data->erratumlist = newerr; /* A symbol for the return from the veneer. */ sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r", hash_table->num_vfp11_fixes); myh = elf_link_hash_lookup (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); if (myh != NULL) abort (); bh = NULL; val = offset + 4; _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL, branch_sec, val, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); myh->forced_local = 1; free (tmp_name); /* Generate a mapping symbol for the veneer section, and explicitly add an entry for that symbol to the code/data map for the section. */ if (hash_table->vfp11_erratum_glue_size == 0) { bh = NULL; /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it ever requires this erratum fix. */ _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, "$a", BSF_LOCAL, s, 0, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); myh->forced_local = 1; /* The elf32_arm_init_maps function only cares about symbols from input BFDs. We must make a note of this generated mapping symbol ourselves so that code byteswapping works properly in elf32_arm_write_section. */ elf32_arm_section_map_add (s, 'a', 0); } s->size += VFP11_ERRATUM_VENEER_SIZE; hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE; hash_table->num_vfp11_fixes++; /* The offset of the veneer. */ return val; } /* Add the glue sections to ABFD. This function is called from the linker scripts in ld/emultempl/{armelf}.em. */ bfd_boolean bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd, struct bfd_link_info *info) { flagword flags; asection *sec; /* If we are only performing a partial link do not bother adding the glue. */ if (info->relocatable) return TRUE; sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME); if (sec == NULL) { /* Note: we do not include the flag SEC_LINKER_CREATED, as this will prevent elf_link_input_bfd() from processing the contents of this section. */ flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY); sec = bfd_make_section_with_flags (abfd, ARM2THUMB_GLUE_SECTION_NAME, flags); if (sec == NULL || !bfd_set_section_alignment (abfd, sec, 2)) return FALSE; /* Set the gc mark to prevent the section from being removed by garbage collection, despite the fact that no relocs refer to this section. */ sec->gc_mark = 1; } sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME); if (sec == NULL) { flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY); sec = bfd_make_section_with_flags (abfd, THUMB2ARM_GLUE_SECTION_NAME, flags); if (sec == NULL || !bfd_set_section_alignment (abfd, sec, 2)) return FALSE; sec->gc_mark = 1; } sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME); if (sec == NULL) { flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY); sec = bfd_make_section_with_flags (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME, flags); if (sec == NULL || !bfd_set_section_alignment (abfd, sec, 2)) return FALSE; sec->gc_mark = 1; } return TRUE; } /* Select a BFD to be used to hold the sections used by the glue code. This function is called from the linker scripts in ld/emultempl/ {armelf/pe}.em */ bfd_boolean bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info) { struct elf32_arm_link_hash_table *globals; /* If we are only performing a partial link do not bother getting a bfd to hold the glue. */ if (info->relocatable) return TRUE; /* Make sure we don't attach the glue sections to a dynamic object. */ BFD_ASSERT (!(abfd->flags & DYNAMIC)); globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); if (globals->bfd_of_glue_owner != NULL) return TRUE; /* Save the bfd for later use. */ globals->bfd_of_glue_owner = abfd; return TRUE; } static void check_use_blx(struct elf32_arm_link_hash_table *globals) { if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch) > 2) globals->use_blx = 1; } bfd_boolean bfd_elf32_arm_process_before_allocation (bfd *abfd, struct bfd_link_info *link_info) { Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Rela *internal_relocs = NULL; Elf_Internal_Rela *irel, *irelend; bfd_byte *contents = NULL; asection *sec; struct elf32_arm_link_hash_table *globals; /* If we are only performing a partial link do not bother to construct any glue. */ if (link_info->relocatable) return TRUE; /* Here we have a bfd that is to be included on the link. We have a hook to do reloc rummaging, before section sizes are nailed down. */ globals = elf32_arm_hash_table (link_info); check_use_blx (globals); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); if (globals->byteswap_code && !bfd_big_endian (abfd)) { _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."), abfd); return FALSE; } /* Rummage around all the relocs and map the glue vectors. */ sec = abfd->sections; if (sec == NULL) return TRUE; for (; sec != NULL; sec = sec->next) { if (sec->reloc_count == 0) continue; if ((sec->flags & SEC_EXCLUDE) != 0) continue; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; /* Load the relocs. */ internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, (void *) NULL, (Elf_Internal_Rela *) NULL, FALSE); if (internal_relocs == NULL) goto error_return; irelend = internal_relocs + sec->reloc_count; for (irel = internal_relocs; irel < irelend; irel++) { long r_type; unsigned long r_index; struct elf_link_hash_entry *h; r_type = ELF32_R_TYPE (irel->r_info); r_index = ELF32_R_SYM (irel->r_info); /* These are the only relocation types we care about. */ if ( r_type != R_ARM_PC24 && r_type != R_ARM_PLT32 && r_type != R_ARM_CALL && r_type != R_ARM_JUMP24 && r_type != R_ARM_THM_CALL) continue; /* Get the section contents if we haven't done so already. */ if (contents == NULL) { /* Get cached copy if it exists. */ if (elf_section_data (sec)->this_hdr.contents != NULL) contents = elf_section_data (sec)->this_hdr.contents; else { /* Go get them off disk. */ if (! bfd_malloc_and_get_section (abfd, sec, &contents)) goto error_return; } } /* If the relocation is not against a symbol it cannot concern us. */ h = NULL; /* We don't care about local symbols. */ if (r_index < symtab_hdr->sh_info) continue; /* This is an external symbol. */ r_index -= symtab_hdr->sh_info; h = (struct elf_link_hash_entry *) elf_sym_hashes (abfd)[r_index]; /* If the relocation is against a static symbol it must be within the current section and so cannot be a cross ARM/Thumb relocation. */ if (h == NULL) continue; /* If the call will go through a PLT entry then we do not need glue. */ if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1) continue; switch (r_type) { case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_CALL: case R_ARM_JUMP24: /* This one is a call from arm code. We need to look up the target of the call. If it is a thumb target, we insert glue. */ if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC && !(r_type == R_ARM_CALL && globals->use_blx)) record_arm_to_thumb_glue (link_info, h); break; case R_ARM_THM_CALL: /* This one is a call from thumb code. We look up the target of the call. If it is not a thumb target, we insert glue. */ if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC && !globals->use_blx && h->root.type != bfd_link_hash_undefweak) record_thumb_to_arm_glue (link_info, h); break; default: abort (); } } if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); contents = NULL; if (internal_relocs != NULL && elf_section_data (sec)->relocs != internal_relocs) free (internal_relocs); internal_relocs = NULL; } return TRUE; error_return: if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); if (internal_relocs != NULL && elf_section_data (sec)->relocs != internal_relocs) free (internal_relocs); return FALSE; } #endif /* Initialise maps of ARM/Thumb/data for input BFDs. */ void bfd_elf32_arm_init_maps (bfd *abfd) { Elf_Internal_Sym *isymbuf; Elf_Internal_Shdr *hdr; unsigned int i, localsyms; if (bfd_get_flavour (abfd) != bfd_target_elf_flavour || elf_tdata (abfd) == NULL) return; if ((abfd->flags & DYNAMIC) != 0) return; hdr = &elf_tdata (abfd)->symtab_hdr; localsyms = hdr->sh_info; /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field should contain the number of local symbols, which should come before any global symbols. Mapping symbols are always local. */ isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL); /* No internal symbols read? Skip this BFD. */ if (isymbuf == NULL) return; for (i = 0; i < localsyms; i++) { Elf_Internal_Sym *isym = &isymbuf[i]; asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx); const char *name; if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL) { name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, isym->st_name); if (bfd_is_arm_special_symbol_name (name, BFD_ARM_SPECIAL_SYM_TYPE_MAP)) elf32_arm_section_map_add (sec, name[1], isym->st_value); } } } void bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info) { struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */ if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7) { switch (globals->vfp11_fix) { case BFD_ARM_VFP11_FIX_DEFAULT: case BFD_ARM_VFP11_FIX_NONE: globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; break; default: /* Give a warning, but do as the user requests anyway. */ (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum " "workaround is not necessary for target architecture"), obfd); } } else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT) /* For earlier architectures, we might need the workaround, but do not enable it by default. If users is running with broken hardware, they must enable the erratum fix explicitly. */ globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; } enum bfd_arm_vfp11_pipe { VFP11_FMAC, VFP11_LS, VFP11_DS, VFP11_BAD }; /* Return a VFP register number. This is encoded as RX:X for single-precision registers, or X:RX for double-precision registers, where RX is the group of four bits in the instruction encoding and X is the single extension bit. RX and X fields are specified using their lowest (starting) bit. The return value is: 0...31: single-precision registers s0...s31 32...63: double-precision registers d0...d31. Although X should be zero for VFP11 (encoding d0...d15 only), we might encounter VFP3 instructions, so we allow the full range for DP registers. */ static unsigned int bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx, unsigned int x) { if (is_double) return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32; else return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1); } /* Set bits in *WMASK according to a register number REG as encoded by bfd_arm_vfp11_regno(). Ignore d16-d31. */ static void bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg) { if (reg < 32) *wmask |= 1 << reg; else if (reg < 48) *wmask |= 3 << ((reg - 32) * 2); } /* Return TRUE if WMASK overwrites anything in REGS. */ static bfd_boolean bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs) { int i; for (i = 0; i < numregs; i++) { unsigned int reg = regs[i]; if (reg < 32 && (wmask & (1 << reg)) != 0) return TRUE; reg -= 32; if (reg >= 16) continue; if ((wmask & (3 << (reg * 2))) != 0) return TRUE; } return FALSE; } /* In this function, we're interested in two things: finding input registers for VFP data-processing instructions, and finding the set of registers which arbitrary VFP instructions may write to. We use a 32-bit unsigned int to hold the written set, so FLDM etc. are easy to deal with (we're only interested in 32 SP registers or 16 dp registers, due to the VFP version implemented by the chip in question). DP registers are marked by setting both SP registers in the write mask). */ static enum bfd_arm_vfp11_pipe bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs, int *numregs) { enum bfd_arm_vfp11_pipe pipe = VFP11_BAD; bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0; if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */ { unsigned int pqrs; unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22); unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5); pqrs = ((insn & 0x00800000) >> 20) | ((insn & 0x00300000) >> 19) | ((insn & 0x00000040) >> 6); switch (pqrs) { case 0: /* fmac[sd]. */ case 1: /* fnmac[sd]. */ case 2: /* fmsc[sd]. */ case 3: /* fnmsc[sd]. */ pipe = VFP11_FMAC; bfd_arm_vfp11_write_mask (destmask, fd); regs[0] = fd; regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */ regs[2] = fm; *numregs = 3; break; case 4: /* fmul[sd]. */ case 5: /* fnmul[sd]. */ case 6: /* fadd[sd]. */ case 7: /* fsub[sd]. */ pipe = VFP11_FMAC; goto vfp_binop; case 8: /* fdiv[sd]. */ pipe = VFP11_DS; vfp_binop: bfd_arm_vfp11_write_mask (destmask, fd); regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */ regs[1] = fm; *numregs = 2; break; case 15: /* extended opcode. */ { unsigned int extn = ((insn >> 15) & 0x1e) | ((insn >> 7) & 1); switch (extn) { case 0: /* fcpy[sd]. */ case 1: /* fabs[sd]. */ case 2: /* fneg[sd]. */ case 8: /* fcmp[sd]. */ case 9: /* fcmpe[sd]. */ case 10: /* fcmpz[sd]. */ case 11: /* fcmpez[sd]. */ case 16: /* fuito[sd]. */ case 17: /* fsito[sd]. */ case 24: /* ftoui[sd]. */ case 25: /* ftouiz[sd]. */ case 26: /* ftosi[sd]. */ case 27: /* ftosiz[sd]. */ /* These instructions will not bounce due to underflow. */ *numregs = 0; pipe = VFP11_FMAC; break; case 3: /* fsqrt[sd]. */ /* fsqrt cannot underflow, but it can (perhaps) overwrite registers to cause the erratum in previous instructions. */ bfd_arm_vfp11_write_mask (destmask, fd); pipe = VFP11_DS; break; case 15: /* fcvt{ds,sd}. */ { int rnum = 0; bfd_arm_vfp11_write_mask (destmask, fd); /* Only FCVTSD can underflow. */ if ((insn & 0x100) != 0) regs[rnum++] = fm; *numregs = rnum; pipe = VFP11_FMAC; } break; default: return VFP11_BAD; } } break; default: return VFP11_BAD; } } /* Two-register transfer. */ else if ((insn & 0x0fe00ed0) == 0x0c400a10) { unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5); if ((insn & 0x100000) == 0) { if (is_double) bfd_arm_vfp11_write_mask (destmask, fm); else { bfd_arm_vfp11_write_mask (destmask, fm); bfd_arm_vfp11_write_mask (destmask, fm + 1); } } pipe = VFP11_LS; } else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */ { int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22); unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1); switch (puw) { case 0: /* Two-reg transfer. We should catch these above. */ abort (); case 2: /* fldm[sdx]. */ case 3: case 5: { unsigned int i, offset = insn & 0xff; if (is_double) offset >>= 1; for (i = fd; i < fd + offset; i++) bfd_arm_vfp11_write_mask (destmask, i); } break; case 4: /* fld[sd]. */ case 6: bfd_arm_vfp11_write_mask (destmask, fd); break; default: return VFP11_BAD; } pipe = VFP11_LS; } /* Single-register transfer. Note L==0. */ else if ((insn & 0x0f100e10) == 0x0e000a10) { unsigned int opcode = (insn >> 21) & 7; unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7); switch (opcode) { case 0: /* fmsr/fmdlr. */ case 1: /* fmdhr. */ /* Mark fmdhr and fmdlr as writing to the whole of the DP destination register. I don't know if this is exactly right, but it is the conservative choice. */ bfd_arm_vfp11_write_mask (destmask, fn); break; case 7: /* fmxr. */ break; } pipe = VFP11_LS; } return pipe; } static int elf32_arm_compare_mapping (const void * a, const void * b); /* Look for potentially-troublesome code sequences which might trigger the VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet (available from ARM) for details of the erratum. A short version is described in ld.texinfo. */ bfd_boolean bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info) { asection *sec; bfd_byte *contents = NULL; int state = 0; int regs[3], numregs = 0; struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR); /* We use a simple FSM to match troublesome VFP11 instruction sequences. The states transition as follows: 0 -> 1 (vector) or 0 -> 2 (scalar) A VFP FMAC-pipeline instruction has been seen. Fill regs[0]..regs[numregs-1] with its input operands. Remember this instruction in 'first_fmac'. 1 -> 2 Any instruction, except for a VFP instruction which overwrites regs[*]. 1 -> 3 [ -> 0 ] or 2 -> 3 [ -> 0 ] A VFP instruction has been seen which overwrites any of regs[*]. We must make a veneer! Reset state to 0 before examining next instruction. 2 -> 0 If we fail to match anything in state 2, reset to state 0 and reset the instruction pointer to the instruction after 'first_fmac'. If the VFP11 vector mode is in use, there must be at least two unrelated instructions between anti-dependent VFP11 instructions to properly avoid triggering the erratum, hence the use of the extra state 1. */ /* If we are only performing a partial link do not bother to construct any glue. */ if (link_info->relocatable) return TRUE; /* We should have chosen a fix type by the time we get here. */ BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT); if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE) return TRUE; /* Skip if this bfd does not correspond to an ELF image. */ if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) return TRUE; for (sec = abfd->sections; sec != NULL; sec = sec->next) { unsigned int i, span, first_fmac = 0, veneer_of_insn = 0; struct _arm_elf_section_data *sec_data; /* If we don't have executable progbits, we're not interested in this section. Also skip if section is to be excluded. */ if (elf_section_type (sec) != SHT_PROGBITS || (elf_section_flags (sec) & SHF_EXECINSTR) == 0 || (sec->flags & SEC_EXCLUDE) != 0 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0) continue; sec_data = elf32_arm_section_data (sec); if (sec_data->mapcount == 0) continue; if (elf_section_data (sec)->this_hdr.contents != NULL) contents = elf_section_data (sec)->this_hdr.contents; else if (! bfd_malloc_and_get_section (abfd, sec, &contents)) goto error_return; qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map), elf32_arm_compare_mapping); for (span = 0; span < sec_data->mapcount; span++) { unsigned int span_start = sec_data->map[span].vma; unsigned int span_end = (span == sec_data->mapcount - 1) ? sec->size : sec_data->map[span + 1].vma; char span_type = sec_data->map[span].type; /* FIXME: Only ARM mode is supported at present. We may need to support Thumb-2 mode also at some point. */ if (span_type != 'a') continue; for (i = span_start; i < span_end;) { unsigned int next_i = i + 4; unsigned int insn = bfd_big_endian (abfd) ? (contents[i] << 24) | (contents[i + 1] << 16) | (contents[i + 2] << 8) | contents[i + 3] : (contents[i + 3] << 24) | (contents[i + 2] << 16) | (contents[i + 1] << 8) | contents[i]; unsigned int writemask = 0; enum bfd_arm_vfp11_pipe pipe; switch (state) { case 0: pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs, &numregs); /* I'm assuming the VFP11 erratum can trigger with denorm operands on either the FMAC or the DS pipeline. This might lead to slightly overenthusiastic veneer insertion. */ if (pipe == VFP11_FMAC || pipe == VFP11_DS) { state = use_vector ? 1 : 2; first_fmac = i; veneer_of_insn = insn; } break; case 1: { int other_regs[3], other_numregs; pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, other_regs, &other_numregs); if (pipe != VFP11_BAD && bfd_arm_vfp11_antidependency (writemask, regs, numregs)) state = 3; else state = 2; } break; case 2: { int other_regs[3], other_numregs; pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, other_regs, &other_numregs); if (pipe != VFP11_BAD && bfd_arm_vfp11_antidependency (writemask, regs, numregs)) state = 3; else { state = 0; next_i = first_fmac + 4; } } break; case 3: abort (); /* Should be unreachable. */ } if (state == 3) { elf32_vfp11_erratum_list *newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list)); int errcount; errcount = ++(elf32_arm_section_data (sec)->erratumcount); newerr->u.b.vfp_insn = veneer_of_insn; switch (span_type) { case 'a': newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER; break; default: abort (); } record_vfp11_erratum_veneer (link_info, newerr, abfd, sec, first_fmac); newerr->vma = -1; newerr->next = sec_data->erratumlist; sec_data->erratumlist = newerr; state = 0; } i = next_i; } } if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); contents = NULL; } return TRUE; error_return: if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); return FALSE; } /* Find virtual-memory addresses for VFP11 erratum veneers and return locations after sections have been laid out, using specially-named symbols. */ void bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd, struct bfd_link_info *link_info) { asection *sec; struct elf32_arm_link_hash_table *globals; char *tmp_name; if (link_info->relocatable) return; /* Skip if this bfd does not correspond to an ELF image. */ if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) return; globals = elf32_arm_hash_table (link_info); tmp_name = bfd_malloc ((bfd_size_type) strlen (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10); for (sec = abfd->sections; sec != NULL; sec = sec->next) { struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); elf32_vfp11_erratum_list *errnode = sec_data->erratumlist; for (; errnode != NULL; errnode = errnode->next) { struct elf_link_hash_entry *myh; bfd_vma vma; switch (errnode->type) { case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER: case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER: /* Find veneer symbol. */ sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME, errnode->u.b.veneer->u.v.id); myh = elf_link_hash_lookup (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); if (myh == NULL) (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer " "`%s'"), abfd, tmp_name); vma = myh->root.u.def.section->output_section->vma + myh->root.u.def.section->output_offset + myh->root.u.def.value; errnode->u.b.veneer->vma = vma; break; case VFP11_ERRATUM_ARM_VENEER: case VFP11_ERRATUM_THUMB_VENEER: /* Find return location. */ sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r", errnode->u.v.id); myh = elf_link_hash_lookup (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); if (myh == NULL) (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer " "`%s'"), abfd, tmp_name); vma = myh->root.u.def.section->output_section->vma + myh->root.u.def.section->output_offset + myh->root.u.def.value; errnode->u.v.branch->vma = vma; break; default: abort (); } } } free (tmp_name); } /* Set target relocation values needed during linking. */ void bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd, struct bfd_link_info *link_info, int target1_is_rel, char * target2_type, int fix_v4bx, int use_blx, bfd_arm_vfp11_fix vfp11_fix, int no_enum_warn, int pic_veneer) { struct elf32_arm_link_hash_table *globals; globals = elf32_arm_hash_table (link_info); globals->target1_is_rel = target1_is_rel; if (strcmp (target2_type, "rel") == 0) globals->target2_reloc = R_ARM_REL32; else if (strcmp (target2_type, "abs") == 0) globals->target2_reloc = R_ARM_ABS32; else if (strcmp (target2_type, "got-rel") == 0) globals->target2_reloc = R_ARM_GOT_PREL; else { _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."), target2_type); } globals->fix_v4bx = fix_v4bx; globals->use_blx |= use_blx; globals->vfp11_fix = vfp11_fix; globals->pic_veneer = pic_veneer; elf32_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn; } /* The thumb form of a long branch is a bit finicky, because the offset encoding is split over two fields, each in it's own instruction. They can occur in any order. So given a thumb form of long branch, and an offset, insert the offset into the thumb branch and return finished instruction. It takes two thumb instructions to encode the target address. Each has 11 bits to invest. The upper 11 bits are stored in one (identified by H-0.. see below), the lower 11 bits are stored in the other (identified by H-1). Combine together and shifted left by 1 (it's a half word address) and there you have it. Op: 1111 = F, H-0, upper address-0 = 000 Op: 1111 = F, H-1, lower address-0 = 800 They can be ordered either way, but the arm tools I've seen always put the lower one first. It probably doesn't matter. krk@cygnus.com XXX: Actually the order does matter. The second instruction (H-1) moves the computed address into the PC, so it must be the second one in the sequence. The problem, however is that whilst little endian code stores the instructions in HI then LOW order, big endian code does the reverse. nickc@cygnus.com. */ #define LOW_HI_ORDER 0xF800F000 #define HI_LOW_ORDER 0xF000F800 static insn32 insert_thumb_branch (insn32 br_insn, int rel_off) { unsigned int low_bits; unsigned int high_bits; BFD_ASSERT ((rel_off & 1) != 1); rel_off >>= 1; /* Half word aligned address. */ low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */ high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */ if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER) br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits; else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER) br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits; else /* FIXME: abort is probably not the right call. krk@cygnus.com */ abort (); /* Error - not a valid branch instruction form. */ return br_insn; } /* Store an Arm insn into an output section not processed by elf32_arm_write_section. */ static void put_arm_insn (struct elf32_arm_link_hash_table *htab, bfd * output_bfd, bfd_vma val, void * ptr) { if (htab->byteswap_code != bfd_little_endian (output_bfd)) bfd_putl32 (val, ptr); else bfd_putb32 (val, ptr); } /* Store a 16-bit Thumb insn into an output section not processed by elf32_arm_write_section. */ static void put_thumb_insn (struct elf32_arm_link_hash_table *htab, bfd * output_bfd, bfd_vma val, void * ptr) { if (htab->byteswap_code != bfd_little_endian (output_bfd)) bfd_putl16 (val, ptr); else bfd_putb16 (val, ptr); } /* Thumb code calling an ARM function. */ static int elf32_thumb_to_arm_stub (struct bfd_link_info * info, const char * name, bfd * input_bfd, bfd * output_bfd, asection * input_section, bfd_byte * hit_data, asection * sym_sec, bfd_vma offset, bfd_signed_vma addend, bfd_vma val, char **error_message) { asection * s = 0; bfd_vma my_offset; unsigned long int tmp; long int ret_offset; struct elf_link_hash_entry * myh; struct elf32_arm_link_hash_table * globals; myh = find_thumb_glue (info, name, error_message); if (myh == NULL) return FALSE; globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); my_offset = myh->root.u.def.value; s = bfd_get_section_by_name (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); BFD_ASSERT (s->contents != NULL); BFD_ASSERT (s->output_section != NULL); if ((my_offset & 0x01) == 0x01) { if (sym_sec != NULL && sym_sec->owner != NULL && !INTERWORK_FLAG (sym_sec->owner)) { (*_bfd_error_handler) (_("%B(%s): warning: interworking not enabled.\n" " first occurrence: %B: thumb call to arm"), sym_sec->owner, input_bfd, name); return FALSE; } --my_offset; myh->root.u.def.value = my_offset; put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn, s->contents + my_offset); put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn, s->contents + my_offset + 2); ret_offset = /* Address of destination of the stub. */ ((bfd_signed_vma) val) - ((bfd_signed_vma) /* Offset from the start of the current section to the start of the stubs. */ (s->output_offset /* Offset of the start of this stub from the start of the stubs. */ + my_offset /* Address of the start of the current section. */ + s->output_section->vma) /* The branch instruction is 4 bytes into the stub. */ + 4 /* ARM branches work from the pc of the instruction + 8. */ + 8); put_arm_insn (globals, output_bfd, (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF), s->contents + my_offset + 4); } BFD_ASSERT (my_offset <= globals->thumb_glue_size); /* Now go back and fix up the original BL insn to point to here. */ ret_offset = /* Address of where the stub is located. */ (s->output_section->vma + s->output_offset + my_offset) /* Address of where the BL is located. */ - (input_section->output_section->vma + input_section->output_offset + offset) /* Addend in the relocation. */ - addend /* Biassing for PC-relative addressing. */ - 8; tmp = bfd_get_32 (input_bfd, hit_data - input_section->vma); bfd_put_32 (output_bfd, (bfd_vma) insert_thumb_branch (tmp, ret_offset), hit_data - input_section->vma); return TRUE; } /* Populate an Arm to Thumb stub. Returns the stub symbol. */ static struct elf_link_hash_entry * elf32_arm_create_thumb_stub (struct bfd_link_info * info, const char * name, bfd * input_bfd, bfd * output_bfd, asection * sym_sec, bfd_vma val, asection *s, char **error_message) { bfd_vma my_offset; long int ret_offset; struct elf_link_hash_entry * myh; struct elf32_arm_link_hash_table * globals; myh = find_arm_glue (info, name, error_message); if (myh == NULL) return NULL; globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); my_offset = myh->root.u.def.value; if ((my_offset & 0x01) == 0x01) { if (sym_sec != NULL && sym_sec->owner != NULL && !INTERWORK_FLAG (sym_sec->owner)) { (*_bfd_error_handler) (_("%B(%s): warning: interworking not enabled.\n" " first occurrence: %B: arm call to thumb"), sym_sec->owner, input_bfd, name); } --my_offset; myh->root.u.def.value = my_offset; if (info->shared || globals->root.is_relocatable_executable || globals->pic_veneer) { /* For relocatable objects we can't use absolute addresses, so construct the address from a relative offset. */ /* TODO: If the offset is small it's probably worth constructing the address with adds. */ put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn, s->contents + my_offset); put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn, s->contents + my_offset + 4); put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn, s->contents + my_offset + 8); /* Adjust the offset by 4 for the position of the add, and 8 for the pipeline offset. */ ret_offset = (val - (s->output_offset + s->output_section->vma + my_offset + 12)) | 1; bfd_put_32 (output_bfd, ret_offset, s->contents + my_offset + 12); } else if (globals->use_blx) { put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn, s->contents + my_offset); /* It's a thumb address. Add the low order bit. */ bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn, s->contents + my_offset + 4); } else { put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn, s->contents + my_offset); put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn, s->contents + my_offset + 4); /* It's a thumb address. Add the low order bit. */ bfd_put_32 (output_bfd, val | a2t3_func_addr_insn, s->contents + my_offset + 8); } } BFD_ASSERT (my_offset <= globals->arm_glue_size); return myh; } /* Arm code calling a Thumb function. */ static int elf32_arm_to_thumb_stub (struct bfd_link_info * info, const char * name, bfd * input_bfd, bfd * output_bfd, asection * input_section, bfd_byte * hit_data, asection * sym_sec, bfd_vma offset, bfd_signed_vma addend, bfd_vma val, char **error_message) { unsigned long int tmp; bfd_vma my_offset; asection * s; long int ret_offset; struct elf_link_hash_entry * myh; struct elf32_arm_link_hash_table * globals; globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); s = bfd_get_section_by_name (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); BFD_ASSERT (s->contents != NULL); BFD_ASSERT (s->output_section != NULL); myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd, sym_sec, val, s, error_message); if (!myh) return FALSE; my_offset = myh->root.u.def.value; tmp = bfd_get_32 (input_bfd, hit_data); tmp = tmp & 0xFF000000; /* Somehow these are both 4 too far, so subtract 8. */ ret_offset = (s->output_offset + my_offset + s->output_section->vma - (input_section->output_offset + input_section->output_section->vma + offset + addend) - 8); tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF); bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma); return TRUE; } /* Populate Arm stub for an exported Thumb function. */ static bfd_boolean elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf) { struct bfd_link_info * info = (struct bfd_link_info *) inf; asection * s; struct elf_link_hash_entry * myh; struct elf32_arm_link_hash_entry *eh; struct elf32_arm_link_hash_table * globals; asection *sec; bfd_vma val; char *error_message; eh = elf32_arm_hash_entry(h); /* Allocate stubs for exported Thumb functions on v4t. */ if (eh->export_glue == NULL) return TRUE; globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); s = bfd_get_section_by_name (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); BFD_ASSERT (s->contents != NULL); BFD_ASSERT (s->output_section != NULL); sec = eh->export_glue->root.u.def.section; BFD_ASSERT (sec->output_section != NULL); val = eh->export_glue->root.u.def.value + sec->output_offset + sec->output_section->vma; myh = elf32_arm_create_thumb_stub (info, h->root.root.string, h->root.u.def.section->owner, globals->obfd, sec, val, s, &error_message); BFD_ASSERT (myh); return TRUE; } /* Generate Arm stubs for exported Thumb symbols. */ static void elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_link_info *link_info) { struct elf32_arm_link_hash_table * globals; if (!link_info) return; globals = elf32_arm_hash_table (link_info); /* If blx is available then exported Thumb symbols are OK and there is nothing to do. */ if (globals->use_blx) return; elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub, link_info); } /* Some relocations map to different relocations depending on the target. Return the real relocation. */ static int arm_real_reloc_type (struct elf32_arm_link_hash_table * globals, int r_type) { switch (r_type) { case R_ARM_TARGET1: if (globals->target1_is_rel) return R_ARM_REL32; else return R_ARM_ABS32; case R_ARM_TARGET2: return globals->target2_reloc; default: return r_type; } } /* Return the base VMA address which should be subtracted from real addresses when resolving @dtpoff relocation. This is PT_TLS segment p_vaddr. */ static bfd_vma dtpoff_base (struct bfd_link_info *info) { /* If tls_sec is NULL, we should have signalled an error already. */ if (elf_hash_table (info)->tls_sec == NULL) return 0; return elf_hash_table (info)->tls_sec->vma; } /* Return the relocation value for @tpoff relocation if STT_TLS virtual address is ADDRESS. */ static bfd_vma tpoff (struct bfd_link_info *info, bfd_vma address) { struct elf_link_hash_table *htab = elf_hash_table (info); bfd_vma base; /* If tls_sec is NULL, we should have signalled an error already. */ if (htab->tls_sec == NULL) return 0; base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); return address - htab->tls_sec->vma + base; } /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA. VALUE is the relocation value. */ static bfd_reloc_status_type elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value) { if (value > 0xfff) return bfd_reloc_overflow; value |= bfd_get_32 (abfd, data) & 0xfffff000; bfd_put_32 (abfd, value, data); return bfd_reloc_ok; } /* For a given value of n, calculate the value of G_n as required to deal with group relocations. We return it in the form of an encoded constant-and-rotation, together with the final residual. If n is specified as less than zero, then final_residual is filled with the input value and no further action is performed. */ static bfd_vma calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual) { int current_n; bfd_vma g_n; bfd_vma encoded_g_n = 0; bfd_vma residual = value; /* Also known as Y_n. */ for (current_n = 0; current_n <= n; current_n++) { int shift; /* Calculate which part of the value to mask. */ if (residual == 0) shift = 0; else { int msb; /* Determine the most significant bit in the residual and align the resulting value to a 2-bit boundary. */ for (msb = 30; msb >= 0; msb -= 2) if (residual & (3 << msb)) break; /* The desired shift is now (msb - 6), or zero, whichever is the greater. */ shift = msb - 6; if (shift < 0) shift = 0; } /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */ g_n = residual & (0xff << shift); encoded_g_n = (g_n >> shift) | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8); /* Calculate the residual for the next time around. */ residual &= ~g_n; } *final_residual = residual; return encoded_g_n; } /* Given an ARM instruction, determine whether it is an ADD or a SUB. Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */ static int identify_add_or_sub(bfd_vma insn) { int opcode = insn & 0x1e00000; if (opcode == 1 << 23) /* ADD */ return 1; if (opcode == 1 << 22) /* SUB */ return -1; return 0; } /* Determine if we're dealing with a Thumb-2 object. */ static int using_thumb2 (struct elf32_arm_link_hash_table *globals) { int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7; } /* Perform a relocation as part of a final link. */ static bfd_reloc_status_type elf32_arm_final_link_relocate (reloc_howto_type * howto, bfd * input_bfd, bfd * output_bfd, asection * input_section, bfd_byte * contents, Elf_Internal_Rela * rel, bfd_vma value, struct bfd_link_info * info, asection * sym_sec, const char * sym_name, int sym_flags, struct elf_link_hash_entry * h, bfd_boolean * unresolved_reloc_p, char **error_message) { unsigned long r_type = howto->type; unsigned long r_symndx; bfd_byte * hit_data = contents + rel->r_offset; bfd * dynobj = NULL; Elf_Internal_Shdr * symtab_hdr; struct elf_link_hash_entry ** sym_hashes; bfd_vma * local_got_offsets; asection * sgot = NULL; asection * splt = NULL; asection * sreloc = NULL; bfd_vma addend; bfd_signed_vma signed_addend; struct elf32_arm_link_hash_table * globals; globals = elf32_arm_hash_table (info); /* Some relocation type map to different relocations depending on the target. We pick the right one here. */ r_type = arm_real_reloc_type (globals, r_type); if (r_type != howto->type) howto = elf32_arm_howto_from_type (r_type); /* If the start address has been set, then set the EF_ARM_HASENTRY flag. Setting this more than once is redundant, but the cost is not too high, and it keeps the code simple. The test is done here, rather than somewhere else, because the start address is only set just before the final link commences. Note - if the user deliberately sets a start address of 0, the flag will not be set. */ if (bfd_get_start_address (output_bfd) != 0) elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY; dynobj = elf_hash_table (info)->dynobj; if (dynobj) { sgot = bfd_get_section_by_name (dynobj, ".got"); splt = bfd_get_section_by_name (dynobj, ".plt"); } symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); local_got_offsets = elf_local_got_offsets (input_bfd); r_symndx = ELF32_R_SYM (rel->r_info); if (globals->use_rel) { addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask; if (addend & ((howto->src_mask + 1) >> 1)) { signed_addend = -1; signed_addend &= ~ howto->src_mask; signed_addend |= addend; } else signed_addend = addend; } else addend = signed_addend = rel->r_addend; switch (r_type) { case R_ARM_NONE: /* We don't need to find a value for this symbol. It's just a marker. */ *unresolved_reloc_p = FALSE; return bfd_reloc_ok; case R_ARM_ABS12: if (!globals->vxworks_p) return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend); case R_ARM_PC24: case R_ARM_ABS32: case R_ARM_ABS32_NOI: case R_ARM_REL32: case R_ARM_REL32_NOI: case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_XPC25: case R_ARM_PREL31: case R_ARM_PLT32: /* Handle relocations which should use the PLT entry. ABS32/REL32 will use the symbol's value, which may point to a PLT entry, but we don't need to handle that here. If we created a PLT entry, all branches in this object should go to it. */ if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI) && h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1) { /* If we've created a .plt section, and assigned a PLT entry to this function, it should not be known to bind locally. If it were, we would have cleared the PLT entry. */ BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h)); value = (splt->output_section->vma + splt->output_offset + h->plt.offset); *unresolved_reloc_p = FALSE; return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); } /* When generating a shared object or relocatable executable, these relocations are copied into the output file to be resolved at run time. */ if ((info->shared || globals->root.is_relocatable_executable) && (input_section->flags & SEC_ALLOC) && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI) || !SYMBOL_CALLS_LOCAL (info, h)) && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && r_type != R_ARM_PC24 && r_type != R_ARM_CALL && r_type != R_ARM_JUMP24 && r_type != R_ARM_PREL31 && r_type != R_ARM_PLT32) { Elf_Internal_Rela outrel; bfd_byte *loc; bfd_boolean skip, relocate; *unresolved_reloc_p = FALSE; if (sreloc == NULL) { const char * name; name = (bfd_elf_string_from_elf_section (input_bfd, elf_elfheader (input_bfd)->e_shstrndx, elf_section_data (input_section)->rel_hdr.sh_name)); if (name == NULL) return bfd_reloc_notsupported; BFD_ASSERT (reloc_section_p (globals, name, input_section)); sreloc = bfd_get_section_by_name (dynobj, name); BFD_ASSERT (sreloc != NULL); } skip = FALSE; relocate = FALSE; outrel.r_addend = addend; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) -1) skip = TRUE; else if (outrel.r_offset == (bfd_vma) -2) skip = TRUE, relocate = TRUE; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) memset (&outrel, 0, sizeof outrel); else if (h != NULL && h->dynindx != -1 && (!info->shared || !info->symbolic || !h->def_regular)) outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); else { int symbol; /* This symbol is local, or marked to become local. */ if (sym_flags == STT_ARM_TFUNC) value |= 1; if (globals->symbian_p) { asection *osec; /* On Symbian OS, the data segment and text segement can be relocated independently. Therefore, we must indicate the segment to which this relocation is relative. The BPABI allows us to use any symbol in the right segment; we just use the section symbol as it is convenient. (We cannot use the symbol given by "h" directly as it will not appear in the dynamic symbol table.) Note that the dynamic linker ignores the section symbol value, so we don't subtract osec->vma from the emitted reloc addend. */ if (sym_sec) osec = sym_sec->output_section; else osec = input_section->output_section; symbol = elf_section_data (osec)->dynindx; if (symbol == 0) { struct elf_link_hash_table *htab = elf_hash_table (info); if ((osec->flags & SEC_READONLY) == 0 && htab->data_index_section != NULL) osec = htab->data_index_section; else osec = htab->text_index_section; symbol = elf_section_data (osec)->dynindx; } BFD_ASSERT (symbol != 0); } else /* On SVR4-ish systems, the dynamic loader cannot relocate the text and data segments independently, so the symbol does not matter. */ symbol = 0; outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE); if (globals->use_rel) relocate = TRUE; else outrel.r_addend += value; } loc = sreloc->contents; loc += sreloc->reloc_count++ * RELOC_SIZE (globals); SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc); /* If this reloc is against an external symbol, we do not want to fiddle with the addend. Otherwise, we need to include the symbol value so that it becomes an addend for the dynamic reloc. */ if (! relocate) return bfd_reloc_ok; return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, (bfd_vma) 0); } else switch (r_type) { case R_ARM_ABS12: return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend); case R_ARM_XPC25: /* Arm BLX instruction. */ case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PC24: /* Arm B/BL instruction */ case R_ARM_PLT32: if (r_type == R_ARM_XPC25) { /* Check for Arm calling Arm function. */ /* FIXME: Should we translate the instruction into a BL instruction instead ? */ if (sym_flags != STT_ARM_TFUNC) (*_bfd_error_handler) (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."), input_bfd, h ? h->root.root.string : "(local)"); } else if (r_type != R_ARM_CALL || !globals->use_blx) { /* Check for Arm calling Thumb function. */ if (sym_flags == STT_ARM_TFUNC) { if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd, input_section, hit_data, sym_sec, rel->r_offset, signed_addend, value, error_message)) return bfd_reloc_ok; else return bfd_reloc_dangerous; } } /* The ARM ELF ABI says that this reloc is computed as: S - P + A where: S is the address of the symbol in the relocation. P is address of the instruction being relocated. A is the addend (extracted from the instruction) in bytes. S is held in 'value'. P is the base address of the section containing the instruction plus the offset of the reloc into that section, ie: (input_section->output_section->vma + input_section->output_offset + rel->r_offset). A is the addend, converted into bytes, ie: (signed_addend * 4) Note: None of these operations have knowledge of the pipeline size of the processor, thus it is up to the assembler to encode this information into the addend. */ value -= (input_section->output_section->vma + input_section->output_offset); value -= rel->r_offset; if (globals->use_rel) value += (signed_addend << howto->size); else /* RELA addends do not have to be adjusted by howto->size. */ value += signed_addend; signed_addend = value; signed_addend >>= howto->rightshift; /* A branch to an undefined weak symbol is turned into a jump to the next instruction. */ if (h && h->root.type == bfd_link_hash_undefweak) { value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000) | 0x0affffff; } else { /* Perform a signed range check. */ if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1)) || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1))) return bfd_reloc_overflow; addend = (value & 2); value = (signed_addend & howto->dst_mask) | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask)); /* Set the H bit in the BLX instruction. */ if (sym_flags == STT_ARM_TFUNC) { if (addend) value |= (1 << 24); else value &= ~(bfd_vma)(1 << 24); } if (r_type == R_ARM_CALL) { /* Select the correct instruction (BL or BLX). */ if (sym_flags == STT_ARM_TFUNC) value |= (1 << 28); else { value &= ~(bfd_vma)(1 << 28); value |= (1 << 24); } } } break; case R_ARM_ABS32: value += addend; if (sym_flags == STT_ARM_TFUNC) value |= 1; break; case R_ARM_ABS32_NOI: value += addend; break; case R_ARM_REL32: value += addend; if (sym_flags == STT_ARM_TFUNC) value |= 1; value -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); break; case R_ARM_REL32_NOI: value += addend; value -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); break; case R_ARM_PREL31: value -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); value += signed_addend; if (! h || h->root.type != bfd_link_hash_undefweak) { /* Check for overflow */ if ((value ^ (value >> 1)) & (1 << 30)) return bfd_reloc_overflow; } value &= 0x7fffffff; value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000); if (sym_flags == STT_ARM_TFUNC) value |= 1; break; } bfd_put_32 (input_bfd, value, hit_data); return bfd_reloc_ok; case R_ARM_ABS8: value += addend; if ((long) value > 0x7f || (long) value < -0x80) return bfd_reloc_overflow; bfd_put_8 (input_bfd, value, hit_data); return bfd_reloc_ok; case R_ARM_ABS16: value += addend; if ((long) value > 0x7fff || (long) value < -0x8000) return bfd_reloc_overflow; bfd_put_16 (input_bfd, value, hit_data); return bfd_reloc_ok; case R_ARM_THM_ABS5: /* Support ldr and str instructions for the thumb. */ if (globals->use_rel) { /* Need to refetch addend. */ addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask; /* ??? Need to determine shift amount from operand size. */ addend >>= howto->rightshift; } value += addend; /* ??? Isn't value unsigned? */ if ((long) value > 0x1f || (long) value < -0x10) return bfd_reloc_overflow; /* ??? Value needs to be properly shifted into place first. */ value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f; bfd_put_16 (input_bfd, value, hit_data); return bfd_reloc_ok; case R_ARM_THM_ALU_PREL_11_0: /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */ { bfd_vma insn; bfd_signed_vma relocation; insn = (bfd_get_16 (input_bfd, hit_data) << 16) | bfd_get_16 (input_bfd, hit_data + 2); if (globals->use_rel) { signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4) | ((insn & (1 << 26)) >> 15); if (insn & 0xf00000) signed_addend = -signed_addend; } relocation = value + signed_addend; relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); value = llabs (relocation); if (value >= 0x1000) return bfd_reloc_overflow; insn = (insn & 0xfb0f8f00) | (value & 0xff) | ((value & 0x700) << 4) | ((value & 0x800) << 15); if (relocation < 0) insn |= 0xa00000; bfd_put_16 (input_bfd, insn >> 16, hit_data); bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); return bfd_reloc_ok; } case R_ARM_THM_PC12: /* Corresponds to: ldr.w reg, [pc, #offset]. */ { bfd_vma insn; bfd_signed_vma relocation; insn = (bfd_get_16 (input_bfd, hit_data) << 16) | bfd_get_16 (input_bfd, hit_data + 2); if (globals->use_rel) { signed_addend = insn & 0xfff; if (!(insn & (1 << 23))) signed_addend = -signed_addend; } relocation = value + signed_addend; relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); value = llabs (relocation); if (value >= 0x1000) return bfd_reloc_overflow; insn = (insn & 0xff7ff000) | value; if (relocation >= 0) insn |= (1 << 23); bfd_put_16 (input_bfd, insn >> 16, hit_data); bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); return bfd_reloc_ok; } case R_ARM_THM_XPC22: case R_ARM_THM_CALL: /* Thumb BL (branch long instruction). */ { bfd_vma relocation; bfd_vma reloc_sign; bfd_boolean overflow = FALSE; bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); bfd_signed_vma reloc_signed_max; bfd_signed_vma reloc_signed_min; bfd_vma check; bfd_signed_vma signed_check; int bitsize; int thumb2 = using_thumb2 (globals); /* A branch to an undefined weak symbol is turned into a jump to the next instruction. */ if (h && h->root.type == bfd_link_hash_undefweak) { bfd_put_16 (input_bfd, 0xe000, hit_data); bfd_put_16 (input_bfd, 0xbf00, hit_data + 2); return bfd_reloc_ok; } /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible with Thumb-1) involving the J1 and J2 bits. */ if (globals->use_rel) { bfd_vma s = (upper_insn & (1 << 10)) >> 10; bfd_vma upper = upper_insn & 0x3ff; bfd_vma lower = lower_insn & 0x7ff; bfd_vma j1 = (lower_insn & (1 << 13)) >> 13; bfd_vma j2 = (lower_insn & (1 << 11)) >> 11; bfd_vma i1 = j1 ^ s ? 0 : 1; bfd_vma i2 = j2 ^ s ? 0 : 1; addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1); /* Sign extend. */ addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24); signed_addend = addend; } if (r_type == R_ARM_THM_XPC22) { /* Check for Thumb to Thumb call. */ /* FIXME: Should we translate the instruction into a BL instruction instead ? */ if (sym_flags == STT_ARM_TFUNC) (*_bfd_error_handler) (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."), input_bfd, h ? h->root.root.string : "(local)"); } else { /* If it is not a call to Thumb, assume call to Arm. If it is a call relative to a section name, then it is not a function call at all, but rather a long jump. Calls through the PLT do not require stubs. */ if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION && (h == NULL || splt == NULL || h->plt.offset == (bfd_vma) -1)) { if (globals->use_blx) { /* Convert BL to BLX. */ lower_insn = (lower_insn & ~0x1000) | 0x0800; } else if (elf32_thumb_to_arm_stub (info, sym_name, input_bfd, output_bfd, input_section, hit_data, sym_sec, rel->r_offset, signed_addend, value, error_message)) return bfd_reloc_ok; else return bfd_reloc_dangerous; } else if (sym_flags == STT_ARM_TFUNC && globals->use_blx) { /* Make sure this is a BL. */ lower_insn |= 0x1800; } } /* Handle calls via the PLT. */ if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1) { value = (splt->output_section->vma + splt->output_offset + h->plt.offset); if (globals->use_blx) { /* If the Thumb BLX instruction is available, convert the BL to a BLX instruction to call the ARM-mode PLT entry. */ lower_insn = (lower_insn & ~0x1000) | 0x0800; } else /* Target the Thumb stub before the ARM PLT entry. */ value -= PLT_THUMB_STUB_SIZE; *unresolved_reloc_p = FALSE; } relocation = value + signed_addend; relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); check = relocation >> howto->rightshift; /* If this is a signed value, the rightshift just dropped leading 1 bits (assuming twos complement). */ if ((bfd_signed_vma) relocation >= 0) signed_check = check; else signed_check = check | ~((bfd_vma) -1 >> howto->rightshift); /* Calculate the permissable maximum and minimum values for this relocation according to whether we're relocating for Thumb-2 or not. */ bitsize = howto->bitsize; if (!thumb2) bitsize -= 2; reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift; reloc_signed_min = ~reloc_signed_max; /* Assumes two's complement. */ if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) overflow = TRUE; if ((lower_insn & 0x1800) == 0x0800) /* For a BLX instruction, make sure that the relocation is rounded up to a word boundary. This follows the semantics of the instruction which specifies that bit 1 of the target address will come from bit 1 of the base address. */ relocation = (relocation + 2) & ~ 3; /* Put RELOCATION back into the insn. Assumes two's complement. We use the Thumb-2 encoding, which is safe even if dealing with a Thumb-1 instruction by virtue of our overflow check above. */ reloc_sign = (signed_check < 0) ? 1 : 0; upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x3ff) | (reloc_sign << 10); lower_insn = (lower_insn & ~(bfd_vma) 0x2fff) | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13) | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11) | ((relocation >> 1) & 0x7ff); /* Put the relocated value back in the object file: */ bfd_put_16 (input_bfd, upper_insn, hit_data); bfd_put_16 (input_bfd, lower_insn, hit_data + 2); return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); } break; case R_ARM_THM_JUMP24: /* Thumb32 unconditional branch instruction. */ { bfd_vma relocation; bfd_boolean overflow = FALSE; bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift; bfd_signed_vma reloc_signed_min = ~ reloc_signed_max; bfd_vma check; bfd_signed_vma signed_check; /* Need to refetch the addend, reconstruct the top three bits, and glue the two pieces together. */ if (globals->use_rel) { bfd_vma S = (upper_insn & 0x0400) >> 10; bfd_vma hi = (upper_insn & 0x03ff); bfd_vma I1 = (lower_insn & 0x2000) >> 13; bfd_vma I2 = (lower_insn & 0x0800) >> 11; bfd_vma lo = (lower_insn & 0x07ff); I1 = !(I1 ^ S); I2 = !(I2 ^ S); S = !S; signed_addend = (S << 24) | (I1 << 23) | (I2 << 22) | (hi << 12) | (lo << 1); signed_addend -= (1 << 24); /* Sign extend. */ } /* ??? Should handle interworking? GCC might someday try to use this for tail calls. */ relocation = value + signed_addend; relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); check = relocation >> howto->rightshift; /* If this is a signed value, the rightshift just dropped leading 1 bits (assuming twos complement). */ if ((bfd_signed_vma) relocation >= 0) signed_check = check; else signed_check = check | ~((bfd_vma) -1 >> howto->rightshift); /* Assumes two's complement. */ if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) overflow = TRUE; /* Put RELOCATION back into the insn. */ { bfd_vma S = (relocation & 0x01000000) >> 24; bfd_vma I1 = (relocation & 0x00800000) >> 23; bfd_vma I2 = (relocation & 0x00400000) >> 22; bfd_vma hi = (relocation & 0x003ff000) >> 12; bfd_vma lo = (relocation & 0x00000ffe) >> 1; I1 = !(I1 ^ S); I2 = !(I2 ^ S); upper_insn = (upper_insn & (bfd_vma) 0xf800) | (S << 10) | hi; lower_insn = (lower_insn & (bfd_vma) 0xd000) | (I1 << 13) | (I2 << 11) | lo; } /* Put the relocated value back in the object file: */ bfd_put_16 (input_bfd, upper_insn, hit_data); bfd_put_16 (input_bfd, lower_insn, hit_data + 2); return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); } case R_ARM_THM_JUMP19: /* Thumb32 conditional branch instruction. */ { bfd_vma relocation; bfd_boolean overflow = FALSE; bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); bfd_signed_vma reloc_signed_max = 0xffffe; bfd_signed_vma reloc_signed_min = -0x100000; bfd_signed_vma signed_check; /* Need to refetch the addend, reconstruct the top three bits, and squish the two 11 bit pieces together. */ if (globals->use_rel) { bfd_vma S = (upper_insn & 0x0400) >> 10; bfd_vma upper = (upper_insn & 0x003f); bfd_vma J1 = (lower_insn & 0x2000) >> 13; bfd_vma J2 = (lower_insn & 0x0800) >> 11; bfd_vma lower = (lower_insn & 0x07ff); upper |= J1 << 6; upper |= J2 << 7; upper |= (!S) << 8; upper -= 0x0100; /* Sign extend. */ addend = (upper << 12) | (lower << 1); signed_addend = addend; } /* ??? Should handle interworking? GCC might someday try to use this for tail calls. */ relocation = value + signed_addend; relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); signed_check = (bfd_signed_vma) relocation; if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) overflow = TRUE; /* Put RELOCATION back into the insn. */ { bfd_vma S = (relocation & 0x00100000) >> 20; bfd_vma J2 = (relocation & 0x00080000) >> 19; bfd_vma J1 = (relocation & 0x00040000) >> 18; bfd_vma hi = (relocation & 0x0003f000) >> 12; bfd_vma lo = (relocation & 0x00000ffe) >> 1; upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi; lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo; } /* Put the relocated value back in the object file: */ bfd_put_16 (input_bfd, upper_insn, hit_data); bfd_put_16 (input_bfd, lower_insn, hit_data + 2); return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); } case R_ARM_THM_JUMP11: case R_ARM_THM_JUMP8: case R_ARM_THM_JUMP6: /* Thumb B (branch) instruction). */ { bfd_signed_vma relocation; bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1; bfd_signed_vma reloc_signed_min = ~ reloc_signed_max; bfd_signed_vma signed_check; /* CZB cannot jump backward. */ if (r_type == R_ARM_THM_JUMP6) reloc_signed_min = 0; if (globals->use_rel) { /* Need to refetch addend. */ addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask; if (addend & ((howto->src_mask + 1) >> 1)) { signed_addend = -1; signed_addend &= ~ howto->src_mask; signed_addend |= addend; } else signed_addend = addend; /* The value in the insn has been right shifted. We need to undo this, so that we can perform the address calculation in terms of bytes. */ signed_addend <<= howto->rightshift; } relocation = value + signed_addend; relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); relocation >>= howto->rightshift; signed_check = relocation; if (r_type == R_ARM_THM_JUMP6) relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3); else relocation &= howto->dst_mask; relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask)); bfd_put_16 (input_bfd, relocation, hit_data); /* Assumes two's complement. */ if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) return bfd_reloc_overflow; return bfd_reloc_ok; } case R_ARM_ALU_PCREL7_0: case R_ARM_ALU_PCREL15_8: case R_ARM_ALU_PCREL23_15: { bfd_vma insn; bfd_vma relocation; insn = bfd_get_32 (input_bfd, hit_data); if (globals->use_rel) { /* Extract the addend. */ addend = (insn & 0xff) << ((insn & 0xf00) >> 7); signed_addend = addend; } relocation = value + signed_addend; relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); insn = (insn & ~0xfff) | ((howto->bitpos << 7) & 0xf00) | ((relocation >> howto->bitpos) & 0xff); bfd_put_32 (input_bfd, value, hit_data); } return bfd_reloc_ok; case R_ARM_GNU_VTINHERIT: case R_ARM_GNU_VTENTRY: return bfd_reloc_ok; case R_ARM_GOTOFF32: /* Relocation is relative to the start of the global offset table. */ BFD_ASSERT (sgot != NULL); if (sgot == NULL) return bfd_reloc_notsupported; /* If we are addressing a Thumb function, we need to adjust the address by one, so that attempts to call the function pointer will correctly interpret it as Thumb code. */ if (sym_flags == STT_ARM_TFUNC) value += 1; /* Note that sgot->output_offset is not involved in this calculation. We always want the start of .got. If we define _GLOBAL_OFFSET_TABLE in a different way, as is permitted by the ABI, we might have to change this calculation. */ value -= sgot->output_section->vma; return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); case R_ARM_GOTPC: /* Use global offset table as symbol value. */ BFD_ASSERT (sgot != NULL); if (sgot == NULL) return bfd_reloc_notsupported; *unresolved_reloc_p = FALSE; value = sgot->output_section->vma; return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); case R_ARM_GOT32: case R_ARM_GOT_PREL: /* Relocation is to the entry for this symbol in the global offset table. */ if (sgot == NULL) return bfd_reloc_notsupported; if (h != NULL) { bfd_vma off; bfd_boolean dyn; off = h->got.offset; BFD_ASSERT (off != (bfd_vma) -1); dyn = globals->root.dynamic_sections_created; if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) || (info->shared && SYMBOL_REFERENCES_LOCAL (info, h)) || (ELF_ST_VISIBILITY (h->other) && h->root.type == bfd_link_hash_undefweak)) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally. We must initialize this entry in the global offset table. Since the offset must always be a multiple of 4, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a .rel(a).got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if ((off & 1) != 0) off &= ~1; else { /* If we are addressing a Thumb function, we need to adjust the address by one, so that attempts to call the function pointer will correctly interpret it as Thumb code. */ if (sym_flags == STT_ARM_TFUNC) value |= 1; bfd_put_32 (output_bfd, value, sgot->contents + off); h->got.offset |= 1; } } else *unresolved_reloc_p = FALSE; value = sgot->output_offset + off; } else { bfd_vma off; BFD_ASSERT (local_got_offsets != NULL && local_got_offsets[r_symndx] != (bfd_vma) -1); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already generated the necessary reloc. */ if ((off & 1) != 0) off &= ~1; else { /* If we are addressing a Thumb function, we need to adjust the address by one, so that attempts to call the function pointer will correctly interpret it as Thumb code. */ if (sym_flags == STT_ARM_TFUNC) value |= 1; if (globals->use_rel) bfd_put_32 (output_bfd, value, sgot->contents + off); if (info->shared) { asection * srelgot; Elf_Internal_Rela outrel; bfd_byte *loc; srelgot = (bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".got"))); BFD_ASSERT (srelgot != NULL); outrel.r_addend = addend + value; outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); loc = srelgot->contents; loc += srelgot->reloc_count++ * RELOC_SIZE (globals); SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc); } local_got_offsets[r_symndx] |= 1; } value = sgot->output_offset + off; } if (r_type != R_ARM_GOT32) value += sgot->output_section->vma; return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); case R_ARM_TLS_LDO32: value = value - dtpoff_base (info); return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); case R_ARM_TLS_LDM32: { bfd_vma off; if (globals->sgot == NULL) abort (); off = globals->tls_ldm_got.offset; if ((off & 1) != 0) off &= ~1; else { /* If we don't know the module number, create a relocation for it. */ if (info->shared) { Elf_Internal_Rela outrel; bfd_byte *loc; if (globals->srelgot == NULL) abort (); outrel.r_addend = 0; outrel.r_offset = (globals->sgot->output_section->vma + globals->sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32); if (globals->use_rel) bfd_put_32 (output_bfd, outrel.r_addend, globals->sgot->contents + off); loc = globals->srelgot->contents; loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals); SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc); } else bfd_put_32 (output_bfd, 1, globals->sgot->contents + off); globals->tls_ldm_got.offset |= 1; } value = globals->sgot->output_section->vma + globals->sgot->output_offset + off - (input_section->output_section->vma + input_section->output_offset + rel->r_offset); return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); } case R_ARM_TLS_GD32: case R_ARM_TLS_IE32: { bfd_vma off; int indx; char tls_type; if (globals->sgot == NULL) abort (); indx = 0; if (h != NULL) { bfd_boolean dyn; dyn = globals->root.dynamic_sections_created; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) { *unresolved_reloc_p = FALSE; indx = h->dynindx; } off = h->got.offset; tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type; } else { if (local_got_offsets == NULL) abort (); off = local_got_offsets[r_symndx]; tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx]; } if (tls_type == GOT_UNKNOWN) abort (); if ((off & 1) != 0) off &= ~1; else { bfd_boolean need_relocs = FALSE; Elf_Internal_Rela outrel; bfd_byte *loc = NULL; int cur_off = off; /* The GOT entries have not been initialized yet. Do it now, and emit any relocations. If both an IE GOT and a GD GOT are necessary, we emit the GD first. */ if ((info->shared || indx != 0) && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) { need_relocs = TRUE; if (globals->srelgot == NULL) abort (); loc = globals->srelgot->contents; loc += globals->srelgot->reloc_count * RELOC_SIZE (globals); } if (tls_type & GOT_TLS_GD) { if (need_relocs) { outrel.r_addend = 0; outrel.r_offset = (globals->sgot->output_section->vma + globals->sgot->output_offset + cur_off); outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32); if (globals->use_rel) bfd_put_32 (output_bfd, outrel.r_addend, globals->sgot->contents + cur_off); SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc); globals->srelgot->reloc_count++; loc += RELOC_SIZE (globals); if (indx == 0) bfd_put_32 (output_bfd, value - dtpoff_base (info), globals->sgot->contents + cur_off + 4); else { outrel.r_addend = 0; outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPOFF32); outrel.r_offset += 4; if (globals->use_rel) bfd_put_32 (output_bfd, outrel.r_addend, globals->sgot->contents + cur_off + 4); SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc); globals->srelgot->reloc_count++; loc += RELOC_SIZE (globals); } } else { /* If we are not emitting relocations for a general dynamic reference, then we must be in a static link or an executable link with the symbol binding locally. Mark it as belonging to module 1, the executable. */ bfd_put_32 (output_bfd, 1, globals->sgot->contents + cur_off); bfd_put_32 (output_bfd, value - dtpoff_base (info), globals->sgot->contents + cur_off + 4); } cur_off += 8; } if (tls_type & GOT_TLS_IE) { if (need_relocs) { if (indx == 0) outrel.r_addend = value - dtpoff_base (info); else outrel.r_addend = 0; outrel.r_offset = (globals->sgot->output_section->vma + globals->sgot->output_offset + cur_off); outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32); if (globals->use_rel) bfd_put_32 (output_bfd, outrel.r_addend, globals->sgot->contents + cur_off); SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc); globals->srelgot->reloc_count++; loc += RELOC_SIZE (globals); } else bfd_put_32 (output_bfd, tpoff (info, value), globals->sgot->contents + cur_off); cur_off += 4; } if (h != NULL) h->got.offset |= 1; else local_got_offsets[r_symndx] |= 1; } if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32) off += 8; value = globals->sgot->output_section->vma + globals->sgot->output_offset + off - (input_section->output_section->vma + input_section->output_offset + rel->r_offset); return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); } case R_ARM_TLS_LE32: if (info->shared) { (*_bfd_error_handler) (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"), input_bfd, input_section, (long) rel->r_offset, howto->name); return FALSE; } else value = tpoff (info, value); return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); case R_ARM_V4BX: if (globals->fix_v4bx) { bfd_vma insn = bfd_get_32 (input_bfd, hit_data); /* Ensure that we have a BX instruction. */ BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10); /* Preserve Rm (lowest four bits) and the condition code (highest four bits). Other bits encode MOV PC,Rm. */ insn = (insn & 0xf000000f) | 0x01a0f000; bfd_put_32 (input_bfd, insn, hit_data); } return bfd_reloc_ok; case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: /* Until we properly support segment-base-relative addressing then we assume the segment base to be zero, as for the group relocations. Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */ case R_ARM_MOVW_BREL_NC: case R_ARM_MOVW_BREL: case R_ARM_MOVT_BREL: { bfd_vma insn = bfd_get_32 (input_bfd, hit_data); if (globals->use_rel) { addend = ((insn >> 4) & 0xf000) | (insn & 0xfff); signed_addend = (addend ^ 0x10000) - 0x10000; } value += signed_addend; if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL) value -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); if (r_type == R_ARM_MOVW_BREL && value >= 0x10000) return bfd_reloc_overflow; if (sym_flags == STT_ARM_TFUNC) value |= 1; if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL || r_type == R_ARM_MOVT_BREL) value >>= 16; insn &= 0xfff0f000; insn |= value & 0xfff; insn |= (value & 0xf000) << 4; bfd_put_32 (input_bfd, insn, hit_data); } return bfd_reloc_ok; case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: /* Until we properly support segment-base-relative addressing then we assume the segment base to be zero, as for the above relocations. Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics as R_ARM_THM_MOVT_ABS. */ case R_ARM_THM_MOVW_BREL_NC: case R_ARM_THM_MOVW_BREL: case R_ARM_THM_MOVT_BREL: { bfd_vma insn; insn = bfd_get_16 (input_bfd, hit_data) << 16; insn |= bfd_get_16 (input_bfd, hit_data + 2); if (globals->use_rel) { addend = ((insn >> 4) & 0xf000) | ((insn >> 15) & 0x0800) | ((insn >> 4) & 0x0700) | (insn & 0x00ff); signed_addend = (addend ^ 0x10000) - 0x10000; } value += signed_addend; if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL) value -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000) return bfd_reloc_overflow; if (sym_flags == STT_ARM_TFUNC) value |= 1; if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL || r_type == R_ARM_THM_MOVT_BREL) value >>= 16; insn &= 0xfbf08f00; insn |= (value & 0xf000) << 4; insn |= (value & 0x0800) << 15; insn |= (value & 0x0700) << 4; insn |= (value & 0x00ff); bfd_put_16 (input_bfd, insn >> 16, hit_data); bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); } return bfd_reloc_ok; case R_ARM_ALU_PC_G0_NC: case R_ARM_ALU_PC_G1_NC: case R_ARM_ALU_PC_G0: case R_ARM_ALU_PC_G1: case R_ARM_ALU_PC_G2: case R_ARM_ALU_SB_G0_NC: case R_ARM_ALU_SB_G1_NC: case R_ARM_ALU_SB_G0: case R_ARM_ALU_SB_G1: case R_ARM_ALU_SB_G2: { bfd_vma insn = bfd_get_32 (input_bfd, hit_data); bfd_vma pc = input_section->output_section->vma + input_section->output_offset + rel->r_offset; /* sb should be the origin of the *segment* containing the symbol. It is not clear how to obtain this OS-dependent value, so we make an arbitrary choice of zero. */ bfd_vma sb = 0; bfd_vma residual; bfd_vma g_n; bfd_signed_vma signed_value; int group = 0; /* Determine which group of bits to select. */ switch (r_type) { case R_ARM_ALU_PC_G0_NC: case R_ARM_ALU_PC_G0: case R_ARM_ALU_SB_G0_NC: case R_ARM_ALU_SB_G0: group = 0; break; case R_ARM_ALU_PC_G1_NC: case R_ARM_ALU_PC_G1: case R_ARM_ALU_SB_G1_NC: case R_ARM_ALU_SB_G1: group = 1; break; case R_ARM_ALU_PC_G2: case R_ARM_ALU_SB_G2: group = 2; break; default: abort(); } /* If REL, extract the addend from the insn. If RELA, it will have already been fetched for us. */ if (globals->use_rel) { int negative; bfd_vma constant = insn & 0xff; bfd_vma rotation = (insn & 0xf00) >> 8; if (rotation == 0) signed_addend = constant; else { /* Compensate for the fact that in the instruction, the rotation is stored in multiples of 2 bits. */ rotation *= 2; /* Rotate "constant" right by "rotation" bits. */ signed_addend = (constant >> rotation) | (constant << (8 * sizeof (bfd_vma) - rotation)); } /* Determine if the instruction is an ADD or a SUB. (For REL, this determines the sign of the addend.) */ negative = identify_add_or_sub (insn); if (negative == 0) { (*_bfd_error_handler) (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"), input_bfd, input_section, (long) rel->r_offset, howto->name); return bfd_reloc_overflow; } signed_addend *= negative; } /* Compute the value (X) to go in the place. */ if (r_type == R_ARM_ALU_PC_G0_NC || r_type == R_ARM_ALU_PC_G1_NC || r_type == R_ARM_ALU_PC_G0 || r_type == R_ARM_ALU_PC_G1 || r_type == R_ARM_ALU_PC_G2) /* PC relative. */ signed_value = value - pc + signed_addend; else /* Section base relative. */ signed_value = value - sb + signed_addend; /* If the target symbol is a Thumb function, then set the Thumb bit in the address. */ if (sym_flags == STT_ARM_TFUNC) signed_value |= 1; /* Calculate the value of the relevant G_n, in encoded constant-with-rotation format. */ g_n = calculate_group_reloc_mask (llabs (signed_value), group, &residual); /* Check for overflow if required. */ if ((r_type == R_ARM_ALU_PC_G0 || r_type == R_ARM_ALU_PC_G1 || r_type == R_ARM_ALU_PC_G2 || r_type == R_ARM_ALU_SB_G0 || r_type == R_ARM_ALU_SB_G1 || r_type == R_ARM_ALU_SB_G2) && residual != 0) { (*_bfd_error_handler) (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), input_bfd, input_section, (long) rel->r_offset, llabs (signed_value), howto->name); return bfd_reloc_overflow; } /* Mask out the value and the ADD/SUB part of the opcode; take care not to destroy the S bit. */ insn &= 0xff1ff000; /* Set the opcode according to whether the value to go in the place is negative. */ if (signed_value < 0) insn |= 1 << 22; else insn |= 1 << 23; /* Encode the offset. */ insn |= g_n; bfd_put_32 (input_bfd, insn, hit_data); } return bfd_reloc_ok; case R_ARM_LDR_PC_G0: case R_ARM_LDR_PC_G1: case R_ARM_LDR_PC_G2: case R_ARM_LDR_SB_G0: case R_ARM_LDR_SB_G1: case R_ARM_LDR_SB_G2: { bfd_vma insn = bfd_get_32 (input_bfd, hit_data); bfd_vma pc = input_section->output_section->vma + input_section->output_offset + rel->r_offset; bfd_vma sb = 0; /* See note above. */ bfd_vma residual; bfd_signed_vma signed_value; int group = 0; /* Determine which groups of bits to calculate. */ switch (r_type) { case R_ARM_LDR_PC_G0: case R_ARM_LDR_SB_G0: group = 0; break; case R_ARM_LDR_PC_G1: case R_ARM_LDR_SB_G1: group = 1; break; case R_ARM_LDR_PC_G2: case R_ARM_LDR_SB_G2: group = 2; break; default: abort(); } /* If REL, extract the addend from the insn. If RELA, it will have already been fetched for us. */ if (globals->use_rel) { int negative = (insn & (1 << 23)) ? 1 : -1; signed_addend = negative * (insn & 0xfff); } /* Compute the value (X) to go in the place. */ if (r_type == R_ARM_LDR_PC_G0 || r_type == R_ARM_LDR_PC_G1 || r_type == R_ARM_LDR_PC_G2) /* PC relative. */ signed_value = value - pc + signed_addend; else /* Section base relative. */ signed_value = value - sb + signed_addend; /* Calculate the value of the relevant G_{n-1} to obtain the residual at that stage. */ calculate_group_reloc_mask (llabs (signed_value), group - 1, &residual); /* Check for overflow. */ if (residual >= 0x1000) { (*_bfd_error_handler) (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), input_bfd, input_section, (long) rel->r_offset, llabs (signed_value), howto->name); return bfd_reloc_overflow; } /* Mask out the value and U bit. */ insn &= 0xff7ff000; /* Set the U bit if the value to go in the place is non-negative. */ if (signed_value >= 0) insn |= 1 << 23; /* Encode the offset. */ insn |= residual; bfd_put_32 (input_bfd, insn, hit_data); } return bfd_reloc_ok; case R_ARM_LDRS_PC_G0: case R_ARM_LDRS_PC_G1: case R_ARM_LDRS_PC_G2: case R_ARM_LDRS_SB_G0: case R_ARM_LDRS_SB_G1: case R_ARM_LDRS_SB_G2: { bfd_vma insn = bfd_get_32 (input_bfd, hit_data); bfd_vma pc = input_section->output_section->vma + input_section->output_offset + rel->r_offset; bfd_vma sb = 0; /* See note above. */ bfd_vma residual; bfd_signed_vma signed_value; int group = 0; /* Determine which groups of bits to calculate. */ switch (r_type) { case R_ARM_LDRS_PC_G0: case R_ARM_LDRS_SB_G0: group = 0; break; case R_ARM_LDRS_PC_G1: case R_ARM_LDRS_SB_G1: group = 1; break; case R_ARM_LDRS_PC_G2: case R_ARM_LDRS_SB_G2: group = 2; break; default: abort(); } /* If REL, extract the addend from the insn. If RELA, it will have already been fetched for us. */ if (globals->use_rel) { int negative = (insn & (1 << 23)) ? 1 : -1; signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf)); } /* Compute the value (X) to go in the place. */ if (r_type == R_ARM_LDRS_PC_G0 || r_type == R_ARM_LDRS_PC_G1 || r_type == R_ARM_LDRS_PC_G2) /* PC relative. */ signed_value = value - pc + signed_addend; else /* Section base relative. */ signed_value = value - sb + signed_addend; /* Calculate the value of the relevant G_{n-1} to obtain the residual at that stage. */ calculate_group_reloc_mask (llabs (signed_value), group - 1, &residual); /* Check for overflow. */ if (residual >= 0x100) { (*_bfd_error_handler) (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), input_bfd, input_section, (long) rel->r_offset, llabs (signed_value), howto->name); return bfd_reloc_overflow; } /* Mask out the value and U bit. */ insn &= 0xff7ff0f0; /* Set the U bit if the value to go in the place is non-negative. */ if (signed_value >= 0) insn |= 1 << 23; /* Encode the offset. */ insn |= ((residual & 0xf0) << 4) | (residual & 0xf); bfd_put_32 (input_bfd, insn, hit_data); } return bfd_reloc_ok; case R_ARM_LDC_PC_G0: case R_ARM_LDC_PC_G1: case R_ARM_LDC_PC_G2: case R_ARM_LDC_SB_G0: case R_ARM_LDC_SB_G1: case R_ARM_LDC_SB_G2: { bfd_vma insn = bfd_get_32 (input_bfd, hit_data); bfd_vma pc = input_section->output_section->vma + input_section->output_offset + rel->r_offset; bfd_vma sb = 0; /* See note above. */ bfd_vma residual; bfd_signed_vma signed_value; int group = 0; /* Determine which groups of bits to calculate. */ switch (r_type) { case R_ARM_LDC_PC_G0: case R_ARM_LDC_SB_G0: group = 0; break; case R_ARM_LDC_PC_G1: case R_ARM_LDC_SB_G1: group = 1; break; case R_ARM_LDC_PC_G2: case R_ARM_LDC_SB_G2: group = 2; break; default: abort(); } /* If REL, extract the addend from the insn. If RELA, it will have already been fetched for us. */ if (globals->use_rel) { int negative = (insn & (1 << 23)) ? 1 : -1; signed_addend = negative * ((insn & 0xff) << 2); } /* Compute the value (X) to go in the place. */ if (r_type == R_ARM_LDC_PC_G0 || r_type == R_ARM_LDC_PC_G1 || r_type == R_ARM_LDC_PC_G2) /* PC relative. */ signed_value = value - pc + signed_addend; else /* Section base relative. */ signed_value = value - sb + signed_addend; /* Calculate the value of the relevant G_{n-1} to obtain the residual at that stage. */ calculate_group_reloc_mask (llabs (signed_value), group - 1, &residual); /* Check for overflow. (The absolute value to go in the place must be divisible by four and, after having been divided by four, must fit in eight bits.) */ if ((residual & 0x3) != 0 || residual >= 0x400) { (*_bfd_error_handler) (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), input_bfd, input_section, (long) rel->r_offset, llabs (signed_value), howto->name); return bfd_reloc_overflow; } /* Mask out the value and U bit. */ insn &= 0xff7fff00; /* Set the U bit if the value to go in the place is non-negative. */ if (signed_value >= 0) insn |= 1 << 23; /* Encode the offset. */ insn |= residual >> 2; bfd_put_32 (input_bfd, insn, hit_data); } return bfd_reloc_ok; default: return bfd_reloc_notsupported; } } /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */ static void arm_add_to_rel (bfd * abfd, bfd_byte * address, reloc_howto_type * howto, bfd_signed_vma increment) { bfd_signed_vma addend; if (howto->type == R_ARM_THM_CALL) { int upper_insn, lower_insn; int upper, lower; upper_insn = bfd_get_16 (abfd, address); lower_insn = bfd_get_16 (abfd, address + 2); upper = upper_insn & 0x7ff; lower = lower_insn & 0x7ff; addend = (upper << 12) | (lower << 1); addend += increment; addend >>= 1; upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff); lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff); bfd_put_16 (abfd, (bfd_vma) upper_insn, address); bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2); } else { bfd_vma contents; contents = bfd_get_32 (abfd, address); /* Get the (signed) value from the instruction. */ addend = contents & howto->src_mask; if (addend & ((howto->src_mask + 1) >> 1)) { bfd_signed_vma mask; mask = -1; mask &= ~ howto->src_mask; addend |= mask; } /* Add in the increment, (which is a byte value). */ switch (howto->type) { default: addend += increment; break; case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_CALL: case R_ARM_JUMP24: addend <<= howto->size; addend += increment; /* Should we check for overflow here ? */ /* Drop any undesired bits. */ addend >>= howto->rightshift; break; } contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask); bfd_put_32 (abfd, contents, address); } } #define IS_ARM_TLS_RELOC(R_TYPE) \ ((R_TYPE) == R_ARM_TLS_GD32 \ || (R_TYPE) == R_ARM_TLS_LDO32 \ || (R_TYPE) == R_ARM_TLS_LDM32 \ || (R_TYPE) == R_ARM_TLS_DTPOFF32 \ || (R_TYPE) == R_ARM_TLS_DTPMOD32 \ || (R_TYPE) == R_ARM_TLS_TPOFF32 \ || (R_TYPE) == R_ARM_TLS_LE32 \ || (R_TYPE) == R_ARM_TLS_IE32) /* Relocate an ARM ELF section. */ static bfd_boolean elf32_arm_relocate_section (bfd * output_bfd, struct bfd_link_info * info, bfd * input_bfd, asection * input_section, bfd_byte * contents, Elf_Internal_Rela * relocs, Elf_Internal_Sym * local_syms, asection ** local_sections) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; const char *name; struct elf32_arm_link_hash_table * globals; globals = elf32_arm_hash_table (info); symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; sym_hashes = elf_sym_hashes (input_bfd); rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; reloc_howto_type * howto; unsigned long r_symndx; Elf_Internal_Sym * sym; asection * sec; struct elf_link_hash_entry * h; bfd_vma relocation; bfd_reloc_status_type r; arelent bfd_reloc; char sym_type; bfd_boolean unresolved_reloc = FALSE; char *error_message = NULL; r_symndx = ELF32_R_SYM (rel->r_info); r_type = ELF32_R_TYPE (rel->r_info); r_type = arm_real_reloc_type (globals, r_type); if ( r_type == R_ARM_GNU_VTENTRY || r_type == R_ARM_GNU_VTINHERIT) continue; bfd_reloc.howto = elf32_arm_howto_from_type (r_type); howto = bfd_reloc.howto; h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sym_type = ELF32_ST_TYPE (sym->st_info); sec = local_sections[r_symndx]; if (globals->use_rel) { relocation = (sec->output_section->vma + sec->output_offset + sym->st_value); if (!info->relocatable && (sec->flags & SEC_MERGE) && ELF_ST_TYPE (sym->st_info) == STT_SECTION) { asection *msec; bfd_vma addend, value; if (howto->rightshift) { (*_bfd_error_handler) (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"), input_bfd, input_section, (long) rel->r_offset, howto->name); return FALSE; } value = bfd_get_32 (input_bfd, contents + rel->r_offset); /* Get the (signed) value from the instruction. */ addend = value & howto->src_mask; if (addend & ((howto->src_mask + 1) >> 1)) { bfd_signed_vma mask; mask = -1; mask &= ~ howto->src_mask; addend |= mask; } msec = sec; addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend) - relocation; addend += msec->output_section->vma + msec->output_offset; value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask); bfd_put_32 (input_bfd, value, contents + rel->r_offset); } } else relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); } else { bfd_boolean warned; RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned); sym_type = h->type; } if (sec != NULL && elf_discarded_section (sec)) { /* For relocs against symbols from removed linkonce sections, or sections discarded by a linker script, we just want the section contents zeroed. Avoid any special processing. */ _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); rel->r_info = 0; rel->r_addend = 0; continue; } if (info->relocatable) { /* This is a relocatable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) { if (globals->use_rel) arm_add_to_rel (input_bfd, contents + rel->r_offset, howto, (bfd_signed_vma) sec->output_offset); else rel->r_addend += sec->output_offset; } continue; } if (h != NULL) name = h->root.root.string; else { name = (bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name)); if (name == NULL || *name == '\0') name = bfd_section_name (input_bfd, sec); } if (r_symndx != 0 && r_type != R_ARM_NONE && (h == NULL || h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS)) { (*_bfd_error_handler) ((sym_type == STT_TLS ? _("%B(%A+0x%lx): %s used with TLS symbol %s") : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), input_bfd, input_section, (long) rel->r_offset, howto->name, name); } r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd, input_section, contents, rel, relocation, info, sec, name, (h ? ELF_ST_TYPE (h->type) : ELF_ST_TYPE (sym->st_info)), h, &unresolved_reloc, &error_message); /* Dynamic relocs are not propagated for SEC_DEBUGGING sections because such sections are not SEC_ALLOC and thus ld.so will not process them. */ if (unresolved_reloc && !((input_section->flags & SEC_DEBUGGING) != 0 && h->def_dynamic)) { (*_bfd_error_handler) (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), input_bfd, input_section, (long) rel->r_offset, howto->name, h->root.root.string); return FALSE; } if (r != bfd_reloc_ok) { switch (r) { case bfd_reloc_overflow: /* If the overflowing reloc was to an undefined symbol, we have already printed one error message and there is no point complaining again. */ if ((! h || h->root.type != bfd_link_hash_undefined) && (!((*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset)))) return FALSE; break; case bfd_reloc_undefined: if (!((*info->callbacks->undefined_symbol) (info, name, input_bfd, input_section, rel->r_offset, TRUE))) return FALSE; break; case bfd_reloc_outofrange: error_message = _("out of range"); goto common_error; case bfd_reloc_notsupported: error_message = _("unsupported relocation"); goto common_error; case bfd_reloc_dangerous: /* error_message should already be set. */ goto common_error; default: error_message = _("unknown error"); /* fall through */ common_error: BFD_ASSERT (error_message != NULL); if (!((*info->callbacks->reloc_dangerous) (info, error_message, input_bfd, input_section, rel->r_offset))) return FALSE; break; } } } return TRUE; } /* Set the right machine number. */ static bfd_boolean elf32_arm_object_p (bfd *abfd) { unsigned int mach; mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION); if (mach != bfd_mach_arm_unknown) bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach); else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT) bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312); else bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach); return TRUE; } /* Function to keep ARM specific flags in the ELF header. */ static bfd_boolean elf32_arm_set_private_flags (bfd *abfd, flagword flags) { if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags) { if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN) { if (flags & EF_ARM_INTERWORK) (*_bfd_error_handler) (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"), abfd); else _bfd_error_handler (_("Warning: Clearing the interworking flag of %B due to outside request"), abfd); } } else { elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; } return TRUE; } /* Copy backend specific data from one object module to another. */ static bfd_boolean elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd) { flagword in_flags; flagword out_flags; if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return TRUE; in_flags = elf_elfheader (ibfd)->e_flags; out_flags = elf_elfheader (obfd)->e_flags; if (elf_flags_init (obfd) && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN && in_flags != out_flags) { /* Cannot mix APCS26 and APCS32 code. */ if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26)) return FALSE; /* Cannot mix float APCS and non-float APCS code. */ if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT)) return FALSE; /* If the src and dest have different interworking flags then turn off the interworking bit. */ if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK)) { if (out_flags & EF_ARM_INTERWORK) _bfd_error_handler (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"), obfd, ibfd); in_flags &= ~EF_ARM_INTERWORK; } /* Likewise for PIC, though don't warn for this case. */ if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC)) in_flags &= ~EF_ARM_PIC; } elf_elfheader (obfd)->e_flags = in_flags; elf_flags_init (obfd) = TRUE; /* Also copy the EI_OSABI field. */ elf_elfheader (obfd)->e_ident[EI_OSABI] = elf_elfheader (ibfd)->e_ident[EI_OSABI]; /* Copy object attributes. */ _bfd_elf_copy_obj_attributes (ibfd, obfd); return TRUE; } /* Values for Tag_ABI_PCS_R9_use. */ enum { AEABI_R9_V6, AEABI_R9_SB, AEABI_R9_TLS, AEABI_R9_unused }; /* Values for Tag_ABI_PCS_RW_data. */ enum { AEABI_PCS_RW_data_absolute, AEABI_PCS_RW_data_PCrel, AEABI_PCS_RW_data_SBrel, AEABI_PCS_RW_data_unused }; /* Values for Tag_ABI_enum_size. */ enum { AEABI_enum_unused, AEABI_enum_short, AEABI_enum_wide, AEABI_enum_forced_wide }; /* Determine whether an object attribute tag takes an integer, a string or both. */ static int elf32_arm_obj_attrs_arg_type (int tag) { if (tag == Tag_compatibility) return 3; else if (tag == 4 || tag == 5) return 2; else if (tag < 32) return 1; else return (tag & 1) != 0 ? 2 : 1; } /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there are conflicting attributes. */ static bfd_boolean elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd) { obj_attribute *in_attr; obj_attribute *out_attr; obj_attribute_list *in_list; /* Some tags have 0 = don't care, 1 = strong requirement, 2 = weak requirement. */ static const int order_312[3] = {3, 1, 2}; int i; if (!elf_known_obj_attributes_proc (obfd)[0].i) { /* This is the first object. Copy the attributes. */ _bfd_elf_copy_obj_attributes (ibfd, obfd); /* Use the Tag_null value to indicate the attributes have been initialized. */ elf_known_obj_attributes_proc (obfd)[0].i = 1; return TRUE; } in_attr = elf_known_obj_attributes_proc (ibfd); out_attr = elf_known_obj_attributes_proc (obfd); /* This needs to happen before Tag_ABI_FP_number_model is merged. */ if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i) { /* Ignore mismatches if teh object doesn't use floating point. */ if (out_attr[Tag_ABI_FP_number_model].i == 0) out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i; else if (in_attr[Tag_ABI_FP_number_model].i != 0) { _bfd_error_handler (_("ERROR: %B uses VFP register arguments, %B does not"), ibfd, obfd); return FALSE; } } for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++) { /* Merge this attribute with existing attributes. */ switch (i) { case Tag_CPU_raw_name: case Tag_CPU_name: /* Use whichever has the greatest architecture requirements. We won't necessarily have both the above tags, so make sure input name is non-NULL. */ if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i && in_attr[i].s) out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s); break; case Tag_ABI_optimization_goals: case Tag_ABI_FP_optimization_goals: /* Use the first value seen. */ break; case Tag_CPU_arch: case Tag_ARM_ISA_use: case Tag_THUMB_ISA_use: case Tag_VFP_arch: case Tag_WMMX_arch: case Tag_NEON_arch: /* ??? Do NEON and WMMX conflict? */ case Tag_ABI_FP_rounding: case Tag_ABI_FP_denormal: case Tag_ABI_FP_exceptions: case Tag_ABI_FP_user_exceptions: case Tag_ABI_FP_number_model: case Tag_ABI_align8_preserved: case Tag_ABI_HardFP_use: + case Tag_CPU_unaligned_access: + case Tag_FP_HP_extension: /* Use the largest value specified. */ if (in_attr[i].i > out_attr[i].i) out_attr[i].i = in_attr[i].i; break; case Tag_CPU_arch_profile: /* Warn if conflicting architecture profiles used. */ if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i) { _bfd_error_handler (_("ERROR: %B: Conflicting architecture profiles %c/%c"), ibfd, in_attr[i].i, out_attr[i].i); return FALSE; } if (in_attr[i].i) out_attr[i].i = in_attr[i].i; break; case Tag_PCS_config: if (out_attr[i].i == 0) out_attr[i].i = in_attr[i].i; else if (in_attr[i].i != 0 && out_attr[i].i != 0) { /* It's sometimes ok to mix different configs, so this is only a warning. */ _bfd_error_handler (_("Warning: %B: Conflicting platform configuration"), ibfd); } break; case Tag_ABI_PCS_R9_use: if (in_attr[i].i != out_attr[i].i && out_attr[i].i != AEABI_R9_unused && in_attr[i].i != AEABI_R9_unused) { _bfd_error_handler (_("ERROR: %B: Conflicting use of R9"), ibfd); return FALSE; } if (out_attr[i].i == AEABI_R9_unused) out_attr[i].i = in_attr[i].i; break; case Tag_ABI_PCS_RW_data: if (in_attr[i].i == AEABI_PCS_RW_data_SBrel && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused) { _bfd_error_handler (_("ERROR: %B: SB relative addressing conflicts with use of R9"), ibfd); return FALSE; } /* Use the smallest value specified. */ if (in_attr[i].i < out_attr[i].i) out_attr[i].i = in_attr[i].i; break; case Tag_ABI_PCS_RO_data: /* Use the smallest value specified. */ if (in_attr[i].i < out_attr[i].i) out_attr[i].i = in_attr[i].i; break; case Tag_ABI_PCS_GOT_use: if (in_attr[i].i > 2 || out_attr[i].i > 2 || order_312[in_attr[i].i] < order_312[out_attr[i].i]) out_attr[i].i = in_attr[i].i; break; case Tag_ABI_PCS_wchar_t: if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i) { _bfd_error_handler (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd); return FALSE; } if (in_attr[i].i) out_attr[i].i = in_attr[i].i; break; case Tag_ABI_align8_needed: /* ??? Check against Tag_ABI_align8_preserved. */ if (in_attr[i].i > 2 || out_attr[i].i > 2 || order_312[in_attr[i].i] < order_312[out_attr[i].i]) out_attr[i].i = in_attr[i].i; break; case Tag_ABI_enum_size: if (in_attr[i].i != AEABI_enum_unused) { if (out_attr[i].i == AEABI_enum_unused || out_attr[i].i == AEABI_enum_forced_wide) { /* The existing object is compatible with anything. Use whatever requirements the new object has. */ out_attr[i].i = in_attr[i].i; } else if (in_attr[i].i != AEABI_enum_forced_wide && out_attr[i].i != in_attr[i].i && !elf32_arm_tdata (obfd)->no_enum_size_warning) { const char *aeabi_enum_names[] = { "", "variable-size", "32-bit", "" }; _bfd_error_handler (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"), ibfd, aeabi_enum_names[in_attr[i].i], aeabi_enum_names[out_attr[i].i]); } } break; case Tag_ABI_VFP_args: /* Aready done. */ break; case Tag_ABI_WMMX_args: if (in_attr[i].i != out_attr[i].i) { _bfd_error_handler (_("ERROR: %B uses iWMMXt register arguments, %B does not"), ibfd, obfd); return FALSE; } break; default: /* All known attributes should be explicitly covered. */ - abort (); + /* XXX Not now */ + /* abort (); */ + break; } } /* Merge Tag_compatibility attributes and any common GNU ones. */ _bfd_elf_merge_object_attributes (ibfd, obfd); /* Check for any attributes not known on ARM. */ in_list = elf_other_obj_attributes_proc (ibfd); while (in_list && in_list->tag == Tag_compatibility) in_list = in_list->next; for (; in_list; in_list = in_list->next) { if ((in_list->tag & 128) < 64 && in_list->tag != Tag_Virtualization_use) { _bfd_error_handler (_("Warning: %B: Unknown EABI object attribute %d"), ibfd, in_list->tag); break; } } return TRUE; } /* Return TRUE if the two EABI versions are incompatible. */ static bfd_boolean elf32_arm_versions_compatible (unsigned iver, unsigned over) { /* v4 and v5 are the same spec before and after it was released, so allow mixing them. */ if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5) || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4)) return TRUE; return (iver == over); } /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd) { flagword out_flags; flagword in_flags; bfd_boolean flags_compatible = TRUE; asection *sec; /* Check if we have the same endianess. */ if (! _bfd_generic_verify_endian_match (ibfd, obfd)) return FALSE; if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return TRUE; if (!elf32_arm_merge_eabi_attributes (ibfd, obfd)) return FALSE; /* The input BFD must have had its flags initialised. */ /* The following seems bogus to me -- The flags are initialized in the assembler but I don't think an elf_flags_init field is written into the object. */ /* BFD_ASSERT (elf_flags_init (ibfd)); */ in_flags = elf_elfheader (ibfd)->e_flags; out_flags = elf_elfheader (obfd)->e_flags; if (!elf_flags_init (obfd)) { /* If the input is the default architecture and had the default flags then do not bother setting the flags for the output architecture, instead allow future merges to do this. If no future merges ever set these flags then they will retain their uninitialised values, which surprise surprise, correspond to the default values. */ if (bfd_get_arch_info (ibfd)->the_default && elf_elfheader (ibfd)->e_flags == 0) return TRUE; elf_flags_init (obfd) = TRUE; elf_elfheader (obfd)->e_flags = in_flags; if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) && bfd_get_arch_info (obfd)->the_default) return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd)); return TRUE; } /* Determine what should happen if the input ARM architecture does not match the output ARM architecture. */ if (! bfd_arm_merge_machines (ibfd, obfd)) return FALSE; /* Identical flags must be compatible. */ if (in_flags == out_flags) return TRUE; /* Check to see if the input BFD actually contains any sections. If not, its flags may not have been initialised either, but it cannot actually cause any incompatiblity. Do not short-circuit dynamic objects; their section list may be emptied by elf_link_add_object_symbols. Also check to see if there are no code sections in the input. In this case there is no need to check for code specific flags. XXX - do we need to worry about floating-point format compatability in data sections ? */ if (!(ibfd->flags & DYNAMIC)) { bfd_boolean null_input_bfd = TRUE; bfd_boolean only_data_sections = TRUE; for (sec = ibfd->sections; sec != NULL; sec = sec->next) { /* Ignore synthetic glue sections. */ if (strcmp (sec->name, ".glue_7") && strcmp (sec->name, ".glue_7t")) { if ((bfd_get_section_flags (ibfd, sec) & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) only_data_sections = FALSE; null_input_bfd = FALSE; break; } } if (null_input_bfd || only_data_sections) return TRUE; } /* Complain about various flag mismatches. */ if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags), EF_ARM_EABI_VERSION (out_flags))) { _bfd_error_handler (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"), ibfd, obfd, (in_flags & EF_ARM_EABIMASK) >> 24, (out_flags & EF_ARM_EABIMASK) >> 24); return FALSE; } /* Not sure what needs to be checked for EABI versions >= 1. */ /* VxWorks libraries do not use these flags. */ if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN) { if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26)) { _bfd_error_handler (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"), ibfd, obfd, in_flags & EF_ARM_APCS_26 ? 26 : 32, out_flags & EF_ARM_APCS_26 ? 26 : 32); flags_compatible = FALSE; } if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT)) { if (in_flags & EF_ARM_APCS_FLOAT) _bfd_error_handler (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"), ibfd, obfd); else _bfd_error_handler (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"), ibfd, obfd); flags_compatible = FALSE; } if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT)) { if (in_flags & EF_ARM_VFP_FLOAT) _bfd_error_handler (_("ERROR: %B uses VFP instructions, whereas %B does not"), ibfd, obfd); else _bfd_error_handler (_("ERROR: %B uses FPA instructions, whereas %B does not"), ibfd, obfd); flags_compatible = FALSE; } if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT)) { if (in_flags & EF_ARM_MAVERICK_FLOAT) _bfd_error_handler (_("ERROR: %B uses Maverick instructions, whereas %B does not"), ibfd, obfd); else _bfd_error_handler (_("ERROR: %B does not use Maverick instructions, whereas %B does"), ibfd, obfd); flags_compatible = FALSE; } #ifdef EF_ARM_SOFT_FLOAT if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT)) { /* We can allow interworking between code that is VFP format layout, and uses either soft float or integer regs for passing floating point arguments and results. We already know that the APCS_FLOAT flags match; similarly for VFP flags. */ if ((in_flags & EF_ARM_APCS_FLOAT) != 0 || (in_flags & EF_ARM_VFP_FLOAT) == 0) { if (in_flags & EF_ARM_SOFT_FLOAT) _bfd_error_handler (_("ERROR: %B uses software FP, whereas %B uses hardware FP"), ibfd, obfd); else _bfd_error_handler (_("ERROR: %B uses hardware FP, whereas %B uses software FP"), ibfd, obfd); flags_compatible = FALSE; } } #endif /* Interworking mismatch is only a warning. */ if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK)) { if (in_flags & EF_ARM_INTERWORK) { _bfd_error_handler (_("Warning: %B supports interworking, whereas %B does not"), ibfd, obfd); } else { _bfd_error_handler (_("Warning: %B does not support interworking, whereas %B does"), ibfd, obfd); } } } return flags_compatible; } /* Display the flags field. */ static bfd_boolean elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr) { FILE * file = (FILE *) ptr; unsigned long flags; BFD_ASSERT (abfd != NULL && ptr != NULL); /* Print normal ELF private data. */ _bfd_elf_print_private_bfd_data (abfd, ptr); flags = elf_elfheader (abfd)->e_flags; /* Ignore init flag - it may not be set, despite the flags field containing valid data. */ /* xgettext:c-format */ fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); switch (EF_ARM_EABI_VERSION (flags)) { case EF_ARM_EABI_UNKNOWN: /* The following flag bits are GNU extensions and not part of the official ARM ELF extended ABI. Hence they are only decoded if the EABI version is not set. */ if (flags & EF_ARM_INTERWORK) fprintf (file, _(" [interworking enabled]")); if (flags & EF_ARM_APCS_26) fprintf (file, " [APCS-26]"); else fprintf (file, " [APCS-32]"); if (flags & EF_ARM_VFP_FLOAT) fprintf (file, _(" [VFP float format]")); else if (flags & EF_ARM_MAVERICK_FLOAT) fprintf (file, _(" [Maverick float format]")); else fprintf (file, _(" [FPA float format]")); if (flags & EF_ARM_APCS_FLOAT) fprintf (file, _(" [floats passed in float registers]")); if (flags & EF_ARM_PIC) fprintf (file, _(" [position independent]")); if (flags & EF_ARM_NEW_ABI) fprintf (file, _(" [new ABI]")); if (flags & EF_ARM_OLD_ABI) fprintf (file, _(" [old ABI]")); if (flags & EF_ARM_SOFT_FLOAT) fprintf (file, _(" [software FP]")); flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT | EF_ARM_MAVERICK_FLOAT); break; case EF_ARM_EABI_VER1: fprintf (file, _(" [Version1 EABI]")); if (flags & EF_ARM_SYMSARESORTED) fprintf (file, _(" [sorted symbol table]")); else fprintf (file, _(" [unsorted symbol table]")); flags &= ~ EF_ARM_SYMSARESORTED; break; case EF_ARM_EABI_VER2: fprintf (file, _(" [Version2 EABI]")); if (flags & EF_ARM_SYMSARESORTED) fprintf (file, _(" [sorted symbol table]")); else fprintf (file, _(" [unsorted symbol table]")); if (flags & EF_ARM_DYNSYMSUSESEGIDX) fprintf (file, _(" [dynamic symbols use segment index]")); if (flags & EF_ARM_MAPSYMSFIRST) fprintf (file, _(" [mapping symbols precede others]")); flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX | EF_ARM_MAPSYMSFIRST); break; case EF_ARM_EABI_VER3: fprintf (file, _(" [Version3 EABI]")); break; case EF_ARM_EABI_VER4: fprintf (file, _(" [Version4 EABI]")); goto eabi; case EF_ARM_EABI_VER5: fprintf (file, _(" [Version5 EABI]")); eabi: if (flags & EF_ARM_BE8) fprintf (file, _(" [BE8]")); if (flags & EF_ARM_LE8) fprintf (file, _(" [LE8]")); flags &= ~(EF_ARM_LE8 | EF_ARM_BE8); break; default: fprintf (file, _(" ")); break; } flags &= ~ EF_ARM_EABIMASK; if (flags & EF_ARM_RELEXEC) fprintf (file, _(" [relocatable executable]")); if (flags & EF_ARM_HASENTRY) fprintf (file, _(" [has entry point]")); flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY); if (flags) fprintf (file, _("")); fputc ('\n', file); return TRUE; } static int elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type) { switch (ELF_ST_TYPE (elf_sym->st_info)) { case STT_ARM_TFUNC: return ELF_ST_TYPE (elf_sym->st_info); case STT_ARM_16BIT: /* If the symbol is not an object, return the STT_ARM_16BIT flag. This allows us to distinguish between data used by Thumb instructions and non-data (which is probably code) inside Thumb regions of an executable. */ if (type != STT_OBJECT && type != STT_TLS) return ELF_ST_TYPE (elf_sym->st_info); break; default: break; } return type; } static asection * elf32_arm_gc_mark_hook (asection *sec, struct bfd_link_info *info, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { if (h != NULL) switch (ELF32_R_TYPE (rel->r_info)) { case R_ARM_GNU_VTINHERIT: case R_ARM_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); } /* Update the got entry reference counts for the section being removed. */ static bfd_boolean elf32_arm_gc_sweep_hook (bfd * abfd, struct bfd_link_info * info, asection * sec, const Elf_Internal_Rela * relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; struct elf32_arm_link_hash_table * globals; globals = elf32_arm_hash_table (info); elf_section_data (sec)->local_dynrel = NULL; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) { unsigned long r_symndx; struct elf_link_hash_entry *h = NULL; int r_type; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } r_type = ELF32_R_TYPE (rel->r_info); r_type = arm_real_reloc_type (globals, r_type); switch (r_type) { case R_ARM_GOT32: case R_ARM_GOT_PREL: case R_ARM_TLS_GD32: case R_ARM_TLS_IE32: if (h != NULL) { if (h->got.refcount > 0) h->got.refcount -= 1; } else if (local_got_refcounts != NULL) { if (local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx] -= 1; } break; case R_ARM_TLS_LDM32: elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1; break; case R_ARM_ABS32: case R_ARM_ABS32_NOI: case R_ARM_REL32: case R_ARM_REL32_NOI: case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PREL31: case R_ARM_THM_CALL: case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: /* Should the interworking branches be here also? */ if (h != NULL) { struct elf32_arm_link_hash_entry *eh; struct elf32_arm_relocs_copied **pp; struct elf32_arm_relocs_copied *p; eh = (struct elf32_arm_link_hash_entry *) h; if (h->plt.refcount > 0) { h->plt.refcount -= 1; if (ELF32_R_TYPE (rel->r_info) == R_ARM_THM_CALL) eh->plt_thumb_refcount--; } if (r_type == R_ARM_ABS32 || r_type == R_ARM_REL32 || r_type == R_ARM_ABS32_NOI || r_type == R_ARM_REL32_NOI) { for (pp = &eh->relocs_copied; (p = *pp) != NULL; pp = &p->next) if (p->section == sec) { p->count -= 1; if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI) p->pc_count -= 1; if (p->count == 0) *pp = p->next; break; } } } break; default: break; } } return TRUE; } /* Look through the relocs for a section during the first phase. */ static bfd_boolean elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; struct elf_link_hash_entry **sym_hashes_end; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; bfd *dynobj; asection *sreloc; bfd_vma *local_got_offsets; struct elf32_arm_link_hash_table *htab; if (info->relocatable) return TRUE; htab = elf32_arm_hash_table (info); sreloc = NULL; /* Create dynamic sections for relocatable executables so that we can copy relocations. */ if (htab->root.is_relocatable_executable && ! htab->root.dynamic_sections_created) { if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) return FALSE; } dynobj = elf_hash_table (info)->dynobj; local_got_offsets = elf_local_got_offsets (abfd); symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); sym_hashes_end = sym_hashes + symtab_hdr->sh_size / sizeof (Elf32_External_Sym); if (!elf_bad_symtab (abfd)) sym_hashes_end -= symtab_hdr->sh_info; rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { struct elf_link_hash_entry *h; struct elf32_arm_link_hash_entry *eh; unsigned long r_symndx; int r_type; r_symndx = ELF32_R_SYM (rel->r_info); r_type = ELF32_R_TYPE (rel->r_info); r_type = arm_real_reloc_type (htab, r_type); if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) { (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd, r_symndx); return FALSE; } if (r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } eh = (struct elf32_arm_link_hash_entry *) h; switch (r_type) { case R_ARM_GOT32: case R_ARM_GOT_PREL: case R_ARM_TLS_GD32: case R_ARM_TLS_IE32: /* This symbol requires a global offset table entry. */ { int tls_type, old_tls_type; switch (r_type) { case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break; case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break; default: tls_type = GOT_NORMAL; break; } if (h != NULL) { h->got.refcount++; old_tls_type = elf32_arm_hash_entry (h)->tls_type; } else { bfd_signed_vma *local_got_refcounts; /* This is a global offset table entry for a local symbol. */ local_got_refcounts = elf_local_got_refcounts (abfd); if (local_got_refcounts == NULL) { bfd_size_type size; size = symtab_hdr->sh_info; size *= (sizeof (bfd_signed_vma) + sizeof(char)); local_got_refcounts = bfd_zalloc (abfd, size); if (local_got_refcounts == NULL) return FALSE; elf_local_got_refcounts (abfd) = local_got_refcounts; elf32_arm_local_got_tls_type (abfd) = (char *) (local_got_refcounts + symtab_hdr->sh_info); } local_got_refcounts[r_symndx] += 1; old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx]; } /* We will already have issued an error message if there is a TLS / non-TLS mismatch, based on the symbol type. We don't support any linker relaxations. So just combine any TLS types needed. */ if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL && tls_type != GOT_NORMAL) tls_type |= old_tls_type; if (old_tls_type != tls_type) { if (h != NULL) elf32_arm_hash_entry (h)->tls_type = tls_type; else elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type; } } /* Fall through */ case R_ARM_TLS_LDM32: if (r_type == R_ARM_TLS_LDM32) htab->tls_ldm_got.refcount++; /* Fall through */ case R_ARM_GOTOFF32: case R_ARM_GOTPC: if (htab->sgot == NULL) { if (htab->root.dynobj == NULL) htab->root.dynobj = abfd; if (!create_got_section (htab->root.dynobj, info)) return FALSE; } break; case R_ARM_ABS12: /* VxWorks uses dynamic R_ARM_ABS12 relocations for ldr __GOTT_INDEX__ offsets. */ if (!htab->vxworks_p) break; /* Fall through */ case R_ARM_ABS32: case R_ARM_ABS32_NOI: case R_ARM_REL32: case R_ARM_REL32_NOI: case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PREL31: case R_ARM_THM_CALL: case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: /* Should the interworking branches be listed here? */ if (h != NULL) { /* If this reloc is in a read-only section, we might need a copy reloc. We can't check reliably at this stage whether the section is read-only, as input sections have not yet been mapped to output sections. Tentatively set the flag for now, and correct in adjust_dynamic_symbol. */ if (!info->shared) h->non_got_ref = 1; /* We may need a .plt entry if the function this reloc refers to is in a different object. We can't tell for sure yet, because something later might force the symbol local. */ if (r_type != R_ARM_ABS32 && r_type != R_ARM_REL32 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI && r_type != R_ARM_ABS12) h->needs_plt = 1; /* If we create a PLT entry, this relocation will reference it, even if it's an ABS32 relocation. */ h->plt.refcount += 1; if (r_type == R_ARM_THM_CALL) eh->plt_thumb_refcount += 1; } /* If we are creating a shared library or relocatable executable, and this is a reloc against a global symbol, or a non PC relative reloc against a local symbol, then we need to copy the reloc into the shared library. However, if we are linking with -Bsymbolic, we do not need to copy a reloc against a global symbol which is defined in an object we are including in the link (i.e., DEF_REGULAR is set). At this point we have not seen all the input files, so it is possible that DEF_REGULAR is not set now but will be set later (it is never cleared). We account for that possibility below by storing information in the relocs_copied field of the hash table entry. */ if ((info->shared || htab->root.is_relocatable_executable) && (sec->flags & SEC_ALLOC) != 0 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI) || (h != NULL && ! h->needs_plt && (! info->symbolic || ! h->def_regular)))) { struct elf32_arm_relocs_copied *p, **head; /* When creating a shared object, we must copy these reloc types into the output file. We create a reloc section in dynobj and make room for this reloc. */ if (sreloc == NULL) { const char * name; name = (bfd_elf_string_from_elf_section (abfd, elf_elfheader (abfd)->e_shstrndx, elf_section_data (sec)->rel_hdr.sh_name)); if (name == NULL) return FALSE; BFD_ASSERT (reloc_section_p (htab, name, sec)); sreloc = bfd_get_section_by_name (dynobj, name); if (sreloc == NULL) { flagword flags; flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED); if ((sec->flags & SEC_ALLOC) != 0 /* BPABI objects never have dynamic relocations mapped. */ && !htab->symbian_p) flags |= SEC_ALLOC | SEC_LOAD; sreloc = bfd_make_section_with_flags (dynobj, name, flags); if (sreloc == NULL || ! bfd_set_section_alignment (dynobj, sreloc, 2)) return FALSE; } elf_section_data (sec)->sreloc = sreloc; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (h != NULL) { head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied; } else { /* Track dynamic relocs needed for local syms too. We really need local syms available to do this easily. Oh well. */ asection *s; void *vpp; s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec, r_symndx); if (s == NULL) return FALSE; vpp = &elf_section_data (s)->local_dynrel; head = (struct elf32_arm_relocs_copied **) vpp; } p = *head; if (p == NULL || p->section != sec) { bfd_size_type amt = sizeof *p; p = bfd_alloc (htab->root.dynobj, amt); if (p == NULL) return FALSE; p->next = *head; *head = p; p->section = sec; p->count = 0; p->pc_count = 0; } if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI) p->pc_count += 1; p->count += 1; } break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_ARM_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_ARM_GNU_VTENTRY: if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) return FALSE; break; } } return TRUE; } /* Unwinding tables are not referenced directly. This pass marks them as required if the corresponding code section is marked. */ static bfd_boolean elf32_arm_gc_mark_extra_sections(struct bfd_link_info *info, elf_gc_mark_hook_fn gc_mark_hook) { bfd *sub; Elf_Internal_Shdr **elf_shdrp; bfd_boolean again; /* Marking EH data may cause additional code sections to be marked, requiring multiple passes. */ again = TRUE; while (again) { again = FALSE; for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) { asection *o; if (bfd_get_flavour (sub) != bfd_target_elf_flavour) continue; elf_shdrp = elf_elfsections (sub); for (o = sub->sections; o != NULL; o = o->next) { Elf_Internal_Shdr *hdr; hdr = &elf_section_data (o)->this_hdr; if (hdr->sh_type == SHT_ARM_EXIDX && hdr->sh_link && !o->gc_mark && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark) { again = TRUE; if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) return FALSE; } } } } return TRUE; } /* Treat mapping symbols as special target symbols. */ static bfd_boolean elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym) { return bfd_is_arm_special_symbol_name (sym->name, BFD_ARM_SPECIAL_SYM_TYPE_ANY); } /* This is a copy of elf_find_function() from elf.c except that ARM mapping symbols are ignored when looking for function names and STT_ARM_TFUNC is considered to a function type. */ static bfd_boolean arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED, asection * section, asymbol ** symbols, bfd_vma offset, const char ** filename_ptr, const char ** functionname_ptr) { const char * filename = NULL; asymbol * func = NULL; bfd_vma low_func = 0; asymbol ** p; for (p = symbols; *p != NULL; p++) { elf_symbol_type *q; q = (elf_symbol_type *) *p; switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) { default: break; case STT_FILE: filename = bfd_asymbol_name (&q->symbol); break; case STT_FUNC: case STT_ARM_TFUNC: case STT_NOTYPE: /* Skip mapping symbols. */ if ((q->symbol.flags & BSF_LOCAL) && bfd_is_arm_special_symbol_name (q->symbol.name, BFD_ARM_SPECIAL_SYM_TYPE_ANY)) continue; /* Fall through. */ if (bfd_get_section (&q->symbol) == section && q->symbol.value >= low_func && q->symbol.value <= offset) { func = (asymbol *) q; low_func = q->symbol.value; } break; } } if (func == NULL) return FALSE; if (filename_ptr) *filename_ptr = filename; if (functionname_ptr) *functionname_ptr = bfd_asymbol_name (func); return TRUE; } /* Find the nearest line to a particular section and offset, for error reporting. This code is a duplicate of the code in elf.c, except that it uses arm_elf_find_function. */ static bfd_boolean elf32_arm_find_nearest_line (bfd * abfd, asection * section, asymbol ** symbols, bfd_vma offset, const char ** filename_ptr, const char ** functionname_ptr, unsigned int * line_ptr) { bfd_boolean found = FALSE; /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */ if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr, 0, & elf_tdata (abfd)->dwarf2_find_line_info)) { if (!*functionname_ptr) arm_elf_find_function (abfd, section, symbols, offset, *filename_ptr ? NULL : filename_ptr, functionname_ptr); return TRUE; } if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, & found, filename_ptr, functionname_ptr, line_ptr, & elf_tdata (abfd)->line_info)) return FALSE; if (found && (*functionname_ptr || *line_ptr)) return TRUE; if (symbols == NULL) return FALSE; if (! arm_elf_find_function (abfd, section, symbols, offset, filename_ptr, functionname_ptr)) return FALSE; *line_ptr = 0; return TRUE; } static bfd_boolean elf32_arm_find_inliner_info (bfd * abfd, const char ** filename_ptr, const char ** functionname_ptr, unsigned int * line_ptr) { bfd_boolean found; found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, functionname_ptr, line_ptr, & elf_tdata (abfd)->dwarf2_find_line_info); return found; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bfd_boolean elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info, struct elf_link_hash_entry * h) { bfd * dynobj; asection * s; struct elf32_arm_link_hash_entry * eh; struct elf32_arm_link_hash_table *globals; globals = elf32_arm_hash_table (info); dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && (h->needs_plt || h->u.weakdef != NULL || (h->def_dynamic && h->ref_regular && !h->def_regular))); eh = (struct elf32_arm_link_hash_entry *) h; /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later, when we know the address of the .got section. */ if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC || h->needs_plt) { if (h->plt.refcount <= 0 || SYMBOL_CALLS_LOCAL (info, h) || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT && h->root.type == bfd_link_hash_undefweak)) { /* This case can occur if we saw a PLT32 reloc in an input file, but the symbol was never referred to by a dynamic object, or if all references were garbage collected. In such a case, we don't actually need to build a procedure linkage table, and we can just do a PC24 reloc instead. */ h->plt.offset = (bfd_vma) -1; eh->plt_thumb_refcount = 0; h->needs_plt = 0; } return TRUE; } else { /* It's possible that we incorrectly decided a .plt reloc was needed for an R_ARM_PC24 or similar reloc to a non-function sym in check_relocs. We can't decide accurately between function and non-function syms in check-relocs; Objects loaded later in the link may change h->type. So fix it now. */ h->plt.offset = (bfd_vma) -1; eh->plt_thumb_refcount = 0; } /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->u.weakdef != NULL) { BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined || h->u.weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->u.weakdef->root.u.def.section; h->root.u.def.value = h->u.weakdef->root.u.def.value; return TRUE; } /* If there are no non-GOT references, we do not need a copy relocation. */ if (!h->non_got_ref) return TRUE; /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. Relocatable executables can reference data in shared objects directly, so we don't need to do anything here. */ if (info->shared || globals->root.is_relocatable_executable) return TRUE; if (h->size == 0) { (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), h->root.root.string); return TRUE; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ s = bfd_get_section_by_name (dynobj, ".dynbss"); BFD_ASSERT (s != NULL); /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rel(a).bss section we are going to use. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { asection *srel; srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss")); BFD_ASSERT (srel != NULL); srel->size += RELOC_SIZE (globals); h->needs_copy = 1; } return _bfd_elf_adjust_dynamic_copy (h, s); } /* Allocate space in .plt, .got and associated reloc sections for dynamic relocs. */ static bfd_boolean allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf) { struct bfd_link_info *info; struct elf32_arm_link_hash_table *htab; struct elf32_arm_link_hash_entry *eh; struct elf32_arm_relocs_copied *p; eh = (struct elf32_arm_link_hash_entry *) h; if (h->root.type == bfd_link_hash_indirect) return TRUE; if (h->root.type == bfd_link_hash_warning) /* When warning symbols are created, they **replace** the "real" entry in the hash table, thus we never get to see the real symbol in a hash traversal. So look at it now. */ h = (struct elf_link_hash_entry *) h->root.u.i.link; info = (struct bfd_link_info *) inf; htab = elf32_arm_hash_table (info); if (htab->root.dynamic_sections_created && h->plt.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) { asection *s = htab->splt; /* If this is the first .plt entry, make room for the special first entry. */ if (s->size == 0) s->size += htab->plt_header_size; h->plt.offset = s->size; /* If we will insert a Thumb trampoline before this PLT, leave room for it. */ if (!htab->use_blx && eh->plt_thumb_refcount > 0) { h->plt.offset += PLT_THUMB_STUB_SIZE; s->size += PLT_THUMB_STUB_SIZE; } /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (! info->shared && !h->def_regular) { h->root.u.def.section = s; h->root.u.def.value = h->plt.offset; /* Make sure the function is not marked as Thumb, in case it is the target of an ABS32 relocation, which will point to the PLT entry. */ if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC) h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC); } /* Make room for this entry. */ s->size += htab->plt_entry_size; if (!htab->symbian_p) { /* We also need to make an entry in the .got.plt section, which will be placed in the .got section by the linker script. */ eh->plt_got_offset = htab->sgotplt->size; htab->sgotplt->size += 4; } /* We also need to make an entry in the .rel(a).plt section. */ htab->srelplt->size += RELOC_SIZE (htab); /* VxWorks executables have a second set of relocations for each PLT entry. They go in a separate relocation section, which is processed by the kernel loader. */ if (htab->vxworks_p && !info->shared) { /* There is a relocation for the initial PLT entry: an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */ if (h->plt.offset == htab->plt_header_size) htab->srelplt2->size += RELOC_SIZE (htab); /* There are two extra relocations for each subsequent PLT entry: an R_ARM_32 relocation for the GOT entry, and an R_ARM_32 relocation for the PLT entry. */ htab->srelplt2->size += RELOC_SIZE (htab) * 2; } } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } if (h->got.refcount > 0) { asection *s; bfd_boolean dyn; int tls_type = elf32_arm_hash_entry (h)->tls_type; int indx; /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } if (!htab->symbian_p) { s = htab->sgot; h->got.offset = s->size; if (tls_type == GOT_UNKNOWN) abort (); if (tls_type == GOT_NORMAL) /* Non-TLS symbols need one GOT slot. */ s->size += 4; else { if (tls_type & GOT_TLS_GD) /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */ s->size += 8; if (tls_type & GOT_TLS_IE) /* R_ARM_TLS_IE32 needs one GOT slot. */ s->size += 4; } dyn = htab->root.dynamic_sections_created; indx = 0; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) indx = h->dynindx; if (tls_type != GOT_NORMAL && (info->shared || indx != 0) && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) { if (tls_type & GOT_TLS_IE) htab->srelgot->size += RELOC_SIZE (htab); if (tls_type & GOT_TLS_GD) htab->srelgot->size += RELOC_SIZE (htab); if ((tls_type & GOT_TLS_GD) && indx != 0) htab->srelgot->size += RELOC_SIZE (htab); } else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) htab->srelgot->size += RELOC_SIZE (htab); } } else h->got.offset = (bfd_vma) -1; /* Allocate stubs for exported Thumb functions on v4t. */ if (!htab->use_blx && h->dynindx != -1 && h->def_regular && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) { struct elf_link_hash_entry * th; struct bfd_link_hash_entry * bh; struct elf_link_hash_entry * myh; char name[1024]; asection *s; bh = NULL; /* Create a new symbol to regist the real location of the function. */ s = h->root.u.def.section; sprintf(name, "__real_%s", h->root.root.string); _bfd_generic_link_add_one_symbol (info, s->owner, name, BSF_GLOBAL, s, h->root.u.def.value, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC); myh->forced_local = 1; eh->export_glue = myh; th = record_arm_to_thumb_glue (info, h); /* Point the symbol at the stub. */ h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC); h->root.u.def.section = th->root.u.def.section; h->root.u.def.value = th->root.u.def.value & ~1; } if (eh->relocs_copied == NULL) return TRUE; /* In the shared -Bsymbolic case, discard space allocated for dynamic pc-relative relocs against symbols which turn out to be defined in regular objects. For the normal shared case, discard space for pc-relative relocs that have become local due to symbol visibility changes. */ if (info->shared || htab->root.is_relocatable_executable) { /* The only relocs that use pc_count are R_ARM_REL32 and R_ARM_REL32_NOI, which will appear on something like ".long foo - .". We want calls to protected symbols to resolve directly to the function rather than going via the plt. If people want function pointer comparisons to work as expected then they should avoid writing assembly like ".long foo - .". */ if (SYMBOL_CALLS_LOCAL (info, h)) { struct elf32_arm_relocs_copied **pp; for (pp = &eh->relocs_copied; (p = *pp) != NULL; ) { p->count -= p->pc_count; p->pc_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } /* Also discard relocs on undefined weak syms with non-default visibility. */ if (eh->relocs_copied != NULL && h->root.type == bfd_link_hash_undefweak) { if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) eh->relocs_copied = NULL; /* Make sure undefined weak symbols are output as a dynamic symbol in PIEs. */ else if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } } else if (htab->root.is_relocatable_executable && h->dynindx == -1 && h->root.type == bfd_link_hash_new) { /* Output absolute symbols so that we can create relocations against them. For normal symbols we output a relocation against the section that contains them. */ if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } } else { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if (!h->non_got_ref && ((h->def_dynamic && !h->def_regular) || (htab->root.dynamic_sections_created && (h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined)))) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } /* If that succeeded, we know we'll be keeping all the relocs. */ if (h->dynindx != -1) goto keep; } eh->relocs_copied = NULL; keep: ; } /* Finally, allocate space. */ for (p = eh->relocs_copied; p != NULL; p = p->next) { asection *sreloc = elf_section_data (p->section)->sreloc; sreloc->size += p->count * RELOC_SIZE (htab); } return TRUE; } /* Find any dynamic relocs that apply to read-only sections. */ static bfd_boolean elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf) { struct elf32_arm_link_hash_entry *eh; struct elf32_arm_relocs_copied *p; if (h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; eh = (struct elf32_arm_link_hash_entry *) h; for (p = eh->relocs_copied; p != NULL; p = p->next) { asection *s = p->section; if (s != NULL && (s->flags & SEC_READONLY) != 0) { struct bfd_link_info *info = (struct bfd_link_info *) inf; info->flags |= DF_TEXTREL; /* Not an error, just cut short the traversal. */ return FALSE; } } return TRUE; } void bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info, int byteswap_code) { struct elf32_arm_link_hash_table *globals; globals = elf32_arm_hash_table (info); globals->byteswap_code = byteswap_code; } /* Set the sizes of the dynamic sections. */ static bfd_boolean elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info * info) { bfd * dynobj; asection * s; bfd_boolean plt; bfd_boolean relocs; bfd *ibfd; struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); check_use_blx (htab); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (info->executable) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } /* Set up .got offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; char *local_tls_type; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srel; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) continue; for (s = ibfd->sections; s != NULL; s = s->next) { struct elf32_arm_relocs_copied *p; for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) { if (!bfd_is_abs_section (p->section) && bfd_is_abs_section (p->section->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (p->count != 0) { srel = elf_section_data (p->section)->sreloc; srel->size += p->count * RELOC_SIZE (htab); if ((p->section->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; } } } local_got = elf_local_got_refcounts (ibfd); if (!local_got) continue; symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; locsymcount = symtab_hdr->sh_info; end_local_got = local_got + locsymcount; local_tls_type = elf32_arm_local_got_tls_type (ibfd); s = htab->sgot; srel = htab->srelgot; for (; local_got < end_local_got; ++local_got, ++local_tls_type) { if (*local_got > 0) { *local_got = s->size; if (*local_tls_type & GOT_TLS_GD) /* TLS_GD relocs need an 8-byte structure in the GOT. */ s->size += 8; if (*local_tls_type & GOT_TLS_IE) s->size += 4; if (*local_tls_type == GOT_NORMAL) s->size += 4; if (info->shared || *local_tls_type == GOT_TLS_GD) srel->size += RELOC_SIZE (htab); } else *local_got = (bfd_vma) -1; } } if (htab->tls_ldm_got.refcount > 0) { /* Allocate two GOT entries and one dynamic relocation (if necessary) for R_ARM_TLS_LDM32 relocations. */ htab->tls_ldm_got.offset = htab->sgot->size; htab->sgot->size += 8; if (info->shared) htab->srelgot->size += RELOC_SIZE (htab); } else htab->tls_ldm_got.offset = -1; /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info); /* Here we rummage through the found bfds to collect glue information. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { /* Initialise mapping tables for code/data. */ bfd_elf32_arm_init_maps (ibfd); if (!bfd_elf32_arm_process_before_allocation (ibfd, info) || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)) /* xgettext:c-format */ _bfd_error_handler (_("Errors encountered processing file %s"), ibfd->filename); } /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ plt = FALSE; relocs = FALSE; for (s = dynobj->sections; s != NULL; s = s->next) { const char * name; if ((s->flags & SEC_LINKER_CREATED) == 0) continue; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, s); if (strcmp (name, ".plt") == 0) { /* Remember whether there is a PLT. */ plt = s->size != 0; } else if (CONST_STRNEQ (name, ".rel")) { if (s->size != 0) { /* Remember whether there are any reloc sections other than .rel(a).plt and .rela.plt.unloaded. */ if (s != htab->srelplt && s != htab->srelplt2) relocs = TRUE; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } } else if (! CONST_STRNEQ (name, ".got") && strcmp (name, ".dynbss") != 0) { /* It's not one of our sections, so don't allocate space. */ continue; } if (s->size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rel(a).bss and .rel(a).plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); if (s->contents == NULL) return FALSE; } if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in elf32_arm_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (info->executable) { if (!add_dynamic_entry (DT_DEBUG, 0)) return FALSE; } if (plt) { if ( !add_dynamic_entry (DT_PLTGOT, 0) || !add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, htab->use_rel ? DT_REL : DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0)) return FALSE; } if (relocs) { if (htab->use_rel) { if (!add_dynamic_entry (DT_REL, 0) || !add_dynamic_entry (DT_RELSZ, 0) || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab))) return FALSE; } else { if (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab))) return FALSE; } } /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ if ((info->flags & DF_TEXTREL) == 0) elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs, (PTR) info); if ((info->flags & DF_TEXTREL) != 0) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; } } #undef add_dynamic_entry return TRUE; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bfd_boolean elf32_arm_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info * info, struct elf_link_hash_entry * h, Elf_Internal_Sym * sym) { bfd * dynobj; struct elf32_arm_link_hash_table *htab; struct elf32_arm_link_hash_entry *eh; dynobj = elf_hash_table (info)->dynobj; htab = elf32_arm_hash_table (info); eh = (struct elf32_arm_link_hash_entry *) h; if (h->plt.offset != (bfd_vma) -1) { asection * splt; asection * srel; bfd_byte *loc; bfd_vma plt_index; Elf_Internal_Rela rel; /* This symbol has an entry in the procedure linkage table. Set it up. */ BFD_ASSERT (h->dynindx != -1); splt = bfd_get_section_by_name (dynobj, ".plt"); srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt")); BFD_ASSERT (splt != NULL && srel != NULL); /* Fill in the entry in the procedure linkage table. */ if (htab->symbian_p) { put_arm_insn (htab, output_bfd, elf32_arm_symbian_plt_entry[0], splt->contents + h->plt.offset); bfd_put_32 (output_bfd, elf32_arm_symbian_plt_entry[1], splt->contents + h->plt.offset + 4); /* Fill in the entry in the .rel.plt section. */ rel.r_offset = (splt->output_section->vma + splt->output_offset + h->plt.offset + 4); rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT); /* Get the index in the procedure linkage table which corresponds to this symbol. This is the index of this symbol in all the symbols for which we are making plt entries. The first entry in the procedure linkage table is reserved. */ plt_index = ((h->plt.offset - htab->plt_header_size) / htab->plt_entry_size); } else { bfd_vma got_offset, got_address, plt_address; bfd_vma got_displacement; asection * sgot; bfd_byte * ptr; sgot = bfd_get_section_by_name (dynobj, ".got.plt"); BFD_ASSERT (sgot != NULL); /* Get the offset into the .got.plt table of the entry that corresponds to this function. */ got_offset = eh->plt_got_offset; /* Get the index in the procedure linkage table which corresponds to this symbol. This is the index of this symbol in all the symbols for which we are making plt entries. The first three entries in .got.plt are reserved; after that symbols appear in the same order as in .plt. */ plt_index = (got_offset - 12) / 4; /* Calculate the address of the GOT entry. */ got_address = (sgot->output_section->vma + sgot->output_offset + got_offset); /* ...and the address of the PLT entry. */ plt_address = (splt->output_section->vma + splt->output_offset + h->plt.offset); ptr = htab->splt->contents + h->plt.offset; if (htab->vxworks_p && info->shared) { unsigned int i; bfd_vma val; for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4) { val = elf32_arm_vxworks_shared_plt_entry[i]; if (i == 2) val |= got_address - sgot->output_section->vma; if (i == 5) val |= plt_index * RELOC_SIZE (htab); if (i == 2 || i == 5) bfd_put_32 (output_bfd, val, ptr); else put_arm_insn (htab, output_bfd, val, ptr); } } else if (htab->vxworks_p) { unsigned int i; bfd_vma val; for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4) { val = elf32_arm_vxworks_exec_plt_entry[i]; if (i == 2) val |= got_address; if (i == 4) val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2); if (i == 5) val |= plt_index * RELOC_SIZE (htab); if (i == 2 || i == 5) bfd_put_32 (output_bfd, val, ptr); else put_arm_insn (htab, output_bfd, val, ptr); } loc = (htab->srelplt2->contents + (plt_index * 2 + 1) * RELOC_SIZE (htab)); /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation referencing the GOT for this PLT entry. */ rel.r_offset = plt_address + 8; rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); rel.r_addend = got_offset; SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); loc += RELOC_SIZE (htab); /* Create the R_ARM_ABS32 relocation referencing the beginning of the PLT for this GOT entry. */ rel.r_offset = got_address; rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32); rel.r_addend = 0; SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); } else { /* Calculate the displacement between the PLT slot and the entry in the GOT. The eight-byte offset accounts for the value produced by adding to pc in the first instruction of the PLT stub. */ got_displacement = got_address - (plt_address + 8); BFD_ASSERT ((got_displacement & 0xf0000000) == 0); if (!htab->use_blx && eh->plt_thumb_refcount > 0) { put_thumb_insn (htab, output_bfd, elf32_arm_plt_thumb_stub[0], ptr - 4); put_thumb_insn (htab, output_bfd, elf32_arm_plt_thumb_stub[1], ptr - 2); } put_arm_insn (htab, output_bfd, elf32_arm_plt_entry[0] | ((got_displacement & 0x0ff00000) >> 20), ptr + 0); put_arm_insn (htab, output_bfd, elf32_arm_plt_entry[1] | ((got_displacement & 0x000ff000) >> 12), ptr+ 4); put_arm_insn (htab, output_bfd, elf32_arm_plt_entry[2] | (got_displacement & 0x00000fff), ptr + 8); #ifdef FOUR_WORD_PLT bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12); #endif } /* Fill in the entry in the global offset table. */ bfd_put_32 (output_bfd, (splt->output_section->vma + splt->output_offset), sgot->contents + got_offset); /* Fill in the entry in the .rel(a).plt section. */ rel.r_addend = 0; rel.r_offset = got_address; rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT); } loc = srel->contents + plt_index * RELOC_SIZE (htab); SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; /* If the symbol is weak, we do need to clear the value. Otherwise, the PLT entry would provide a definition for the symbol even if the symbol wasn't defined anywhere, and so the symbol would never be NULL. */ if (!h->ref_regular_nonweak) sym->st_value = 0; } } if (h->got.offset != (bfd_vma) -1 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0) { asection * sgot; asection * srel; Elf_Internal_Rela rel; bfd_byte *loc; bfd_vma offset; /* This symbol has an entry in the global offset table. Set it up. */ sgot = bfd_get_section_by_name (dynobj, ".got"); srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got")); BFD_ASSERT (sgot != NULL && srel != NULL); offset = (h->got.offset & ~(bfd_vma) 1); rel.r_addend = 0; rel.r_offset = (sgot->output_section->vma + sgot->output_offset + offset); /* If this is a static link, or it is a -Bsymbolic link and the symbol is defined locally or was forced to be local because of a version file, we just want to emit a RELATIVE reloc. The entry in the global offset table will already have been initialized in the relocate_section function. */ if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h)) { BFD_ASSERT((h->got.offset & 1) != 0); rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); if (!htab->use_rel) { rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset); } } else { BFD_ASSERT((h->got.offset & 1) == 0); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT); } loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab); SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); } if (h->needs_copy) { asection * s; Elf_Internal_Rela rel; bfd_byte *loc; /* This symbol needs a copy reloc. Set it up. */ BFD_ASSERT (h->dynindx != -1 && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)); s = bfd_get_section_by_name (h->root.u.def.section->owner, RELOC_SECTION (htab, ".bss")); BFD_ASSERT (s != NULL); rel.r_addend = 0; rel.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY); loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab); SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative to the ".got" section. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || (!htab->vxworks_p && h == htab->root.hgot)) sym->st_shndx = SHN_ABS; return TRUE; } /* Finish up the dynamic sections. */ static bfd_boolean elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info) { bfd * dynobj; asection * sgot; asection * sdyn; dynobj = elf_hash_table (info)->dynobj; sgot = bfd_get_section_by_name (dynobj, ".got.plt"); BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL); sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (elf_hash_table (info)->dynamic_sections_created) { asection *splt; Elf32_External_Dyn *dyncon, *dynconend; struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL && sdyn != NULL); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; const char * name; asection * s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { unsigned int type; default: break; case DT_HASH: name = ".hash"; goto get_vma_if_bpabi; case DT_STRTAB: name = ".dynstr"; goto get_vma_if_bpabi; case DT_SYMTAB: name = ".dynsym"; goto get_vma_if_bpabi; case DT_VERSYM: name = ".gnu.version"; goto get_vma_if_bpabi; case DT_VERDEF: name = ".gnu.version_d"; goto get_vma_if_bpabi; case DT_VERNEED: name = ".gnu.version_r"; goto get_vma_if_bpabi; case DT_PLTGOT: name = ".got"; goto get_vma; case DT_JMPREL: name = RELOC_SECTION (htab, ".plt"); get_vma: s = bfd_get_section_by_name (output_bfd, name); BFD_ASSERT (s != NULL); if (!htab->symbian_p) dyn.d_un.d_ptr = s->vma; else /* In the BPABI, tags in the PT_DYNAMIC section point at the file offset, not the memory address, for the convenience of the post linker. */ dyn.d_un.d_ptr = s->filepos; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; get_vma_if_bpabi: if (htab->symbian_p) goto get_vma; break; case DT_PLTRELSZ: s = bfd_get_section_by_name (output_bfd, RELOC_SECTION (htab, ".plt")); BFD_ASSERT (s != NULL); dyn.d_un.d_val = s->size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_RELSZ: case DT_RELASZ: if (!htab->symbian_p) { /* My reading of the SVR4 ABI indicates that the procedure linkage table relocs (DT_JMPREL) should be included in the overall relocs (DT_REL). This is what Solaris does. However, UnixWare can not handle that case. Therefore, we override the DT_RELSZ entry here to make it not include the JMPREL relocs. Since the linker script arranges for .rel(a).plt to follow all other relocation sections, we don't have to worry about changing the DT_REL entry. */ s = bfd_get_section_by_name (output_bfd, RELOC_SECTION (htab, ".plt")); if (s != NULL) dyn.d_un.d_val -= s->size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; } /* Fall through */ case DT_REL: case DT_RELA: /* In the BPABI, the DT_REL tag must point at the file offset, not the VMA, of the first relocation section. So, we use code similar to that in elflink.c, but do not check for SHF_ALLOC on the relcoation section, since relocations sections are never allocated under the BPABI. The comments above about Unixware notwithstanding, we include all of the relocations here. */ if (htab->symbian_p) { unsigned int i; type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) ? SHT_REL : SHT_RELA); dyn.d_un.d_val = 0; for (i = 1; i < elf_numsections (output_bfd); i++) { Elf_Internal_Shdr *hdr = elf_elfsections (output_bfd)[i]; if (hdr->sh_type == type) { if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) dyn.d_un.d_val += hdr->sh_size; else if ((ufile_ptr) hdr->sh_offset <= dyn.d_un.d_val - 1) dyn.d_un.d_val = hdr->sh_offset; } } bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); } break; /* Set the bottom bit of DT_INIT/FINI if the corresponding function is Thumb. */ case DT_INIT: name = info->init_function; goto get_sym; case DT_FINI: name = info->fini_function; get_sym: /* If it wasn't set by elf_bfd_final_link then there is nothing to adjust. */ if (dyn.d_un.d_val != 0) { struct elf_link_hash_entry * eh; eh = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE); if (eh != (struct elf_link_hash_entry *) NULL && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC) { dyn.d_un.d_val |= 1; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); } } break; } } /* Fill in the first entry in the procedure linkage table. */ if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size) { const bfd_vma *plt0_entry; bfd_vma got_address, plt_address, got_displacement; /* Calculate the addresses of the GOT and PLT. */ got_address = sgot->output_section->vma + sgot->output_offset; plt_address = splt->output_section->vma + splt->output_offset; if (htab->vxworks_p) { /* The VxWorks GOT is relocated by the dynamic linker. Therefore, we must emit relocations rather than simply computing the values now. */ Elf_Internal_Rela rel; plt0_entry = elf32_arm_vxworks_exec_plt0_entry; put_arm_insn (htab, output_bfd, plt0_entry[0], splt->contents + 0); put_arm_insn (htab, output_bfd, plt0_entry[1], splt->contents + 4); put_arm_insn (htab, output_bfd, plt0_entry[2], splt->contents + 8); bfd_put_32 (output_bfd, got_address, splt->contents + 12); /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */ rel.r_offset = plt_address + 12; rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); rel.r_addend = 0; SWAP_RELOC_OUT (htab) (output_bfd, &rel, htab->srelplt2->contents); } else { got_displacement = got_address - (plt_address + 16); plt0_entry = elf32_arm_plt0_entry; put_arm_insn (htab, output_bfd, plt0_entry[0], splt->contents + 0); put_arm_insn (htab, output_bfd, plt0_entry[1], splt->contents + 4); put_arm_insn (htab, output_bfd, plt0_entry[2], splt->contents + 8); put_arm_insn (htab, output_bfd, plt0_entry[3], splt->contents + 12); #ifdef FOUR_WORD_PLT /* The displacement value goes in the otherwise-unused last word of the second entry. */ bfd_put_32 (output_bfd, got_displacement, splt->contents + 28); #else bfd_put_32 (output_bfd, got_displacement, splt->contents + 16); #endif } } /* UnixWare sets the entsize of .plt to 4, although that doesn't really seem like the right value. */ if (splt->output_section->owner == output_bfd) elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4; if (htab->vxworks_p && !info->shared && htab->splt->size > 0) { /* Correct the .rel(a).plt.unloaded relocations. They will have incorrect symbol indexes. */ int num_plts; unsigned char *p; num_plts = ((htab->splt->size - htab->plt_header_size) / htab->plt_entry_size); p = htab->srelplt2->contents + RELOC_SIZE (htab); for (; num_plts; num_plts--) { Elf_Internal_Rela rel; SWAP_RELOC_IN (htab) (output_bfd, p, &rel); rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); SWAP_RELOC_OUT (htab) (output_bfd, &rel, p); p += RELOC_SIZE (htab); SWAP_RELOC_IN (htab) (output_bfd, p, &rel); rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32); SWAP_RELOC_OUT (htab) (output_bfd, &rel, p); p += RELOC_SIZE (htab); } } } /* Fill in the first three entries in the global offset table. */ if (sgot) { if (sgot->size > 0) { if (sdyn == NULL) bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); else bfd_put_32 (output_bfd, sdyn->output_section->vma + sdyn->output_offset, sgot->contents); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); } elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; } return TRUE; } static void elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED) { Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */ struct elf32_arm_link_hash_table *globals; i_ehdrp = elf_elfheader (abfd); if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN) i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION; else i_ehdrp->e_ident[EI_OSABI] = 0; i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION; if (link_info) { globals = elf32_arm_hash_table (link_info); if (globals->byteswap_code) i_ehdrp->e_flags |= EF_ARM_BE8; } } static enum elf_reloc_type_class elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela) { switch ((int) ELF32_R_TYPE (rela->r_info)) { case R_ARM_RELATIVE: return reloc_class_relative; case R_ARM_JUMP_SLOT: return reloc_class_plt; case R_ARM_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Set the right machine number for an Arm ELF file. */ static bfd_boolean elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr) { if (hdr->sh_type == SHT_NOTE) *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS; return TRUE; } static void elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED) { bfd_arm_update_notes (abfd, ARM_NOTE_SECTION); } /* Return TRUE if this is an unwinding table entry. */ static bfd_boolean is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name) { return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind) || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once)); } /* Set the type and flags for an ARM section. We do this by the section name, which is a hack, but ought to work. */ static bfd_boolean elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec) { const char * name; name = bfd_get_section_name (abfd, sec); if (is_arm_elf_unwind_section_name (abfd, name)) { hdr->sh_type = SHT_ARM_EXIDX; hdr->sh_flags |= SHF_LINK_ORDER; } return TRUE; } /* Handle an ARM specific section when reading an object file. This is called when bfd_section_from_shdr finds a section with an unknown type. */ static bfd_boolean elf32_arm_section_from_shdr (bfd *abfd, Elf_Internal_Shdr * hdr, const char *name, int shindex) { /* There ought to be a place to keep ELF backend specific flags, but at the moment there isn't one. We just keep track of the sections by their name, instead. Fortunately, the ABI gives names for all the ARM specific sections, so we will probably get away with this. */ switch (hdr->sh_type) { case SHT_ARM_EXIDX: case SHT_ARM_PREEMPTMAP: case SHT_ARM_ATTRIBUTES: break; default: return FALSE; } if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) return FALSE; return TRUE; } /* A structure used to record a list of sections, independently of the next and prev fields in the asection structure. */ typedef struct section_list { asection * sec; struct section_list * next; struct section_list * prev; } section_list; /* Unfortunately we need to keep a list of sections for which an _arm_elf_section_data structure has been allocated. This is because it is possible for functions like elf32_arm_write_section to be called on a section which has had an elf_data_structure allocated for it (and so the used_by_bfd field is valid) but for which the ARM extended version of this structure - the _arm_elf_section_data structure - has not been allocated. */ static section_list * sections_with_arm_elf_section_data = NULL; static void record_section_with_arm_elf_section_data (asection * sec) { struct section_list * entry; entry = bfd_malloc (sizeof (* entry)); if (entry == NULL) return; entry->sec = sec; entry->next = sections_with_arm_elf_section_data; entry->prev = NULL; if (entry->next != NULL) entry->next->prev = entry; sections_with_arm_elf_section_data = entry; } static struct section_list * find_arm_elf_section_entry (asection * sec) { struct section_list * entry; static struct section_list * last_entry = NULL; /* This is a short cut for the typical case where the sections are added to the sections_with_arm_elf_section_data list in forward order and then looked up here in backwards order. This makes a real difference to the ld-srec/sec64k.exp linker test. */ entry = sections_with_arm_elf_section_data; if (last_entry != NULL) { if (last_entry->sec == sec) entry = last_entry; else if (last_entry->next != NULL && last_entry->next->sec == sec) entry = last_entry->next; } for (; entry; entry = entry->next) if (entry->sec == sec) break; if (entry) /* Record the entry prior to this one - it is the entry we are most likely to want to locate next time. Also this way if we have been called from unrecord_section_with_arm_elf_section_data() we will not be caching a pointer that is about to be freed. */ last_entry = entry->prev; return entry; } static _arm_elf_section_data * get_arm_elf_section_data (asection * sec) { struct section_list * entry; entry = find_arm_elf_section_entry (sec); if (entry) return elf32_arm_section_data (entry->sec); else return NULL; } static void unrecord_section_with_arm_elf_section_data (asection * sec) { struct section_list * entry; entry = find_arm_elf_section_entry (sec); if (entry) { if (entry->prev != NULL) entry->prev->next = entry->next; if (entry->next != NULL) entry->next->prev = entry->prev; if (entry == sections_with_arm_elf_section_data) sections_with_arm_elf_section_data = entry->next; free (entry); } } typedef struct { void *finfo; struct bfd_link_info *info; asection *sec; int sec_shndx; bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *); } output_arch_syminfo; enum map_symbol_type { ARM_MAP_ARM, ARM_MAP_THUMB, ARM_MAP_DATA }; /* Output a single PLT mapping symbol. */ static bfd_boolean elf32_arm_ouput_plt_map_sym (output_arch_syminfo *osi, enum map_symbol_type type, bfd_vma offset) { static const char *names[3] = {"$a", "$t", "$d"}; struct elf32_arm_link_hash_table *htab; Elf_Internal_Sym sym; htab = elf32_arm_hash_table (osi->info); sym.st_value = osi->sec->output_section->vma + osi->sec->output_offset + offset; sym.st_size = 0; sym.st_other = 0; sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); sym.st_shndx = osi->sec_shndx; if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL)) return FALSE; return TRUE; } /* Output mapping symbols for PLT entries associated with H. */ static bfd_boolean elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf) { output_arch_syminfo *osi = (output_arch_syminfo *) inf; struct elf32_arm_link_hash_table *htab; struct elf32_arm_link_hash_entry *eh; bfd_vma addr; htab = elf32_arm_hash_table (osi->info); if (h->root.type == bfd_link_hash_indirect) return TRUE; if (h->root.type == bfd_link_hash_warning) /* When warning symbols are created, they **replace** the "real" entry in the hash table, thus we never get to see the real symbol in a hash traversal. So look at it now. */ h = (struct elf_link_hash_entry *) h->root.u.i.link; if (h->plt.offset == (bfd_vma) -1) return TRUE; eh = (struct elf32_arm_link_hash_entry *) h; addr = h->plt.offset; if (htab->symbian_p) { if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr)) return FALSE; if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4)) return FALSE; } else if (htab->vxworks_p) { if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr)) return FALSE; if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8)) return FALSE; if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 12)) return FALSE; if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 20)) return FALSE; } else { bfd_boolean thumb_stub; thumb_stub = eh->plt_thumb_refcount > 0 && !htab->use_blx; if (thumb_stub) { if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr - 4)) return FALSE; } #ifdef FOUR_WORD_PLT if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr)) return FALSE; if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12)) return FALSE; #else /* A three-word PLT with no Thumb thunk contains only Arm code, so only need to output a mapping symbol for the first PLT entry and entries with thumb thunks. */ if (thumb_stub || addr == 20) { if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr)) return FALSE; } #endif } return TRUE; } /* Output mapping symbols for linker generated sections. */ static bfd_boolean elf32_arm_output_arch_local_syms (bfd *output_bfd, struct bfd_link_info *info, void *finfo, bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *)) { output_arch_syminfo osi; struct elf32_arm_link_hash_table *htab; bfd_vma offset; bfd_size_type size; htab = elf32_arm_hash_table (info); check_use_blx(htab); osi.finfo = finfo; osi.info = info; osi.func = func; /* ARM->Thumb glue. */ if (htab->arm_glue_size > 0) { osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd, osi.sec->output_section); if (info->shared || htab->root.is_relocatable_executable || htab->pic_veneer) size = ARM2THUMB_PIC_GLUE_SIZE; else if (htab->use_blx) size = ARM2THUMB_V5_STATIC_GLUE_SIZE; else size = ARM2THUMB_STATIC_GLUE_SIZE; for (offset = 0; offset < htab->arm_glue_size; offset += size) { elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset); elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, offset + size - 4); } } /* Thumb->ARM glue. */ if (htab->thumb_glue_size > 0) { osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME); osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd, osi.sec->output_section); size = THUMB2ARM_GLUE_SIZE; for (offset = 0; offset < htab->thumb_glue_size; offset += size) { elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_THUMB, offset); elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset + 4); } } /* Finally, output mapping symbols for the PLT. */ if (!htab->splt || htab->splt->size == 0) return TRUE; osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd, htab->splt->output_section); osi.sec = htab->splt; /* Output mapping symbols for the plt header. SymbianOS does not have a plt header. */ if (htab->vxworks_p) { /* VxWorks shared libraries have no PLT header. */ if (!info->shared) { if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0)) return FALSE; if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 12)) return FALSE; } } else if (!htab->symbian_p) { if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0)) return FALSE; #ifndef FOUR_WORD_PLT if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 16)) return FALSE; #endif } elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi); return TRUE; } /* Allocate target specific section data. */ static bfd_boolean elf32_arm_new_section_hook (bfd *abfd, asection *sec) { if (!sec->used_by_bfd) { _arm_elf_section_data *sdata; bfd_size_type amt = sizeof (*sdata); sdata = bfd_zalloc (abfd, amt); if (sdata == NULL) return FALSE; sec->used_by_bfd = sdata; } record_section_with_arm_elf_section_data (sec); return _bfd_elf_new_section_hook (abfd, sec); } /* Used to order a list of mapping symbols by address. */ static int elf32_arm_compare_mapping (const void * a, const void * b) { return ((const elf32_arm_section_map *) a)->vma > ((const elf32_arm_section_map *) b)->vma; } /* Do code byteswapping. Return FALSE afterwards so that the section is written out as normal. */ static bfd_boolean elf32_arm_write_section (bfd *output_bfd, struct bfd_link_info *link_info, asection *sec, bfd_byte *contents) { int mapcount, errcount; _arm_elf_section_data *arm_data; struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); elf32_arm_section_map *map; elf32_vfp11_erratum_list *errnode; bfd_vma ptr; bfd_vma end; bfd_vma offset = sec->output_section->vma + sec->output_offset; bfd_byte tmp; int i; /* If this section has not been allocated an _arm_elf_section_data structure then we cannot record anything. */ arm_data = get_arm_elf_section_data (sec); if (arm_data == NULL) return FALSE; mapcount = arm_data->mapcount; map = arm_data->map; errcount = arm_data->erratumcount; if (errcount != 0) { unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0; for (errnode = arm_data->erratumlist; errnode != 0; errnode = errnode->next) { bfd_vma index = errnode->vma - offset; switch (errnode->type) { case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER: { bfd_vma branch_to_veneer; /* Original condition code of instruction, plus bit mask for ARM B instruction. */ unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000) | 0x0a000000; /* The instruction is before the label. */ index -= 4; /* Above offset included in -4 below. */ branch_to_veneer = errnode->u.b.veneer->vma - errnode->vma - 4; if ((signed) branch_to_veneer < -(1 << 25) || (signed) branch_to_veneer >= (1 << 25)) (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of " "range"), output_bfd); insn |= (branch_to_veneer >> 2) & 0xffffff; contents[endianflip ^ index] = insn & 0xff; contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff; contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff; contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff; } break; case VFP11_ERRATUM_ARM_VENEER: { bfd_vma branch_from_veneer; unsigned int insn; /* Take size of veneer into account. */ branch_from_veneer = errnode->u.v.branch->vma - errnode->vma - 12; if ((signed) branch_from_veneer < -(1 << 25) || (signed) branch_from_veneer >= (1 << 25)) (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of " "range"), output_bfd); /* Original instruction. */ insn = errnode->u.v.branch->u.b.vfp_insn; contents[endianflip ^ index] = insn & 0xff; contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff; contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff; contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff; /* Branch back to insn after original insn. */ insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff); contents[endianflip ^ (index + 4)] = insn & 0xff; contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff; contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff; contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff; } break; default: abort (); } } } if (mapcount == 0) return FALSE; if (globals->byteswap_code) { qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping); ptr = map[0].vma; for (i = 0; i < mapcount; i++) { if (i == mapcount - 1) end = sec->size; else end = map[i + 1].vma; switch (map[i].type) { case 'a': /* Byte swap code words. */ while (ptr + 3 < end) { tmp = contents[ptr]; contents[ptr] = contents[ptr + 3]; contents[ptr + 3] = tmp; tmp = contents[ptr + 1]; contents[ptr + 1] = contents[ptr + 2]; contents[ptr + 2] = tmp; ptr += 4; } break; case 't': /* Byte swap code halfwords. */ while (ptr + 1 < end) { tmp = contents[ptr]; contents[ptr] = contents[ptr + 1]; contents[ptr + 1] = tmp; ptr += 2; } break; case 'd': /* Leave data alone. */ break; } ptr = end; } } free (map); arm_data->mapcount = 0; arm_data->mapsize = 0; arm_data->map = NULL; unrecord_section_with_arm_elf_section_data (sec); return FALSE; } static void unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED, asection * sec, void * ignore ATTRIBUTE_UNUSED) { unrecord_section_with_arm_elf_section_data (sec); } static bfd_boolean elf32_arm_close_and_cleanup (bfd * abfd) { if (abfd->sections) bfd_map_over_sections (abfd, unrecord_section_via_map_over_sections, NULL); return _bfd_elf_close_and_cleanup (abfd); } static bfd_boolean elf32_arm_bfd_free_cached_info (bfd * abfd) { if (abfd->sections) bfd_map_over_sections (abfd, unrecord_section_via_map_over_sections, NULL); return _bfd_free_cached_info (abfd); } /* Display STT_ARM_TFUNC symbols as functions. */ static void elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym) { elf_symbol_type *elfsym = (elf_symbol_type *) asym; if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC) elfsym->symbol.flags |= BSF_FUNCTION; } /* Mangle thumb function symbols as we read them in. */ static bfd_boolean elf32_arm_swap_symbol_in (bfd * abfd, const void *psrc, const void *pshn, Elf_Internal_Sym *dst) { if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst)) return FALSE; /* New EABI objects mark thumb function symbols by setting the low bit of the address. Turn these into STT_ARM_TFUNC. */ if (ELF_ST_TYPE (dst->st_info) == STT_FUNC && (dst->st_value & 1)) { dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC); dst->st_value &= ~(bfd_vma) 1; } return TRUE; } /* Mangle thumb function symbols as we write them out. */ static void elf32_arm_swap_symbol_out (bfd *abfd, const Elf_Internal_Sym *src, void *cdst, void *shndx) { Elf_Internal_Sym newsym; /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit of the address set, as per the new EABI. We do this unconditionally because objcopy does not set the elf header flags until after it writes out the symbol table. */ if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC) { newsym = *src; newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC); if (newsym.st_shndx != SHN_UNDEF) { /* Do this only for defined symbols. At link type, the static linker will simulate the work of dynamic linker of resolving symbols and will carry over the thumbness of found symbols to the output symbol table. It's not clear how it happens, but the thumbness of undefined symbols can well be different at runtime, and writing '1' for them will be confusing for users and possibly for dynamic linker itself. */ newsym.st_value |= 1; } src = &newsym; } bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx); } /* Add the PT_ARM_EXIDX program header. */ static bfd_boolean elf32_arm_modify_segment_map (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) { struct elf_segment_map *m; asection *sec; sec = bfd_get_section_by_name (abfd, ".ARM.exidx"); if (sec != NULL && (sec->flags & SEC_LOAD) != 0) { /* If there is already a PT_ARM_EXIDX header, then we do not want to add another one. This situation arises when running "strip"; the input binary already has the header. */ m = elf_tdata (abfd)->segment_map; while (m && m->p_type != PT_ARM_EXIDX) m = m->next; if (!m) { m = bfd_zalloc (abfd, sizeof (struct elf_segment_map)); if (m == NULL) return FALSE; m->p_type = PT_ARM_EXIDX; m->count = 1; m->sections[0] = sec; m->next = elf_tdata (abfd)->segment_map; elf_tdata (abfd)->segment_map = m; } } return TRUE; } /* We may add a PT_ARM_EXIDX program header. */ static int elf32_arm_additional_program_headers (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) { asection *sec; sec = bfd_get_section_by_name (abfd, ".ARM.exidx"); if (sec != NULL && (sec->flags & SEC_LOAD) != 0) return 1; else return 0; } /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */ static bfd_boolean elf32_arm_is_function_type (unsigned int type) { return (type == STT_FUNC) || (type == STT_ARM_TFUNC); } /* We use this to override swap_symbol_in and swap_symbol_out. */ const struct elf_size_info elf32_arm_size_info = { sizeof (Elf32_External_Ehdr), sizeof (Elf32_External_Phdr), sizeof (Elf32_External_Shdr), sizeof (Elf32_External_Rel), sizeof (Elf32_External_Rela), sizeof (Elf32_External_Sym), sizeof (Elf32_External_Dyn), sizeof (Elf_External_Note), 4, 1, 32, 2, ELFCLASS32, EV_CURRENT, bfd_elf32_write_out_phdrs, bfd_elf32_write_shdrs_and_ehdr, bfd_elf32_write_relocs, elf32_arm_swap_symbol_in, elf32_arm_swap_symbol_out, bfd_elf32_slurp_reloc_table, bfd_elf32_slurp_symbol_table, bfd_elf32_swap_dyn_in, bfd_elf32_swap_dyn_out, bfd_elf32_swap_reloc_in, bfd_elf32_swap_reloc_out, bfd_elf32_swap_reloca_in, bfd_elf32_swap_reloca_out }; #define ELF_ARCH bfd_arch_arm #define ELF_MACHINE_CODE EM_ARM #ifdef __QNXTARGET__ #define ELF_MAXPAGESIZE 0x1000 #else #define ELF_MAXPAGESIZE 0x8000 #endif #define ELF_MINPAGESIZE 0x1000 #define ELF_COMMONPAGESIZE 0x1000 #define bfd_elf32_mkobject elf32_arm_mkobject #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info #define bfd_elf32_new_section_hook elf32_arm_new_section_hook #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info #define elf_backend_get_symbol_type elf32_arm_get_symbol_type #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook #define elf_backend_check_relocs elf32_arm_check_relocs #define elf_backend_relocate_section elf32_arm_relocate_section #define elf_backend_write_section elf32_arm_write_section #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections #define elf_backend_init_index_section _bfd_elf_init_2_index_sections #define elf_backend_post_process_headers elf32_arm_post_process_headers #define elf_backend_reloc_type_class elf32_arm_reloc_type_class #define elf_backend_object_p elf32_arm_object_p #define elf_backend_section_flags elf32_arm_section_flags #define elf_backend_fake_sections elf32_arm_fake_sections #define elf_backend_section_from_shdr elf32_arm_section_from_shdr #define elf_backend_final_write_processing elf32_arm_final_write_processing #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol #define elf_backend_symbol_processing elf32_arm_symbol_processing #define elf_backend_size_info elf32_arm_size_info #define elf_backend_modify_segment_map elf32_arm_modify_segment_map #define elf_backend_additional_program_headers \ elf32_arm_additional_program_headers #define elf_backend_output_arch_local_syms \ elf32_arm_output_arch_local_syms #define elf_backend_begin_write_processing \ elf32_arm_begin_write_processing #define elf_backend_is_function_type elf32_arm_is_function_type #define elf_backend_can_refcount 1 #define elf_backend_can_gc_sections 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_got_plt 1 #define elf_backend_want_plt_sym 0 #define elf_backend_may_use_rel_p 1 #define elf_backend_may_use_rela_p 0 #define elf_backend_default_use_rela_p 0 #define elf_backend_got_header_size 12 #undef elf_backend_obj_attrs_vendor #define elf_backend_obj_attrs_vendor "aeabi" #undef elf_backend_obj_attrs_section #define elf_backend_obj_attrs_section ".ARM.attributes" #undef elf_backend_obj_attrs_arg_type #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type #undef elf_backend_obj_attrs_section_type #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES #include "elf32-target.h" /* VxWorks Targets */ #undef TARGET_LITTLE_SYM #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec #undef TARGET_LITTLE_NAME #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks" #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-bigarm-vxworks" /* Like elf32_arm_link_hash_table_create -- but overrides appropriately for VxWorks. */ static struct bfd_link_hash_table * elf32_arm_vxworks_link_hash_table_create (bfd *abfd) { struct bfd_link_hash_table *ret; ret = elf32_arm_link_hash_table_create (abfd); if (ret) { struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret; htab->use_rel = 0; htab->vxworks_p = 1; } return ret; } static void elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker) { elf32_arm_final_write_processing (abfd, linker); elf_vxworks_final_write_processing (abfd, linker); } #undef elf32_bed #define elf32_bed elf32_arm_vxworks_bed #undef bfd_elf32_bfd_link_hash_table_create #define bfd_elf32_bfd_link_hash_table_create \ elf32_arm_vxworks_link_hash_table_create #undef elf_backend_add_symbol_hook #define elf_backend_add_symbol_hook \ elf_vxworks_add_symbol_hook #undef elf_backend_final_write_processing #define elf_backend_final_write_processing \ elf32_arm_vxworks_final_write_processing #undef elf_backend_emit_relocs #define elf_backend_emit_relocs \ elf_vxworks_emit_relocs #undef elf_backend_may_use_rel_p #define elf_backend_may_use_rel_p 0 #undef elf_backend_may_use_rela_p #define elf_backend_may_use_rela_p 1 #undef elf_backend_default_use_rela_p #define elf_backend_default_use_rela_p 1 #undef elf_backend_want_plt_sym #define elf_backend_want_plt_sym 1 #undef ELF_MAXPAGESIZE #define ELF_MAXPAGESIZE 0x1000 #include "elf32-target.h" /* Symbian OS Targets */ #undef TARGET_LITTLE_SYM #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec #undef TARGET_LITTLE_NAME #define TARGET_LITTLE_NAME "elf32-littlearm-symbian" #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-bigarm-symbian" /* Like elf32_arm_link_hash_table_create -- but overrides appropriately for Symbian OS. */ static struct bfd_link_hash_table * elf32_arm_symbian_link_hash_table_create (bfd *abfd) { struct bfd_link_hash_table *ret; ret = elf32_arm_link_hash_table_create (abfd); if (ret) { struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *)ret; /* There is no PLT header for Symbian OS. */ htab->plt_header_size = 0; /* The PLT entries are each three instructions. */ htab->plt_entry_size = 4 * NUM_ELEM (elf32_arm_symbian_plt_entry); htab->symbian_p = 1; /* Symbian uses armv5t or above, so use_blx is always true. */ htab->use_blx = 1; htab->root.is_relocatable_executable = 1; } return ret; } static const struct bfd_elf_special_section elf32_arm_symbian_special_sections[] = { /* In a BPABI executable, the dynamic linking sections do not go in the loadable read-only segment. The post-linker may wish to refer to these sections, but they are not part of the final program image. */ { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 }, { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 }, { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 }, { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 }, { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 }, /* These sections do not need to be writable as the SymbianOS postlinker will arrange things so that no dynamic relocation is required. */ { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC }, { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC }, { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC }, { NULL, 0, 0, 0, 0 } }; static void elf32_arm_symbian_begin_write_processing (bfd *abfd, struct bfd_link_info *link_info) { /* BPABI objects are never loaded directly by an OS kernel; they are processed by a postlinker first, into an OS-specific format. If the D_PAGED bit is set on the file, BFD will align segments on page boundaries, so that an OS can directly map the file. With BPABI objects, that just results in wasted space. In addition, because we clear the D_PAGED bit, map_sections_to_segments will recognize that the program headers should not be mapped into any loadable segment. */ abfd->flags &= ~D_PAGED; elf32_arm_begin_write_processing(abfd, link_info); } static bfd_boolean elf32_arm_symbian_modify_segment_map (bfd *abfd, struct bfd_link_info *info) { struct elf_segment_map *m; asection *dynsec; /* BPABI shared libraries and executables should have a PT_DYNAMIC segment. However, because the .dynamic section is not marked with SEC_LOAD, the generic ELF code will not create such a segment. */ dynsec = bfd_get_section_by_name (abfd, ".dynamic"); if (dynsec) { for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) if (m->p_type == PT_DYNAMIC) break; if (m == NULL) { m = _bfd_elf_make_dynamic_segment (abfd, dynsec); m->next = elf_tdata (abfd)->segment_map; elf_tdata (abfd)->segment_map = m; } } /* Also call the generic arm routine. */ return elf32_arm_modify_segment_map (abfd, info); } #undef elf32_bed #define elf32_bed elf32_arm_symbian_bed /* The dynamic sections are not allocated on SymbianOS; the postlinker will process them and then discard them. */ #undef ELF_DYNAMIC_SEC_FLAGS #define ELF_DYNAMIC_SEC_FLAGS \ (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED) #undef bfd_elf32_bfd_link_hash_table_create #define bfd_elf32_bfd_link_hash_table_create \ elf32_arm_symbian_link_hash_table_create #undef elf_backend_add_symbol_hook #undef elf_backend_special_sections #define elf_backend_special_sections elf32_arm_symbian_special_sections #undef elf_backend_begin_write_processing #define elf_backend_begin_write_processing \ elf32_arm_symbian_begin_write_processing #undef elf_backend_final_write_processing #define elf_backend_final_write_processing \ elf32_arm_final_write_processing #undef elf_backend_emit_relocs #undef elf_backend_modify_segment_map #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map /* There is no .got section for BPABI objects, and hence no header. */ #undef elf_backend_got_header_size #define elf_backend_got_header_size 0 /* Similarly, there is no .got.plt section. */ #undef elf_backend_want_got_plt #define elf_backend_want_got_plt 0 #undef elf_backend_may_use_rel_p #define elf_backend_may_use_rel_p 1 #undef elf_backend_may_use_rela_p #define elf_backend_may_use_rela_p 0 #undef elf_backend_default_use_rela_p #define elf_backend_default_use_rela_p 0 #undef elf_backend_want_plt_sym #define elf_backend_want_plt_sym 0 #undef ELF_MAXPAGESIZE #define ELF_MAXPAGESIZE 0x8000 #include "elf32-target.h" Index: head/contrib/binutils/include/elf/arm.h =================================================================== --- head/contrib/binutils/include/elf/arm.h (revision 281047) +++ head/contrib/binutils/include/elf/arm.h (revision 281048) @@ -1,289 +1,293 @@ /* ARM ELF support for BFD. Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef _ELF_ARM_H #define _ELF_ARM_H #include "elf/reloc-macros.h" /* Processor specific flags for the ELF header e_flags field. */ #define EF_ARM_RELEXEC 0x01 #define EF_ARM_HASENTRY 0x02 #define EF_ARM_INTERWORK 0x04 #define EF_ARM_APCS_26 0x08 #define EF_ARM_APCS_FLOAT 0x10 #define EF_ARM_PIC 0x20 #define EF_ARM_ALIGN8 0x40 /* 8-bit structure alignment is in use. */ #define EF_ARM_NEW_ABI 0x80 #define EF_ARM_OLD_ABI 0x100 #define EF_ARM_SOFT_FLOAT 0x200 #define EF_ARM_VFP_FLOAT 0x400 #define EF_ARM_MAVERICK_FLOAT 0x800 /* Frame unwind information */ #define PT_ARM_EXIDX (PT_LOPROC + 1) /* Other constants defined in the ARM ELF spec. version B-01. */ #define EF_ARM_SYMSARESORTED 0x04 /* NB conflicts with EF_INTERWORK */ #define EF_ARM_DYNSYMSUSESEGIDX 0x08 /* NB conflicts with EF_APCS26 */ #define EF_ARM_MAPSYMSFIRST 0x10 /* NB conflicts with EF_APCS_FLOAT */ #define EF_ARM_EABIMASK 0xFF000000 /* Constants defined in AAELF. */ #define EF_ARM_BE8 0x00800000 #define EF_ARM_LE8 0x00400000 #define EF_ARM_EABI_VERSION(flags) ((flags) & EF_ARM_EABIMASK) #define EF_ARM_EABI_UNKNOWN 0x00000000 #define EF_ARM_EABI_VER1 0x01000000 #define EF_ARM_EABI_VER2 0x02000000 #define EF_ARM_EABI_VER3 0x03000000 #define EF_ARM_EABI_VER4 0x04000000 #define EF_ARM_EABI_VER5 0x05000000 /* Local aliases for some flags to match names used by COFF port. */ #define F_INTERWORK EF_ARM_INTERWORK #define F_APCS26 EF_ARM_APCS_26 #define F_APCS_FLOAT EF_ARM_APCS_FLOAT #define F_PIC EF_ARM_PIC #define F_SOFT_FLOAT EF_ARM_SOFT_FLOAT #define F_VFP_FLOAT EF_ARM_VFP_FLOAT /* Additional symbol types for Thumb. */ #define STT_ARM_TFUNC STT_LOPROC /* A Thumb function. */ #define STT_ARM_16BIT STT_HIPROC /* A Thumb label. */ /* Additional section types. */ #define SHT_ARM_EXIDX 0x70000001 /* Section holds ARM unwind info. */ #define SHT_ARM_PREEMPTMAP 0x70000002 /* Section pre-emption details. */ #define SHT_ARM_ATTRIBUTES 0x70000003 /* Section holds attributes. */ /* ARM-specific values for sh_flags. */ #define SHF_ENTRYSECT 0x10000000 /* Section contains an entry point. */ #define SHF_COMDEF 0x80000000 /* Section may be multiply defined in the input to a link step. */ /* ARM-specific program header flags. */ #define PF_ARM_SB 0x10000000 /* Segment contains the location addressed by the static base. */ #define PF_ARM_PI 0x20000000 /* Segment is position-independent. */ #define PF_ARM_ABS 0x40000000 /* Segment must be loaded at its base address. */ /* Values for the Tag_CPU_arch EABI attribute. */ #define TAG_CPU_ARCH_PRE_V4 0 #define TAG_CPU_ARCH_V4 1 #define TAG_CPU_ARCH_V4T 2 #define TAG_CPU_ARCH_V5T 3 #define TAG_CPU_ARCH_V5TE 4 #define TAG_CPU_ARCH_V5TEJ 5 #define TAG_CPU_ARCH_V6 6 #define TAG_CPU_ARCH_V6KZ 7 #define TAG_CPU_ARCH_V6T2 8 #define TAG_CPU_ARCH_V6K 9 #define TAG_CPU_ARCH_V7 10 /* Relocation types. */ START_RELOC_NUMBERS (elf_arm_reloc_type) /* AAELF official names and numbers. */ RELOC_NUMBER (R_ARM_NONE, 0) RELOC_NUMBER (R_ARM_PC24, 1) /* deprecated */ RELOC_NUMBER (R_ARM_ABS32, 2) RELOC_NUMBER (R_ARM_REL32, 3) RELOC_NUMBER (R_ARM_LDR_PC_G0, 4) RELOC_NUMBER (R_ARM_ABS16, 5) RELOC_NUMBER (R_ARM_ABS12, 6) RELOC_NUMBER (R_ARM_THM_ABS5, 7) RELOC_NUMBER (R_ARM_ABS8, 8) RELOC_NUMBER (R_ARM_SBREL32, 9) RELOC_NUMBER (R_ARM_THM_CALL, 10) RELOC_NUMBER (R_ARM_THM_PC8, 11) RELOC_NUMBER (R_ARM_BREL_ADJ, 12) RELOC_NUMBER (R_ARM_SWI24, 13) /* obsolete */ RELOC_NUMBER (R_ARM_THM_SWI8, 14) /* obsolete */ RELOC_NUMBER (R_ARM_XPC25, 15) /* obsolete */ RELOC_NUMBER (R_ARM_THM_XPC22, 16) /* obsolete */ RELOC_NUMBER (R_ARM_TLS_DTPMOD32, 17) RELOC_NUMBER (R_ARM_TLS_DTPOFF32, 18) RELOC_NUMBER (R_ARM_TLS_TPOFF32, 19) RELOC_NUMBER (R_ARM_COPY, 20) /* Copy symbol at runtime. */ RELOC_NUMBER (R_ARM_GLOB_DAT, 21) /* Create GOT entry. */ RELOC_NUMBER (R_ARM_JUMP_SLOT, 22) /* Create PLT entry. */ RELOC_NUMBER (R_ARM_RELATIVE, 23) /* Adjust by program base. */ RELOC_NUMBER (R_ARM_GOTOFF32, 24) /* 32 bit offset to GOT. */ RELOC_NUMBER (R_ARM_BASE_PREL, 25) /* 32 bit PC relative offset to GOT. */ RELOC_NUMBER (R_ARM_GOT_BREL, 26) /* 32 bit GOT entry. */ RELOC_NUMBER (R_ARM_PLT32, 27) /* deprecated - 32 bit PLT address. */ RELOC_NUMBER (R_ARM_CALL, 28) RELOC_NUMBER (R_ARM_JUMP24, 29) RELOC_NUMBER (R_ARM_THM_JUMP24, 30) RELOC_NUMBER (R_ARM_BASE_ABS, 31) RELOC_NUMBER (R_ARM_ALU_PCREL7_0, 32) /* obsolete */ RELOC_NUMBER (R_ARM_ALU_PCREL15_8, 33) /* obsolete */ RELOC_NUMBER (R_ARM_ALU_PCREL23_15, 34) /* obsolete */ RELOC_NUMBER (R_ARM_LDR_SBREL_11_0, 35) /* deprecated, should have _NC suffix */ RELOC_NUMBER (R_ARM_ALU_SBREL_19_12, 36) /* deprecated, should have _NC suffix */ RELOC_NUMBER (R_ARM_ALU_SBREL_27_20, 37) /* deprecated, should have _CK suffix */ RELOC_NUMBER (R_ARM_TARGET1, 38) RELOC_NUMBER (R_ARM_SBREL31, 39) /* deprecated */ RELOC_NUMBER (R_ARM_V4BX, 40) RELOC_NUMBER (R_ARM_TARGET2, 41) RELOC_NUMBER (R_ARM_PREL31, 42) RELOC_NUMBER (R_ARM_MOVW_ABS_NC, 43) RELOC_NUMBER (R_ARM_MOVT_ABS, 44) RELOC_NUMBER (R_ARM_MOVW_PREL_NC, 45) RELOC_NUMBER (R_ARM_MOVT_PREL, 46) RELOC_NUMBER (R_ARM_THM_MOVW_ABS_NC, 47) RELOC_NUMBER (R_ARM_THM_MOVT_ABS, 48) RELOC_NUMBER (R_ARM_THM_MOVW_PREL_NC, 49) RELOC_NUMBER (R_ARM_THM_MOVT_PREL, 50) RELOC_NUMBER (R_ARM_THM_JUMP19, 51) RELOC_NUMBER (R_ARM_THM_JUMP6, 52) RELOC_NUMBER (R_ARM_THM_ALU_PREL_11_0, 53) RELOC_NUMBER (R_ARM_THM_PC12, 54) RELOC_NUMBER (R_ARM_ABS32_NOI, 55) RELOC_NUMBER (R_ARM_REL32_NOI, 56) RELOC_NUMBER (R_ARM_ALU_PC_G0_NC, 57) RELOC_NUMBER (R_ARM_ALU_PC_G0, 58) RELOC_NUMBER (R_ARM_ALU_PC_G1_NC, 59) RELOC_NUMBER (R_ARM_ALU_PC_G1, 60) RELOC_NUMBER (R_ARM_ALU_PC_G2, 61) RELOC_NUMBER (R_ARM_LDR_PC_G1, 62) RELOC_NUMBER (R_ARM_LDR_PC_G2, 63) RELOC_NUMBER (R_ARM_LDRS_PC_G0, 64) RELOC_NUMBER (R_ARM_LDRS_PC_G1, 65) RELOC_NUMBER (R_ARM_LDRS_PC_G2, 66) RELOC_NUMBER (R_ARM_LDC_PC_G0, 67) RELOC_NUMBER (R_ARM_LDC_PC_G1, 68) RELOC_NUMBER (R_ARM_LDC_PC_G2, 69) RELOC_NUMBER (R_ARM_ALU_SB_G0_NC, 70) RELOC_NUMBER (R_ARM_ALU_SB_G0, 71) RELOC_NUMBER (R_ARM_ALU_SB_G1_NC, 72) RELOC_NUMBER (R_ARM_ALU_SB_G1, 73) RELOC_NUMBER (R_ARM_ALU_SB_G2, 74) RELOC_NUMBER (R_ARM_LDR_SB_G0, 75) RELOC_NUMBER (R_ARM_LDR_SB_G1, 76) RELOC_NUMBER (R_ARM_LDR_SB_G2, 77) RELOC_NUMBER (R_ARM_LDRS_SB_G0, 78) RELOC_NUMBER (R_ARM_LDRS_SB_G1, 79) RELOC_NUMBER (R_ARM_LDRS_SB_G2, 80) RELOC_NUMBER (R_ARM_LDC_SB_G0, 81) RELOC_NUMBER (R_ARM_LDC_SB_G1, 82) RELOC_NUMBER (R_ARM_LDC_SB_G2, 83) RELOC_NUMBER (R_ARM_MOVW_BREL_NC, 84) RELOC_NUMBER (R_ARM_MOVT_BREL, 85) RELOC_NUMBER (R_ARM_MOVW_BREL, 86) RELOC_NUMBER (R_ARM_THM_MOVW_BREL_NC, 87) RELOC_NUMBER (R_ARM_THM_MOVT_BREL, 88) RELOC_NUMBER (R_ARM_THM_MOVW_BREL, 89) /* 90-93 unallocated */ RELOC_NUMBER (R_ARM_PLT32_ABS, 94) RELOC_NUMBER (R_ARM_GOT_ABS, 95) RELOC_NUMBER (R_ARM_GOT_PREL, 96) RELOC_NUMBER (R_ARM_GOT_BREL12, 97) RELOC_NUMBER (R_ARM_GOTOFF12, 98) RELOC_NUMBER (R_ARM_GOTRELAX, 99) RELOC_NUMBER (R_ARM_GNU_VTENTRY, 100) /* deprecated - old C++ abi */ RELOC_NUMBER (R_ARM_GNU_VTINHERIT, 101) /* deprecated - old C++ abi */ RELOC_NUMBER (R_ARM_THM_JUMP11, 102) RELOC_NUMBER (R_ARM_THM_JUMP8, 103) RELOC_NUMBER (R_ARM_TLS_GD32, 104) RELOC_NUMBER (R_ARM_TLS_LDM32, 105) RELOC_NUMBER (R_ARM_TLS_LDO32, 106) RELOC_NUMBER (R_ARM_TLS_IE32, 107) RELOC_NUMBER (R_ARM_TLS_LE32, 108) RELOC_NUMBER (R_ARM_TLS_LDO12, 109) RELOC_NUMBER (R_ARM_TLS_LE12, 110) RELOC_NUMBER (R_ARM_TLS_IE12GP, 111) /* 112 - 127 private range */ RELOC_NUMBER (R_ARM_ME_TOO, 128) /* obsolete */ /* Extensions? R=read-only? */ RELOC_NUMBER (R_ARM_RXPC25, 249) RELOC_NUMBER (R_ARM_RSBREL32, 250) RELOC_NUMBER (R_ARM_THM_RPC22, 251) RELOC_NUMBER (R_ARM_RREL32, 252) RELOC_NUMBER (R_ARM_RABS32, 253) RELOC_NUMBER (R_ARM_RPC24, 254) RELOC_NUMBER (R_ARM_RBASE, 255) /* Unofficial names for some of the relocs. */ FAKE_RELOC (R_ARM_GOTOFF, R_ARM_GOTOFF32) /* 32 bit offset to GOT. */ FAKE_RELOC (R_ARM_THM_PC22, R_ARM_THM_CALL) FAKE_RELOC (R_ARM_THM_PC11, R_ARM_THM_JUMP11) FAKE_RELOC (R_ARM_THM_PC9, R_ARM_THM_JUMP8) /* Relocs with both a different name, and (apparently) different meaning in GNU usage. */ FAKE_RELOC (R_ARM_GOTPC, R_ARM_BASE_PREL) /* 32 bit PC relative offset to GOT. */ FAKE_RELOC (R_ARM_GOT32, R_ARM_GOT_BREL) /* 32 bit GOT entry. */ FAKE_RELOC (R_ARM_ROSEGREL32, R_ARM_SBREL31) /* ??? */ FAKE_RELOC (R_ARM_AMP_VCALL9, R_ARM_BREL_ADJ) /* Thumb-something. Not used. */ END_RELOC_NUMBERS (R_ARM_max) #ifdef BFD_ARCH_SIZE /* EABI object attributes. */ enum { /* 0-3 are generic. */ Tag_CPU_raw_name = 4, Tag_CPU_name, Tag_CPU_arch, Tag_CPU_arch_profile, Tag_ARM_ISA_use, Tag_THUMB_ISA_use, Tag_VFP_arch, Tag_WMMX_arch, Tag_NEON_arch, Tag_PCS_config, Tag_ABI_PCS_R9_use, Tag_ABI_PCS_RW_data, Tag_ABI_PCS_RO_data, Tag_ABI_PCS_GOT_use, Tag_ABI_PCS_wchar_t, Tag_ABI_FP_rounding, Tag_ABI_FP_denormal, Tag_ABI_FP_exceptions, Tag_ABI_FP_user_exceptions, Tag_ABI_FP_number_model, Tag_ABI_align8_needed, Tag_ABI_align8_preserved, Tag_ABI_enum_size, Tag_ABI_HardFP_use, Tag_ABI_VFP_args, Tag_ABI_WMMX_args, Tag_ABI_optimization_goals, Tag_ABI_FP_optimization_goals, /* 32 is generic. */ - + Tag_CPU_unaligned_access = 34, + Tag_FP_HP_extension = 36, + Tag_ABI_FP_16bit_format = 38, + Tag_MPextension_use = 42, + Tag_DIV_use = 44, Tag_Virtualization_use = 68, }; #endif /* The name of the note section used to identify arm variants. */ #define ARM_NOTE_SECTION ".note.gnu.arm.ident" /* Special section names. */ #define ELF_STRING_ARM_unwind ".ARM.exidx" #define ELF_STRING_ARM_unwind_info ".ARM.extab" #define ELF_STRING_ARM_unwind_once ".gnu.linkonce.armexidx." #define ELF_STRING_ARM_unwind_info_once ".gnu.linkonce.armextab." #endif /* _ELF_ARM_H */